Main

Publications By Year

If you are interested in a preprint of any of these papers do not hesitate in contacting me!

Browse my papers in bibtext with the bibtex browser


2020

  1. Recognizing, and Explaining Apparent Personality from Videos. Hugo Jair Escalante, H. Kaya, A. Salah M. Madadi, S. Ayache, E. Viegas, F. Grpinar, A. Wicaksana, C. Liem, M. J. Van Gerven, R. Modeling. IEEE Transactions on Affective Computing. 2020. (Impact factor: 7.51)
  2. Guest Editorial: Image and Video Inpainting and Denoising. Sergio Escalera, Hugo Jair Escalante, Xavier Baró, Isabelle Guyon, Meysam Madadi, Jun Wan, Stéphane Ayache, Yagmur Güçlütürk, Umut Güçlü IEEE Trans. Pattern Anal. Mach. Intell. 42(5): 1021-1024 (2020) (Impact factor: 17.703)
  3. From neighbors to strengths - the k-strongest strengths (kSS) classification algorithm. Juan Aguilera, Luis Carlos González-Gurrola, Manuel Montes-y-Gómez, Roberto López, Hugo Jair Escalante Pattern Recognit. Lett. 136: 301-308 (2020) (Impact factor: 3.255)
  4. Recognition of facial expressions based on CNN features. Sonia M. González-Lozoya, Jorge de la Calleja, Luis Pellegrin, Hugo Jair Escalante, Ma. Auxilio Medina, Antonio Benitez Ruiz. Multim. Tools Appl. 79(19-20): 13987-14007, 2020 (Impact factor: 2.313)
  5. Multimodal Face Presentation Attack Detection. Jun Wan, Guodong Guo, Sergio Escalera, Hugo Jair Escalante, Stan Z. Li. Synthesis Lectures on Computer Vision, Morgan & Claypool, 2020
  6. AutoML @ NeurIPS 2018 Challenge: Design and Results. Hugo Jair Escalante, Wei-Wei Tu, Isabelle Guyon, Daniel L. Silver, Evelyne Viegas, Yuqiang Chen, Wenyuan Dai, Qiang Yang. In: Escalera S., Herbrich R. (eds) The NeurIPS '18 Competition. The Springer Series on Challenges in Machine Learning. Springer, Cham, pp. 209—229, 2020
  7. Forensic Analysis Recognition. A. Pastor Lopez-Monroy, Hugo Jair Escalante, Manuel Montes, Xavier Baró. Book chapter in Engineering Data-Driven Adaptive Trust-based e-Assessment Systems, 2020
  8. Co-Evolutionary Genetic Programming for High Dimensional Learning Problems. Lino Alberto Rodriguez Coayahuitl, Alicia Morales, Hugo Jair Escalante, Carlos A. Coello.Proceedings of PPSN 2020, LNCS 12270, pp. 48–62, 2020.
  9. A Comparison among Different Levels of Abstraction in Genetic Programming. Lino Alberto Rodriguez Coayahuitl, Alicia Morales Reyes and Hugo Jair Escalante Balderas. 2019 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), 2020 [BEST PAPER IN COMPUTER SCIENCE]
  10. NeurIPS 2019 Competition and Demonstration Track: Revised selected papers. Hugo Jair Escalante, Raia Hadsell. PMLR 123:1-12, 2020
  11. Overview of MEX-A3T at IberLEF 2020: Fake News and Aggressiveness Analysis in Mexican Spanish. Mario Ezra Aragón, Horacio Jarquín-Vásquez, Manuel Montes-y-Gómez, Hugo Jair Escalante, Luis Villaseñor-Pineda, Helena Gómez-Adorno, Juan-Pablo Posadas-Durán, Gemma Bel-Enguix. Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2020) co-located with 36th Conference of the Spanish Society for Natural Language Processing (SEPLN 2020) Vol. 2664, CEUR WS Proceedings, 222-235, 2020
  12. Causal Structure Learning: a Bayesian approach based on random graphs Mauricio Gonzalez-Soto, Ivan R. Feliciano-Avelino, L. Enrique Sucar, Hugo J. Escalante Balderas. ArXiv, Preprint, 2020
  13. Causal Games and Causal Nash Equilibrium. Mauricio Gonzalez Soto, Enrique Sucar, Hugo Jair Escalante. Causal Reasoning Workshop at MICAI 2019, Research in Computing Science 149(3):123–133, 2020
  14. Data Augmentation with Transformers for Text Classification. Tapia-Téllez J.M., Escalante H.J. In: Martínez-Villaseñor L., Herrera-Alcántara O., Ponce H., Castro-Espinoza F.A. (eds) Advances in Computational Intelligence. MICAI 2020. Lecture Notes in Computer Science, vol 12469. Springer, Cham.

2019

  1. Transductive Non-linear Semantic Embedding for Multi-class Classification. Jorge A. Vanegas, Viviana Beltrán, Hugo Jair Escalante and Fabio A. González. Pattern Recognition Letters, Vol. 128(1):370—377, 2019 (Impact factor: 3.255)
  2. Evolving Autoencoding Structures through Genetic Programming. Lino Rodriguez, Alicia Morales, Hugo Jair Escalante. Genetic Programming and Evolvable Machines, Vol 20(3):413—440, 2019. (Impact factor: 1.560)
  3. Barley yield analysis from UAV imagery: a deep learning approach. Hugo Jair Escalante, Sara V. Rogriguez, Manuel Jímenez Lizárraga, Alicia Morales Reyes, Jorge de la Calleja, Rigoberto Vázquez. International Journal of Remote Sensing, Vol. 40(7): 2493-2516,, 2019. (Impact factor: 2.493)
  4. First Impressions: A Survey on Vision-based Apparent Personality Trait Analysis. Silveira Jacques Junior, Julio Cezar; Güçlütürk, Yagmur; Perez, Marc; Güçlü, Umut ; Andujar, Carlos; Baró, Xavier; Escalante, Hugo Jair; Guyon, Isabelle; van Gerven, Marcel; van Lier, Rob; Escalera, Sergio. IEEE Transactions on Affective Computing, 2019. (Impact factor: 7.51)
  5. Scalable multi-label annotation via Semi-supervised Kernel Semantic Embedding. Jorge A. Vanegas, Hugo Jair Escalante and Fabio A. González. Pattern Recognition Letters, Vol. 123(1):97—103, 2018, (Impact factor: 3.255)
  6. Split and merge watershed: A two-step method for cell segmentation in fluorescence microscopy images. Gamarra, Margarita, Zurek, Eduardo, Escalante, Hugo, Hurtado, Leidy, San Juan, Homero. Biomedical Signal Processing and Control, Vol. 53:101575 2019, (Impact Factor: 2.943)
  7. Guest editorial: Special Issue on Human Abnormal Behavioural Analysis. Gholamreza Anbarjafari, Sergio Escalera, Kamal Nasrollahi, Hugo Jair Escalante, Xavier Baro, Jun Wan, Thomas Moeslund. Machine Vision and Applications, 30(15)807--811, 2019, 2019. (Impact factor:1.788))
  8. Novel Distributional Visual-Feature Representations for image classification. Pastor Lopez, Manuel Montes y Gomez, Hugo Jair Escalante, Fabio A. Gonzalez. Multimedia Tools and Applications, Vol. 78(9): 11313-11336 (2019) (Impact factor: 2.313)
  9. Exploiting Label Semantic Relatedness for Unsupervised Image Annotation with Large Free Vocabularies. Luis Pellegrin, Manuel Montes, Hugo Jair Escalante, Fabio A. Gonzalez. Multimedia Tools and Applications, Vol. 78(14):19641--19662, 2019 (Impact factor: 2.313)
  10. Chained ensemble classifier for image annotation. Heidy Marisol Marin Castro, Jaciel David Hernandez Resendiz, Hugo Jair Escalante, Luis Pellegrin, Edgar Tello Leal. Multimedia Tools and Applications, Vol. 78(18): 26263-26285 2019, (Impact factor: 2.313)
  11. Aprendizaje e Inteligencia Computacional. Carlos A. Reyes, Eduardo Morales, Hugo Jair Escalante, Alejandro Torres. Academia Mexicana de Computación, A. C., 2019
  12. ChaLearn Looking at People: Inpainting and Denoising challenges. Sergio Escalera, Martí Soler, Stephane Ayache, Umut Güçlü, Jun Wan, Xavier Baro, Meysam Madadi, Hugo Jair Escalante, Isabelle Guyon. Inpainting and Denoising Challenges. The Springer Series on Challenges in Machine Learning. Springer, Cham, 2019
  13. Analysis of the AutoML Challenge series 2015-2018. Isabelle Guyon, Marc Boullé, Hugo Jair Escalante, Mehreen Saeed, Alexander Statnikiv, et al. Chapter 5 in The Springer Series on Challenges in Machine Learning. Springer, Cham.
  14. AutoCV Challenge Design and Baseline Results. Zhengying Liu, Isabelle Guyon, J. C. Jacques Junior, Meysam Madadi, Sergio Escalera, Adrien Pavao, Hugo Jair Escalante, Wei-Wei Tu, Zhen Xu. CAp 2019 - Conférence sur l’Apprentissage Automatique, Jul 2019, Toulouse, France.
  15. Cross-cultural image-based author profiling in Twitter. Ivan Feliciano, Miguel A. Álvarez-Carmona, Luis Villaseñor, Manuel Montes, Hugo Jair Escalante. Mexican International Conference on Artificial Intelligence MICAI 2019: Advances in Soft Computing pp 353-363, 2019 https://doi.org/10.1007/978-3-030-33749-0_28
  16. Meta-learning of Text Classification Tasks. Jorge G. Madrid, Hugo Jair Escalante. Iberoamerican Congress on Pattern Recognition CIARP 2019: Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications pp 107-119, 2019 https://doi.org/10.1007/978-3-030-33904-3_10
  17. Meta-learning of Textual Representations. Jorge G. Madrid, Hugo Jair Escalante, Eduardo F. Morales: PKDD/ECML Workshops (1) 2019: 57-67
  18. Overview of MEX-A3T at IberLEF 2019: Authorship and Aggressiveness Analysis in Mexican Spanish Tweets. Mario Ezra Aragón, Miguel Ángel Álvarez Carmona, Manuel Montes-y-Gómez, Hugo Jair Escalante, Luis Villaseñor Pineda, Daniela Moctezuma IberLEF@SEPLN 2019: 478-494
  19. High-level Features for Multimodal Deception Detection in Videos. R. Rill-García, H. J. Escalante, L. Villaseñor-Pineda, V. Reyes-Meza. CVPR Workshop on Face Spoofing Attack @CVPR19. Proceedings of CVPR Workshops, 2019
  20. Multi-modal Face Anti-spoofing Attack Detection Challenge at CVPR2019. A. Liu, J. Wan, S. Escalera, H. J. Escalante, Z. Tan, Q. Yuan, K. Wang, C. Lin, H. Shi, G. Guo, M. Madadi, I. Guyon, S. Z. Li. CVPR Workshop on Face Spoofing Attack @CVPR19. Proceedings of CVPR Workshops, 2019
  21. Convolutional Genetic Programming. Lino Rodriguez-Coayahuitl, Alicia Morales-Reyes, Hugo Jair Escalante:LNCS, 11524, 2 MCPR 2019: 47-57, Springer 2019, https://doi.org/10.1007/978-3-030-21077-9_5

2018

  1. Guest Editorial: The Computational Face. Sergio Escalera, Xavier Baró, Isabelle Guyon, Hugo Jair Escalante, Georgios Tzimiropoulos, Michel Valstar, Maja Pantic, Jeffrey Cohn and Takeo Kanade. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 40(11):2541--2545, 2018 (Impact factor: 17.703)
  2. Looking at People Special Issue. Sergio Escalera, Jordi Gonzàlez, Hugo Jair Escalante, Xavier Baró, Isabelle Guyon. International Journal of Computer Vision, Vol. 126(2--4):141--143, , 2018.( Impact factor: 8.222 -JCR)
  3. Evaluation of Detection Approaches for Road Anomalies Based on Accelerometer Readings--Addressing Who's Who. Manuel Ricardo Carlos, Mario Ezra Aragón, Luis C. González, Hugo Jair Escalante, Fernando Martínez. IEEE Transactions on Intelligent Transportation Systems , Available online, January 18, 2018.( Impact factor: 3.724 -JCR)
  4. Surrogate modeling based on granular models and fuzzy aptitude functions. Israel Cruz-Vega, Carlos Reyes Garcia, Hugo Jair Escalante, Jose de Jesus Rangel-Magdaleno, Juan Manuel Ramirez Cortes. Applied Soft Computing, Volume 65, April 2018, Pages 21-32, 2018 .( Impact factor: 3.541 -JCR)
  5. Guest Editorial: Apparent Affective Computing Sergio Escalera, Xavier Baró, Isabelle Guyon, Hugo Jair Escalante. IEEE Transactions on Affective Computing. Vol. 9(3):299--302, 2018, (Impact factor: 7.51)
  6. Performing Age and Gender Identification on Twitter by a Visual Approach. Miguel A. Alvarez-Carmona, Luis Pellegrin, Manuel Montes-Y-Gomez, Fernando Sanchéz-Vega, Hugo Jair Escalante, A. Pastor López-Monroy, Luis Villaseñor-Pineda and Esaú Villatoro-Tello. Journal of Intelligent & Fuzzy Systems, vol. 34, no. 5, pp. 3133-3145, 2018 (Impact factor: 1.637)
  7. Explainable and Interpretable Models in Computer Vision and Machine Learning. Hugo Jair Escalante, Sergio Escalera, Isabelle Guyon , Xavier Baró, Yağmur Güçlütürk, Umut Güçlü, Marcel A. J. van Gerven (Eds.:). Springer Series on Challenges in Machine Learning, 2018
  8. Deep learning for action and gesture recognition in image sequences: A Survey. Maryam Asadi, Albert Clapés, Marco Bella, Hugo Jair Escalante, Víctor Ponce López, Xavier Baró Solé, Isabelle Guyon, Shohreh Kasaei, Sergio Escalera. Book Chapter in S. Escalera et al. (Eds.): Gesture Recognition, Springer Series on Challenges in Machine Learning, 539—578, Springer, 2018
  9. Early Text Classification using Multi-Resolution Concept Representations. Pastor Lopez, Thamar Solorio, Hugo Escalante, Fabio Gonzalez, Manuel Montes. Proceedings of NAACL-HLT 2018, pages 1216–1225, 2018
  10. Structurally Layered Representation Learning: Towards Deep Learning Through Genetic Programming. Lino Rodriguez-Coayahuitl, Alicia Morales-Reyes, Hugo Jair Escalante. European Conference on Genetic Programming, LNCS, Vol. 10781, pp. 271—288, Springer, 2018
  11. Predicting challenge success with text information and meta-features. Dante López, Luis Villaseñor, Hugo Jair Escalante. Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications 23rd Iberoamerican Congress, CIARP 2018, Madrid, Spain, November 19-22, 2018, Proceedings, LNCS, volume 11401, 873—883, Springer, 2018
  12. Overview of the Multimedia Information Processing for Personality & Social Networks Analysis Contest. Gabriela Ramírez-de-la-Rosa, Esaú Villatoro, Bogdan Ionescu, Hugo Jair Escalante, Sergio Escalera, Martha Larson, Henning Müller, Isabelle Guyon CVAUI/IWCF/MIPPSNA@ICPR 2018: 127-139.
  13. Recognition of Apparent Personality Traits from Text and Handwritten Images. Ernesto Pérez Costa, Luis Villaseñor Pineda, Eduardo F. Morales, Hugo Jair Escalante CVAUI/IWCF/MIPPSNA@ICPR 2018: 146-152.
  14. From Text to Speech: A Multimodal Cross-Domain Approach for Deception Detection. Rodrigo Rill-García, Luis Villaseñor Pineda, Verónica Reyes-Meza, Hugo Jair Escalante CVAUI/IWCF/MIPPSNA@ICPR 2018: 164-177
  15. Bayesian Chain Classifier with Feature Selection for Multi-label Classification. Ricardo Benítez, Hugo Jair Escalante, Eduardo Morales. Mexican International Conference on Artificial Intelligence MICAI 2018: Advances in Soft Computing pp 232-243, Springer, 2018
  16. A Knowledge-based Weighted kKNN for Detecting Irony in Twitter. Delia Irazu Hernandez Farias, Manuel Montes-Y-Gómez and Hugo Jair Escalante.Mexican International Conference on Artificial Intelligence MICAI 2018: Advances in Computational Intelligence pp 194-206, Springer, 2018
  17. A Flexible Framework for the Evaluation of Unsupervised Image Annotation. Luis Pellegrin, Hugo Jair Escalante, Manuel Montes, Fabio A. Gonzalez, Mauricio Villegas. Iberoamerican Congress on Pattern Recognition CIARP 2017: Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications pp 508-516, Springer, 2018
  18. Semi-supervised Online Kernel Semantic Embedding for Multi-label Annotation. Jorge A. Vanegas, Hugo Jair Escalante and Fabio A. González. Iberoamerican Congress on Pattern Recognition CIARP 2017: Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications pp 693-701, Springer, 2018 [BEST PAPER AWARD]
  19. Overview of the 2017 RedICA Text-Image Matching (RICATIM) Challenge. Luis Pellegrin, Hugo Jair Escalante, Alicia Morales, Eduardo Morales, and Carlos A. Reyes-García. Proceedings Power, Electronics and Computing (ROPEC), 2017 IEEE International Autumn Meeting on, https://doi.org/10.1109/ROPEC.2017.8261693
  20. Automated Detection of Hummingbirds in Images: A Deep Learning Approach. Sergio A. Serrano, Ricardo Benítez-Jimenez, Laura Nuñez-Rosas, Ma del Coro Arizmendi, Harold Greeney, Verónica Reyes-Meza, Eduardo F. Morales, Hugo Jair Escalante MCPR 2018: 155-166 https://doi.org/10.1007/978-3-319-92198-3_16
  21. Learning When to Classify for Early Text Classification. Juan Martín Loyola, Marcelo Luis Errecalde, Hugo Jair Escalante, and Manuel Montes y Gomez. CAIA 2017, Argentine Congress of Computer Science CACIC 2017: Computer Science – CACIC 2017 pp 24-34, 2018
  22. Detección Automática de Engaño en Notas de Opinión a partir de Técnicas de Perfilado de Autores. J. Serrano Pérez, Javier Sánchez-Junquera, Hugo Jair Escalante-Balderas, Luis Villaseñor-Pineda. COMIA 2018, Research in Computing Science 147(6):133-144, 2018
  23. Overview of MEX-A3T at IberEval 2018: Authorship and Aggressiveness Analysis in Mexican Spanish Tweets. Miguel Ángel Álvarez Carmona, Estefanía Guzmán-Falcón, Manuel Montes-y-Gómez, Hugo Jair Escalante, Luis Villaseñor Pineda, Verónica Reyes-Meza, Antonio Rico Sulayes IberEval@SEPLN 2018: 74-96

2017

  1. Multimodal First Impression Analysis with Deep Residual Networks. Yağmur Güçlütürk, Umut Güçlü, Xavier Baró, Hugo Jair Escalante, Isabelle Guyon, Sergio Escalera, Marcel AJ van Gerven, Rob van Lier. IEEE Transactions on Affective Computing, Available online, September 2017 .( Impact factor: 3.149 -JCR)
  2. Early detection of deception and aggressiveness using profile-based representations.. Hugo Jair Escalante, Esaú Villatoro-Tello, Sara E Garza, A Pastor López-Monroy, Manuel Montes-y-Gómez, Luis Villaseñor-Pineda. Expert Systems with Applications, Volume 89, 15 December 2017, Pages 99-111, 2017 .( Impact factor: 3.928 -JCR)
  3. Learning roadway surface disruption patterns using the bag of words representation. Luis C González, Ricardo Moreno, Hugo Jair Escalante, Fernando Martínez, Manuel Ricardo Carlos. IEEE Transactions on Intelligent Transportation Systems , Vol. 18(11):2916-- 2928, 2017 .( Impact factor: 3.724 -JCR)
  4. Local and global approaches for unsupervised image annotation.. Luis Pellegrin, Hugo Jair Escalante, Manuel Montes-y-Gómez, Fabio A González. Journal Multimedia Tools and Applications, Vol. 76(15):16389-16414, 2017 .( Impact factor: 1.530 -JCR)
  5. An iterative genetic programming approach to prototype generation .. José María Valencia-Ramírez, Mario Graff, Hugo Jair Escalante, Jaime Cerda-Jacobo. Genetic Programming and Evolvable Machines Vol. 18(2):123-147, 2017 .( Impact factor: 1.514 -JCR)
  6. Analysis of facial expressions in parkinson's disease through video-based automatic methods. Andrea Bandini, Silvia Orlandi, Hugo Jair Escalante, Fabio Giovannelli, Massimo Cincotta, Carlos A Reyes-Garcia, Paola Vanni, Gaetano Zaccara, Claudia Manfredi. Journal of Neuroscience Methods, Vol. 281(1):7-20, 2017 .( Impact factor: 2.554 -JCR)
  7. A parallel approach for the training stage of the Viola-Jones face detection algorithm. Eric Olmedo, Jorge de la Calleja, Alicia Morales-Reyes, Hugo Jair Escalante, Argelia B Urbina Najera, Ma Medina, Antonio Benitez Ruiz. Intelligent Data Analysis, Vol. 21(5):1097-1115, 2017 .( Impact factor: 0.772 -JCR)
  8. Semantic Genetic Programming for Sentiment Analysis. Mario Graff, Eric S. Tellez, Hugo Jair Escalante and Sabino Miranda-Jiménez. Book Chapter in O. Schütze et al. (eds.), NEO 2015, Studies in Computational Intelligence 663, pp. 43--65, Springer, 2017.
  9. Aprendizaje e Inteligencia Computacional. Eduardo Morales, Carlos Alberto Reyes, Alicia Morales, Hugo Jair Escalante. Book Chapter in La Computación En México por Especialidades Académicas, pp. 65—90, AMEXCOMP, 2017
  10. A survey on deep learning based approaches for action and gesture recognition in image sequences. Maryam Asadi-Aghbolaghi, Albert Clapés, Marco Bellantonio, Hugo Jair Escalante, Víctor Ponce-López, Xavier Baró, Isabelle Guyon, Shohreh Kasaei, Sergio Escalera. Proceedings of 2017 IEEE 12th International Conference on Automatic Face & Gesture Recognition, pp. 476--483, IEEE, 2017
  11. ChaLearn Looking at People: A Review of Events and Resources. Sergio Escalera, Xavier Baró, Hugo Jair Escalante, Isabelle Guyon. Proceedings of Neural Networks (IJCNN), 2017 International Joint Conference on, pp. 1594—1601, IEEE, 2017.
  12. Design of an explainable machine learning challenge for video interviews. Hugo Jair Escalante, Isabelle Guyon, Sergio Escalera, Julio Jacques, Meysam Madadi, Xavier Baró, Stephane Ayache, Evelyne Viegas, Yağmur Güçlütürk, Umut Güçlü, Marcel A. J. van Gerven, Rob van Lie. Proceedings of Neural Networks (IJCNN), 2017 International Joint Conference on, pp. 3688—3695, IEEE, 2017.
  13. Towards a Generic Ontology for Video Surveillance. Pablo Hernandez-Leal, Hugo Jair Escalante, and L. Enrique Sucar. In E. Sucar et al. (Eds.): Post proceedings AFI 2016, ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017, LNICST 179, pp. 3–7, Springer 2017.
  14. Visualizing Apparent Personality Analysis with Deep Residual Networks. Yağmur Güçlütürk, Umut Güçlü, Marc Pérez, Hugo Jair Escalante, Xavier Baró, Isabelle Guyon, Carlos Andujar, Marcel A. J. van Gerven, Rob van Lier, Julio Jacques Junior, Meysam Madadi and Sergio Escalera. Proceedings of the ICCV ChaLearn Looking at People Workshop, pp. 3101—3109, IEEE, 2017
  15. Results and Analysis of ChaLearn LAP Multi-modal Isolated and Continuous Gesture Recognition, and Real versus Fake Expressed Emotions Challenges. Jun Wan, Sergio Escalera, Gholamreza Anbarjafari, Hugo Jair Escalante, et al. ICCV ChaLearn Looking at People Workshop, pp. 3189-3197, IEEE, 2017

2016

  1. Evolving weighting schemes for the Bag of Visual Words. Hugo Jair Escalante, Víctor Ponce-López, Sergio Escalera, Xavier Baró, Alicia Morales-Reyes, José Martínez-Carranza. Neural Computing and Applications, pp. 1--11, Avaiable online, March 1, 2016.( Impact factor: 1.569 -JCR)
  2. A naïve Bayes baseline for early gesture recognition. Hugo Jair Escalante, Eduardo F. Morales, L. Enrique Sucar. Pattern Recognition Letters, pp. 1--11, Avaiable online, February 4, 2016.( Impact factor: 1.551 -JCR)
  3. An online and incremental GRLVQ algorithm for prototype generation based on granular computing.. Israel Cruz-Vega, Hugo Jair Escalante. Soft Computing, pp. 1--14, Avaiable online, February 2, 2016.( Impact factor: 1.271 -JCR)
  4. Time series forecasting with genetic programming.. Mario Graff , Hugo Jair Escalante, Fernando Ornelas-Tellez, Eric S. Tellez. Natural Computing, pp. 1--10, Avaiable online, January 6, 2016.( Impact factor: 0.757 -JCR)
  5. PGGP: Prototype Generation via Genetic Programming.. Hugo Jair Escalante, Mario Graff, Alicia Morales-Reyes. Applied Soft Computing, Volume 40, March 2016, pp. 569–580, 2016.( Impact factor: 2.810 -JCR)
  6. Improving the BoVW via Discriminative Visual N-Grams and MKL Strategies. A. Pastor López-Monroy, Manuel Montes-y-Gómez, Hugo Jair Escalante, Angel Cruz-Roa, Fabio A. González. Neurocomputing, Vol. 175, Part A, 2016, pp. 768–781, available online: November 10, 2015. ( Impact factor: 2.083 -JCR)
  7. GRASP with Path Relinking for Commercial Districting. Roger Rios-Mercado, Hugo Jair Escalante. Expert Systems with Applications, Vol. 44, pp.102---113, available online: September 27, 2015. ( Impact factor: 2.240 -JCR)
  8. EMOPG+ FS: Evolutionary multi-objective prototype generation and feature selection. Alejandro Rosales-Pérez, Jesus A Gonzalez, Carlos A Coello Coello, Carlos A Reyes-Garcia, Hugo Jair Escalante. Intelligent Data Analysis, Vol. 20(1):S37-S51, 2016 .( Impact factor: 0.772 -JCR)
  9. In Defense of Online Kmeans for Prototype generation and Instance Reduction. Mauricio García Limón, Hugo Jair Escalante, Alicia Morales Reyes. Proceedings of Ibero-American Conference on Artificial Intelligence IBERAMIA 2016: Advances in Artificial Intelligence - IBERAMIA 2016 pp 310-322, Springer, 2016.
  10. ChaLearn Joint Contest on Multimedia Challenges Beyond Visual Analysis: An overview. Hugo Jair Escalante, Victor Ponce-Lopez, Jun Wan, Michael A. Riegler, Baiyu Chen, Albert Clapes, Sergio Escalera, Isabelle Guyon, Xavier Baro, Pal Halvorsen, Henning Müller, Martha Larson. International Conference on Pattern Recognition (ICPR 2016) Workshops, 2016
  11. A Machine Learning Pipeline to Automatically Identify and Classify Roadway Surface Disruptions. Ezra Aragón, Manuel Ricardo Carlos Loya, Luis-Carlos González-Gurrola, Hugo Jair Escalante. Proceedings of ENC, September 1,1:4, 2016
  12. A brief Review of the ChaLearn AutoML Challenge: Any-time Any-dataset Learning without Human Intervention. Isabelle Guyon, Imad Chaabane, Hugo Jair Escalante, Sergio Escalera, Damir Jajetic, James Robert Lloyd, Núria Macià, Bisakha Ray, Lukasz Romaszko, Michèle Sebag, Alexander Statnikov, Sébastien Treguer, Evelyne Viegas. Proceedings of the Workshop on Automatic Machine Learning, PMLR 64:21-30, 2016.
  13. A Two-Step Retrieval Method for Image Captioning. Luis Pellegrin, Jorge A. Vanegas, John Arevalo, Viviana Beltrán, Hugo Jair Escalante, Manuel Montes-y-Gómez, Fabio A. González. International Conference of the Cross-Language Evaluation Forum for European Languages CLEF 2016: Experimental IR Meets Multilinguality, Multimodality, and Interaction pp 150-161, Springer, 2016
  14. ChaLearn LAP 2016: First Round Challenge on First Impressions - Dataset and Results. Victor Ponce Lopez, Baiyu Chen, Albert Places, Marc Oliu, Ciprian Corneanu, Xavier Baro, Hugo Jair Escalante, Isabelle Guyon, Sergio Escalera. ChaLearn Looking at People Workshop on Apparent Personality Analysis, ECCV 2016 Workshops, Part III, LNCS 9915, pp. 400–418, 2016.
  15. Early text classification: a Naive solution. Hugo Jair Escalante, Manuel Montes, Luis Villaseñor, Marcelo Luis Errecalde. Proceedings of NAACL-HLT 2016, 7th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 91–99, 2016.
  16. ChaLearn Looking at People and Faces of the World: Face Analysis Workshop and Challenge 2016. Sergio Escalera, Mercedes Torres Torres, Brais Martinez, Xavier Baro, Hugo Jair Escalante, Isabelle Guyon, Georgios Tzimiropoulos, Ciprian Corneou, Marc Oliu, Mohammad Ali Bagheri, Michel Valstar. CVPRW proceedings, pp. 1--8, 2016
  17. Multi-objective Full Model Selection in Temporal Databases: Optimizing Time and Performance. Nancy Pérez Castro, Hector-Gabriel Acosta-Mesa, Efrén Mezura-Montes and Hugo Jair Escalante. ROPEC 2016, August 8, 2016
  18. EvoDAG: A Semantic Genetic Programming Python Library. Mario Graff, Eric S. Tellez, Sabino Miranda and Hugo Jair Escalante. ROPEC 2016, August 8, 2016

2015

  1. Discriminative Subprofile-Specific Representations for Author Profiling in Social Media. A. Pastor López-Monroy, Manuel Montes-y-Gómez, , Hugo Jair Escalante, , Luis Villaseñor-Pineda, Efstathios Stamatatos. Knowledge-based Systems, available online: July 2, 2015. ( Impact factor: 2.947 -JCR)
  2. Principal motion components for one-shot gesture recognition. Hugo Jair Escalante, Isabelle Guyon, Vassilis Athitsos, Pat Jangyodsuk, Jun Wan. Pattern Analysis and Applications, available online: May 8, 2015. ( Impact factor: 0.742 -JCR)
  3. Term-Weighting Learning via Genetic Programming for Text Classification. Hugo Jair Escalante, Mauricio García-Limón, Alicia Morales-Reyes, Mario Graff, Manuel Montes-y-Gómez, Eduardo F. Morales, and José Martinez-Carranza. Knowledge-based Systems, available online: March 29, 2015. ( Impact factor: 3.058 -JCR)
  4. MOPG: a multi-objective evolutionary algorithm for prototype generation. Hugo Jair Escalante,Maribel Marin-Castro,Alicia Morales-Reyes,Mario Graff,Alejandro Rosales-Pérez,Manuel Montes-y-Gómez,Carlos A. Reyes,Jesus A. Gonzalez. Pattern Analysis and Applications, available online: February 5, 2015. ( Impact factor: 0.742 -JCR)
  5. Surrogate modeling based on an adaptive network and granular computing. Israel Cruz-Vega, Hugo Jair Escalante, Carlos A. Reyes,Jesus A. Gonzalez, Alejandro Rosales-Pérez. Soft Computing, available online: February 7, 2015. ( Impact factor: 1.304 -JCR)
  6. Surrogate-Assisted Multi-Objective Model Selection for Support Vector Machines. Alejandro Rosales-Pérez, Jesus A. Gonzalez, Carlos A. Coello Coello, Hugo Jair Escalante, Carlos A. Reyes-Garcia. Neurocomputing, Vol. 150: 163-172 (2015) (available online, November 5, 2014.) ( Impact factor: 2.005 -JCR)
  7. A note on: Adaptive Fuzzy Fitness Granulation for Evolutionary Optimization. Israel Cruz-Vega, Hugo Jair Escalante. International Journal of Approximate Reasoning, Vol. 57: 40--43 (2015)(available online 28 November, 2014.) (Impact factor: 1.977 -JCR)
  8. Classifying Infant Cry Patterns by the Genetic Selection of a Fuzzy Model. Alejandro Rosales-Pérez, Carlos Alberto Reyes Garcia, Jesus A. Gonzalez, Orion Reyes-Galaviz, Hugo Jair Escalante, Silvia Orlandi. Biomedical Signal Processing and Control, Vol. 17:38--46, 2015 (available online Dec 2014.) (Impact factor: 1.532 -JCR)
  9. ChaLearn Looking at People Events. Sergio Escalera, Jordi González, Xavier Baró, Hugo Jair Escalante, Isabelle Guyon. IAPR NewsLetter, Vol 37(4):13—15, 2015
  10. Deep Learning based Super-Resolution for Improved Action Recognition. K. Nasrollahi, S. Escalera, P Rastiz, G. Anbarjafariz, X. Baró-Sole, H.J. Escalante, and T.B. Moeslund. Proceedings of International Conference on Image Processing Theory, Tools and Applications (IPTA), pp. 67--72, IEEE, 2015
  11. Gesture and Action Recognition by Evolved Dynamic Subgestures. Víctor Ponce-López, Hugo Jair Escalante, Xavier Baró, Sergio Escalera. In Xianghua Xie, Mark W. Jones, and Gary K. L. Tam, editors, Proceedings of the British Machine Vision Conference (BMVC), pages 129.1-129.13. BMVA Press, September 2015.
  12. Towards Autonomous Flight of Low-Cost MAVs by Using a Probabilistic Visual Odometry Approach. José Martínez Carranza, Esteban Omar García, Hugo Jair Escalante, Walterio Mayol-Cuevas. MICAI'15, Advances in Artificial Intelligence and Its Applications, Vol. 9414 of LNCS pp. 560--573, Springer, 2015.
  13. Memetic Genetic Programming based on Orthogonal Projections in the Phenotype Space. Mario Graff, Eric S. Tellez, Hugo Jair Escalante and Jose Ortiz Bejar. Proceedings of IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), pp. 1--6, IEEE, 2015
  14. Class-specific feature generation for 1NN through genetic programming Mauricio Garcia-Limon, Hugo Jair Escalante, Eduardo F. Morales, Luis Villaseñor. Proceedings of IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), pp. 1--6, IEEE, 2015
  15. ChaLearn Looking at People 2015 new Competitions: Age Estimation and Cultural Event Recognition. Sergio Escalera, Jordi Gonzalez, Xavier Baro, Pablo Pardo, Junior Fabian, Marc Oliu, Hugo Jair Escalante, Ivan Huerta, Isabelle Guyon. Proceedings of the 2015 International Joint Conference on Neural Networks, IJCNN2015, Killarney, Ireland, July 12-17, pp. 2337--2344, IEEE, 2015.
  16. Design of the 2015 ChaLearn AutoML Challenge. Isabelle Guyon, Kristin Bennett, Gavin Cawley, Hugo Jair Escalante, Sergio Escalera, Tin Kam Ho, Nuria Macia, Bisakha Ray, Alexander Statnikov, Evelyne Viegas. Proceedings of the 2015 International Joint Conference on Neural Networks, IJCNN2015, Killarney, Ireland, July 12-17, pp. 3442--3449, IEEE, 2015.
  17. Improving Bag of Visual Words Representations with Genetic Programming. Hugo Jair Escalante, José Martínez-Carranza, Sergio Escalera, Víctor López-Ponce, Xavier Baró. Proceedings of the 2015 International Joint Conference on Neural Networks, IJCNN2015, Killarney, Ireland, July 12-17, pp. 3674--3681, IEEE, 2015.
  18. An Empirical Analysis on Dimensionality in Cellular Genetic Algorithms. Alicia Morales, Hugo Jair Escalante, Martin Letras. Rene Cumplido. GECCO '15 Proceedings of the 2015 conference on Genetic and evolutionary computation, pp. 895-902, (Full paper, Oral presentation), Madrid, Spain, July, 11-17, 2015.
  19. AutoML Challenge: Design and First Results. Isabelle Guyon, Kristin Bennett, Gavin Cawley, Hugo Jair Escalante, Sergio Escalera, Tin Kam Ho, Nuria Macia, Bisakha Ray, Mehereen Saed, Alexander Statnikov, Evelyne Viegas. ICML AutoML workshop, 2015.
  20. ChaLearn Looking at People 2015 challenges: action spotting and cultural event recognition. X. Baró, J. Gonzalez, Junior Fabian, Miguel A. Bautista, Marc Oliu, Hugo Jair Escalante, Isabelle Guyon, Sergio Escalera. CVPR workshop proceedings, 2015
  21. Improved Learning Rule for LVQ based on Granular Computing. Israel Cruz, Hugo Jair Escalante. In Proceedings of MCPR2015, J.A. Carrasco-Ochoa et al. (Eds.): MCPR 2015, LNCS 9116, pp. 54–63, Springer 2015.
  22. INAOE-UNAL at ImageCLEF 2015: Scalable Concept Image Annotation. Luis Pellegrin, Jorge A. Vanegas, John E. Arevalo, Viviana Beltrán, Hugo Jair Escalante, Manuel Montes-y-Gómez, Fabio A. González. CLEF (Working Notes), CEUR WS Proceedings, Vol. 1391 2015.
  23. INAOE's Participation at PAN'15: Author Profiling task. Miguel Ángel Álvarez Carmona, Adrián Pastor López-Monroy, Manuel Montes-y-Gómez, Luis Villaseñor Pineda, Hugo Jair Escalante:. CLEF (Working Notes), CEUR WS Proceedings, Vol. 1391 2015. [Winning approach of the Author profiling task at PAN-CLEF 2015]

2014

  1. CSMMI: Class-Specific Maximization of Mutual Information for Action and Gesture Recognition. J. Wan, V. Athitsos, P. Jangyodsuk, H.J. Escalante, Q. Ruan, I. Guyon. IEEE Transactions on Image Processing, Vol. 23(7) :3152--3165, July, 2014 ( Impact factor: 3.199 -JCR)
  2. Wind Speed Forecasting using Portfolio of Forecasters. Mario Graff, Rafael Peña, Aurelio Medina, Hugo Jair Escalante. Renewable Energy 68 (2014) 550—559, 2014. ( Impact factor: 2.989 -JCR)
  3. The ChaLearn Gesture Dataset CGD 2011. Isabelle Guyon, Vassilis Athitsos, Pat Jangyodsuk, Hugo Jair Escalante. Machine Vision and Applications, Vol. 25(8):1929--1951, 2014 (Available Online January, 2014) ( Impact factor: 1.103 -JCR)
  4. Multi-Objective Model Type Selection. Alejandro Rosales-Pérez, Jesus A. Gonzalez, Carlos A. Coello Coello, Hugo Jair Escalante, Carlos A. Reyes-Garcia. SI: Bridging Machine learning and Evolutionary Computation (BMLEC)Computational Collective Intelligence, Neurocomputing, Vol. 146:83--94, 2014. ( Impact factor: 2.005 -JCR)
  5. Learning to Assemble Classifiers via Genetic Programming. Niusvel Acosta-Mendoza, Alicia Morales-Reyes, Hugo Jair Escalante, Andres Gago-Alonso. International Journal of Pattern Recognition and Artificial Intelligence, VOl 28(7):1--18, 2014 (Impact factor: 0.558 -JCR)
  6. Detection of defective embedded bearings by sound analysis: a machine learning approach. Mario A. Saucedo-Espinosa, Hugo Jair Escalante, and Arturo Berrones. Journal of Intelligent Manufacturing, Published online: November 2014. ( Impact factor: 1.142 -JCR)
  7. An Adaptive Random Search for Unconstrained Global Optimization. Jonás Velasco, Mario A. Saucedo, Hugo Jair Escalante, Karlo Mendoza, Cesar Emilio Villareal, Oscar Chacón, Adrian Rodríguez, Arturo Berrones. Computación y Sistemas, Vol. 18(2):243—257, 2014.
  8. Fusing Affective Dimensions and Audio-Visual Features from Segmented Video for Depression Recognition. Humberto Perez-Espinosa, Hugo Jair Escalante, Luis Villaseñor-Pineda, Manuel Montes, David Pinto-Avedaño, Verónica Reyes-Meza. Proceedings of the 4th International Workshop on Audio/Visual Emotion Challenge, AVEC’2014, pp. 49--55 (slides)
  9. Simultaneous Segmentation and Recognition of Hand Gestures for Human-Robot Interaction. Simultaneous Segmentation and Recognition of Hand Gestures for Human-Robot Interaction. Harold Vasquez, Hugo Jair Escalante, L. Enrique Sucar. Proceedings of 16th International Conference on Advanced Robotics (ICAR), 2013, pp. 1--6, 2014.
  10. Simultaneous Generation of Prototypes and Features through Genetic Programming. Mauricio García-Limón, Hugo Jair Escalante, Eduardo Morales, Alicia Morales. GECCO '14 Proceedings of the 2014 conference on Genetic and evolutionary computation, pp. 517-524, (Full paper, Oral presentation), Vancouver, Canada, July, 12-17, 2014.
  11. An Evolutionary Multi-Objective Approach for Prototype Generation. Alejandro Rosales, Hugo Jair Escalante, Jesus A. Gonzalez, Carlos A. Coello, Carlos A. Reyes. CEC’14: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1100—1007, (Full paper, Oral presentation), Beijing, China, July 6-11, 2014.
  12. Adaptive Surrogates with a Neuro-Fuzzy Network and Granular Computing. Israel Cruz Vega, Mauricio García-Limón, Hugo Jair Escalante. GECCO '14 Proceedings of the 2014 conference on Genetic and evolutionary computation, pp. 761-768, (Full paper, Oral presentation), Vancouver, Canada, July, 12-17, 2014.
  13. Genetic programming of text representations. Mauricio García-Limón, Hugo Jair Escalante, Manuel Montes-y-Gómez, Alicia Morales, Eduardo Morales. GECCO Comp'14 Proceedings of the 2014 conference companion on Genetic and evolutionary computation companion, pp. 1459-1460, (Late-breaking abstract, Oral presentation), Vancouver, Canada, July, 12-17, 2014.
  14. Object Recognition with Naive Bayes-KNN via Prototype Generation. Hugo Jair Escalante, Mauricio Sotomayor, Manuel Montes, A. Pastor López-Monroy. In J.F. Martínez Trinidad, J. A. Carrasco-Ochoa, J. A. Olvera-López, J. Salas Rodríguez, C. Y. Suen (Eds.): Pattern Recognition - 6th Mexican Conference, MCPR 2014, Cancun, Mexico, June 25-28, 2014. Proceedings. Springer 2014 Lecture Notes in Computer Science ISBN 978-3-319-07490-0
  15. Extensión de una Red Neuronal Relacional Difusa incorporando distintos productos relacionales a la etapa de entrenamiento. Efraín Mendoza Castañeda, Carlos Alberto Reyes García and Hugo Jair Escalante. Proceedings of COMIA, Research in Computing Science Vol. 72, IPN, 73—84, ISSN 1870-4069, 2014. (Spanish)
  16. Image Classification through Text Mining techniques: a Doctoral Research Proposal. A. Pastor López-Monroy, Manuel Montes-Y-Gómez, Hugo Jair Escalante and Fabio A. González. MCPR’s graduate students meeting, Research in Computing Science Vol. 71, pp. 63—72, IPN, ISSN 1870-4069, 2014. [Granted the Best Poster Award]
  17. Using Intra-Profile Information for Author Profiling, Notebook for PAN at CLEF 2014. A. Pastor López-Monroy, Manuel Montes-y-Gómez, Hugo Jair Escalante, Luis Villaseñor. In L. Cappellato, N. Ferro, M. Halvey, W. Kraaij Eds. Working Notes for CLEF 2014 Conference, Sheffield, UK, September 15-18, 2014, CEUR Workshop proceedings, Vol. 1180, pp. 1116-1120, 2014 [Winning approach of the Author profiling task at PAN-CLEF 2014]
  18. Tus Mensajes Dicen Más de lo que Crees. Hugo Jair Escalante, Manuel Montes-y-Gómez, Luis Villaseñor. Saberes y Ciencias. El suplemento mensual de La Jornada de Oriente, pp. 10, Febrero 13, 2014.
  19. ChaLearn Looking at People Challenge 2014: Dataset and Results. Sergio Escalera, Xavier Baró, Jordi Gonzalez, Miguel A Bautista, Meysam Madadi, Miguel Reyes, V. Ponce, Hugo Jair Escalante, Jamie Shotton, Isabelle Guyon. Proceedings of the ECCV14 ChaLearn Workshop on Looking at People, Zurich, Switzerland, September 6-7, 2014.
  20. Enhanced Fuzzy-Relational Neural Network with Alternative Relational Products. Efraín Mendoza-Castañeda, Carlos A. Reyes García, Hugo Jair Escalante, Wilfrido Moreno, Alejandro Rosales-Pérez. CIARP 14: Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, LNCS, Vol. 8827, pp. 666-673, 2014,
  21. Evolutionary Multi-Objective Approach for Prototype Generation and Feature Selection. Alejandro Rosales-Pérez, Jesús A. González, Carlos A. Coello Coello, Carlos A. Reyes García, Hugo Jair Escalante. CIARP 14: Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, LNCS, Vol. 8827, pp. 424-431, 2014,
  22. Towards Simultaneous Prototype and Feature Generation. Mauricio Alfonso García Limón, Hugo Jair Escalante Balderas and Eduardo Morales Manzanares. Proceedings of the XVI IEEE Autumn Meeting of Power, Electronics and Computer Science ROPEC 2014 INTERNACIONAL, pp. 393—398, 2014. (slides)
  23. Comparison between Genetic Programming and Full Model Selection on Classification Problems. José María Valencia-Ramírez, Julio Raya, Rafael Cedeño, Ranyart Rodrigo Suárez, Hugo Jair Escalante, Mario Graff. Proceedings of the XVI IEEE Autumn Meeting of Power, Electronics and Computer Science ROPEC 2014 INTERNACIONAL, pp. 428—433, 2014.
  24. Evaluating Term-Expansion for Unsupervised Image Annotation. Luis Pellegrin, Hugo Jair Escalante, Manuel Montes-y-Gómez. In A. Gelbukh et al. (Eds.): MICAI 2014, Human-Inspired Computing and Its Applications, Part I, LNCS Volume 8856, 2014, pp 151-162, 2014.

2013

  1. Sow activity classification from acceleration patterns: a machine learning approach. Hugo Jair Escalante, Sara V. Rodriguez, Jorge Cordero, Anders Ringgaard Kristensen, Cécile Cornou. Computers and Electronics in Agriculture, Vol 93, 17--23, 2013. ( Impact factor: 1.846 - JCR)
  2. Multimodal Markov Random Field for Image Re-ranking based on Relevance Feedback. Ricardo Omar Chavez, Hugo Jair Escalante, Manuel Montes-y-Gómez, and L. Enrique Sucar. ISRN Machine Vision Journal, Volume 2013 (2013), Article ID 428746, 16 pages, 2013.
  3. Models of Performance of Time Series Forecasters. Mario Graff, Hugo Jair Escalante, Jaime Cerda-Jacobo, Alberto Avalos Gonzalez. Neurocomputing, Available online July 1st, 2013 ( Impact factor: 1.643 - JCR)
  4. Results and Analysis of the ChaLearn Gesture Challenge 2012. Isabelle Guyon, Vassilis Athitsos, Pat Jangyodsuk, Hugo Jair Escalante, and Ben Hamner. Invited chapter, X. Jiang et al. (Eds.): WDIA: Advances in Depth Image Analysis and Applications, LNCS 7854, pp. 186—204, Springer, 2013.
  5. Automatic Classification of Web Databases using domain-dictionaries. Heidy M. Marin-Castro, Victor J. Sosa-Sosa, Ivan Lopez-Arevalo, and Hugo Jair Escalante. In Petra Perner (Ed.): Machine Learning and Data Mining in Pattern Recognition, 9th International Conference, July 19-25, 2013, New York/USA, LNAI 7988, pp. 340—351, Springer, 2013.
  6. Distributional Term Representations for Short-Text Categorization. Juan Manuel Cabrera, Hugo Jair Escalante, Manuel Montes y Gómez. In A. Gelbukh (Ed.): CICLing 2013, Part II, LNCS 7817, pp. 335–346, Springer, 2013. (4th International Conference on Intelligent Text Processing and Computational Linguistics - CICLing 2013, Samos, Greece, March 24–30, 2013.
  7. Bias and Variance Multi-Objective Optimization for Support Vector Machines Model Selection. Alejandro Rosales, Hugo Jair Escalante, Carlos A. Reyes, Jesús A. González, Carlos A. Coello. In J.M. Sanches, L. Micó, and J.S. Cardoso (Eds.): IbPRIA 2013, IbPRIA 2013: 6th Iberian Conference on Pattern Recognition and Image Analysis, Madeira, Portugal. June 5-7, 2013, LNCS 7887, pp. 108–116, 2013
  8. Genetic Programming of Prototypes for Pattern Classification. Hugo Jair Escalante, Karlo Mendoza, Mario Graff. In J.M. Sanches, L. Micó, and J.S. Cardoso (Eds.): IbPRIA 2013, IbPRIA 2013: 6th Iberian Conference on Pattern Recognition and Image Analysis, Madeira, Portugal. June 5-7, 2013, LNCS 7887, pp. 100–107, 2013
  9. Bias and Variance Optimization for SVMs Model Selection. Alejandro Rosales, Hugo Jair Escalante, Carlos A. Reyes, Jesús A. González, Carlos A. Coello. Proceedings of the Twenty-Sixth International Florida Artificial Intelligence Research Society Conference, pp. 136--141, May 22 - 24, 2013, St. Pete Beach, Florida, USA, 2013.
  10. Sexual predator detection in chats with chained classifiers. Hugo Jair Escalante, Antonio Juárez-González, Esaú Villatoro-Tello, Manuel Montes-y-Gómez, Luis Villaseñor Pineda. Proceedings of the 4th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 46–54, Atlanta, Georgia, 14 June 2013.
  11. A Hybrid Surrogate-Based Approach for EvolutionaryMulti-Objective Optimization. Alejandro Rosales, Carlos A. Coello, Jesús A. González, Carlos A. Reyes, Hugo Jair Escalante. Proceedings of the IEEE Congress on Evolutionary Computation, Cancún, México, June 20-23, pp. 2548—2555, ISBN-978-1-4799-0455, 2013.
  12. Simultaneous segmentation and recognition of gestures for human-machine interaction. Harold Vasquez, L. Enrique Sucar, Hugo Jair Escalante. In J. Gama, M. May, N. Marques, P. Cortez and C. A. Ferreira (Eds.); Proceedings of the 3rd Workshop on Ubiquitous Data Mining (UDM) - co-located with the 23rd International Joint Conference on Artificial Intelligence (IJCAI 2013), Beijing, China, August 3, 2013, CEUR Workshop Proceedings Vol. 1088, pp- 29—33, 2013.
  13. INAOE’s participation at PAN’13: Author Profiling task. Pastor López-Monroy, Manuel Montes-y-Gómez, Hugo Jair Escalante, Luis Villaseñor-Pineda, and Esaú Villatoro-Tello. Notebook for PAN at CLEF 2013. In Pamela Forner, Roberto Navigli, and Dan Tufis, editors. CLEF 2013 Evaluation Labs and Workshop – Working Notes Papers, 23-26 September, Valencia, Spain, ISBN 978-88-904810-5-5ISSN 2038-4963, 2013. [Winning approach of the Author profiling task at PAN-CLEF 2013]
  14. Novel representations and methods in text classification. Manuel Montes-y-Gómez, Hugo Jair Escalante. Course taught at the 2013 Russian Summer School on Information Retrieval, RUSSIR 2013. September, 2013.
  15. TIA-INAOE's approach for the 2013 Retrieving Diverse Social Images task. Hugo Jair Escalante, Alicia Morales. MediaEval 2013 Workshop, October 18-19, 2013, Barcelona, Spain, CEUR Workshop Proceedings, Vol. 1043, 2013, CEUR-WS.org, ISSN: 1613-0073. 2013.
  16. Principal motion components for gesture recognition using a single-example. Hugo Jair Escalante, Isabelle Guyon, Vassilis Athitsos, Pat Jangyodsuk, Jun Wan. arXiv preprint, 1310.4822, October 17, 2013
  17. Bag-of-Visual-Ngrams for Histopathology Image Classification. A. Pastor López-Monroy, Manuel Montes-y-Gómez, Hugo Jair Escalante, Angel Cruz-Roa, Fabio A. González. Proceedings of SPIE 8922, IX International Seminar on Medical Information Processing and Analysis, 89220P (November 19, 2013); doi: 10.1117/12.2034113, Mexico ciy, November 13-15, SPIE, 2013.
  18. A One-shot DTW-Based Method for Early Gesture Recognition. Yared Sabinas, Eduardo Morales, Hugo Jair Escalante. In José Ruiz-Shulcloper, Grabiella Sanniti di Baja (Eds): Progress in Pattern Recognition, Image Analysis, Computer Vision and Applications, 18th Iberoamerican Congress, CIARP, Havana, Cuba, November 20-23, Proceedings, Part II, LNCS 8259, pp. 439—446, Springer, 2013.
  19. Genetic Programming of Heterogeneous Ensembles for Classification. Hugo Jair Escalante, Niusvel Acosta, Alicia Morales, A. Gago. In José Ruiz-Shulcloper, Grabiella Sanniti di Baja (Eds): Progress in Pattern Recognition, Image Analysis, Computer Vision and Applications, 18th Iberoamerican Congress, CIARP, Havana, Cuba, November 20-23, Proceedings, Part I, LNCS 8258, pp. 9—16, Springer, 2013.
  20. Towards Human-Robot-Interaction in Continuous video with Gestures for Sabina. Harold Vasquez Chavarria, Hugo Jair Escalante, L. Enrique Sucar, Miguel Palacios, Patrick Heyer. Proceedings of the Workshop on Robocup@home league. ICAR 2013 - 16th International Conference on Advanced Robotics, 2013.
  21. Multi-modal Gesture Recognition Challenge 2013: Dataset and Results. Sergio Escalera, Jordi Gonzàlez, Xavier Baró, Miguel Reyes, Oscar Lopes, Isabelle Guyon, Vassilis Athistos, Hugo Jair Escalante. ICMI '13 Proceedings of the 15th ACM on International conference on multimodal interaction, pp. 445-452, ISBN: 978-1-4503-2129-7 doi: 10.1145/2522848.2532595, ACM New York, NY, USA, 2013.
  22. ChaLearn Multi-Modal Gesture Recognition 2013: Grand Challenge and Workshop Summary. Sergio Escalera, Jordi Gonzàlez, Xavier Baró, Miguel Reyes, Isabelle Guyon, Vassilis Athistos, Hugo Jair Escalante, Leonid Sigal, Antonis Argyros, Cristian Sminchisescu and Stan Sclaroff. ICMI '13 Proceedings of the 15th ACM on International conference on multimodal interaction, pp. 365—368, ISBN: 978-1-4503-2129-7 doi:10.1145/2522848.2532597, ACM New York, NY, USA, 2013.

2012

  1. Predicting Overfitting on Time Series Forecasters. Mario Graff, Hugo Jair Escalante, and Alberto Avalos Gonzalez. Proceedings of the IEEE XIV ROPEC 2012, Colimna, Mexico, November 2012.
  2. A Two-step Approach for Effective Detection of Misbehaving Users in Chats. Esaú Villatoro-Tello, Antonio Juárez-González, Hugo Jair Escalante, Manuel Montes-y-Gómez, Luis Villaseñor Pineda. In Forner, P., Karlgren, J., Womser-Hacker, C. (eds.): CLEF 2012 Evaluation Labs and Workshop - Working Notes Papers, ISSN 2038--4963, ISBN 978-88-904810-3-1, 17-20 September 2012, Rome, Italy (2012) [Winning approach of the Sexual predator detection task at PAN-CLEF 2012]
  3. ChaLearn Gesture Challenge: Design and First Results. Isabelle Guyon, Vassilis Athitsos, Pat Jangyodsuk, Ben Hamner, and Hugo Jair Escalante. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Workshop on Gesture Recognition and Kinect Demonstration Competition, Providence, Rhode Island, USA, June 2012.
  4. Multimodal Document Indexing based on Semantic Cohesion for Image Retrieval. Hugo Jair Escalante, Manuel Montes and Enrique Sucar. Information Retrieval Journal, Vol. 15(1):1--32, 2012. (Impact factor: 0.914 - JCR)
  5. Acute leukemia classification by ensemble particle swarm model selection. Hugo Jair Escalante, Manuel Montes-y-Gómez, Jesús A. González, Pilar Gómez-Gil, Leopoldo Altamirano, Carlos A. Reyes, Carolina Reta, Alejandro Rosales. Artificial Intelligence in Medicine. Vol 55(3):163--175, Available online 15 April 2012. (Impact factor: 1.345 - JCR)
  6. Multi-class Particle Swarm Model Selection for Automatic Image Annotation. Hugo Jair Escalante, Manuel Montes, Enrique Sucar. Expert Systems With Applications. Vol. 39(12):11011--11021,Available online 10 March, 2012. (Impact factor: 2.203 - JCR)
  7. Semantic Cohesion for Image Annotation and Retrieval, Summary of PhD Thesis. Hugo Jair Escalante, Manuel Montes and Enrique Sucar. Computación y Sistemas, Vol. 16(1):121--126, 2012.
  8. Principal motion: PCA-based reconstruction of motion histograms. Hugo Jair Escalante, Isabelle Guyon. Technical report, ChaLearn Technical Memorandum, June 2012.
  9. Detección automática de fallas de baleros en un procesode manufactura: Un estudio comparativo. Hugo Jair Escalante, Katia Espinosa Guevara, Arturo Berrones Santos, Mario A. Saucedo Espinosa. Ingenierías, Vol. 15(55):15--22, 2012. Refereed article (Spanish)
  10. Comparación de métricas de dispersión en optimización de sistemas territoriales comerciales. Brenda Aide Peña Cantú, Roger Z. Ríos Mercado, Hugo Jair Escalante. Ingenierías, Vol. 15(55):23--31, 2012. Refereed article (Spanish)



2011

  1. A Comparative Study of Object-level Spatial Context Techniques for Semantic Image Analysis. Georgios Th. Papadopoulos, Carsten Saathoff, Hugo Jair Escalante, Vasileios Mezaris, Iannis Kompatsiaris, Michael G Strintzis. Computer Vision and Image Understanding, Vol. 115(9):1288–1307, 2011. (Impact factor: 1.340 - JCR)
  2. An Energy-based Model for Region Labeling. Hugo Jair Escalante, Manuel Montes and Enrique Sucar. Computer Vision and Image Understanding, 115(6):787–803, 2011. (Impact factor: 1.340 - JCR)
  3. Particle Swarm Model Selection. Hugo Jair Escalante, Manuel Montes and Enrique Sucar. Book Chapter in Isabelle Guyon, Gavin Cawley, Gideon Dror, and Amir Saffari (Editors). Hands on Pattern Recognition, Challenges in Machine Learning Series, Vol. 1, pp. 309–344, Microtome Publishing, Brookline, Massachusetts, 2011.
  4. Local Histograms of Character n-grams for Authorship Attribution. Hugo Jair Escalante, Thamar Solorio, Manuel Montes.Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, pp. 288–298, Portland, Oregon, June 19-24, 2011.
  5. A MILP Bi-objective Model for Static Portfolio Selection of R&D Projects with Synergies. Igor Litvinchev, Fernando Lopez, Hugo Jair Escalante, Miguel Mata. Journal of Computer and Systems Sciences International, volume 50(6):942--952, 2011. (Impact factor: 0.168 - JCR)
  6. Ver para aprender y aprender a ver: sinergias entre aprendizaje automático y visión computacional Hugo Jair Escalante, Eduardo Morales. In Komputer Sapiens, volume 3, 2011. Invited article (Spanish)
  7. Weighted Profile Intersection Measure for Profile-based Authorship Attribution Hugo Jair Escalante, Thamar Solorio, Manuel Montes. In MICAI 2011: Proceedings of the Mexican International Conference on Artificial Intelligence, Part I (I. Batyrshin, G. Sidorov, eds.), Springer, Heidelberg, volume 7094, 2011.
  8. Instance Selection based on the Silhouette Coefficient Measure for Text Classification. Debangana Dey, Thamar Solorio, Manuel Montes, Hugo Jair Escalante. In MICAI 2011: Proceedings of the Mexican International Conference on Artificial Intelligence, Part I (I. Batyrshin, G. Sidorov, eds.), Springer, Heidelberg, volume 7094, 2011. [3rd place in Best student paper award]
  9. EPSMS and the Document Occurrence Representation for Authorship Identification – Notebook for PAN at CLEF 2011. Hugo Jair Escalante. CLEF2011 Notebook papers, Amsterdam, The Netherlands, September, 2011.
  10. Proceedings of the 2010 Automatic Image Annotation and Retrieval Workshop (AIAR 2010). L. Enrique Sucar and Hugo Jair Escalante (Eds.). CEUR-Workshop Proceedings, Vol. 719, 2011 (ISSN 1613-0073).
  11. Interactive Construction of Visual Concepts for Image Annotation and Retrieval. Hugo Jair Escalante, J. Antonio Gonzalez-Pliego, Ruben Peralta-Gonzaga. Proceedings of the 2010 Automatic Image Annotation and Retrieval Workshop (2010), CEUR-Workshop Proceedings, Vol. 719, pp. 47–57, 2011.
  12. Simplified Quadtree Image Segmentation for Image Annotation. Gerardo R. Conde Marquez, Hugo Jair Escalante, Enrique Sucar.Proceedings of the 2010 Automatic Image Annotation and Retrieval Workshop (2010), CEUR-Workshop Proceedings, Vol. 719, pp. 24–34, 2011.
  13. Comparación de métricas en sistemas territoriales Brenda A. Peña-Cantu, Roger Z. Rios-Mercado, Hugo Jair Escalante. In Proceedings of the VII FIME Conference on Industrial and Systems Engineering, FIME-UANL, 2011. ((Spanish))
  14. A MILP Bi-objective Model for Static Portfolio Selection of R&D Projects with Synergies Igor Litvinchev, Fernando Lopez, Hugo Jair Escalante, Miguel Mata, G. Tenorio. Technical report, PISIS-02-2011, Graduate Program on Systems Engineering, UANL, 2011.
  15. An Improved GRASP with Path Relinking for the Commercial Territory Design Problem. Hugo Jair Escalante, Roger Z. Rios-Mercado. Technical report, PISIS-10-2011, Graduate Program on Systems Engineering, UANL, 2011.
  16. An Estimation of Distribution Algorithm with Adaptive Gibbs Sampling for Unconstrained Global Optimization. Jonás Velasco, Mario A. Saucedo, Hugo Jair Escalante, Karlo Mendoza, Cesar Emilio Villareal, Oscar Chacón, Adrian Rodríguez, Arturo Berrones. Technical report, PISIS-11-2011, Graduate Program on Systems Engineering, UANL, 2011.

2010

  1. The Segmented and Annotated IAPR-TC12 Benchmark. Hugo Jair Escalante, Michael Grubinger, Carlos Hernandez, Jesus A. Gonzalez, Aurelio Lopez, Manuel Montes, Eduardo Morales, Enrique Sucar, and Luis Villaseñor. Computer Vision and Image Understanding Journal, 114(4):419—428, 2010. (Impact factor: 1.340 - JCR)
  2. Ensemble Particle Swarm Model Selection. Hugo Jair Escalante, M. Montes and E. Sucar. Proceedings of the International Joint Conference on Neural Networks 2010, pp. 1814--1821, July, IEEE, Barcelona, Spain, 2010 [received the best student paper award]
  3. Summary of PhD Thesis: Semantic Cohesion for Image Annotation and Retrieval. Hugo Jair Escalante, Manuel Montes, Enrique Sucar. Technical report, CCC-04-2010, Computer Science Department, INAOE, 2010.

2009

  1. Particle Swarm Model Selection. Hugo Jair Escalante, Enrique Sucar, Manuel Montes. Journal of Machine Learning Research, 10(Feb):405--440, 2009. (Impact factor: 2.682 - JCR)
  2. Particle Swarm Model Selection for Authorship Verification. Hugo Jair Escalante, Manuel Montes, and Luis Villaseñor. In CIARP'09: Proceedings of the 14th Iberoamerican Congress on Pattern Recognition, LNCS 5856, pp. 563—570, Springer, November 15-18, Guadalajara, Mexico, 2009.
  3. Annotation-Based Expansion and Late Fusion of Mixed Methods for Multimedia Image Retrieval. Hugo Jair Escalante, Jesus A. Gonzalez, Carlos Hernandez, Aurelio Lopez, Manuel Montes, Eduardo Morales, Enrique Sucar, and Luis Villaseñor. In C. Peters et al. editors, Evaluating Systems for Multilingual and Multimodal Information Access, LNCS 5706, pp. 669--676, Springer-Verlag Berlin, Heidelberg, 2009.
  4. TIA-INAOE's Participation to ImageCLEF2009. Hugo Jair Escalante, Jesus A. Gonzalez, Carlos Hernandez, Aurelio Lopez, Manuel Montes, Eduardo Morales, Elias Ruiz, Enrique Sucar, and Luis Villaseñor. In Working Notes of the CLEF 2009 Worshop, Corfu, Grecee, September 30 - October 3, 2009.
  5. On the SAIAPR TC-12 Benchmark. Hugo Jair Escalante, Manuel Montes and Enrique Sucar. THESEUS'09: Proceedings of the 2009 Theseus/ImageCLEF Workshop, pp. 44—51, Corfu Greece, September 29, 2009.
  6. Particle Swarm Optimization and Meta-Ensembles for the AusDM2009 Analytic Challenge. Hugo Jair Escalante. Report of participation at the AusDM2009 Analytic challenge.
  7. On Multimedia Retrieval Baselines. Hugo Jair Escalante, Manuel Montes and Enrique Sucar. In PI'09: Proceedings of the VI CIMAT Workshop on Image Processing, Guanajuato, Mexico, August 20--21, 2009.

2008

  1. Late Fusion of Heterogeneous Methods for Multimedia Image Retrieval. Hugo Jair Escalante, Carlos Hernandez, Enrique Sucar, Manuel Montes. In MIR'08: Proceedings of the 2008 ACM Multimedia Information Retrieval Conference, ACM Press, 2008.
  2. Towards Annotation-Based Query and Document Expansion for Image Retrieval. Hugo Jair Escalante, Carlos Hernandez, Aurelio Lopez, Heidy Marin, Manuel Montes, Eduardo Morales, Enrique Sucar, Luis Villaseñor. In Advances in Multilingual and Multimodal Information Retrieval, 8th Workshop of the Cross-Language Evaluation Forum, CLEF 2007 Budapest, Hungary, September 19-21, 2007, Revised Selected Papers (C. Peters et al., ed.), Springer-Verlag, volume 5152, 2008.
  3. Overview of the ImageCLEF 2007 Object Retrieval Task Thomas Deselaers, A. Hanbury, V. Viitaniemi, J.D R. Farquhar, M. Brendel, B. Daroczy, Hugo Jair Escalante, T. Gevers, C. Hernandez, S. C. H. Hoi, J. Laaksonen, M. Li, H. M. Marin, H. Ney, X. Rui, N. Sebe, J. Stottinger, L. W. In Advances in Multilingual and Multimodal Information Retrieval, 8th Workshop of the Cross-Language Evaluation Forum, CLEF 2007 Budapest, Hungary, September 19-21, 2007, Revised Selected Papers (C. Peters, V. Jijkoun, Th. Mandl, H. Müller, D. W. Oard, A. Peñas, V. Petras, D. Santos, eds.), Springer-Verlag, volume 5152, 2008.
  4. Improving Automatic Image Annotation Based on Word Co-occurrence. Hugo Jair Escalante, Manuel Montes, Enrique Sucar. In AMR'07: Proceedings of the Adaptive Multimedia Retreival workshp 2007 (N. Boujemaa, M. Detyniecki, A. Nürnberger, eds.), Springer-Verlag, volume 4918, 2008.
  5. An Energy-based Model for Feature Selection. Hugo Jair Escalante, Manuel Montes, Enrique Sucar. Presented at the Workshop on Causality Challenge in WCCI08, abstract appears in WCCI08 proccedings, 2008. (Hong-Kong, China, June 3-4, 2008.)
  6. Segmenting and annotating the IAPR-TC12 Benchmark. Hugo Jair Escalante, Carlos Hernandez-Gracidas, Jesus A. Gonzalez, Aurelio Lopez, Manuel Montes, Eduado Morales, Enrique Sucar, Luis Villaseñor. Technical report, CCC-05-2008, Computer Science Department, INAOE, 2008.
  7. Particle Swarm Optimization for Classifier Selection. Hugo Jair Escalante, Manuel Montes, Enrique Sucar. In Proceedings of 9no. Encuentro de Investigacion, INAOE, INAOE, 2008.
  8. TIA-INAOE Participation at ImageCLEF2008. Hugo Jair Escalante, Jesus A. Gonzalez, Carlos Hernandez, Aurelio Lopez, Manuel Montes, Eduardo Morales, Enrique Sucar, Luis Villaseñor. In Working Notes of the CLEF 2008 Workshop, CLEF, 2008.

2007

  1. Word Co-occurrence and Markov Random Fields for Improving Automatic Image Annotation. Hugo Jair Escalante, Manuel Montes, Enrique Sucar. In Proceedings of the 18th British Machine Vision Conference, volume 2, 2007.
  2. PSMS for Neural Networks on the IJCNN 2007 Agnostic vs Prior Knowledge Challenge. Hugo Jair Escalante, Manuel Montes, Enrique Sucar. In IJCNN'07: IEEE-INNS Proceedings of 20th International Joint Conference on Neural Networks, IEEE, 2007.
  3. CLOP: a Matlab Learning Object Package. Isabelle Guyon, Amir Saffari, Hugo Jair Escalante, Gokan Bakir, Gavin Cawley. In NIPS 2007 Demonstrations, Vancouver, British Columbia, Canada, 2007.
  4. TIA-INAOE's Participation at ImageCLEF 2007. Hugo Jair Escalante, Carlos Hernandez, Aurelio Lopez, Heidy Marin, Manuel Montes, Eduardo Morales, Enrique Sucar, Luis Villaseñor. In Working Notes of the CLEF 2007 Workshop, 19-21 September, Budapest Hungary (A. Nardi, C. Peters, eds.), CLEF, 2007.
  5. Towards a Region-level Image Annotation Benchmark Hugo Jair Escalante, Michael Grubinger, Manuel Montes, Enrique Sucar. In Proceedings of the 3rd MUSCLE Workshop on Image and Video Retrieval Evaluation, MUSCLE, 2007.
  6. Multimedia Information Retrieval based on Semantic Cohesion. Hugo Jair Escalante, Manuel Montes, Enrique Sucar. Doctoral consortium, in proceedings of the Mexican International Conference on Computer Science (ENC 2007), 2007. (Morelia Mich. Mexico)

2006 and earlier

  1. Analysis of Galactic Spectra using Noise-Aware Learning Algorithms. Hugo Jair Escalante, Olac Fuentes. In Proceedings of the 19th International FLAIRS Conference (FLAIRS-19) (G. Sutcliffe, R. Goebel, eds.), 2006.
  2. Cleaning Training Datasets with Noise-Aware Algorithms. Hugo Jair Escalante. In Proceedings of the Seventh Mexican International Conference on Computer Science (ENC 2006) (S. Rajsbaum, ed.), IEEE Computer Society, 2006.
  3. Kernel Methods for Anomaly Detection and Noise Elimination. Hugo Jair Escalante. Chapter in Advances in Computer Science and engineering - 7th International Conference on Computing (CORE 2006), IPN, volume 19, 2006.
  4. Noise-Aware Algorithms for Analysis of Galactic Spectra Hugo Jair Escalante, Olac Fuentes. Chapter in Advances in Computer Science and engineering - 7th International Conference on Computing (CORE 2006), IPN, volume 19, 2006.
  5. A Comparison of Outlier Detection Algorithms for Machine Learning Hugo Jair Escalante. CIC-2005 Congreso Internacional en Computacion - IPN, 2005.
  6. Noise Elimination with a Re-Sampling Algorithm. Hugo Jair Escalante, Olac Fuentes. In Proceedings of First Iberoamerican Workshop on Machine Learning for Scientific Data Analysis (G. de Ita, O. Fuentes, M. Osorio, eds.), 2004.