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Abstract

In this short communication we describe some experiments in which methods of statistical pattern recognition are

applied for musical style recognition and disputed musical authorship attribution.

Values of a set of 20 features (also called ‘‘style markers’’) are measured in the scores of a set of compositions, mainly

describing the different sonorities in the compositions. For a first study over 300 different compositions of Bach, Han-

del, Telemann, Mozart and Haydn were used and from this data set it was shown that even with a few features, the

styles of the various composers could be separated with leave-one-out-error rates varying from 4% to 9% with the

exception of the confusion between Mozart and Haydn which yielded a leave-one-out-error rate of 24%. A second

experiment included 30 fugues from J.S. Bach, W.F. Bach and J.L. Krebs, all of different style and character. With this

data set of compositions of undisputed authorship, the F minor fugue for organ, BWV 534 (of which Bach�s authorship
is disputed) then was confronted. It could be concluded that there is experimental evidence that J.L. Krebs should be

considered in all probability as the composer of the fugue in question.

� 2004 Elsevier B.V. All rights reserved.
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In memoriam

It was within the development of the interna-

tional conferences on pattern recognition, a field

of continuing growth in the early seventies, and
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the establishment of the International Association

for Pattern Recognition (IAPR), starting from the

first ICPR held in Washington, DC in 1973, that, I

first met Azriel and after that, almost yearly in

Board meetings and alike, aiming at serving the
pattern recognition community in the context of

a strong international association, and world wide

organization of the series of biannual conferences.

Hewas strongly driven andmotivated to strengthen

the organization and the impact of the IAPR.
ed.
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Azriel was most supportive in the process of

founding Pattern Recognition Letters (PRL), in

October 1982, and, in his capacity as president of

IAPR, he established the fact that IAPR became

the official sponsor of the journal PRL. My col-
league in founding and managing the journal was

Edzard Gelsema who regretfully passed away

much too early on March 2, 2000. I had the privi-

lege to serve as co-chairman, again together with

Edzard Gelsema, in 1992, in organizing the 11th

IAPR International Conference on Pattern Recog-

nition, at The Hague, The Netherlands. Prof.

Rosenfeld�s compliments on the scientific contents,
outspoken while being there, were meant in the

context of his scientific ideas on image modeling

and picture processing which were the major

subjects at that time. We were proud of his

judgments.

With this short contribution we want to honor a

unique personality as Azriel Rosenfeld was and his

life-long dedication to the pattern recognition
community.

(Eric Backer)
1. Introduction

In the past decades, the ever-increasing power

of computers made it possible to execute pattern
recognition algorithms on a large scale. Those

algorithms can also be of great value in authorship

attribution, resulting in a research area called non-

traditional authorship attribution (Love, 2002;

Mason, 1985). This kind of research, tries to quan-

tize the representation of the style of a certain

author (text) or composer (music). Studies of this

kind are called stylometric studies. It is not obvi-
ous what exactly has to be quantized but some-

thing in the structure of text or musical

composition should bear the ‘‘fingerprint’’ of its

maker. Many so-called style markers are devel-

oped in order to classify text or composition to

certain styles and to discriminate between alterna-

tives of authors and composers.

Interesting work has been done by Dannenberg
and Watson (1997). They used machine learning

tools to recognize the ‘‘mood’’ of music, such as

lyrical, frantic, etc. They showed very low error
rates, however, they do not mention all the features

that were used. Also, the work of Pedro Ponce de

León and José Iñesta is worth mentioning, (Ponce

de León and Iñesta, 2003). They used self-organiz-

ing neural maps to classify musical styles. Ex-
tracted features included basic melody properties

like number of notes, pitch range, etc.

The main problem of stylometry is the lack of

an underlying theory, (Love, 2002). Many style

markers turn out to be distinctive, but often it is

not clear why. Until the study is done, it is not

known which of the style markers (or which com-

bination) will be the discriminator. As a method
for automatically obtaining style markers would

be very desirable but has not been developed up

to now, we have to generate a large number of

potentially interesting features (style markers)

which it is hoped will be suitable for stylometric

studies. This will be the subject of Section 3.

As it is the aim of this study to contribute to the

problem of a disputed authorship of a specific
composition, a fugue known as BWV 534, two

experiments were defined to show that a pre-de-

fined set of 20 style markers (low-level properties

of counterpoint) could be successful.

Experiment 1. To indicate the difference be-

tween the style of J.S. Bach and other composers

like Telemann and Handel, as well as to distin-

guish between composers, like Haydn and Mozart,
whose styles are very alike.

Experiment 2. To test the hypothesis that the

piece BWV 534 is not composed by J.S. Bach,

and most likely is composed by J.L. Krebs and

most likely is not composed by W.F. Bach (J.S.

Bach�s son).

It should be noted that for more than two dec-

ades, there are indeed a number scattered musico-
logical contributions about the disputed

authorship of J.S. Bach with respect to BWV 534

(Humphreys, 1985), though not conclusive. The

conjecture that the piece could have been written

by J.L. Krebs is just one of the outcomes of a more

fundamental study of Peter van Kranenburg in his

thesis (Kranenburg, 2004), about the disputed

authorship of BWV 534. The application of
pattern recognition methods on a large scale is

thereby just an attempt to verify some of the pres-

ently formulated hypotheses.
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2. Data and data preparation

A large corpus of encoded music is available

from the Center for Computer Assisted Research

in the Humanities at Stanford University
(CCARH). 1 From this collection, a number of

compositions are drawn to construct the dataset

that is used in the present study.

The collection of encoded music at the CCARH

consists almost entirely of music from the eigh-

teenth and early nineteenth centuries. Not all of

this is suited for our purpose. Many movements

from cantatas, oratorios and operas have a basso
continuo, which is not completely written out.

So, some harmonic characteristics cannot be deter-

mined. These movements are only used when more

than two other voices are active most of the time.

In order to reduce the variance in the computed

feature values, it is also important not to include

too short compositions. After examining the

behavior of the feature values a minimum of 30
bars is taken. Another issue is the presence of

transposing instruments. Sometimes several parts

had to be transposed. Apart from this, many files

needed some adaptations before CPNView 2 could

parse them. With these limitations in mind, a num-

ber of compositions is chosen from the CCARH

library.

For experiment 1, the resulting dataset consists
of the following groups of pieces:

• J.S. Bach: 40 cantata movements;

• J.S. Bach: 33 fugues from ‘‘Das Wohltemperi-

erte Clavier’’;

• J.S. Bach: 11 movements from the ‘‘Kunst der

Fuge’’;

• J.S. Bach: 8 movements from the violin
concertos;

• G.F. Handel: 39 movements from the Concerti

Grossi, op. 6;

• G.F. Handel: 14 movements from trio sonatas,

op. 2 and op. 5;
1 <http://www.ccarh.org>.
2 CPNView: Donncha Ó Maidı́n (University of Limerick,

Ireland).
• G.Ph. Telemann: 30 movements from the

‘‘Fortsetzung des Harmonischen Gottest-

dienstes’’;

• G.Ph. Telemann: 24 movements from the

‘‘Musique de table’’;
• F.J. Haydn: 54 movements from the string

quartets;

• W.A. Mozart: 53 movements from the string

quartets.

Of the three baroque composers works in

different genres are added. Orchestral works as

well as compositions for small instrumentation,
and, in the case of J.S. Bach, works for keyboard.

Of Mozart and Haydn only string quartets were

added.

As mentioned above, the main point of interest

is the difference between the style of J.S. Bach and

the other composers. But it is also interesting to try

to distinguish between composers whose style is

very much the same. Especially the set with Haydn
and Mozart will be challenging, since only compo-

sitions of the same genre are included.

For experiment 2, we have been collecting rele-

vant material for comparison of each of the

three—in this study considered—candidates of

authorship of BWV 534.

• J.S. Bach: 11 fugues (different keys, different
time signatures and different date of origin; it

is assumed that all pieces have been composed

by J.S. Bach);

• J.L. Krebs (pupil of J.S. Bach): 8 fugues (as

above; all composed by J.L. Krebs);

• W.F. Bach (J.S. Bach�s son): 5 fugues (as above;

all composed by W.F. Bach).

In order to escape from the curse of dimension-

ality (and thus aiming at producing a sufficient

amount of data), and at the same time making

use of the length of a composition, we explore

(overlapping) windowing over the entire composi-

tion as shown in Fig. 1.

Clearly, we are facing a trade-off between the

number of fragments (as high as possible) and
the variance of the feature values (as small as pos-

sible) computed on the basis of the number of bars

in the fragment. From Fig. 2, we observe that a

http://www.ccarh.org


Fig. 1. Windowing over an entire composition.

Fig. 2. Mean variance of feature values as a function of the

number of bars in a window (fragments of the composition).
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choice of 30 bars per fragment seems to be ade-

quate to generate reliable feature values (in terms

of variance). As a consequence, data points ob-

tained from overlapping fragments will be close

to each other in the feature space. Decomposing
a composition (windowing) results in a number

of related data points, enabling us to represent a

composition as a cloud of data points on the

basis of which global densities can be estimated.

We note that the amount of overlap is a free

parameter, which can be used in the analysis at la-

ter stage.
Also, as the data points generated from one

composition are ordered in time, a composition

is represented in the feature space as a path.

We denote a data set resulting from windowing

as 30_10 data set if we use 30 bars as the win-

dow size and 10 bars as the offset. Likewise a
30_01 data set means 30 bars as the window size

and only 1 bar offset (this is the largest overlap

possible).
3. Features (style markers)

For each composition in the dataset, the values
of 20 features are computed (Kranenburg and

Backer, 2004). Most of these features are low-level

properties of counterpoint. When composing poly-

phonic music, the composer must control the dis-

tances between the voices. The way he is doing

this can be expected to be consistent for composi-

tions in different genres and of different dates.

Apart from the distances between the voices, some
other features are computed which can be expected

to be discriminative. Higher-level features (e.g. the

key, modulations, the development of a theme, the

use of certain motifs, etc.) are expected to be less

suitable for our purpose, since they reflect the

characteristics of the individual compositions.

The following features are computed. Some of

them come with an explanation, although in gen-
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eral, from a musicological point of view, much is

just speculation.

3.1. StabTimeslice

The ‘‘stability’’ of the length of the successive

time slices. With a time slice the time interval be-

tween two changes in the music is meant. This is

shown in Fig. 3. The stability is computed by

dividing the standard deviation of the lengths of

the time slices by the mean length of the time

slices. This normalization is necessary to compare

pieces with different time signatures. So, when hav-
ing a low value, the music is more like a steady

stream, while a larger value indicates more diver-

sity in rhythm.

3.2. DissPart

The fraction of the score that consists of disso-

nant sonorities. Consonants are: perfect primes,
minor and major thirds, perfect fourths and fifths

and minor and major sixths. But a fourth is con-

sidered dissonant if it is between the lowest voice

and one of the upper voices. All other intervals

are considered dissonant. The total duration of

dissonant sonorities is divided by the total dura-

tion of the composition.

3.3. BeginBarDiss

The fraction of bars that begins with a disso-

nant sonority.

3.4. SonorityEntropy

For this feature, the concept ‘‘sonority’’ is used
according to the definition of Mason (1985) In this

definition sonority is a certain type of chord. So

e.g. all the major triads are the same sonority,
Fig. 3. Boundaries of the time slice.
regardless of inversion or pitch. A unique number

represents each sonority. For each sonority the

total duration of all occurrences is computed.

Then the probabilities of occurrence are estimated

using these weighted frequencies. With this proba-
bilities the entropy is computed according to:

�
XN

i¼1

pi logðpiÞ

where N is the total number of sonorities and pi the

probability of occurrence of sonority i.
3.5. HarmonyEntropy

Mason also defines the concept ‘‘Harmony’’. It

is much like sonority, but now difference is made

in pitch. So e.g. a F-major triad and a G-major

triad are the same sonority but different harmo-

nies. Again the inversion is not taken into account.

The value of this feature is computed the same way

as the Sonority Entropy.
3.6. PitchEntropy

A list of occurrences of all pitches is made.

Again the occurrences are weighted by the dura-

tions. Of the resulting list, the entropy is

computed.
3.7. VoiceDensity

In a polyphonic composition not all voices are

active during the whole composition. The voice

density indicates the average number of active

voices. This is normalized with the total number

of voices. For this feature only bars that are

strictly polyphonic are taken into account i.e. bars
in which no voice has more than one note and in

which more than one voice is active.

3.8. PartSeconds, PartThirds, PartFourths,

PartAugFourths, PartDimFifths, PartSixths,

PartSevenths, PartOctave

When combining the different voices of a poly-
phonic composition, the composer has to obey cer-

tain constraints. In many of these constraints the



Table 1

The feature set (style markers)

Index Feature

1 StabTimeslice

2 DissPart

3 BeginBarDiss

4 SonorityEntropy

5 HarmonyEntropy

6 PichEntropy

7 VoiceDensity

8 PartSeconds

9 PartThirds

10 PartFourhs

11 PartAugFourths

12 PartDimFifths

13 PartFifths

14 PartSixths

15 PartSevenths

16 PartOctaves

17 ParThirds

18 ParFourths

19 ParSixths

20 StepSuspension

5

10
StabTimeslice

5

10
DissPart
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vertical distances between the voices are impor-

tant. This set of features measures the amount of

a number of intervals between the different voice-

pairs. Systematically all voice-pairs are examined.

The total duration of all occurrences of each spe-
cific interval is computed and at the end divided

by the total duration of all intervals in all voice-

pairs. The intervals are taken modulo one octave.

So e.g. a tenth is a third. When the same pitch oc-

curs in more than one voice, it is taken into ac-

count once.

3.9. ParThirds, parFourths, parSixths

It can happen that in a voice pair two intervals

of the same size succeed each other. This is called a

parallel. For these three features the amount of

parallel thirds, fourths and sixths is computed in

the same way as the previous group of features.

The total duration of all intervals involved in these

parallels is added and divided by the total duration
of all intervals in all voice pairs.

3.10. StepSuspension

When a dissonant is sounding between two

voices, it often is suspended into a consonant by

lowering the lower voice one step. This feature

indicates how many dissonances are suspended
this way. It is computed in the same way as the

previous features.In the remaining these features

are referred to by their index numbers. These can

be found in Table 1.
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4. Analysis

All experiments are carried out with the Mat-

lab-toolbox PRTools. 3

For both experiments, we perform feature selec-

tion using the Floating Forward Selection algo-

rithm, proposed by Pudil et al. (1994). The

FFS algorithm is applied to all possible class

arrangements like {Bach}{all other composers},

{Bach}{Telemann}{Handel} etc. for experiment 1.
3 <http://www.ph.tn.tudelft.nl/~bob/PRTOOLS.html>.
Likewise, we have class arrangements like {J.S.

Bach}{W.F. Bach}{J.L. Krebs}, {J.S.

Bach}{W.F. Bach}, {J.S. Bach}{J.L. Krebs} and

{W.F. Bach}{J.L. Krebs} for experiment 2.

Fig. 4 shows the distributions of some of the

‘‘best’’ features to discriminate between the classes
4 5 6 7 0 0.1 0.2 0.3

Fig. 4. Some of the ‘‘best’’ features for class arrangement

{Bach}{notBach}; Bach = solid, not-Bach = dashed.

http://www.ph.tn.tudelft.nl/~bob/PRTOOLS.html
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4 For all details about data: http://www.musical-style-

recognition.net.
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{Bach} and {not-Bach} and Fig. 5 a simple deci-

sion boundary obtained from these three features.
For comparison of the two extremes in class

arrangements {Bach}{Telemann, Handel, Haydn,

Mozart} (a two-class problem; a) and

{Bach}{Telemann}{Handel}{Haydn}{Mozart}

(as a five-class problem; b), we observe the follow-

ing classification statistics when using a k-nearest

neighbor classifier (see Table 2).

The five-class problem is obscured by the pres-
ence of compositions of Haydn and Mozart. The

arrangement: {Haydn}{Mozart} yields a leave-

one-out error (l-o-o-error) of 24.30%. Here we ob-

serve a significant limitation of the used music

library (CCARH) as Haydn and Mozart were only

represented by a collection of string quartets,

obscuring the recognition results for the five-class

arrangement. All other arrangements not includ-
ing discrimination between Haydn and Mozart

yield errors between 5% and 9%. A full account

of the above results is given in (Kranenburg and

Backer, 2004).

From these results we conclude that Bach�s style
can be isolated from the style of other composers

with such a performance that it might be regarded

as a valuable addition to the traditional methods
of musical style classification. It offers a quantita-

tive evaluation of the styles rather than the tradi-

tional qualitative descriptions. It is important not
to see this as a replacement, but as an addition.

Combining results from different viewpoints, will

give more robust knowledge. The results of the

above studies are a promise for the future, in

which we can expect further increase in the compu-
tational power as well as further increase in the

understanding and application of pattern recogni-

tion techniques.

This also means that this kind of research can

be helpful in authorship disputes. This is the origin

of experiment 2. 4

Some of the features (from Section 2) are dis-

played in Fig. 6 for the class arrangement {J.S.
Bach}{J.L. Krebs}{W.F. Bach}. The densities

are estimated using a 30_01 data set (maximum

overlap). None of the features are perfect discrimi-

nants, however a combination of six features used

for training of a quadratic Bayesian classifier with

10-fold-cross-validation yields a (still optimistic)

error of 1.2% for the discrimination of {J.S.

Bach}{J.L. Krebs} arrangement, 1.6% for the dis-
crimination of {J.S. Bach}{W.F. Bach} arrange-

ment, and 1.6% for the discrimination of {W.F.

Bach}{J.L. Krebs} arrangement.

We are using the Fisher Linear Discriminant

transformation over the entire feature space to

visually interpret the ‘‘best’’ two-dimensional scat-

ter plot (discriminants 1 and 2). Fig. 7 shows the

resulting scatter plot of the transformed data set
with classes {J.S. Bach}, {J.L. Krebs} and {W.F.

Bach} with in overlay—as an example—BWV

535, a fugue of J.S. Bach of which authorship is

certainly not-disputed.

In order to interpret the features used in deci-

sion making of the different class arrangements,

we generate the corresponding decision trees

(C4.5).
We observe:

1. For the class arrangement {J.S. Bach}{J.L.

Krebs} the decision tree (Fig. 8a) uses four fea-

tures StabTimeslice, PartSeconds, PartThirds,

and PartFourths; only one fragment of the

30_10 data set is misclassified.

http://www.musical-style-recognition.net
http://www.musical-style-recognition.net


Table 2

Minimal errors with nearest neighbor classsifiers

Class arrangement k Feature subset l-o-o-error (%)

Two-class problem (a) 5 1, 17, 2 6.62

Five-class problem (b) 11 2, 13, 8, 9, 1, 17, 5, 10, 14, 19, 11, 6, 7, 20 26.47
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Fig. 6. Some densities of features for the class arrangement {J.S. Bach}{J.L. Krebs}{W.F. Bach}; J.S. Bach = solid, J.L.

Krebs = stripes, and W.F. Bach = dashed.
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2. For the class arrangement {J.S. Bach}{W.F.

Bach} the decision tree (Fig. 8b) uses four fea-

tures: ParthSevenths, StabTimeslice, PartOc-

taves, and StepSuspension; only one fragment

is misclassified.

3. For the class arrangement {J.S. Bach}{W.F.

Bach} the decision tree uses two features:

BeginBarDiss and ParThirds; no errors occur.

We are now ready to classify the disputed f fu-

gue for organ, BWV 534.
1. If we assume that J.S. Bach and W.F. Bach were

the only candidates, we observe the following.

The quadratic Bayesian classifier, trained with

all features from the transformed Fisher space

assigns all fragments of BWV 534 to {J.S.

Bach}.

With the six best features selected by FFS, 10

(out of 11) fragments are assigned to {J.S.
Bach} for 30_10 data.

The decision tree from Fig. 8b also assigns all

fragments of BWV 534 to {J.S. Bach}. There-



−8 −6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

Discriminant 1

D
is

cr
im

in
an

t 2

bwv535

Fig. 7. Scatter plot of the fugue data set in the Fisher-

transformed feature space; J.S. Bach (+), J.L. Krebs (*) and

W.F. Bach (�); BWV 535—as an example—in overlay (bold

stars).

Fig. 8. Decision tree: (a) J.S. Bach versus J.L. Krebs (30_10 data set);

versus W.F. Bach (30_10 data set).
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fore, it is save to conclude from these observa-

tions that the hypothesis of W.F. Bach being

considered as the composer is false.

2. If we assume that J.S. Bach and J.L. Krebs were

the only candidates, we observe the following.
The quadratic Bayesian classifier, trained with

all features of the transformed Fisher space as-

signs all fragments of BWV 534 to {J.L. Krebs}.

Also, with the best six features selected by FFS,

all fragments are assigned to {J.L. Krebs} for

30_10 data.

The decision tree from Fig. 8a assigns five frag-

ments to {J.S. Bach} and six fragments to {J.L.
Krebs}. Therefore, it is still save to conclude

that the style of BWV 534 resembles the style

of {J.L. Krebs} more than the style of {J.S.

Bach} and that the hypothesis of J.L.

Krebs being considered as the composer, is true.

3. If we compare the styles of J.L. Krebs and W.F.

Bach, we observe the following.

The quadratic Bayesian classifier, trained with
all features from the transformed Fisher space
(b) J.S. Bach versus W.F. Bach (30_10 data set); (c) J.L. Kerbs
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assigns all fragments of BWV 534 to {J.L.

Krebs}.
With the best six features selected by FFS, all

fragments are assigned to {J.L. Krebs} for

30_10 data.

The decision tree from Fig. 8c also assigns all

fragments of BMV 534 to {J.L. Krebs}. There-

fore, it is save to conclude that if the choice had

to be made between J.L. Krebs and W.F. Bach,

there is no doubt in considering J.L. Krebs as
the composer.

In Fig. 9, the fragments of the disputed fugue

BWV 534 are displayed in overlay with the two-

dimensional Fisher transformed feature space, ni-

cely indicating how well the fragments fit into the

available data of J.L. Krebs.
5. Conclusions

In this short communication, we have presented

an attempt to apply pattern recognition techniques

in the area of musical style characterization and

disputed musical authorship.

First, we conducted an experiment to investi-
gate how well the style of different composers

could be identified. For that purpose, we designed
20 low-level properties of counterpoint to be mea-

sured in the represented score of a composition. It

was concluded that it is very possible to isolate the

style of J.S. Bach from other composers like Tele-

mann, Handel, Haydn or Mozart. Given the posi-
tive outcome, it has been a challenge to enter the

field of non-traditional author attribution.

So, we conducted a second experiment to inves-

tigate how well disputed musical authorship of a

given composition could be solved if a limited

number of alternatives are given a priori. In our

case, the fugue BWV 534 which has been attrib-

uted to J.S. Bach but of which real authorship
has been disputed on musicological grounds. His

son, W.F. Bach and his pupil, J.L. Krebs have

been put forward as serious candidates for true

authorship.

From the experiment, it safely could be con-

cluded that there is experimental evidence that

J.L. Krebs has to be considered in all probability

as the real composer.
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