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Abstract

Lexico-semantic collocations (LSCs) are a prominent type of multiword expressions. Over the last decade, the auto-
matic compilation of LSCs from text corpora has been addressed in a significant number of works. However, very often,
the output of an LSC-extraction program is a plain list of LSCs. Being useful as raw material for dictionary construction,
plain lists of LSCs are of a rather limited use in NLP-applications. For NLP, LSCs must be assigned syntactic and, espe-
cially, semantic information. Our goal is to develop an ‘‘off-the-shelf’’ LSC-acquisition program that annotates each LSC
identified in the corpus with its syntax and semantics. In this article, we address the annotation task as a classification
task,viewing it as a machine learning problem. The LSC-typology we use are the lexical functions from the Explanatory
Combinatorial Lexicology; as lexico-semantic resource, EuroWordnet has been used. The applied machine learning tech-
nique is a variant of the nearest neighbor-family, which is defined over lexico-semantic features of the elements of LSCs.
The technique has been tested on Spanish verb–noun bigrams.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Lexico-semantic collocations (LSCs) in the sense of Moon (1998), or simple decomposable MWEs in the
terminology of Baldwin et al. (2003), are a prominent type of Multiword Expressions (MWEs). As a rule,
an LSC is a combination of two lexical items in which the semantics of one of the items (the base) is
autonomous from the combination it appears in, while the semantics of the other item (the collocate)
depends on the semantics of the base. Thus, in take [a] leave,1 the base is leave and the collocate is
0885-2308/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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[to] take, in give [a] statement, the base is statement and the collocate is [to] give, in rancid butter, the base
is butter and the collocate rancid, in confirmed bachelor, bachelor is the base and confirmed is the collocate,
and so on. Benson (1989) points out that (lexico-semantic) collocations are ‘‘arbitrary recurrent word com-
binations’’; see, also (Cowie, 1994; Mel�čuk, 1995), among others, for detailed presentations of the idiosyn-
cratic features of LSCs. As a consequence, LSCs tend to be language-specific. For instance, in English one
makes or takes a decision, in French and Italian one �takes� but does not �make� it (prendre/*faire une déci-

sion, prendere/*fare una decisione), in German, one �meets it� (eine Entscheidung treffen), in Spanish one
�adopts� or �takes� it (adoptar/tomar una decisión), and in Russian one �hosts� it (prinjat 0 rešenie); in English
one gives a lecture – as in French (donner un cours) and Spanish (dar una clase) – in German and Italian
one �holds� a lecture (eine Vorlesung halten, tenere una lezione), and in Russian one �reads� it (čitat 0 lekciju);
etc.

Due to the idiosyncrasy of LSCs, and thus the need of their explicit listing in a language�s lexical
resource, the extraction of LSCs is an increasingly important and prominent issue. The result of most
LSC-extraction strategies proposed to date is a list of collocations identified in the corpus, possibly anno-
tated with morpho-syntactic information. But while plain lists of LSCs are a useful resource for manual
dictionary construction, their usefulness is rather limited, e.g., for Text Generation, Machine Translation
and Text Summarization. In order to be useful in NLP as well as, for instance, in second language learning,
an LSC must be supplied with its semantics. In other words, if the meaning of an LSC is not determined
during its retrieval, it must be assigned (as a rule, manually) in a subsequent stage – as done, e.g., by
Smadja and McKeown (1991).

One way to decide whether a given word combination is an LSC and to determine its semantics is to
classify it according to a fine-grained semanticosyntactic typology of collocations. Such a typology is given
by lexical functions, LFs; cf. Mel�čuk (1996). Wanner (2004) discusses the use of a variant of instance-
based machine learning (ML) for the classification of verb–noun LSCs according to the typology of
LFs. For each LF, a typical semantic feature ‘‘profile’’ (a centroid) is constructed. Given that not all
eatures of a centroid equally contribute to the distinction of its LF, the features are usually weighted.
Once the centroids are constructed in a learning stage, the features of test bigrams are compared with
the centroids. A sufficient overlap qualifies a bigram as an instance of the LF in question. Being quite
performative (with an average score of 70%), this technique requires an extensive tuning of the weighting
variables for each set of test bigrams. This is a serious obstacle for its use in an ‘‘off-the-shelf’’ collocation-
classifier.

The goal of this article is twofold:

• to present an easy-to-use standard technique that does not require costly domain-specific tuning, but still
ensures good quality LSC-classification;

• to provide further evidence that the automatic compilation of detailed semantically annotated collocation
lexica is feasible.

We performed a series of experiments with different ML-techniques. The technique we discuss in detail is a
variant of a standard ML-technique known as the nearest-neighbor (NN) classification technique. All exper-
iments presented in this article have been carried out with Spanish material. As lexico-semantic descriptions of
the lexical elements of the training and test bigrams, their hyperonym hierarchies in the Spanish part of the
EuroWordnet (Vossen, 1998), henceforth ‘‘SpanWN’’, have been used.

The remainder of the article is structured as follows. In the following section, we introduce the LF-typol-
ogy. In Section 3, the theoretical basics of the NN-classification model are discussed. Section 4 presents a
description of lexical meanings in terms of hyperonym hierarchies in SpanWN. Section 5 outlines the setup
of the experiments, which are then described in Section 6. Section 7 evaluates the quality figures achieved
within the experiments; to illustrate the advantage of the NN-model, we briefly contrast its quality figures with
the quality figures achieved with a number of other ML-techniques. Section 8 contains an overview of the
related work, and Section 9 draws the conclusions from our studies and presents some of the remaining issues
for future research.
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2. Semantic typology of LSCs: lexical functions

In this article, we presuppose the following three basic features of LSCs:2

• an LSC is a binary combination of lexical items;
• an LSC possesses a stable syntactic structure, i.e., in the basic (active) form of a given verb–noun LSC,
between the elements of this LSC a syntactic dependency relation holds, and the syntactic dependent always
possesses the same grammatical function with respect to the governor;

• an LSC is a lexically restricted word combination and cannot thus be constructed using universal (semantic)
selectional restrictions.

The three features are underlying the definition of the typology of lexical functions (LFs). In what follows,
we restrict the introduction to LFs to the absolute minimum necessary for the understanding of the content of
the article. For a comprehensive overview, see Mel�čuk (1996); for a more detailed presentation of LFs as a
classification typology cf. Wanner (2004).

In our context, only the syntagmatic LFs are of relevance. A syntagmatic LF is a (directed) standard
abstract lexico-semantic relation that holds between the base and the collocate of a given collocation. �Stan-
dard� means that this relation applies to a large number of LSCs. For instance, the relation that holds between
step and take in Mary takes a step is the same as the one that holds between speech and deliver, suicide and
commit, accident and have, and so on. It is the same in the sense that it implies that each collocate provides
the same semantic and syntactic linguistic features to its base; cf. Kahane and Polguère (2001). �Abstract�
means that the meaning of this relation is sufficiently general and can therefore be exploited for purposes
of generalization and thus classification. In Mel�čuk (1996), about 36 different ‘‘simple standard’’ syntagmatic
LFs are distinguished. About 20 of them capture verb noun collocations. Simple LFs can further combine to
form ‘‘complex LFs’’; for a mathematically sound composition calculus, see Kahane and Polguère (2001). In
our experiments, we use a subset of both simple and complex LFs.

As names of LFs, abbreviations are used. For instance, �Oper1� stands for �perform�, �do�; �Oper2� for
�undergo�, �meet�; Func0 for �happen�, �take place�; etc.3 Consider, for illustration, eight of the most common
standard verb–noun LFs in Table 1. The meaning of each LF appears in quotes and its name in parentheses.
The arguments of the LFs, i.e., the bases, are written in small capitals, their values, i.e., the collocates, in a
slanted font. The table illustrates that verb–noun LSCs go well beyond support verb constructions (SVCs),4

the extraction of which has received considerable attention by researchers working in computational corpus
linguistics; cf., e.g., Grefenstette and Teufel (1995); Dras (1995); Tapanainen et al. (1998); Stevenson et al.
(2004). Only the LFs 1–5 can be considered SVCs; in the LFs 6–8, the verb expresses full (although possibly
idiosyncratic) semantic content.

3. Using NN-classification for classifying LSCs

The task we address in this article can be formulated as follows: Given a plain list of verb–noun LSCs, classify
each LSC with respect to the LF-typology. To be able to classify a bigram with respect to the LF-typology T,
2 These features make clear that the notion of LSC is different from the notion of collocation in the sense of Firth (1957) and Halliday
(1966), who define a collocation as a high probability association of lexical items in the corpus. See Wanner (2004) for a contrastive
discussion of the two notions. A number of works on the extraction of collocations from corpora draws upon Firth�s interpretation of the
term; cf., e.g., Choueka et al. (1983); Church and Hanks (1989); Justeson and Katz (1995).
3 The subscripts to the LF-names specify the projection of the semantic structure of the LSCs denoted by an LF onto their syntactic

structure. Since we interpret complete LF-names as collocation class labels, we can ignore the semantics of the subscripts and consider
them simply as part of LF-names.
4 Support (or light) verb constructions (Allerton, 1984; Abeillé, 1988; Alonso, 2004b) are verb–noun constructions in which the verb

carries little semantic content and is used for the sake of its structural properties only – as in take [a] walk, harbor [a] thought, give [a]
presentation.



Table 1
Eight standard verb–noun LFs

1. �perform�, �do�, �act� (Oper1) 5. �concern�, �apply to� (Func2)
INSULT throw DISPUTE concern

PROBLEM pose DISCUSSION center [on]
OPPOSITION mount CHANGE affect

RESPECT have INFORMATION relate [to]

2. �undergo�, �meet� (Oper2) 6. �act accordingly� (Real1)
INSULT suffer, endure ACCUSATION prove

PROBLEM face, encounter PROMISE keep

OPPOSITION encounter, run [into] SCHEDULE stick [to]
RESPECT command THREAT fulfil

3. �happen�, �take place� (Func0) 7. �react accordingly� (Real2)
INSULT fly, occur DEMAND fulfil, meet

SNOW fall HINT take

SUSPICION linger LAW abide [to]
NEWS travel CALL answer

4. �originate from/with� (Func1) 8. �put an end to� (Liqu1Func0)
ANALYSIS be due [to] SUPPORT withdraw

IDEA originate [from] RESISTANCE put down

PROPOSAL stem [from] OBSTACLE remove

OPPOSITION come [from] EXITEMENT die down
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the characteristic features shared by all instances of an LF L in T must be ‘‘learned’’. Then, the features of the
candidate bigram can be compared with the features of the instances of L. If a sufficient similarity is observa-
ble, the bigram is likely to be an instance of L as well.

In corpus-based NLP, characteristic features of a word pattern are most often captured in terms of word
frequency counts. In contrast, we use semantic component (or concept) counts, i.e., we assume that the mean-
ings of the elements of the bigrams considered are componential.5 This has two major advantages. Firstly, we
are not bound to the frequency with which a candidate bigram occurs in the corpus. The frequency criterion
proved to be a serious obstacle for the identification of less common LSCs. Some authors explicitly reject
recurrency as a criterion for a word combination to be considered a collocation; cf. Cowie (1994); Mel�čuk
(1995). Secondly, we naturally generalize over collocates with the same meaning. Thus, the concept count
allows us to detect the close semantic similarity between [to] brim [with] and [to] exude in co-occurrence with
confidence and between close, intimate and deep in co-occurrence with friendship. Such a generalization is a
decisive step towards semantically oriented LSC-classification.

We start from a training set of manually compiled disambiguated instances for each of the n LFs used in the
classification task. Unlike the other ML-techniques, nearest neighbor classification does not include, strictly
speaking, a learning stage. In abstract terms, it can be described as a pair of vector space models (Salton,
1980). That is, it can be thought of as consisting of a training material representation stage and a classification
stage.

3.1. Representation stage

Assume a training set of instances for each LF L1, L2, . . .,Ln in T. Let B be the meaning component collec-
tion over the base sets of the instances from the training sets of all LFs in T and C the meaning component
collection over the collocate sets of the instances from training sets of all LFs in T. B and C naturally map
5 The componential description of the corresponding words is expected to be available from an external lexical resource. Any sufficiently
comprehensive lexicosemantic resource suitable for NLP can be used. As already pointed out in Section 1, we use SpanWN, the Spanish
part of the EuroWordnet.
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onto multidimensional vector spaces V B (the base description space) and V C (the collocate description space).
Each component b 2 B and each component c 2 C provide a distinct dimension in V B and V C, respectively.
Each training instance I is thus represented as a pair of vectors ð~vbI ;~vcI Þ 2 ðV B; V CÞ. In the most simple real-
ization of the model, ~vbI and ~vcI will contain a �1� for dimensions (components) available in I and a �0� for
dimensions that are not available in I. Obviously, realizations with a weighting schema are possible to take
into account the varying importance of dimensions for the description of an LSC-instance.We use the binary
weighting schema.

Before applying this representation in the classification stage, those samples that are ‘‘unreliable’’ are
removed from ðB;CÞ. We consider a sample unreliable if it is nearest to an instance of a different LF than
it is itself. To determine which instance is nearest, we use Eq. (1) from the classification stage; see below.

3.2. Classification stage

Given a candidate word bigram K: = (N,V) that is to be classified according to the LF-typology, the clas-
sification stage consists of (a) the decomposition of the meaning of N into the component set N and of the
meaning of V into the component set V; (b) mapping of (N,V) onto ðV B; V CÞ. The LF-label of the instance
I whose vector pair ð~vbI ;~vcI Þ is nearest to the vector pair ð~vnK ;~vvK Þ of K is assigned to the candidate.

To determine the similarity between ð~vbI ;~vcI Þ and ð~vnK ;~vvK Þ, the cosine or any other suitable metric can be
used. In our experiments, we used the following set-based metric:
6 Th
simðI ;K
simðI ;KÞ ¼ b
fb

fbmax jN j þ c
fc

fcmax jV j
ð1Þ
with fb as j~vbI \~vnK j, i.e., the number of dimensions shared by ~vbI and ~vnK ; fbmax as the maximal number of
dimensions shared by~vnK and a base vector of any instance in the training set for the LF of which I is an in-
stance; fc as j~vcI \~vvK j, i.e., the number of dimensions shared by~vcI and~vvK , and fcmax as the maximal number of
dimensions shared by~vcK and a collocate vector of any instance in the training set for the LF of which I is an
instance. |N| stands for the number of components in the description of the noun of K and |V| for the number
of components in the description of the verb of K. b and c are constants that can be used to tune the impor-
tance of the base and collocate, respectively, for the classification. In our experiments (Section 6), we used
b: = 1, c: = 1.5; that is, we assigned higher importance to the collocate meaning than to the base meaning.
If fcmax ¼ 0 (which means that ~vcI and ~vvK do not share any dimension), the second summand in Equation
(1) becomes invalid and the candidate bigram is rejected as an LSC of the type L of I. The candidate bigram
can also be rejected if sim(I,K) is smaller than a given threshold for all instances of L in the training set.6

To reduce the number of vector pair comparisons in the classification stage, the vector pairs of similar
instances can be merged beforehand. Experiments show that an improvement of the processing time of about
20% can be achieved. However, such a merge always implies a decrease of the classification quality.

4. SpanWN as the source of the semantic description of lexical items

For the componential description of the LF-instances in the training sets as well as for the description of the
candidate bigrams, we use the hyperonym hierarchies provided by SpanWN, the Spanish part of the lexical
database EuroWordNet (Vossen, 1998). SpanWN is a middle-size lexical database organized in terms of sets
of synonymous or quasi-synonymous word senses (the sets are called synsets and their elements variants of a
synset). The average number of senses distinguished in SpanWN for nouns is about four; that of verbs about
seven (among the most ambiguous verbs are dar �give� with 17 senses, hacer �do� with 19 senses, and llevar

�carry� with 25 senses). In contrast to the Princeton WN (Fellbaum (ed.), 1998), where the hyperonym hierar-
ere is still some room for improvement of the metric. Thus, we achieved better quality figures with the following metric:
Þ ¼ b fb

fbmax
þ c fc

fcmax
þ fbmax

jN j þ fcmax

jV j . However, since it appeared less motivated than Eq. (1), we used (1).



Fig. 1. Hyperonym hierarchies for PRESENTAR3 and RECLAMACIÓN in the collocation presentar [una/la] reclamación (lexical items are
written in small capitals, BCs in sans serif, and the TCs start with a capital; individual TCs are separated by the �|� sign).
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chy of a lexical item is purely lexical (i.e., contains only hyperonyms), in SpanWN the hyperonym hierarchy of
each lexical item consists of:

• its hyperonyms and synonyms (i.e., words that combine with the lexical item in question to form a synset),
• its own Base Concepts (BCs) and the BCs of its hyperonyms,
• the Top Concepts (TCs) of its BCs and the TCs of its hyperonyms.

BCs are general semantic labels that subsume a sufficiently large number of synsets. Examples of such labels
are: change, feeling, motion, and possession. Thus, DECLARACIóN3 �declaration� is specified as communication,
MIEDO1 �fear� as feeling, PRESTAR3 �lend� as possession, and so on.7 Unlike unique beginners in the original
WN, BCs are mostly not ‘‘primitive semantic components’’ (Miller, 1998); rather, they can be considered labels
of semantic fields.8 The set of BCs used across different WNs in the EuroWN consists of 1310 different tokens.
The language-specific synsets of these tokens constitute the cores of the individual WNs in EuroWN.

Each BC is described in terms of TCs – language-independent features such as Agentive, Dynamic, Existence,
Mental, Location, Social, etc. (in total, 63 different TCs are distinguished). For instance, the BC change is
described by the TCs Dynamic, Location, and Existence.

Consider, for illustration, Fig. 1, which shows the hyperonym hierarchies (including synonyms, BCs and
TCs) of PRESENTAR3 �present� and RECLAMACIóN3 �complaint� from the collocation presentar [una] reclamación

lit. �present [a] complaint�.
In presentar [una] reclamación, it is the third SpanWN-sense of reclamación and the third SpanWN-sense of

presentar that apply. PRESENTAR3 does not possesses any synonymous senses. The BC of the corresponding one-
element synset is communication, which does not display any TC-features. The immediate hyperonym of PRES-

ENTAR3 is SOMETER2 �submit�, which in turn possesses the hyperonym PEDIR1 �request�. Both are communication
7 The numbers indicate the corresponding senses in SpanWN.
8 Note, however, that unique beginners of Princeton WN are part of the BC-set.
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lexemes. PEDIR1 carries the TC-features Agentive, Bounded Event, Communication and Purpose. And so on. The
root the hyperonym hierarchy of PRESENTAR3 is given by the synset {ACTUAR4, LLEVAR-A-CABO2, HACER15}.

The BC of RECLAMACIóN3 is equally communication and its parent hyperonym synset consists of INSTANCIA2,
PETICIóN1, PEDIDO1, MANIFESTACIóN2, and RELACIóN5 . The BC of this synset is again communication with no TC-
features. The root of the hyperonym hierarchy of DECLARACIóN3 is ABSTRACCIóN1 �abstraction� with the generic
TC-feature Tops.
5. Setting up the experiments

To validate the proposed NN-classification technique and to compare its performance with Wanner (2004)
and with other common ML-techniques used in computational lexicography, we conducted two experiments
with different training and test material. We used the same LFs and the same data as in Wanner (2004). In the
first experiment, we trained on and classified candidate verb–noun bigrams the nouns of which belong to the
same semantic field, namely to the field of emotion nouns. In the second experiment, we classified verb–noun
bigrams with no consideration of field constraints. A separate experiment on mono-field material is of value
because the meanings of the nouns that belong to the same semantic field are a priori homogeneous at a cer-
tain level of abstraction; the lexical-semantic description of the instances of the same LF can thus be assumed
to be very similar. This allowed us expect reasonably good quality figures for single-field classification. We
have chosen emotion nouns because they are rich in collocations and because for emotion nouns, lists of
LF-instances are already available for French (Mel�čuk et al., 1984, 1988, 1992, 1999), German (Mel�čuk
and Wanner, 1996), and, what is more important, for Spanish (Alonso, 2004a). Obviously, the availability
of these resources facilitated the compilation of the training material.
5.1. Choosing LFs for the experiments

The LFs used in the experiments must be chosen so that they illustrate, on the one hand, the range of dif-
ferent types of verb–noun LSCs that we are able to recognize, and, on the other hand, the potential of the
techniques to distinguish between similar types of collocations. We consider two verb–noun collocations to
be similar if their semantics are similar and/or their government patterns are the same, i.e., if they project
the semantic actant structure of the noun onto the syntactic structure of the verb in the same way. Therefore,
for both experiments, we selected several LFs with similar semantic features and the same government pattern
and at least one LF that was sufficiently different from the others (either in terms of its syntactic structure or in
terms of its semantics). To judge the semantic similarity between several LFs we examined their glosses pro-
vided in Mel�čuk (1996) and then relied on our intuition.

As will become clear below, LFs with the same government pattern may be semantically very similar. This
raises the question whether these LFs should be combined to form one LF. We refrain from such a merge.
First, because these LFs can still be clearly distinguished by humans; see also Polguère (forthcoming) on cri-
teria for the definition of a distinct LF. And second, our goal was to see how the NN-classifier performs when
applied to the stock of LFs being used by lexicographers.
5.1.1. LFs used in experiment 1

The following five LFs were considered in Experiment 1: Oper1, ContOper1, Caus2Func1, IncepFunc1 and
FinFunc0. Note the glosses and examples for each:

Oper1 �experience an emotion�; e.g.:

sentir [l
�experie

ContOper1 �
guardar

[el] odio
a] admiración lit. �feel [the] admiration�, [la] alegrı́a lit. �have [the] joy�, experimentar [un] odio lit.
nce [a] hatred�, tener [un] odio lit. �have [a] hatred�.
continue to experience an emotion�; e.g.:
[el] entusiasmo lit. �keep [the] enthusiasm�, guardar [la] esperanza lit. �keep [the] hope�, conservar
lit. �conserve [the] hatred�.
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Caus2Func1 �cause (by the object of emotion) the emotion to be experienced�; e.g.:

causar

[la] dese
gets ho

FinFunc0 �an
[la] apre
[el] entu

dar ala

[a] cris
Oper1 �perfo

dar [un
�do [a]

Oper2 �unde
somete

hacer [
Real1 �act ac

ejercer
lengua

Real2 �react
respon

ment�,
the] co

9 Thus, in Los

cause indignatio
del Carmel bein
[un] horror lit. �cause [a] horror�, dar [una] sorpresa lit. �give [a] surprise�,
r [la] indignación lit. �provoke [the] indignation�, despertar [el] odio lit. �awake [the] hatred�.
provoca

IncepFunc1 �an emotion begins to be experienced�; e.g.:

speración entra [en N] lit. �[the] despair enters [in N]�, [el] odio se apodera [de N] lit. �[the] hatred
ld [of N]�, [la] ira invade [N] lit. �[the] rage invades [N]�.
emotion ceases to be experienced�; e.g.:
nsión se disipa lit. �[the] apprehension evaporates� [el] odio desaparece lit. �[the] hatred disappears�,
siasmo se desvanece lit. �[the] enthusiasm vanishes�.
Oper1 and ContOper1 are very similar in terms of their semantics, and possess the same government pat-
tern: the first semantic actant of the noun is the Subject of the verb, and the noun itself its Object. The gov-
ernment pattern of Caus2Func1 slightly deviates from that of Oper1 and ContOper1: it is the second actant of
the noun which becomes the Subject of the verb.9 The semantics of Caus2Func1 differs considerably from the
semantics of Oper1 and ContOper1 (see the glosses).

The government patterns of IncepFunc1 and FinFunc0 have in common that the noun is the Subject of the
verb – in contrast to the previous three LFs, in which the noun is the Object. However, the structure of Incep-
Func1 also requires the Agent (or, Experiencer in the case of emotions) of the noun to be expressed as Object,
while the verbal value of FinFunc0 is intransitive. The semantics are, again, rather different: the semantic fea-
tures of IncepFunc1 are closer to the semantic features of Caus2Func1 than to those of FinFunc0.

5.1.2. LFs used in experiment 2

As inExperiment 1, in Experiment 2, the classification techniqueswere testedwith respect to five different LFs.
These LFs were: CausFunc0, Oper1, Oper2, Real1 and Real2. Consider, again, the glosses and examples for each:

CausFunc0 �cause the existence of the situation, state, etc.�; e.g.:

rma lit. �give alarm�, celebrar elecciones lit. �celebrate elections�, provocar [una] crisis lit. �provoke
is�, publicar [una] revista lit. �publish [a] review/journal�.
rm�, �experience�, �carry out�, etc.; e.g.:
] golpe lit. �give [a] blow�, presentar [una] demanda lit. �present [a] demand�, hacer [una] campaña lit.
campaign�, dictar [la] sentencia lit. �dictate [the] sentence�.
rgo�, �be source of�, etc.; e.g.:
rse [a un] análisis lit. �submit (oneself to an) analysis�, afrontar [el] desafı́o lit. �face [the] challenge�,
un] examen lit. �do [a] examination�, tener [la] culpa lit. �have [the] blame�.
cordingly to the situation�, �use as foreseen�; e.g.:
[la] autoridad lit. �exercise [the] authority�, utilizar [el] teléfono lit. �use [the] telephone�, hablar [una]
lit. �speak [a] language�, cumplir [la] promesa lit. �fulfil [the] promise�.
accordingly to the situation�; e.g.:
der [a la] objeción lit. �respond to the objection�, satisfacer [el] requisito lit. �satisfy [the] require-
atender [la] solicitud lit. �attend [the] petition�, rendirse [a la] persuasión lit. �render (oneself) [to
nviction�.
The meanings of Oper1 and Oper2 are very similar, and so are those of Real1 and Real2. Also, in some cases,
we found virtually no distinction between the semantic description of the instances of CausFunc0 and Oper1.
Consider, for instance, rendir [un] homenaje lit. �render [an] homage�, dar [una] explicación lit. �give [an] expla-
comentarios de algunos politicos provocan la indignación de los vecinos del Carmel lit. �The comments of some politicians
n of the neighbors of Carmel�, comentarios de algunos politicos is the second actant of INDIGNACIÓN (with los vecinos

g the first actant).



Table 2
Sizes of the LSC-sets used in Experiment 1

Caus2Func1 ContOper1 FinFunc0 Oper1 IncepFunc1

63 14 40 37 23

Table 3
Sizes of the LSC-sets used in Experiment 2

CausFunc0 Oper1 Oper2 Real1 Real2

53 87 48 52 53
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nation�, hacer [un] comentario lit. �do [a] comment� and poner [una] queja lit. �put [a] complaint�, which have
been classified as Oper1-instances by human experts. However, to a certain extent, they also express a �causa-
tion of existence�. Wanner (2004) rated the classification as correct if one of such Oper1-instances was classified
as CausFunc0. In our current experiments, we applied a more rigorous evaluation rating classifications of this
kind as false. This was done in order to keep up with the classification granularity suggested by lexicographers
(see also above).
5.2. Data used in the experiments

For Experiment 1, a collection of Spanish LSCs already classified in terms of LFs in the Diccionario de col-

ocaciones del español (Alonso, 2004a) has been used; cf. Table 2 for the number of instances available for each
of the LFs in Experiment 1.

The data for Experiment 2 have been compiled drawing upon various sources: (i) informants (native speak-
ers of Spanish): two linguists working within the framework of the Explanatory Combinatorial Lexicology and
a layperson with a pronounced intuition with respect to the acceptability of idiosyncratic combinations; (ii)
Collins bilingual English–Spanish dictionary; (iii) corpora, where we looked up verb–noun combinations
for sets of predetermined nouns (choosing combinations that were instances of one of the relevant LFs).

Table 3 summarizes the sizes of the LSC-sets used in Experiment 2.
When dividing the available material into training and test material, the following two observations should

be kept in mind.

• In certain corpora, the material for specific LFs will be scarce. Stevenson et al. (2004) argue that even
the British National Corpus does not give a broad coverage of SVCs, which are the most common LSCs.

• The optimal size of a training set for a given LF depends on the semantic heterogeneity of the colloca-
tions to be classified. In general, it can be assumed that collocations that belong to the same semantic
field (such as, e.g., emotions, speech acts, communicative actions, movement actions, etc.) are more
homogeneous than collocations that belong to different semantic fields. For instance, for ContOper1 in
the field of Spanish emotion nouns, only two values are available: conservar lit. �conserve� and guardar
lit. �keep�, which possess in SpanWN the same semantic description. This means that even a very small
sized training set can be assumed to suffice. For IncepFunc1 in the same field, we have three different
values (apoderarse, entrar and invadir) with rather different semantic descriptions. That is, a larger train-
ing set is needed to achieve a comparable quality of classification. With the increasing number of seman-
tic fields to be covered, the size of the training set further increases. The results of the experiments give
information on this issue.

To explore the minimal and optimal sizes of admissible training sets, experiments with different sizes of the
training sets are necessary. We accomplished this as follows. In both experiments, for each LF, x% of the
available LSC-set has been used as training material. The remaining 100 � x% of the LSC-sets of all five



Table 4
Experiment 1: The quality figures (as p|r) of the NN-classification of emotion bigrams over different ratios of the training set size

LF Ratio of the training set size

5% 10% 25% 50% 75% 95%

Caus2Func1 0.67|0.75 0.95|0.99 0.78|0.79 0.84|0.81 0.88|0.84 0.84|0.84
ContOper1 0.67|0.74 0.93|0.87 0.79|0.70 0.83|0.73 0.87|0.77 0.95|0.75
FinFunc0 0.96|0.62 1.0|0.94 0.89|0.69 0.92|0.71 0.95|0.73 0.95|0.76
IncepFunc1 0.54|0.51 0.73|0.97 0.65|0.80 0.70|0.92 0.71|0.95 0.70|0.96
Oper1 0.77|0.79 1.0|0.76 0.81|0.86 0.83|0.89 0.85|0.92 0.87|0.93
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LFs drawn upon in an experiment made up the test material. i.e., from the perspective of a specific LF, the test
material consisted in 100 � x% of its LSC-set as positive test data and in 100 � x% of the LSC-sets of the
other four LFs as negative test data. Tests have been performed with x = 5%, 10%, 25%, 50%, 75% and 95%.

6. Experiments

All experiments were carried out with non-disambiguated test material.10 In SpanWN, the elements of test
bigrams usually have more than one sense. Therefore, we had to build the cross-product of all possible read-
ings of each test bigram. In other words, if we assume that for a given bigram (N, V), the noun N encounters
sN senses and the verb VsV senses, fSeN1 ; SeN2 ; . . . ; SeNsN g � fSeV1 ; SeV2 ; . . . ; SeVsV g, where Se

N
i ð1 6 i 6 sN Þ is one of

the nominal senses and SeVj ð1 6 j 6 sV Þ one of the verbal senses, was used. To classify a given candidate word
bigram as an instance of one of the LFs in the typology, each sense bigram ðSeNi ; SeVj Þ of this word bigram has
been examined. Obviously, only one of the ðSeNi ; SeVj Þ may qualify the word bigram as an instance of a specific
LF.11 However, as is well-known, the distinction of word senses in SpanWN is biased towards English, which
means that sense distinctions are made for a Spanish word if the corresponding readings are available for the
English original – even if they are not available in Spanish; cf. Wanner et al. (2004) for examples. As a result,
Spanish words are often assigned several incorrect senses – which has negative consequences for the quality of
the classification procedure. To minimize these consequences, we used the so-called voting strategy: instead of
choosing ONE sense bigram as evidence that the word bigram is instance of the LF L, each sense bigram
‘‘voted’’ for an LF; the word bigram was assigned the LF-label with most votes.

To eliminate a distortion of the experiment outcomes by the selection of the training samples, for each ratio
of the training set size (i.e., 5%, 10%, 25%, 50%, 75% and 95%), experiments were performed in 200–500 iter-
ations. In each iteration, the training samples were chosen randomly. The quality figures cited below reflect the
average performance over all iterations.

Table 4 shows the performance of the NN-classification for the field of emotion nouns; here and hence-
forth, �p|r� stands for �precision|recall�.12 For all LFs, except for Oper1, the ratio of 10% provides the highest
f-score: 0.97 for Caus2Func1, 0.9 for ContOper1, 0.97 for FinFunc0, and 00.83 for IncepFunc1.

13 This means
that when 10% of the material available for the LF L is taken for training, the share of training instances for
the LF L 0 which are semantically similar to candidate bigrams for L is the smallest. For Oper1, the ratio of
95% led to a slightly better f-score than 10%, which is the second best (0.9 compared to 0.86).
10 Recall, however, that we train on manually disambiguated LF-instances.
11 For instance, take [a] rest is an instance of the Oper1-LF only for rest in the sense of �relaxation� (and not in the sense of �peace�,
�support�, or �remainder�) and [to] take in the ‘‘emptied’’ sense of a support verb (and not in the sense of �remove�, �steal�, �capture�, �accept�,
�buy�, or any other of its other numerous senses).
12 As usual, we define p(recision) and r(ecall) as pðiÞ ¼ jLF ci j

jLF pe j and rðiÞ ¼ jLF cij
jLF i j , where |LFci| is the number of testset elements correctly

classified as the LF i, |LFpe| is the total number of testset elements classified as the LF i, and |LFi| is the total number of testset elements
available for the LF i.
13 We use an equal weighting of p and r to calculate the f-score, i.e., f ¼ 2pr

pþr.



Table 5
Experiment 2: The quality figures (as p|r) of the NN-classification of field-independent bigrams over different ratios of the training set size

LF Ratio of the training set size

5% 10% 25% 50% 75% 95%

CausFunc0 0.34|0.40 0.45|0.54 0.52|0.64 0.56|0.75 0.59|0.78 0.59|0.79
Oper1 0.34|0.38 0.41|0.40 0.47|0.49 0.53|0.52 0.55|0.52 0.65|0.55
Oper2 0.34|0.35 0.44|0.35 0.55|0.49 0.60|0.60 0.61|0.66 0.62|0.71
Real1 0.35|0.30 0.42|0.40 0.47|0.55 0.56|0.47 0.58|0.44 0.58|0.44
Real2 0.32|0.34 0.39|0.41 0.49|0.43 0.55|0.46 0.58|0.51 0.56|0.55
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Table 5 displays the performance of NN-classification for field-independent candidate bigrams. Given the
heterogeneous semantics of both the training and test material samples, it is not surprising that the overall
quality figures are lower than in Experiment 1. Unlike in Experiment 1, both p and r generally increase for
all LFs with the increasing ratio. Contrary to this general trend are the recall for Real1, which slightly
decreases with the ratios of 75% and 95% when compared to 50%, and the precision for Real1 with the ratio
of 95% (when compared to p with 75%). This is due to the similar semantics of Real1 and Real2: with the
increasing ratio, the share of Real1 training instances that are similar to Real2-instances inevitably increases,
as does the share of Real2 training instances that are similar to Real1-instances.

7. Evaluation of the experiments

Experiments 1 and 2 provide information on the following two topics:14

(1) Should LF-oriented collocation classification be pursued separately for each semantic field, or can we
avoid the cost of grouping candidate bigrams into semantic fields?

(2) What can be said concerning the training set size?

The experiments show a considerably better performance of the NN-classifier when it is applied to single
field material than when it is applied to multiple field material i.e., semantically sufficiently homogeneous
training and test material will always lead to a higher quality LF-classification. However, it must be also taken
into account that the field of emotion nouns is extremely homogeneous. We hypothesize that rarely any other
field will be as homogeneous as the field of emotion nouns – with the consequence that the quality figures will
be lower. In other words, at this stage, we cannot make any reliable statement on the general preference of
single field collocation classification. Our experiments are only a first indication that it might be so. Experi-
ments with other semantic fields are needed to buttress this indication.

The experiments also reveal interesting details concerning the size of the training sets: although training sets
must contain a sufficient number of samples for a ML-technique to perform well, larger training sets do not
automatically stand for a better performance.

In a diffierent run of Experiment 2, we restricted the size of all training sets to 28 – independently of how
many instances of an LF were present in our material. Table 6 shows the performance of the NN-classifier
with this setup and LSC-set cardinalities as listed in Table 3.

In general, 28 training instances turned out to be too few to achieve optimal accuracy. However, this has
already been demonstrated in the previous section. A more interesting issue is how the equal size for all train-
ing sets influences the performance. For CausFunc0, Oper2, Real1, and Real2, the training set of 28 samples
approximately corresponds to the 50% ratio in Section 6, and for Oper1 to the 25% ratio. That is, compared
to the Experiment 2 run with the 25% ratio, the uniform size run contains more training instances for Caus-
14 A further topic which is certainly also of outmost relevance concerns the suitability of SpanWN as an external lexico-semantic
resource. For the evaluation of SpanWN in the context of collocation classification, we refer the interested reader to Wanner (2004).



Table 7
The f-scores for LFs in Experiments 1 and 2 with the 95% training size ratio

Caus2Func1 ContOper1 FinFunc0 IncepFunc1 Oper1

Experiment 1 0.84 0.84 0.84 0.81 0.90
Experiment 2 0.68 0.60 0.66 0.50 0.55

Table 6
Performance of the NN-classifier (as p|r) with a training set size of 28 for each LF

CausFunc0 Oper1 Oper2 Real1 Real2

0.31|0.78 0.85|0.49 0.33|0.62 0.44|0.46 0.46|0.42

Table 8
Typical verbs in collocations covered by the LFs in Experiment 2

CausFunc0: INICIAR �initiate�, CREAR �create�
Oper1: HACER �do�, DAR �give�, EXPERIMENTAR �experience�
Oper2: PERCIBIR�perceive�, SUFRIR �undergo�
Real1: UTILIZAR �apply, utilize, employ�, PONER �put�
Real2: RESPONDER �respond�, SEGUIR �follow�

Table 9
The f-scores for LFs in Experiment 2 with the 95% training size ratio using ID3-, NB-, and TAN-classifiers, the f-scores achieved in
(Wanner, 2004) (abbreviated as �LW�) with manually disambiguated data, and the baseline performance

CausFunc0 Oper1 Oper2 Real1 Real2

Baseline 0.42 0.40 0.12 0.19 0.33
ID3 0.58 0.68 0.46 0.44 0.51
NB 0.59 0.74 0.30 0.45 0.47
TAN 0.50 0.59 0.55 0.49 0.45
LW 0.76 0.60 0.75 0.74 0.58
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Func0, Oper2, Real1 and Real2; compared to the run with the 50% ratio, it contains less Oper1 training
instances.

The reduced uniform training set size led to a (partially) considerably lower f-score for all LFs except for
Oper1. For Oper1, in particular p was significantly higher with the uniform size. Compare the figures in Table 6
with the corresponding figures in Section 6.

The quality figures gained in the experiments and the above evaluation allow for a concluding assessment of
the NN-classifier in the context of LSC-classification with respect to the LF-typology using external semantic
resources. Table 7 shows the f-scores in Experiments 1 and 2 with the 95% ratio (see Table 8).

To examine the relative performance quality of the NN-classifier in the task of LSC-classification, we car-
ried out Experiment 2 with three further ML-techniques, namely the decision tree algorithm ID3 (Quinlan,
1986), the Naı̈ve Bayes (NB) classifier (Mitchell, 1997) and the Tree Augmented Bayes Network (TAN) clas-
sifier (Friedman et al., 1997). For all three techniques, the total set of attribute variables was assumed to be
given by B [ C, i.e., each meaning component was considered an attribute. Table 9 summarizes the quality
figures obtained for these three techniques, the accuracy achieved in comparable experiments in Wanner
(2004),15 along with a baseline. The baseline is the match of the verb of a candidate bigram with one of
15 A word of caution is in order here: strictly speaking, we cannot directly compare the results of the experiments described in this article
with the results in Wanner (2004) since in Wanner (2004), we used manually disambiguated test data.
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the most common collocates of the LF in question. The most common collocates used for the LFs drawn upon
in Experiment 2 are summarized in Table 8. We have taken this baseline because in Explanatory Combinato-
rial Lexicology Mel�čuk et al. (1995), most common collocates of an LF tend to be considered adequate glosses
of the meaning of this LF.

The TAN-classifier performs best, when clear component correlations in both the training and test sam-
ples can be identified. The NB-classifier is suitable if the instances of the individual LFs have distinctive
meaning components (as, e.g., the synonyms of disiparse lit. �[to] evaporate�, which is typical of FinFunc0
in the emotion noun field). The ID3-algorithm is unreliable in single field experiments, but outperforms,
e.g., TAN in the experiments with more heterogeneous material. However, in general, the NN-classifier
proved to be the most reliable ML-technique for our task. All techniques examined perform considerably
better than the baseline.

8. Related work

Sag et al. (2002) call the problem of handling MWEs ‘‘a pain in the neck for NLP’’. An increasing number
of works attempts to contribute to its cure. In this section, we discuss mainly those of them that deal with the
problem of collocation recognition in corpora and collocation classification. The collocation recognition task
is immediately relevant to this article because, as shown in Wanner et al. (2005b), the techniques discussed can
be well applied for the extraction of collocations from corpora; see also Section 9. It should be pointed out
that our work is also related to research in such areas as acquisition of co-occurrence restrictions (or selectional
preferences); see, e.g., (Resnik, 1993; Ribas, 1995; Sanfilippo, 1997; McCarthy, 1997; Li and Abe, 1998;
McCarthy, 2000; Clark and Weir, 2002); and semantic classification of either single lexical items or binary rela-
tions between lexical items using machine learning techniques; consider, e.g., (Siegel, 1999; Merlo and Steven-
son, 2001; Rosario and Hearst, 2001). See Wanner (2004) for an overview and their relation to the task of
collocation classification using semantic information defined in WordNet.

The overwhelming majority of the approaches to automatic identification and extraction of collocations is
based on the interpretation of the notion of collocation as a sequence of words that frequently appear together
– either adjacently or interrupted by other words; see, e.g., (Choueka et al., 1983; Church and Hanks, 1989;
Smadja, 1993; Justeson and Katz, 1995; Merkel and Andersson, 2000).16 As a rule, these approaches provide
plain lists of presumed collocations, possibly enriched with POS-information. Due to purely statistical tech-
niques applied, no semantic information on the combinations extracted can be provided. Lin (1998) combines
statistical techniques with syntactic processing – arguing, as we do, that although collocations are reccurrent

combinations, they are not necessarily frequent combinations. Lin�s approach consists of three steps: (1) col-
lection of dependency triples (he also considers the article of the noun in such collocations as file a lawsuit,

weather a storm, etc.), (2) (automatic) correction of the erroneous frequency counts of the triples that result
from parser mistakes, (3) filtering of the triples with mutual information. For (2), syntactic features derived
from the WordNet are used. Pearce (2001) proposes the evaluation of the frequency of the co-occurrence
of lexical items with synonymous lexemes: if a wordW1 co-occurs with a wordW2 n times and with a synonym
of W2,W3, m times, and m < n � 1, then W1 + W2 is considered a potential collocation. Between W1 and W2

as well as between W1 and W3 a specific dependency relation (e.g., �modifier�) must hold. To determine the
synonyms of a given lexeme, Pearce uses WordNet.

A considerable number of researchers focus on the extraction of support (or light) verb constructions, SVCs,
(Grefenstette and Teufel, 1995; Dras, 1995; Tapanainen et al., 1998; Stevenson et al., 2004), which constitute the
most prominent kind of verb–noun LSCs.17 The basic difference between these works and ours is that we rely
upon semantic similarity of a candidate bigram to samples in reference (training) sets, while they use either stan-
16 This interpretation is attractive to automatic processing because it allows for the use of well-developed statistical models and does not
require other linguistic preprocessing than part of speech tagging.
17 SVCs are represented by the Oper-LFs, i.e., Operi i = 1, 2, . . . , and are thus a subset of LSC-types we draw upon in our classification
experiments.
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dard statistical measures extended to capture the linguistic properties of SVCs (as Stevenson et al. (2004), who
use the pointwise mutual information (Church et al., 1991)), or combine frequency counts with morpho-syntactic
information on the deverbal nature of verbal complements as Grefenstette and Teufel (1995) and Dras (1995).
Furthermore, while they either attempt to find possible deverbal noun complements for a given set of support
verbs (as Stevenson et al. (2004)) or probable support verbs for deverbal noun complements (as Grefenstette
and Teufel (1995); Dras (1995); Tapanainen et al. (1998)), our approach is perspective-neutral: we consider
rather the semantically motivated correlation between the elements of a given bigram.

In general, most approaches to collocation extraction as discussed in the literature can be considered to be
complementary to our approach: once binary combinations of lexical items assumed to be collocations have
been extracted by the former, our approach can either assign a semantics to them (by identifying the LF to
which a given combination belongs) or reject their collocational status. The latter is achieved by introducing
into the LF-typology an additional ‘‘pseudo LF’’ that comprises free verb–noun bigrams; see Wanner et al.
(2005b) for theoretical details and experiments.

A few recent works draw upon LFs when identifying collocations in the corpus. Thus, Daille (2003) uses
morpho-syntactic variations of words to detect instances of mainly derivative LFs such as Mult �multitude�
(cf. Mult(FISH) = school, Mult(SHEEP) = flock), Gener �generic name� (cf. Gener(CARROT) = vegetable,
Gener(LOVE) = emotion), S1 �first actant�s typical name� (cf. S1 (SONG) = singer, S1 (STUDY) = student),
etc. Claveau and L�Homme (2004) exploit the syntagmatic context attempting to detect N–V pairs that qualify
for any LF from the Real-group Reali (i = 1, 2, . . .) with the meaning �act appropriately with respect to the
situation�, for an LF from the Fact-group (Factj j = 0, 1, . . .) with the meaning �be dealt with appropriately�,
etc. However, to our knowledge, none of the previously cited works proposed techniques for an actual clas-
sification of bigrams with respect to the fragment of the LF-typology we are working with. Neither did they
achieve such a classification granularity and accuracy.

9. Conclusions and remaining issues

In this article, we described the application of the NN-classifier to the task of the classification of verb–
noun collocations, contrasting its performance with the performance of several other ML-techniques. We used
the typology of lexical functions as the classification schema and the hyperonym hierarchies provided by
SpanWN as the source for the semantic componential description of the lexical items involved. The techniques
have been implemented and applied to Spanish material. Experiments have been carried out on material from
the emotion noun field and on material with no field restrictions.

The experiments demonstrated that the techniques proposed are able to provide a high quality classification
of verb–noun collocations. In the experiments described elsewhere (see Wanner et al. (2005b)), we show that
these techniques can be used to classify in terms of LFs any verb–noun bigrams extracted from a corpus, i.e.,
not only bigrams that a priori are known to be an instance of an LF (although, not of which LF). As pointed
out in the previous section, this requires the extension of the LF-typology by a pseudo LF that subsumes free
verb–noun combinations. Obviously, this implies the consideration of training instances for this pseudo LF
during the learning stage.

We plan to use the developed system within the DICE-Project (Alonso, 2004a). Our work can also be used
in a broader scenario, for example, for the following purposes:

(i) classifying verb–noun bigrams with a specific syntactic structure that have been acquired from a corpus by
partial parsing in terms of LFs;

(ii) assignment of semantics to collocations listed in (collocation) dictionaries or extracted from a corpus by a
technique that provides plain lists of collocations (this corresponds to the experiment setting described in
the paper);

(iii) filtering out word combinations that have erroneously been classified as collocations (these will be
instances falling into the class of ‘‘non-collocation’’-LF).

An interesting by-product of the use of EuroWordnet is the semantic disambiguation of the bigram
elements by the classification procedure. This is because the result of the classification is not a claim that a
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particular word-bigram is an instance of a given LF, but a claim that particular SpanWN-senses of the words
in this bigram form an instance of this LF.

Several issues still remain to be tackled at this point. The most important of them being, first, the use of
additional LFs from the LF-typology, including further verb–noun LFs such as Son �typical sound�: dog barks,
teeth chatter, hurricane roars, etc. and Degrad �deteriorate�: teeth decay, temper frays, discipline decays, etc. as
well as adverb–verb LFs. Experiments on the classification of adjective–noun LSCs are described in Wanner
et al. (2005a). Second, the ease of the dependency on external semantic information as given in EWN. The goal
is to use a mixture of contextual and lexico-semantic information for LF-oriented collocation classification.
Currently, experiments are under way with German material. Third, extention of our work to English and
French. English is well-suited for our experiments. Thus, the Princeton WN is, in combination with the Eng-
lish part of the EuroWN, the most detailed and exhaustive lexico-semantic resource available to date for a
language. Furthermore, well-balanced extensive training sets for all LFs can be readily compiled for English
from the LF-base that is publicly available from I. Mel�čuk. For French, a machine readable LF-dictionary is
already available Polguère (2000). LF-instances in this dictionary can be used as bootstrapping seeds for the
classification algorithm. This would make the compilation of the training sets obsolete and thus contribute to
the efficiency of the approach.
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