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Abstract  

This paper presents a method for updating approximations of a concept incremental- 
ly. The results can be used to implement a quasi-incremental algorithm for learning clas- 
sification rules from very large data bases generalized by dynamic conceptual hierarchies 
provided by users. In general, the process of attribute generalization may introduce in- 
consistency into a generalized relation. This issue is resolved by using the inductive 
learning algorithm, LERS based on rough set theory. © 1998 Elsevier Science Inc. 
All rights reserved. 
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I .  I n t r o d u c t i o n  

In inductive machine learning and data mining from very large data bases, it 
is well known that background knowledge can be used as an effective guidance 
for extracting useful and interesting information from the data. When using re- 
lational data bases as sources of  data mining, it has been shown in [1,2] that 
conceptual hierarchies defined on the domains of  attributes can be used to re- 
duce source relations into generalized relations, thus effective data mining can 
be accomplished. Conceptual hierarchies usually vary based on users' views 
and interests, therefore, it is important  to handle dynamic conceptual hierar- 
chies effectively. 
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The use of  conceptual hierarchies to generalize relations is similar to the sit- 
uation of  discretizing attributes with continuous domains. In general, a gener- 
alized table may be inconsistent. Thus, a data mining tool must include a 
mechanism to deal with inconsistent data. 

Some data mining tasks from the rough sets perspective have been discussed 
in [3]. Our focus here is on the task of  generating classification rules from data. 
Based on rough sets [4] and the concept of  lower and upper boundary sets [5], 
we introduce a method for updating approximations by considering adding 
and deleting one attribute at a time. When a generalization is applied to an at- 
tribute, we can use the method to update approximations by deleting the orig- 
inal attribute first, followed by inserting the generalized one using information 
of  current approximations. This feature can support incremental updating of 
approximations, which is essential to dealing with dynamic attribute general- 
ization. 

To handle inconsistent data, we use the inductive learning algorithm LERS 
[6,7] as a rule generator. Thus, the proposed algorithm can be used to learn 
minimal discriminant rules from data bases in light of  dynamic conceptual hi- 
erarchies and inconsistency. 

In the following section, we introduce terms and definitions to be used in the 
paper. In Section 3, we present results that can be used for updating approx- 
imations using one attribute at a time. A quasi-incremental algorithm for 
learning classification rules is outlined in Section 4. Section 5 concludes the 
paper. 

2. Terms and definitions 

A decision table is a collection U of  objects that are described by a finite set A 
of  attributes. One attribute in A is designated as a decision attribute, and the 
rest of  the attributes are called condition attributes. An approximation space 
is a pair (U, R) where R is an equivalence relation defined on U. A partially 
ordered set of equivalence relations defined on the domain of  an attribute is 
called a conceptual hierarchy. We also call the equivalence relations in a con- 
ceptual hierarchy attribute generalizations. Given an approximation space (U, 
R), for any subset X of U, X can be described by a pair of sets, lower approx- 
imation of X and upper approximation of  X, denoted as RX and ~ respectively. 
A subset X of U is definable in (U, R) if and only if RX = X ---/Lg. The lower 
boundary of X in (U, R) is defined as _AX = X - /RX and the upper boundary of 
Xin  (U, R) is defined as z~ = / ~  - X .  Thus, a subset Xis  definable in (U, R) if 
and only if ARX = O = ARX. For  any subset X of  U, the lower and upper ap- 
proximations of  X are always definable in an approximation space. 
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3. Updating approximations incrementally 

In this section, we consider the problem of  updating approximations of a 
subset X of U in terms of  adding and removing one attribute at a time. The 
concept of  boundary sets were introduced in [5] where it has been used as a tool 
for learning rules from examples. In the following, boundary sets are used to 
update approximations of a subset X incrementally. 

Proposition 3.1. Let  a be an attribute in A, and a is not in P. The lower 
approximation o f  X by adding a to P can be updated in terms o f  PX,  A ~ ,  {a}X,  
and A{4X as 

P U { a } X  = P X  U { a } X  U Y, 

where Y = {x in ApX n A{a}X I nb~Pu{d [x]b c_ X}. 

Proof. Let X be a subset of U and x be an example in U such that x c P U {a}X.  
If x is not in P X  U {a}X,  then x must be in Y. Because x is not in PX U { a } X  if 
and only if x is in ApXNA{dX, and x E P U { a } X  if and only if 
nb~PU{d [x]b c x .  Therefore, we have x is in Y. [] 

Proposition 3.2. Let  a be an attribute in P. The lower approximation o f  X by 
removing a f r o m  P can be updated in terms o f  P X  and Ap_{a}X as 

P - { a } X  = P X  - Ap_{a}X , 

where 

Ap_{a}X = {X in n A{b}X [ n [x]b ¢ X}. 
bEP-{a} bCP {a} 

Note  that attribute a is redundant when Ap {a}X(PX) = 0 .  

Proof. In general, we have P - { a } X  c PX.  In terms of lower boundary sets, 
we have ApX c_ Ap_{a}X. The contribution of an attribute a to the lower 
approximation of X by P can be characterized by the set 
Ap_{a}X - ApX = {x in U ] x E Ap_{~}X and x ~ ApX}. Therefore, the effect 
of  removing attribute a from P to the lower approximation of X is 
P - { a } X  = P X  - (Ap_{4X - _ApX) = P X  - Ap_{a}X - ApX, which can be 
simplified as P X  - Ap_{~}X, because P X  n A_~ = 0 .  [] 

Proposition 3.3. Let  a be an attribute in A, and a is not in P. The upper 
approximation o f  X by adding a to P can be updated in terms o f  ;XpX as 

P u {a}X = x u (AAc - z )  

where Z denotes the set o f  extra objects that is definable by adding attribute a to 
P and it is defined as 



172 C,-C. Chan I Journal of lnformation Sciences 107 (1998) 169-176 

bEPU{a} bEPU{a} bEPU{a} 

Proof. Let x E P U {a}X and x ~ X. Then  x is in Z~pu{,~}X f rom the definition o f  
upper  boundary  sets. This implies that  x is in ApX and nb~PU{,}[x]b N X  ¢ Q. 

Because (nb~Pu{,}A{b}X) N X =  Q. Therefore  nbEPU{,}[X]b is not  a subset o f  

nb~PU{a}A{b}X. Thus,  x is not  in Z. Therefore,  x is in z~pX - Z. [ ]  

Proposition 3.4. Let a be an attribute in P. The upper approximation of  X by 
removing a from P can be updated in terms of  ApX as 

P - { a } X = X U A ~ U Z '  

where Z ' =  {x innb<p_la}?~{b}X I ¢ nb~p_{,}A{b}X}. 

Proof. Let  x E P - {a}X and x ~ X, then x is in Ap-ia} X by definition. In 
general, we have ,~pX _c ,~p {a}X. Therefore ,  if x E P - {a}X and x ¢~ X and 
x ¢ ApX, then x must  be in Z', because n~cp_{,}[x]b _c nb~e_{a}f~{b}X if and 
only if x E P -  {a}X. This would contradict  the assumption that  
x E P - { a } X .  [] 

Example.  We use Table  1 to illustrate the above results. Fo r  simplicity, we will 
use an at tr ibute name to denote  a singleton set o f  attribute. 

F r o m  Table 1 the part i t ions generated by single attributes are: 

a* = {{el ,  e2, e3, e4}, {e5, e6}, {e7, e8}}, 

b* = {{el ,  e3}, {e2, e4, e5, e6}, {e7, e8}}, 

c* = {{el ,  e3, e5, e6}, {e2, e4}, {e7, e8}}, 

d* = {{el ,  e2, e3, e4, e5, e6}, {e7, e8}}. 

Let  X = {el,  e2, e5, e6}. 

Table 1 
A decision table with attributes A = {a, b, c, d} and U = {el,..., eb} 

Example a b c d 

el 0 L 0 L 
e2 0 R 1 L 
e3 0 L 0 L 
e4 0 R 1 L 
e5 1 R 0 L 
e6 1 R 0 L 
e7 2 S 2 H 
e8 2 S 2 H 
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Then the lower approximations of J( by single attributes are 

aX = {e5, e6}, 

b X  = {el, e3}, 

_cX = {el, e3, e5, e6}, 

dX = Q 

The lower boundaries of X by single attributes are 

~ x  = x - ~ x  = { e l , e 3 } ,  

A_bX = X - bX  = {e5, e6}, 

~ x = x - ~ x = Q ,  
A4X = X -  d X  = {el,e3, e5, e6}. 

In the following, we consider updating lower approximations of X by adding 
and removing one attribute. 

3.1. Adding a new attribute 

Let P = {b}, so P X  = {el, e3} and _ApX = {e5,e6}. 
Let R = P U  {d}. To compute ~ ,  we first compute 

Y = {X in A ~  N_A{a}X [ nbEPu{d} [X]b ~ X} = Q~. 
From A_eX N A dY = A bX N A~tX = {e5, e6} and 

[e5]:, N [e5Jj = {e2, e4, e5, e6} • X and 

[e6]:, n [e6]d = {e2, e4, e5, e6} Z X. 

Therefore, both e5 and e6 are not in Y. 
Now we compute R_X by 

R X  = P_X U d X  U Y = bX Ud_X U Y = {el,e3}. 

the set g as 

3.2. Removing an attribute 

Next, we show how to update lower approximation of X when attribute b is 
removed from R = {b, d}. 

From the above and Proposition 3.2, we have RX = {el,e3}, 
__ARX = {e5, e6}, and Y = AR_{b}X = {el,e3, e5,e6}. Therefore, we have 
R -  { b } X  =_RX-  Y = {el,e3} - {el,e3,e5, e6} = Q. 

In the following, we consider updating upper approximations by adding and 
removing one attribute at a time. 

3.3. Updating upper approximations 

From the above table, the upper approximations of J( by single attributes 
are all equal, namely, 
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O.X = bX = OX = dX = {el, e2, e3, e4, e5, e6}. 

Therefore, the upper boundaries of X by single attributes are also equal. We 
have 

z~aX = A~X = A~.X = z~dX = {e2, e4}. 

3.4. Adding a new attribute 

Let P = {b}. We have PX = bX = {el, e2, e3, e4, e5, e6} 
[XpX = z~y:( = {e2, e4}. 

Let R = P U {d}. To compute PO(, we first compute Z as 

Z = {x in A{bIX n A{dIX [ [x]b n [x]d C_ z~{h}X A z~{d~X} = Q3. 

Then, update the upper approximation of X by P U {d} as 

R X  = X U ([~pX - Z) = {el, e2, e3, e4, e5, e6}. 

and 

3.5. Removing an attribute 

Next, we show how to update upper approximation of X when attribute b is 
removed from R = {b, d}. 

From the above and Proposition 3.4, we have RX = {el,e2, e3, e4, e5,e6} 
and ARX = {e2, e4}. 

Next, we compute Z' as 

Z ' =  {x in z~{d}X [ Ix b ~ A{d}X} = {e2, e4}. 

Now, the upper approximation of X by R - {b} is updated as 

R - { b } X  = Y U z~RX U Z' = {el, e2, e3, e4, e5, e6}. 

In summary, the above results show that we can update approximations in- 
crementally by using the boundary sets of single attributes and the intersection 
of the sets denoted by corresponding attribute-value pairs. This can be used to 
implement a data mining tool that is capable of dealing with dynamic concep- 
tual hierarchies provided by users. 

4. Learning classification rules from data 

Based on the results in Section 3, we propose a top-down algorithm for 
learning classification rules from data. The algorithm uses LERS learning algo- 
rithm to generate rules, therefore, the learned rules are disjunctive minimal dis- 
criminant descriptions of target classes. When a table is inconsistent, the 
algorithm learn certain rules from lower approximations and possible rules 
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from upper approximations [8]. For consistent tables, we have only one set of 
rules. 

Inputs: 1. A decision table with attribute set A and a decision attribute d in 
A. 
2. Attribute generalizations provided by users. 

Outputs: certain and possible classification rules for classes in the decision 
attribute. 

begin 
From the decision table, 
for each class ~ in the decision attribute do 

begin 
Compute lower and upper approximations generated by single 
condition attributes; 
Compute lower and upper boundary sets by single condition attributes: 
Find a cover R for the set of condition attributes; 
Compute lower and upper approximations generated by R; 
Compute lower and upper boundary sets generated by R; 

end; 
repeat 

Get a generalization gi for attribute a provided by the user; 
if attribute a is in R 

then 
begin 

Update approximations and boundary sets by R -  {a}; 
Update approximations and boundary sets by R U {a} based on gi; 

end; 
else 

Update approximations and boundary sets by R U {a}; 
Find a cover for the new set of attributes; 
if rules desired 
then generate rules by LERS; 

until terminated by user; 
end. 

The concept of cover of attributes was introduced in [9]. An algorithm for 
finding covers can be found in [5]. Algorithms related to the LERS family of 
learning programs can be found in [6,7]. 

5. Conclusions 

Conceptual hierarchies have been used to generalize very large data bases in 
order to support effective data mining tasks. These generalizations usually are 
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user -dependent ,  therefore,  they are dynamic  in nature .  In  addi t ion ,  the process  
o f  genera l iza t ions  m a y  in t roduce  inconsis tency into general ized data .  D a t a  in- 
consis tency can be hand led  effectively by a p p r o x i m a t i o n s  in rough  set theory .  
In this paper ,  we have presented  a me thod  for  upda t ing  a p p r o x i m a t i o n s  incre- 
men ta l ly  which can be used as an effective tool  to deal  with dyna mic  a t t r ibu te  
genera l iza t ions .  C o m b i n i n g  the p r o p o s e d  me thod  and  the L E R S  induct ive  
learning a lgor i thm,  we have given a quas i - inc rementa l  a lgor i thm for learn ing  
classif icat ion rules f rom d a t a  bases.  
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