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Abstract This chapter overviews techniques for evaluating speech and speaker recognition
systems. The chapter first describes principles of recognition methods, and
specifies types of systems as well as their applications. The evaluation methods
can be classified into subjective and objective methods, among which the chap-
ter focuses on the latter methods. In order to compare/normalize performances
of different speech recognition systems, test set perplexity is introduced as a
measure of the difficulty of each task. Objective evaluation methods of spoken
dialogue and transcription systems are respectively described. Speaker recogni-
tion can be classified into speaker identification and verification, and most of
the application systems fall into the speaker verification category. Since varia-
tion of speech features over time is a serious problem in speaker recognition,
normalization and adaptation techniques are also described. Speaker verification
performance is typically measured by equal error rate, detection error trade-off
(DET) curves, and a weighted cost value. The chapter concludes by summarizing
various issues for future research.

Keywords Speech recognition; Speaker recognition; Objective evaluation; Subjective eval-
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1 Introduction
Given the complexity of the human–computer interface, it is clear that eval-

uation protocols are required which address a large number of different types
of spoken language systems, including speech recognition and speaker recog-
nition components. The majority of research in the area of spoken language
system evaluation has concentrated on evaluating system components, such as
measuring the word recognition accuracy for a speech recognizer, rather than
overall effectiveness measures for complete systems.
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In the United States, a very efficient evaluation paradigm has been funded
by the Defense Advanced Research Projects Agency (DARPA) which includes
an efficient production line of “hub and spoke”-style experiments involving
the coordination of design, production and verification of data, distribution
through Linguistic Data Consortium (LDC), and design, administration and
analysis of testing by National Institute of Standards and Technology (NIST).
These organizations have strongly advocated the importance of establishing
appropriate “benchmarks”, either through the implementation of standard tests,
or by reference to human performance or to reference algorithms.

In order to give the reader information on how to evaluate the performance
of spoken language systems, this chapter first specifies the types of systems and
their applications, since this is important for understanding and using the eval-
uation methods. The chapter next introduces various performance measures,
followed by discussions of the parameters which affect the performance. The
chapter then goes on to an evaluation framework which includes high-level
metrics such as correction and transaction success.

To obtain a detailed description of various evaluation techniques for spoken
language systems, readers are suggested to refer to the handbook by (Gibbon
et al., 1998).

2 Principles of Speech Recognition
In the state-of-the-art approach, human speech production as well as the

recognition process is modelled through four stages: text generation, speech
production, acoustic processing, and linguistic decoding, as shown in Figure 1
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Figure 1. Structure of the state-of-the-art speech recognition system.
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(Furui, 2001). A speaker is represented as a transducer that transforms into
speech the text of thoughts he/she intends to communicate (information source).
Based on the information transmission theory, the sequence of processes is
compared to an information transmission system, in which a word sequence
W is converted into an acoustic observation sequence X , with a probability
P (W, X), through a noisy transmission channel, which is then decoded into an
estimated sequence W . The goal of recognition is then to decode the word string,
based on the acoustic observation sequence, so that the decoded string has the
maximum a posteriori (MAP) probability (Rabiner and Juang, 1993; Young,
1996), i.e.,

Ŵ = arg max
W

P (W |X) (1.1)

Using Bayes’ rule, Eq. 1.1 can be written as

Ŵ = arg max
W

P (X |W )P (W )/P (X) (1.2)

Since P (X) is independent of W , the MAP decoding rule of Eq. 1.2 is
converted into

Ŵ = arg max
W

P (X |W )P (W ) (1.3)

The first term in Eq. 1.3, P (X|W ), is generally called the acoustic model as
it estimates the probability of a sequence of acoustic observations conditioned
with the word string. The second term, P (W ), is generally called the language
model since it describes the probability associated with a postulated sequence
of words. Such language models can incorporate both syntactic and semantic
constraints of the language and the recognition task. Often, when only syntactic
constraints are used, the language model is called a grammar.

Hidden Markov Models (HMMs) and statistical language models are typi-
cally used as acoustic and language models, respectively. Figure 2 shows the
information flow of the MAP decoding process given the parameterized
acoustic signal X . The likelihood of the acoustic signal P (X|W ) is com-
puted using a composite HMM representing W constructed from simple HMM
phoneme models joined in sequence according to word pronunciations stored
in a dictionary (lexicon).

3 Categories of Speech Recognition Tasks
Speech recognition tasks can be classified into four categories, as shown

in Table 1, according to two criteria: whether it is targeting utterances from
human to human or human to computer, and whether the utterances have a
dialogue or monologue style (Furui, 2003). Table 1 lists typical tasks and data
corpora that are representative for each category.

The Category I targets human-to-human dialogues, which are represented
by the DARPA-sponsored recognition tasks using Switchboard and Call Home
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Figure 2. Overview of statistical speech recognition.

Table 1. Categorization of speech recognition tasks.

Dialogue Monologue

Human to human (Category I) (Category II)
Switchboard, Call Home (Hub5), Broadcast news (Hub 4),

meeting, interview other programmes, lecture,
presentation, voice mail

Human to machine (Category III) (Category IV)
ATIS, Communicator, Dictation

information retrieval, reservation

(Hub 5) corpora. Speech recognition research in this category aiming to pro-
duce minutes of meetings (e.g., Janin et al., 2004) has recently started. Waibel
and Rogina (2003) have been developing a meeting browser that observes and
tracks meetings for later review and summarization. Akita et al. (2003) have
investigated techniques for archiving discussions. In their method, speakers
are automatically indexed in an unsupervised way, and speech recognition is
performed using the results of the indexing. Processing human–human con-
versational speech under unpredictable recording conditions and vocabularies
presents new challenges for spoken language processing.

A relatively new task classified into this category is the Multilingual Access
to Large spoken ArCHives (MALACH) project (Oard, 2004). Its goal is to ad-
vance the state-of-the-art technology for access to large multilingual collections
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of spontaneous conversational speech by exploiting an unmatched collection
assembled by the Survivors of the Shoah Visual History Foundation (VHF).
This collection presents a formidable challenge because of heavily accented,
emotional, and old-age characteristics of the survivor’s spontaneous speech.
Named entity tagging, topic segmentation, and unsupervised topic classifica-
tion are also being investigated.

Tasks belonging to Category II, which targets recognizing human–human
monologues, are represented by transcription of broadcast news (Hub 4), news
programmes, lectures, presentations, and voice mails (e.g., Hirschberg et al.,
2001). Speech recognition research in this category has recently become very
active. Since utterances in Category II are made with the expectation that the
audience can correctly understand what he/she speaks in the one-way communi-
cation, they are relatively easier as a target of speech to recognize than utter-
ances in the Category I. If a high recognition performance can be achieved
for the utterances in Category II, a wide range of applications, such as mak-
ing lecture notes, records of presentations and closed captions, archiving and
retrieving these records, and retrieving voice mails, will be realized.

Most of the practical application systems widely used now are classified into
Category III, recognizing utterances in human–computer dialogues, such as in
airline information services tasks. DARPA-sponsored projects including ATIS
and Communicator have laid the foundations of these systems. Unlike other
categories, the systems in Category III are usually designed and developed after
clearly defining the application/task. The machines that have been designed
so far are, almost without exception, limited to the simple task of converting
a speech signal into a word sequence and then determining from the word
sequence a meaning that is “understandable”. Here, the set of understandable
messages is finite in number, each being associated with a particular action
(e.g., route a call to a proper destination or issue a buy order for a particular
stock). In this limited sense of speech communication, the focus is detection
and recognition rather than inference and generation.

Various researches have made clear that utterances spoken by people talking
to computers, such as those in Categories III and IV, especially when the peo-
ple are conscious of computers, are acoustically, as well as linguistically, very
different from utterances directed towards people, such as those in Categories
I and II. One of the typical tasks belonging to Category IV, which targets the
recognition of monologues performed when people are talking to computers,
is dictation, and various commercial softwares for such purposes have been
developed. Since the utterances in Category IV are made with the expectation
that the utterances will be converted exactly into texts with correct characters,
their spontaneity is much lower than those in Category III. Among the four
categories, spontaneity is considered to be the highest in Category I and the
lowest in Category IV.
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Speech recognition tasks can also be classified according to whether it is
isolated word recognition or continuous speech recognition and whether it
is speaker-dependent or speaker-independent recognition. For isolated words,
the beginning and the end of each word can be detected directly from the ener-
gy of the signal. This makes word boundary detection (segmentation) and
recognition much easier than if the words are connected. However, in real
applications where speech is contaminated by noise, it is not always easy to
detect word boundaries by simply relying on the energy of the signal. Speaker-
independent recognition is more difficult than speaker-dependent recognition,
since the speech model must somehow be general enough to cover all types of
voices and all possible ways of word pronunciations, and yet specific enough
to discriminate between individual words. For a speaker-dependent system,
training or adaptation of speech models is carried out by using utterances of
each speaker. In speaker adaptation, the system is bootstrapped with speaker-
independent models, and then gradually adapts to the specific aspects of the
speaker.

4 Evaluation of Speech Recognition Systems

4.1 Classification of Evaluation Methods
Techniques for evaluating speech recognition methods/systems can be cat-

egorized depending on whether they use subjective or objective methods. The
former directly involve human subjects during measurement, whereas the lat-
ter, typically using prerecorded speech, do not directly involve human subjects.
Objective methods have the advantage of producing reproducible results and
of lending themselves to being automated; thus, they are also more econom-
ical. The problem with objective methods for speech recognition application
evaluation is that it is difficult to create methods with the capacity to cope
easily with the complex processes required for evaluating speech understand-
ing or interaction systems. On the other hand, subjective methods are more
suited to evaluating applications with higher semantic or dialogue content, but
they suffer from the fact that human subjects cannot reliably perform qual-
ity measurement and that they cannot handle fine-grained measurement scales,
either. On average, a human subject uses gradation scales with 5–10 levels and
no more.

In order to compare performances of different speech recognition systems,
it is necessary to normalize the difficulty of the task of each system. For this
purpose, the following task difficulty evaluation methods are used.

4.2 Evaluation of Task Difficulty
In order to reduce the effective number of words to select from, recognition

systems are often equipped with some linguistic knowledge. This may vary
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from very strict syntax rules, in which the words that may follow one an-
other are defined by certain rules, to probabilistic language models, in which
the probability of the output sentence is taken into consideration, based on
statistical knowledge of the language. An objective measure of the freedom of
the language model is perplexity, which measures the average branching factor
of the language model (Ney et al., 1997). The higher the perplexity, the more
words to choose from at each instant, and hence the more difficult the task.

The perplexity is defined by

PP = 2H(L) (1.4)

where H(L) is the entropy of the language model per word, which is
defined by

H (L) = −
∑

w1...wn

1
n

P (w1 . . . wn) log P (w1 . . . wn) (1.5)

Here, P (w1...wn) is the probability of producing a word sequence w1...wn

given the language model L. H(L) indicates the amount of information (bits)
necessary to specify a word produced by the language model. The perplexity
defined above is often called language model perplexity.

Performance of a speech recognition system depends not only on its task but
also on texts of a test set, i.e., a set of utterances to be used for a recognition
test. Therefore, in order to evaluate the difficulty of the test set, the perplexity
is often calculated for the test set, which is called test set perplexity or cor-
pus perplexity. If we assume that the Ergodic feature exists for language, the
entropy per word can be calculated as follows:

H(L) = − 1
Q

log PM (w1 . . . wQ) (1.6)

where PM (w1...wQ) is the probability of producing the test set word sequence
w1...wQ. Therefore, the test set perplexity can be calculated as follows:

PP = 2H(L) = PM (w1 . . . wQ) − 1
Q (1.7)

The above equations show that the test set perplexity is the geometric average
of the reciprocal probability over all Q words. Apart from the constant factor
(−1/Q), the perplexity is identical to the average conditional probability or
likelihood. Therefore, minimizing the perplexity is the same as maximizing the
log-likelihood function. Since the test set for recognition experiments should
be separate from the corpus that is used to construct the language model, the
language model perplexity and the test set perplexity are usually different.

When a formal grammar, such as finite automaton and context-free gram-
mar, is used as the language model, every partially parsed tree up to word wi
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is made, and the number of words that can follow the word wi is calculated.
The test set perplexity is obtained as a geometric mean of the number of pos-
sible following words at each word wi, assuming that every word is selected
with equal probability.

The set of all words the recognition system has been set up to be able to
recognize is called vocabulary VL. The vocabulary size is one of the measures
indicating the task difficulty. The test vocabulary VR is defined as the set of
words appearing in the evaluation test. A word w is called out-of-vocabulary
(OOV) if it is present in the test vocabulary but not in the recognizer’s vocab-
ulary. The OOV rate is defined as the ratio of the number of words in the test
set which are not included in VL to the total number of words in the test set. In
general, the larger the test vocabulary size VR and the larger the OOV rate, the
more difficult the task is.

The perplexity requires a closed vocabulary. If OOV exists, the perplexity
definition may become problematic because it then becomes infinitely large.
Therefore, usually OOV class <UNK> (unknown word class) is defined and
the language model of OOV is calculated by

p′ (< UNK > |h) =
p (< UNK > |h)

V R − VL
(1.8)

where h is the history. Since there are (VR − VL) kinds of OOV words to be
recognized that are not included in the language model vocabulary, the OOV
probability is divided by (VR − VL).

The perplexity changes according to the vocabulary size. In general, the per-
plexity decreases by decreasing the vocabulary size VL, since the probability
allocated to each word becomes larger. However, if the test vocabulary size VR

is fixed and the language model vocabulary size VL is decreased, the linguistic
constraint becomes lower, since the number of OOV in the test set increases.
Therefore, the test set perplexity cannot be used for comparing the difficulty
of the tasks if the OOV rates of the language models are different. In order
to solve this problem, adjusted perplexity (APP) has been proposed (Ueberla,
1994). In APP, by using the language model of the OOV words defined above
and defining VR as union of VL and all the words appearing in the test set, the
perplexity is adjusted by the total number of OOV words, o, and the number of
different OOV words, m, in the test set as follows:

log APP = − 1
Q

log PM (w1 . . . wQ) + o log m (1.9)

Although the perplexity and the OOV rate measure the test source’s complex-
ity from the recognizer’s point of view, they refer to written (e.g., transcribed)
forms of language only and completely disregard acoustic–phonetic modelling.
Difficulty of the recognition task also depends on the length of the sentences
(average number of words) and average number of phonemes of which each
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word consists. Therefore, task difficulty needs to be measured by a combina-
tion of various factors covering both linguistic and acoustic complexity.

4.3 Objective Evaluation of General Recognition
Performance

Isolated word scoring. The error rate of speech recognition is defined
as “the average fraction of items incorrectly recognized”. Here, an item can be
a word, a subword unit (e.g., a phone), or an entire utterance. For an isolated
word recognition system, the error rate is defined as:

E =
NE

N
(1.10)

Here, N is the number of words in the test utterance and NE the number of
words incorrectly recognized. The latter can be subdivided into substitution
error, NS , and deletion (incorrect rejection) error, ND:

NE = NS + ND (1.11)

Sometimes the fraction of correctly recognized words, C = 1 − E, called
correctness, is used:

C =
NC

N
=

N − NS − ND

N
(1.12)

These measures do not include so-called insertions, since it is assumed that the
beginning and the end of each word can be detected directly from the energy
of the signal. However, in real applications where speech is contaminated by
noise, it is not always easy to detect word boundaries, and sometimes noise
signals cause insertion errors. Therefore, in these practical conditions, the same
measure as that used in continuous word scoring, which will be described later,
is also used in the isolated recognition task.

For isolated word recognizers, a more specific measure than the various con-
tributions to the error rate, a confusion matrix, has also been used, in which the
class of substitutions is divided into all possible confusions between words.
The confusion Cij is defined as the probability that word i is recognized as
word j. The value Cii is the fraction of times word i is correctly recognized.
These probabilities are estimated by measuring the number of times the confu-
sion took place:

Cij =
Nij∑
j′ N ij′

(1.13)

where Nij is the number of times word j is recognized on the input word i.
The confusion matrix gives more detailed information than the error rates.
Insertions and deletions can also be included in the matrix by adding a null
word i = 0 (non-vocabulary word). Then, the row C0j contains insertions,
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the column Ci0 the deletions, and C00 = 0. Using this expanded confusion
matrix, the error rate can be calculated from the diagonal elements, i.e.,
E = 1 − ΣiCii = Σi�=jCij . The elements Cij for i �= j are called the off-
diagonal elements.

Continuous word scoring. In continuous speech recognition, the
output words are generally not time-synchronous with the input utterance.
Therefore, the output stream has to be aligned with the reference transcrip-
tions. This means that classifications such as substitutions, deletions, words
correct and insertions can no longer be identified with complete certainty.
The actual measurement of the quantities through alignment is difficult. The
alignment process uses a dynamic programming algorithm to minimize the
misalignment of two strings of words (symbols): the reference sentence and the
recognized sentence. The alignment depends on the relative weights of the con-
tributions of the three types of errors: substitutions, insertions, and deletions.
Hunt (1990) discussed the theory of word–symbol alignment and analysed
several experiments on alignment. Usually, the three types of errors have equal
weights. Depending on the application, one can assign different weights to the
various kinds of errors.

Thus, the total number of errors is the summation of three types of errors:

NE = NS + NI + ND (1.14)

where NS , NI , and ND are the numbers of substitutions, insertions, and
deletions, respectively. The error rate is therefore

E =
NE

N
=

NS + NI + ND

N
(1.15)

Note that this error measure can become larger than 1 in cases of extremely
bad recognition. Often, one defines the accuracy of a system as

A = 1 − E =
N − NS − N I − ND

N
(1.16)

Note that this is not just the fraction C of words correctly recognized, because
the latter does not include insertions.

NIST has developed freely available software for analysis of continuous
speech recognition systems. It basically consists of two parts: an alignment
program and a statistics package. The alignment program generates a file with
all alignment information, which can be printed by another utility in various
levels of detail. The statistics program can pairwise compare the results of
different recognition systems and decide whether or not the difference in per-
formance is significant.
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Other scoring. The objective scores other than accuracy include per-
centage of successful task completions, the time taken to complete the task, or
the number of interactions necessary per task.

Speaker variability. The variety of speech recognition performances
is highly dependent on the speaker. Apparently, speakers can be classified as
“goats” (low recognition scores) and “sheep” (high recognition scores) (Furui,
2001). Since knowledge of this classification is usually not available a priori,
it is necessary to use many speakers for evaluation. A sufficient number of
speakers allows estimation of the variance in score due to speaker variability,
and significance can be tested using Student’s t-test.

4.4 Objective Evaluation of Spoken Dialogue
Systems

Performance measures that can be used for evaluating spoken dialogue
systems are:

1. Recognition accuracy.

2. OOV rejection: a good system correctly rejects OOV words and asks the
users to rephrase, instead of wrongly recognizing them as vocabulary
words. This is actually a very difficult issue, since there is no perfect
confidence measure for the recognition results.

3. Error recovery: both the system and the user are sources of errors.
A good system allows the user to undo actions triggered by previous
spoken commands.

4. Response time: important for good usability is the time it takes to res-
pond to a spoken command, i.e., system reaction time. This is defined
as the time from the end of the command utterance to the start of the
action. Both the average time and the distribution of the response time
are important parameters.

5. Situation awareness: users who give commands to a system have certain
expectations about what they can say. The active vocabulary usually de-
pends on the internal state of the system but if users are not aware of that
state, it is said that they have lost their situational awareness. This can be
expressed as the number of times a test subject uttered a command in a
context where it was not allowed. A subjective impression by the tester
or the subject can also be used as a measure. Suitable questions for the
users could be:

Is the list of possible commands always clear?
Are special skills required?
Is on-line help useful?
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To learn details of the issues for evaluating telephone-based spoken dialogue
systems, readers are recommended to refer to the textbook by Möller (2005).

4.5 Objective Evaluation of Dictation Systems
Various commercial systems (software) for dictation using automatic speech

recognition have been developed. The performance measures that can be used
for evaluating these systems are:

1. Recognition accuracy

2. Dictation speed: number of words per minute that can be received

3. Error correction strategies: a good measure for the ease of error correc-
tion is the average time spent per correction

Dictation systems can be compared to other systems and also to human per-
formance. Error rate and dictation speed are the most obvious performance
measures for the human benchmark.

4.6 Subjective Evaluation Methods
In subjective evaluation, the test is designed in such a way that human sub-

jects interact with the system. Subjective measures include level of intelligi-
bility, general impression, annoyance, user-friendliness, intuitiveness, level of
difficulty, and the subjective impression of system response time. The ultimate
overall measure is: “Can the task be completed?” This is a measure that in-
cludes recognition, error recovery, situational awareness, and feedback. In this
sense, the time required to complete the entire test might also be indicative of
the quality of the system. General impressions of test subjects can be indicative
of how the system performs.

5 Principles of Speaker Recognition
A technology closely related to speech recognition is speaker recognition,

or the automatic recognition of a speaker (talker) through measurements of
individual characteristics existing in the speaker’s voice signal (Furui, 1997,
2001; Rosenberg and Soong, 1991). The actual realization of speaker recogni-
tion systems makes use of voice as the key tool for verifying the identity of a
speaker for application to an extensive array of customer-demand services. In
the near future, these services will include banking transactions and shopping
using the telephone network as well as the Internet, voicemail, information re-
trieval services including personal information accessing, reservation services,
remote access of computers, and security control for protecting confidential
areas of concern.
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Figure 3. Principal structure of speaker recognition systems.

The common structure of speaker recognition systems is shown in Figure 3.
Feature parameters extracted from a speech wave are compared with the stored
templates or models for each registered speaker. The recognition decision is
made according to the distance (or similarity) values. For speaker verifica-
tion, input utterances with distances to the reference template/model smaller
than the threshold are accepted as being utterances of the registered speaker
(customer), while input utterances with distances larger than the threshold are
rejected as being those of a different speaker (impostor). With speaker identifi-
cation, the registered speaker whose reference template/model is nearest to the
input utterance among all of the registered speakers is selected as the speaker
of the input utterance.

6 Categories of Speaker Recognition Tasks
Speaker recognition can be principally divided into speaker verification and

speaker identification. Speaker verification is the process of accepting or
rejecting the identity claim of a speaker by comparing a set of measurements
of the speaker’s utterances with a reference set of measurements of the utter-
ance of the person whose identity is being claimed. Speaker identification is
the process of determining from which of the registered speakers a given utter-
ance comes. The speaker identification process is similar to the spoken word
recognition process in that both determine which reference model is closest to
the input speech.

Speaker verification is applicable to various kinds of services using voice
as the key input to confirming the identity claim of a speaker. Speaker iden-
tification is used in criminal investigations, for example, to determine which
of the suspects produced a voice recorded at the scene of the crime. Since the
possibility always exists that the actual criminal is not one of the suspects,
however, the identification decision must be made through a combined process
of speaker verification and speaker identification.
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Speaker recognition methods can also be divided into text-dependent
and text-independent methods. The former require the speaker to issue a pre-
determined utterance whereas the latter do not rely on a specific text being
spoken. In general, because of the higher acoustic–phonetic variability of text-
independent speech, more training material is necessary to reliably characterize
(model) a speaker than with text-dependent methods.

Although several text-dependent methods use features of special phonemes,
such as nasals, most text-dependent systems allow words (keywords, names, ID
numbers, etc.) or sentences to be arbitrarily selected for each speaker. In the lat-
ter case, the differences in words or sentences between the speakers improves
the accuracy of speaker recognition. When evaluating experimental systems,
however, common keywords or sentences are usually used for every speaker.

Although keywords can be fixed for each speaker in many applications of
speaker verification, utterances of the same words cannot always be compared
in criminal investigations. In such cases, a text-independent method is essen-
tial. Difficulty in automatic speaker recognition varies depending on whether or
not the speakers intend to have their identities verified. During actual speaker
verification, speakers are usually expected to cooperate without intentionally
changing their speaking rate or manner. It is well known, however, and
expected that speakers are most often uncooperative in criminal investigations,
consequently compounding the difficulty in correctly recognizing their voices.

Both text-dependent and text-independent methods have a serious weak-
ness. These security systems can be circumvented, because someone can play
back the recorded voice of a registered speaker uttering keywords or sentences
into the microphone and be accepted as the registered speaker. Another prob-
lem is that people often do not like text-dependent systems because they do not
like to utter their identification number, such as their social security number,
within hearing distance of other people. To cope with these problems, some
methods use a small set of words, such as digits as keywords, and each user
is prompted to utter a given sequence of keywords which is randomly cho-
sen every time the system is used (Rosenberg and Soong, 1987; Higgins et al.,
1991). Yet even this method is not reliable enough, since it can be circumvented
with advanced electronic recording equipment that can reproduce keywords
in a requested order. Therefore, a text-prompted speaker recognition method
has been proposed in which password sentences are completely changed every
time (Matsui and Furui, 1993). The system accepts the input utterance only
when it determines that the registered speaker uttered the prompted sentence.
Because the vocabulary is unlimited, prospective impostors cannot know in
advance the sentence they will be prompted to say. This method not only accu-
rately recognizes speakers, but can also reject an utterance whose text differs
from the prompted text, even if it is uttered by a registered speaker. Thus, the
playback of a recorded voice can be correctly rejected.



Speech and Speaker Recognition Evaluation 15

7 Normalization and Adaptation Techniques
How can we normalize intraspeaker variation of likelihood (similarity) val-

ues in speaker verification? The most significant factor affecting automatic
speaker recognition performance is variation in signal characteristics from trial
to trial (intersession variability or variability over time). Variations arise from
the speakers themselves, from differences in recording and transmission con-
ditions, and from noise. Speakers cannot repeat an utterance in precisely the
same way from trial to trial. It is well known that samples of the same utter-
ance recorded in one session are much more correlated than tokens recorded in
separate sessions. There are also long-term trends in voices with variation over
several months and years (Furui et al., 1972; Furui, 1974).

It is important for speaker recognition systems to accommodate these vari-
ations. Adaptation of the reference model as well as the verification threshold
for each speaker is indispensable to maintain a high recognition accuracy for
a long period. In order to compensate for the variations, two types of nor-
malization techniques have been tried: one in the parameter domain, and the
other in the distance/similarity domain. The latter technique uses the likelihood
ratio or a posteriori probability. To adapt HMMs for noisy conditions, various
techniques, including the HMM composition (or parallel model combination:
PMC) method (Gales and Young, 1993), have proved successful.

7.1 Parameter-Domain Normalization
As one typical normalization technique in the parameter domain, spectral

equalization, the “blind equalization” method, has been confirmed to be effec-
tive in reducing linear channel effects and long-term spectral variation (Atal,
1974; Furui, 1981). This method is especially effective for text-dependent spea-
ker recognition applications using sufficiently long utterances. In this method,
cepstral coefficients are averaged over the duration of an entire utterance, and
the averaged values are subtracted from the cepstral coefficients of each frame
(cepstral mean subtraction: CMS). This method can compensate fairly well
for additive variation in the log spectral domain. However, it unavoidably re-
moves some text-dependent and speaker-specific features, so it is inappropri-
ate for short utterances in speaker recognition applications. Time derivatives of
cepstral coefficients (delta-cepstral coefficients) have been shown to be resis-
tant to linear channel mismatches between training and testing (Furui, 1981;
Soong and Rosenberg, 1988).

7.2 Likelihood Normalization
Higgins et al. (1991) proposed a normalization method for distance (simi-

larity or likelihood) values that uses a likelihood ratio. The likelihood ratio is
the ratio of the conditional probability of the observed measurements of the
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utterance, given the claimed identity is correct, to the conditional probability
of the observed measurements, given the speaker is an impostor (normaliza-
tion term). Generally, a positive log-likelihood ratio indicates a valid claim,
whereas a negative value indicates an impostor. The likelihood ratio normal-
ization approximates optimal scoring in Bayes’ sense.

This normalization method is, however, unrealistic because conditional
probabilities must be calculated for all the reference speakers, which requires
large computational cost. Therefore, a set of speakers, “cohort speakers”, who
are representative of the population distribution near the claimed speaker, was
chosen for calculating the normalization term (Rosenberg et al., 1992). An-
other approximation of using all the reference speakers is to use speakers who
are typical of the general population. Reynolds (1994) reported that a randomly
selected, gender-balanced background speaker population outperformed a pop-
ulation near the claimed speaker.

Matsui and Furui (1993, 1994) proposed a normalization method based on
a posteriori probability. The difference between the normalization method
based on the likelihood ratio and that based on a posteriori probability is
whether or not the claimed speaker is included in the impostor speaker set
for normalization. The cohort speaker set in the likelihood-ratio-based method
does not include the claimed speaker, whereas the normalization term for the
a posteriori probability-based method is calculated by using a set of speakers
including the claimed speaker. Experimental results indicate that both nor-
malization methods almost equally improve speaker separability and reduce
the need for speaker-dependent or text-dependent thresholding, compared with
scoring using only the model of the claimed speaker.

Carey and Paris (1992) proposed a method in which the normalization term
is approximated by the likelihood for a “world model” representing the popula-
tion in general. This method has the advantage that the computational cost for
calculating the normalization term is much smaller than in the original method
since it does not need to sum the likelihood values for cohort speakers. Matsui
and Furui (1994) proposed a method based on tied-mixture HMMs in which the
world model is made as a pooled mixture model representing the parameter dis-
tribution for all the registered speakers. The use of a single background model
for calculating the normalization term has become the predominate approach
used in speaker verification systems.

Since these normalization methods neglect absolute deviation between the
claimed speaker’s model and the input speech, they cannot differentiate highly
dissimilar speakers. Higgins et al. (1991) reported that a multilayer network
decision algorithm can make effective use of the relative and absolute scores
obtained from the matching algorithm.

A family of normalization techniques has recently been proposed, in which
the scores are normalized by subtracting the mean and then dividing by
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standard deviation, both terms having been estimated from the (pseudo) im-
postor score distribution. Different possibilities are available for computing
the impostor score distribution: Znorm, Hnorm, Tnorm, Htnorm, Cnorm, and
Dnorm (Bimbot et al., 2004). The state-of-the-art text-independent speaker
verification techniques combine one or several parameterization level normali-
zations (CMS, feature variance normalization, feature warping, etc.) with a
world model normalization and one or several score normalizations.

8 Evaluation of Speaker Recognition Systems

8.1 Evaluation of Speaker Verification Systems
The receiver operating characteristic (ROC) curve adopted from psycho-

physics is used for evaluating speaker verification systems. In speaker verifi-
cation, two conditions are considered for the input utterances: s, the condition
that the utterance belongs to the customer, and n, the opposite condition. Two
decision conditions also exist: S, the condition that the utterance is accepted as
being that of the customer, and N , the condition that the utterance is rejected.

These conditions combine to make up the four conditional probabilities as
shown in Table 2. Specifically, P (S|s) is the probability of correct accep-
tance; P (S|n) the probability of false acceptance (FA), namely, the proba-
bilities of accepting impostors; P (N |s) the probability of false rejection (FR),
or the probability of mistakenly rejecting the real customer; and P (N |n) the
probability of correct rejection.

Since the relationships

P (S |s) + P (N |s) = 1 (1.17)

and
P (S |n) + P (N |n) = 1 (1.18)

exist for the four probabilities, speaker verification systems can be evalu-
ated using the two probabilities P (S|s) and P (S|n). If these two values are
assigned to the vertical and horizontal axes respectively, and if the decision
criterion (threshold) of accepting the speech as being that of the customer is
varied, ROC curves as indicated in Figure 4 are obtained. This figure exem-
plifies the curves for three systems: A, B, and C. Clearly, the performance

Table 2. Four conditional probabilities in speaker verification.

Decision Input utterance condition
condition s(customer) n(impostor)

S(accept) P (S|s) P (S|n)
N(reject) P (N |s) P (N |n)



18 EVALUATION OF TEXT AND SPEECH SYSTEMS

b

a

1

10
False acceptance

A

B

C
C

or
re

ct
 a

cc
ep

ta
nc

e

EER
Figure 4. Receiver operating characteristic (ROC) curves; performance examples of three
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Figure 5. Relationship between error rate and decision criterion (threshold) in speaker
verification.

of curve B is consistently superior to that of curve A; and C corresponds
to the limiting case of purely chance performance. On the other hand, the
relationship between the decision criterion and the two kinds of errors is
presented in Figure 5. A “tight” decision criterion makes it difficult for impos-
tors to be falsely accepted by the system. However, it increases the possibility
of rejecting customers. Conversely, a “loose” criterion enables customers to
be consistently accepted, while also falsely accepting impostors. Position a in
Figures 4 and 5 corresponds to the case in which a strict decision criterion is
employed, and position b corresponds to that wherein a lax criterion is used. To
set the threshold at the desired level of FR and FA, it is necessary to know the
distribution of customer and impostor scores as baseline information. The de-
cision criterion in practical applications should be determined according to the
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consequences or risk of decision errors. This criterion can be determined based
on a priori probabilities of a match, P (s), on the cost values of the various de-
cision results, and on the slope of the ROC curve. If the FR rate is specified,
the corresponding FA rate is obtained as the intersection of the ROC curve
with the vertical line indicating the FR rate. In experimental tests, equal error
rate (EER), is a commonly accepted summary of system performance. It cor-
responds to a threshold at which the FR rate is equal to the FA rate as indicated
by c in Figure 5. The criterion is usually set a posteriori for each individual
speaker or for a set of test speakers. The EER point corresponds to the
intersection of the ROC curve with the straight line of 45 degrees, indicated
in Figure 4. Although the EER performance measure rarely corresponds to a
realistic operating point, it is quite a popular measure of the ability of a sys-
tem to separate impostors from customers. Another popular measure is the half
total error rate (HTER), which is the average of the two error rates FR and FA.
It can also be seen as the normalized cost function assuming equal costs for
both errors.

It has recently become standard to plot the error curve on a normal deviate
scale (Martin et al., 1997), in which case the curve is known as the detection
error trade-offs (DETs) curve. With the normal deviate scale, a speaker veri-
fication system whose customer and impostor scores are normally distributed,
regardless of variance, will result in a linear scale with a slope equal to −1.
The better the system is, the closer to the origin the curve will be. In practice,
the score distributions are not exactly Gaussian but are quite close to it. The
DET curve representation is therefore more easily readable and allows for a
comparison of the system’s performances over a large range of operating con-
ditions. Figure 6 shows a typical example of DET curves. EER corresponds to
the intersection of the DET curve with the first bisector curve.

In NIST speaker recognition evaluations, a cost function defined as a
weighted sum of the two types of errors has been chosen as the basic
performance measure (Przybocki and Martin, 2002). This cost, referred to as
the CDET cost, is defined as:

CDET = (CFR × PFR × PC) + (CFA × PFA × (1 − PC)) (1.19)

where PFR and PFA are FR and FA rates, respectively. The required parame-
ters in this function are the cost of FR (CFR), the cost of FA (CFA), and the a
priori probability of a customer (PC).

8.2 Relationship between Error Rate
and Number of Speakers

Let us assume that ZN represents a population of N registered speak-
ers, X = (x1, x2, ..., xn) is an n-dimensional feature vector representing the
speech sample, and Pi(X) is the probability density function of X for speaker
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Figure 6. Examples of the DET curve.

i ( i ∈ ZN ). The chance probability density function of X within population
ZN can then be expressed as

PZ (X) = E
i ∈ ZN

[ Pi (X) ]

(1.20)

=
∑

i

P i (X) Pr [i] , i ∈ ZN

where Pr[i] is the a priori chance probability of speaker i and E indicates
expectation (Doddington, 1974).

In the case of speaker verification, the region of X which should be accepted
as the voice of customer i is

RV i = {X |Pi (X) > CiPZ (X) } (1.21)

where Ci is chosen to achieve the desired balance between FA and FR errors.
With ZN constructed using randomly selected speakers, and with the a priori
probability independent of the speaker, Pr[i] = 1/N , PZ(X) will approach
a limiting density function independent of ZN as N becomes large. Thus, FR
and FA ratios are relatively unaffected by the size of the population, N , when
it is large. From a practical perspective, PZ(X) is assumed to be constant since
it is generally difficult to estimate this value precisely, and

RV i = {X |Pi (X) > ki } (1.22)

is simply used as the acceptance region.
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With speaker identification, the region of X , which should be judged as the
voice of speaker i, is

RIi = {X |Pi (X) > Pj (X) , ∀j �= i } (1.23)

The probability of error for speaker i then becomes

PEi = 1 −
N∏

k = 1
k �= i

Pr (Pi (X) > P k (X)) (1.24)

With ZN constructed by randomly selected speakers, the equations

E
ZN

[PEi] = 1 − E
ZN

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

N∏

k = 1
k �= i

Pr (Pi (X) > P k (X))

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

= 1 − E
i

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

N∏

k = 1
k �= i

E [Pr (Pi (X) > Pk (X))]

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

= −E
i

{
PN−1

Ai

}

(1.25)

can be obtained, where PAi is the expected probability of not confusing speaker
i with another speaker. Thus, the expected probability of correctly identifying
a speaker decreases exponentially with the size of the population.

This is a consequence of the fact that the parameter space is bounded. There-
fore, when the population of speakers increases, the probability that the distri-
butions of two or more speakers are very close increases. Consequently, the
effectiveness of speaker identification systems must be evaluated according to
their targeted population size.

8.3 Long-Term Variability of Speech
As described in the previous section, even if the same words or sentences

are spoken by the same speaker, speech characteristics are always varying, and
there are also long-term trends. Samples recorded together in one session are
much more highly correlated than those recorded in separate sessions. There-
fore, the number of training sessions for making speaker models or templates
and the time interval between those sessions, as well as training and testing
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sessions, are important factors. Several training sessions over a long period of
time help to cope with long-term variability of speech. It is crucial to leave a
gap of at least several weeks between the last training session and the testing
session to obtain meaningful results in evaluating speaker recognition systems.

8.4 Individual Variability
A desirable feature for a practical speaker recognition system is a reason-

ably uniform performance across a population of speakers. Unfortunately, it
is typical to observe in speaker recognition experiments a substantial discrep-
ancy between the best performing individuals, the “sheep”, and the worst, the
“goats”. This problem has been widely observed, but there are virtually no
studies focusing on the cause of this phenomenon. Speakers with no observ-
able speech pathologies, and for whom apparently good reference models have
been obtained, are often observed to be “goats”. It is possible that such speak-
ers exhibit large amounts of trial-to-trial variability, beyond the ability of the
system to provide adequate compensation.

This means that large test sets are required to be able to measure error rates
accurately. For clear methodological reasons, it is crucial that none of the test
speakers, whether customers or impostors, be in the training and development
sets. This excludes, in particular, using the same speakers for the background
model and for the tests. It may be possible to use speakers referenced in the test
database as impostors. However, this should be avoided whenever discrimina-
tive training techniques are used or if cross-speaker normalization is performed
since, in this case, using referenced speakers as impostors would introduce a
bias in the results.

9 Factors Affecting the Performance
and Evaluation Paradigm Design for Speech
and Speaker Recognition Systems

There are several factors affecting the performance of speech recognition
and speaker recognition systems. First, several factors have an impact on the
quality of the speech material recorded. Among others, these factors are the
environmental conditions at the time of the recording (background noise etc.),
the type of microphone used, and the transmission channel bandwidth and
compression if any (high bandwidth speech, landline and cell phone speech,
etc.). Second, factors concerning the speakers themselves (see Sections 4.3
and 8.4) and the amount of training data available affect performance. The
speaker factors include physical and emotional states (under stress or ill),
speaker cooperativeness, and familiarity with the system. Finally, the system
performance measure depends strongly on the test set complexity. Ideally,
all these factors should be taken into account when designing evaluation
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paradigms or when comparing the performance of two systems on different
databases. The excellent performance obtained in artificially good conditions
(quiet environment, high-quality microphone, and consecutive recordings of
the training and test material) rapidly degrades in real-life applications. There-
fore, it is important to make an inventory of the acoustic environment in which
the system is typically used. It is also important to know that for high noise
conditions, such as higher than 60 dB(A), the Lombard effect (Furui, 2001)
may change the level and voice of a speaker. In comparative testing, only a
common subset of capabilities should be compared quantitatively.

10 System-Level Evaluation of Speech
and Speaker Recognition

There are two complementary approaches to evaluate speech and speaker
recognition systems: evaluation of the system components, and system-level
evaluation. Evaluation of the system components can be performed using the
methods described in the previous sections. Depending on the goal of evalu-
ation, there are three broad categories of system-level evaluation (Cole et al.,
1995):

1. Adequacy evaluations: determining the fitness of a system for a purpose:
does it meet the requirements, and if so, how well and at what cost? The
requirements are mainly determined by user needs.

2. Diagnostic evaluations: obtaining a profile of system performance with
respect to possible utilization of a system.

3. Performance evaluations: measuring system performance in specific
areas. There are three basic components of a performance evaluation that
need to be defined prior to evaluating a system.

Criterion: characteristics or quality to be evaluated (e.g., speed,
error rate, accuracy, learning)

Measure: specific system property for the chosen criterion (e.g.,
word accuracy)

Method: how to determine the appropriate value for a given
measure (e.g., counting the number of substitution, insertion, and
deletion errors after alignment)

For evaluation of multimodal human–computer dialogue systems, readers
are recommended to refer to Dybkjær et al. (2005) and Whittaker and Walker
(2005). Readers are also recommended to refer to textbooks on general des-
igning and assessment of human–computer interaction (e.g., Dix et al., 1998).
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11 Conclusion
Technology development and evaluation are two sides of the same coin;

without having a good measure of progress, we cannot make useful progress.
However, since the human–computer interface using speech is very complex,
it is not easy to establish evaluation strategies. Although various investigations
on evaluation methods have been conducted and various measures have been
proposed, a truly comprehensive tool has not yet been developed. Since the
target of speech recognition is now shifting from clean read speech to natural
spontaneous speech contaminated by noise and distortions, evaluation of sys-
tem performance is becoming increasingly difficult. The target is also shift-
ing from recognition to understanding. Evaluation of speech understanding
systems is far more difficult than that of speech recognition systems. Spe-
ech summarization is one interesting research domain that has recently
emerged (Furui et al., 2004), but it is very difficult to find a way to objec-
tively measure the quality of automatic summarization results (Hirohata et al.,
2005). Thus, continued efforts are required to advance evaluation strategies for
speech and speaker recognition systems.
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