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Abstract

The goal of feature selection is to find the optimal subset consisting of m features chosen from the total n features. One critical problem
for many feature selection methods is that an exhaustive search strategy has to be applied to seek the best subset among all the possible

( n
m

)
feature subsets, which usually results in a considerably high computational complexity. The alternative suboptimal feature selection methods
provide more practical solutions in terms of computational complexity but they cannot promise that the finally selected feature subset is globally
optimal. We propose a new feature selection algorithm based on a distance discriminant (FSDD), which not only solves the problem of the high
computational costs but also overcomes the drawbacks of the suboptimal methods. The proposed method is able to find the optimal feature
subset without exhaustive search or Branch and Bound algorithm. The most difficult problem for optimal feature selection, the search problem,
is converted into a feature ranking problem following rigorous theoretical proof such that the computational complexity can be greatly reduced.
The proposed method is invariant to the linear transformation of data when a diagonal transformation matrix is applied. FSDD was compared
with ReliefF and mrmrMID based on mutual information on 8 data sets. The experiment results show that FSDD outperforms the other two
methods and is highly efficient.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

For pattern recognition applications, feature selection is es-
sential in that it is able to improve the accuracy and efficiency
of classification [1–5]. The data can be either labeled or not,
leading to the development of supervised and unsupervised fea-
ture selection methods. Supervised feature selection determines
relevant features by their relations with the corresponding class
labels and discards irrelevant and redundant features. Unsuper-
vised feature selection explores data variance and separability
to choose relevant features [6–8]. For supervised feature se-
lection, the existing methods fall into two categories: filters
and wrappers [9,10]. Wrappers employ a classifier to evaluate
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feature subsets, based on which they select features, such that
the feature selection results are classifier-specific. Filters select
the features maximizing some predefined performance indices
and are independent of classifiers since no classifier is involved
in feature selection. Filters are usually less computationally
complex than wrappers. Wrappers often lead to better results in
comparison with filters because feature selection is optimized
for the particular learning algorithm used. However, wrappers
are intractable to large data sets and must be trained again when
switching from a classifier to another. In Ref. [11], an approach
combining wrappers with filters is proposed to make use of the
advantages of both methods.

Provided N samples Y1, Y2, . . . , YN belong to c classes and
each sample has n features, i.e. Yi =[y1

i , y2
i , . . . , yn

i ], 1� i�N ,
the feature selection problem can be formulated as: choose an
optimal or suboptimal subset X consisting of m features of the
total n features. Here, the goal of feature selection is to lead
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to an as little as possible performance degradation in terms of
classification or even a performance improvement for the sub-
sequent classification. Let function J (X) represent the perfor-
mance index to evaluate any given feature subset X, based on
which the feature selection decision is made. Let us assume
that a higher value of J (X) indicates a better performance of
the feature subset X. If there are total n features, the goal is
to select the optimal subset of m (m�n) features maximizing
J (X). One straightforward method is to exhaustively search
all
(

n
m

)
combinations of feature subsets. Because the compu-

tational complexity increases rapidly with n, the high compu-
tational cost makes it impractical to select features in such a
manner. So far, the only feature selection method that promises
optimal feature subset without exhaustive search is the Branch
and Bound algorithm (BB) [12]. However, it is based on such
an assumption that the evaluation function is monotonic. Un-
fortunately, most commonly used evaluation functions do not
satisfy this monotonic requirement. Sometimes, BB algorithm
is also time-expensive. So, a number of suboptimal feature se-
lection methods [13–16] have been proposed, which provide a
tradeoff between the optimization and the computational effi-
ciency. Among those suboptimal feature selection algorithms,
one special group is the feature ranking methods, such as Re-
liefF [17]. Such methods rank each feature according to some
criteria and choose the m individually best features. In general,
feature ranking is much faster than feature selection.The draw-
back of such methods is: The m individually best features are
not certainly the best combination of m features as a whole.

In this study, we propose a novel feature selection method
based on a distance discriminant (FSDD), which belongs to the
filter category. The proposed algorithm is an optimal method.
It promises the optimal feature selection result like exhaustive
search methods. Following a rigorous theoretical proof, in the
meantime, it makes use of a feature ranking scheme to approach
the globally optimal solution such that the computationally ex-
pensive problem of

(
n
m

)
combination can be solved and the

computational complexity is far less than that of the exhaustive
search methods. The key to convert the feature selection into
feature ranking is: a new distance discriminant is proposed in
this study, which leads to the theoretical basis to guarantee such
an approach. It is argued that since feature selection is done
in a off-line manner, the execution time of an algorithm is not
as critical as the performance of it. It is true for moderate size
samples and features. However, some new applications such as
gene expression analysis [18] and document classification in-
volve thousands of features. In such cases, the time cost is cru-
cial. Many methods that work well in low-dimensional spaces
cannot be applied to high-dimensional cases due to the com-
putational problem. The computational complexity of FSDD is
very low and thus fits well into the high-dimensional problems
or on-line feature selection.

This paper is organized as follows: Section 2 presents the
theoretical analysis and property of FSDD. In Section 3, we
compare the proposed algorithm with ReliefF [17] and mrmr-
MID [19], both of which are filter methods, and evaluate the
3 methods on 8 data sets from UCI [20] and Statlib [21] with
4 classifiers: KNN, NB (Naive Bayes ), DT (Decision Tree),

and SVM (Support Vector Machine). The experimental results
show that the proposed method outperforms the other two and
confirm that FSDD is efficient and effective. Sections 4 and 5
are discussions and conclusions, respectively.

2. Feature selection based on distance discriminant

2.1. The proposed distance discriminant

The basis of the proposed algorithm is to find out the features
that promise good class separability among different classes
as well as make the samples in the same classes as close as
possible. A criterion used for selecting the good features is

db − �dw, (1)

where db is the distance between different classes, dw corre-
sponds to the distance within classes, and � (in the experiments,
we set � = 2) is used to control the impact of dw. As is proved
in the following, Eq. (1) can be transformed into the form

db − �dw =
m∑

k=1

1

�2
k

[
�′′2

k − �
c∑

i=1

�i�
′2
k (i)

]
, (2)

where m is the number of selected features, c the number of
classes, and �i the prior probability of the ith class.

�2
k = 1

N

N∑
i=1

(yk
i − yk)

2, yk = 1

N

N∑
i=1

yk
i

are the standard deviation and the mean of all samples in the
kth feature, respectively.

�′2
k (i) = 1

ni − 1

ni∑
j=1

(yk
j − yk

j )2, yk
j = 1

ni

ni∑
j=1

yk
j

are the standard deviation and the mean of the samples in the
ith class (having ni samples) in the kth feature, respectively.

�′′2
k =

c∑
i=1

�i (m
k
i − mk)

2 = �1 − �2
2,

�1 =
c∑

i=1

�i (m
k
i )

2, �2 =
c∑

i=1

�im
k
i , mk =

c∑
i=1

�im
k
i .

Here, �′′2
k is the weighted standard deviation of the class center

mi in the kth feature; mk is the center of all samples in the kth
feature; mk

i is the center of the samples of the ith class in the
kth feature; �1, �2 are the weighted mean of the squared class
center m2

i and the class center mi in the kth feature, respectively.
Before starting to prove Eq. (2), some definitions [22] are

recalled as follows:

Definition 1. For two arbitrary points Yi = [y1
i , . . . , yn

i ] and
Yj = [y1

j , . . . , yn
j ], the distance between Yi and Yj is

d(Yi, Yj ) = ‖Yi − Yj‖ =
n∑

k=1

(yk
i − yk

j )2

�2
k

.
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Definition 2. Point-to-set distance

d(Y, C) = 1

m

m∑
i=1

d(Y, Yi), Yi ∈ C.

Definition 3. Intra-set distance of set C (m points)

D(C) = 2

m(m − 1)

m∑
j=1

m∑
i>j

d(Yi, Yj ), Yi, Yj ∈ C.

Lemma 1. The intra-set distance of class C is equal to

D(C) = 2
n∑

k=1

�
′2
k

�2
k

. (3)

Proof.

D(C) = 1

m

m∑
j=1

1

m − 1

m∑
i=1

d(Yj , Yi)

= 1

m(m − 1)

m∑
j=1

m∑
i=1

n∑
k=1

(yk
i − yk

j )2

�2
k

= m

m − 1

n∑
k=1

1

m2�2
k

m∑
j=1

m∑
i=1

[(yk
i )2 − 2yk

i yk
j + (yk

j )2]

= m

m − 1

n∑
k=1

1

�2
k

⎡
⎣ 1

m

m∑
i=1

(yk
i )2

− 2

m

m∑
j=1

yk
j

1

m

m∑
i

yk
i + 1

m

m∑
j=1

(yk
j )2

⎤
⎦ ,

yk
i = 1

m

m∑
i=1

yk
i , (yk

i )2 = 1

m

m∑
i=1

(yk
i )2 and

yk
i = yk

j , (yk
i )2 = (yk

j )2,

D(C) = 2m

m − 1

n∑
k=1

1

�2
k

[(yk
i )2 − (yk

i )2],

�′2
k = 1

m − 1

m∑
i=1

(yk
i − yk

i )2

= 1

m − 1

m∑
i=1

[(yk
i )2 − 2yk

i yk
i + (yk

i )2]

= m

m − 1
[(yk

i )2 − 2(yk
i )2 + (yk

i )2]

= m

m − 1
[(yk

i )2 − (yk
i )2],

so,

D(C) = 2
n∑

k=1

�′2
k

�2
k

. �

Now, the within-class distance is easy to obtain, that is,

dw =
c∑

i=1

�iD(Ci) = 2
n∑

k=1

c∑
i=1

�i

�′2
k (i)

�2
k

. (4)

The distance between each pair of classes is

db = 1

2

c∑
i=1

�i

c∑
j=1

�j d(mi, mj ) =
n∑

k=1

1

�2
k

(�1−�2
2)=

n∑
k=1

�′′2
k

�2
k

,

mi = 1

ni

ni∑
i=1

Yi, Yi ∈ Ci , (5)

where mi is the center of the ith class.

Proof.

db = 1

2

c∑
i=1

�i

c∑
j=1

�j

n∑
k=1

(mk
i − mk

j )
2

�2
k

= 1

2

n∑
k=1

1

�2
k

⎡
⎣ c∑

i=1

�i (m
k
i )

2
c∑

j=1

�j − 2
c∑

i=1

�im
k
i

×
c∑

j=1

�jm
k
j +

c∑
i=1

�i

c∑
j=1

�j (m
k
j )

2

⎤
⎦ ,

c∑
i=1

�i = 1,

c∑
i=1

�im
k
i =

c∑
j=1

�jm
k
j ,

c∑
i=1

�i (m
k
i )

2 =
c∑

i=1

�j (m
k
j )

2,

db =
n∑

k=1

1

�2
k

⎡
⎣ c∑

i=1

�i (m
k
i )

2 −
(

c∑
i=1

�im
k
i

)2
⎤
⎦

=
n∑

k=1

1

�2
k

(�1 − �2
2),

�1 =
c∑

i=1

�i (m
k
i )

2, �2 =
c∑

i=1

�im
k
i = mk ,

�′′2
k =

c∑
i=1

�i (m
k
i − mk)

2

=
c∑

i=1

�i (m
k
i )

2 − 2mk

c∑
i=1

�im
k
i + m2

k

= �1 − �2
2

so,

db =
n∑

k=1

�′′2
k

�2
k

.

In view of Eqs. (4) and (5), Eq. (2) is proved. �

The proposed criterion in Eq. (1) is similar to that of Ref.
[23] applied to feature extraction. In fact, if the Euclidean
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distance is employed, db should be the widely used class sep-
arability measure and identical to the counterpart in Ref. [23],
In contrast, dw is different in computing the intra-set distance
(see Definition 3) and derived from the book [22]. For different
features, the scales of them are usually greatly different. The
usual Euclidean distance is highly dependent on the features
that have large values. However, the features with small values
may also contain useful information in terms of class separa-
bility. So, in computing dw and db, a normalized distance mea-
sure (Definition 1) is used instead of the Euclidean distance.
A parameter � is also introduced to control the effect of dw

in order to select the features that correspond with good class
separability but large within-class distances.

2.2. Optimal feature selection based on feature ranking

According to Eq. (2), the optimal feature subset can be cho-
sen as follows: First, rank n features in descending order accord-
ing to the evaluation function (1/�2

k)[�′′2
k − �

∑c
i=1 �i�

′2
k (i)].

Then, the optimal subset of m features maximizing Eq. (2) is
just the first m features sorted by the feature ranking. The fea-
ture subset is truly identical to the optimal one found by the
exhaustive method. As a result, the problem of

(
n
m

)
combina-

tion is solved efficiently through the feature ranking.

2.3. The property of FSDD

For the convenience of computation, sometimes, some sim-
ple preprocessing methods need to be performed prior to fea-
ture selection. However, they will affect the subsequent feature
selection methods. The proposed algorithm is invariant to lin-
ear transformations of features when a diagonal transformation
matrix is applied. So, the data preprocessing methods such as
z-score (let the mean be 0 and the standard deviation be 1) has
no effect on the result of FSDD. The proof is as follows.

For an arbitrary instance Yi , suppose that its value of the kth
feature is yk

i and the corresponding feature value following a
linear transformation is ayk

i + b. According to Eq. (1), in the
new space following the linear transformation, we have

db − �dw =
m∑

k=1

1

�2
k

[
�′′2

k − �
c∑

i=1

�i�
′2
k (i)

]
,

�2
k = 1

N

N∑
i=1

[
ayk

i + b − 1

N

N∑
i=1

(ayk
i + b)

]2

= a2�2
k ,

�′′2
k =

c∑
i=1

�i (m
k
i − mk)

2

=
c∑

i=1

�i

[
1

ni

ni∑
i=1

(ayk
i + b) − 1

N

N∑
i=1

(ayk
i + b)

]2

= a2�′′2
k ,

�′2
k (i) = 1

ni−1

ni∑
i=1

[
ayk

i +b− 1

ni

ni∑
i=1

(ayk
i + b)

]2

= a2�′2
k (i),

Table 1
Data used in the experiments

Data #Attributes #Instances #Classes From Testing method

Mfeat 649 2000 10 UCI 2-Fold CV
Satimage 36 6435 6 UCI 2-Fold CV
Spambase 57 4601 2 UCI 2-Fold CV
Spectrometer 99 509 5 UCI 2-Fold CV
Wine 13 178 3 UCI 10-Fold CV
Analcatdata 70 841 4 Statlib 10-Fold CV
Iris 4 150 3 UCI 10-Fold CV
Vowel 10 990 11 UCI 10-Fold CV

Table 2
Runtime (seconds) of three methods for three data sets

Methods Data

Mfeat Satimage Spambase

FSDD 0.375 0.063 0.062
ReliefF 165.13 28.047 31.719
mrmrMID 1824.2 92.015 83.266
#Feature required 50 36 30

so,

db − �dw = db − �dw,

where db has the same meaning as db. The difference is just
that the former one is the between-class distance following a
linear transformation while the latter one is that without any
linear transformation. The other underlined notations are de-
fined similarly.

3. Experiments

3.1. Related works

In the literature, there are many feature selection algorithms.
Among these methods, ReliefF [17] is a special one, which is
indeed a feature ranking algorithm. It works as follows. First,
randomly select several samples from the training samples.
Then, find the nearest samples of them from the same class as
well as the different classes. Finally, estimate the quality of the
attributes according to how well the feature values can distin-
guish between the instances that are close to each other. In the
study, the number of randomly selected samples is 10, which is
also the number of the nearest neighbors. ReliefF chooses the
m highest-scored features to construct the suboptimal feature
subset.

Recently, mutual information based methods [19,24,25] have
received much attention. mrmrMID is an effective and efficient
one. It requires a discretization preprocessing as follows: Each
feature variable is assigned a binary value according to the mean
value of this feature. It is set to be 1 if the actual feature value
is larger than the mean value of this feature, and −1 otherwise
(only for Mfeat data set as Peng [19] did). An alternative pre-
processing is to let each feature variable be −1, 1, and 0 if the
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Fig. 1. Two-fold CV classification accuracy for Mfeat with four classifiers.

actual feature value falls within (−∞, �−�), (�+�, +∞), and
[�−�, �+�] respectively (� is the mean value, �2 is the stan-
dard deviation). mrmrMID uses an incremental/greedy search
to select one feature at each iteration until the predefined num-
ber of features is obtained.

3.2. Data sets

Eight data sets are used in the experiments to test the pro-
posed algorithm. Seven of them are from the UCI machine

learning databases [20] and the other one is from the Statlib
[21]. All the feature values of the above data sets are contin-
uous data. The properties of the data sets are summarized in
Table 1 (they differ greatly in the sample size, feature number,
data distribution, and class number). In these data sets, the first
three are tested by two-fold cross validation (CV) due to the
large number of instances and the corresponding high compu-
tational costs. Some classes of Spectrometer have less than 10
instances. Thus, it is also tested by two-fold CV. The other four
data sets are tested by 10-fold CV.
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Fig. 2. Two-fold CV classification accuracy for Satimage with four classifiers.

3.3. Classifiers

The proposed algorithm is independent of any classifier.
So, four widely used classifiers are considered to estimate
the performance of our feature selection method, i.e. KNN
(K = 1, K Nearest Neighbor), NB [26] (Naive Bayes), DT
[26,27] (Decision Tree), and SVM (Support Vector Machine).
KNN is an instance-based approach and one of the favorite
classifiers due to its effectiveness and efficiency. NB classifier

is based on Bayes rule and the assumption that the features
are independent of each other given target class and that the
conditional probability distribution of any given class satisfies
normal distribution. NB classifier has shown good perfor-
mance compared with some sophisticated classifiers on many
real data sets. The implementation of the DT classifier in this
study is similar to the C4.5 learning algorithm. We use Libsvm
package [28] with default parameters to implement the SVM
classifier.



J. Liang et al. / Pattern Recognition 41 (2008) 1429–1439 1435

0 5 10 15 20 25 30

60

65

70

75

80

85

90

95

the number of features

c
la

s
s
if
ic

a
ti
o
n
 a

c
c
u
ra

c
y
 %

DT-for-spambase

0 5 10 15 20 25 30

60

65

70

75

80

85

90

the number of features

c
la

s
s
if
ic

a
ti
o
n
 a

c
c
u
ra

c
y
 %

KNN-for-spambase

0 5 10 15 20 25 30

45

50

55

60

65

70

75

80

85

90

the number of features

c
la

s
s
if
ic

a
ti
o
n
 a

c
c
u
ra

c
y
 %

NB-for-spambase

0 5 10 15 20 25 30

60

65

70

75

80

85

90

the number of features

c
la

s
s
if
ic

a
ti
o
n
 a

c
c
u
ra

c
y
 %

SVM-for-spambase

FSDD
mrmrMID

ReliefF

FSDD
mrmrMID

ReliefF

FSDD
mrmrMID

ReliefF

FSDD
mrmrMID

ReliefF

Fig. 3. Two-fold CV classification accuracy for Spambase with four classifiers.

3.4. Computational complexity

Let N denote the total number of the samples, and n the
feature number. The computational complexity of the proposed
algorithm is roughly O(N × n). The time cost is very low.
The time consumptions (measured by seconds) of the three
methods to choose the required number of features for the three
data sets, Mfeat, Satimage, and Spambase, are described in
Table 2, in which the second to fourth rows are the required

time of every method for the data sets and the last row is the
number of features selected. The matlab versions of the three
methods are implemented on a 1.6 GHz 64 bits AMD CPU. As
is shown, FSDD is more efficient than the other two methods.

3.5. Classification accuracy

In Fig. 1, the classification accuracy of four classifiers against
the number of features is shown for the Mfeat data with top
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Table 3
Ten-fold classification accuracy for Wine

Classifier mtds m

1 2 3 4 5 6 7 8 9 10 11 12 13

KNN FSDD 70.23 85.39 90.45 92.14 94.94 96.07 96.07 96.07 95.51 96.07 96.07 97.19 95.51
mrmrMID 38.76 65.17 75.84 75.84 82.58 80.9 85.39 91.01 91.57 94.38 93.82 93.26 95.51
ReliefF 69.1 82.58 91.57 92.7 93.26 94.94 95.51 95.51 95.51 95.51 94.38 94.94 95.51

NB FSDD 79.21 88.76 91.57 94.94 94.38 97.19 97.19 96.07 96.63 96.07 96.07 96.07 97.75
mrmrMID 57.3 73.6 78.09 79.21 84.27 86.52 88.2 94.94 94.38 94.94 95.51 95.51 97.75
ReliefF 76.97 88.2 91.01 91.57 93.26 94.38 94.38 94.38 94.94 96.63 96.07 97.19 97.75

DT FSDD 71.91 87.64 92.7 91.57 95.51 95.51 95.51 95.51 95.51 95.51 95.51 94.94 94.94
mrmrMID 49.44 66.29 73.6 78.65 76.97 78.65 86.52 92.14 92.14 93.82 94.38 93.82 94.94
ReliefF 70.79 81.46 92.14 92.7 95.51 95.51 95.51 95.51 95.51 95.51 95.51 94.94 94.94

SVM FSDD 79.21 88.2 92.7 95.51 96.07 97.75 97.19 97.75 97.75 98.32 98.32 97.75 98.32
mrmrMID 56.18 75.28 82.02 80.9 83.71 85.39 91.57 94.94 95.51 97.19 96.07 97.75 98.32
ReliefF 75.84 87.64 92.7 92.7 95.51 96.63 97.19 97.19 98.32 98.32 98.32 97.75 98.32

m is the number of features selected. mtds is the abbreviation of the word ‘methods’.

Table 4
Ten-fold classification accuracy for Vowel

Classifier mtds m

1 2 3 4 5 6 7 8 9 10

KNN FSDD 28.49 62.73 81.31 91.92 94.14 96.16 97.68 98.89 99.09 98.89
mrmrMID 12.22 27.58 55.35 83.84 93.54 96.87 98.18 98.99 98.49 98.89
ReliefF 25.35 55.66 80.1 89.8 94.85 97.58 98.79 99.19 98.89 98.89

NB FSDD 34.95 54.14 58.08 59.8 63.43 62.63 64.14 65.46 67.58 67.58
mrmrMID 15.35 19.7 27.68 43.43 58.99 62.53 63.54 65.05 65.35 67.58
ReliefF 32.93 49.6 54.55 58.69 61.92 65.35 65.86 66.87 66.47 67.58

DT FSDD 31.11 60.4 68.89 74.24 73.94 72.63 75.05 76.97 76.26 75.05
mrmrMID 11.92 20.51 36.16 58.18 73.43 76.87 78.18 77.07 74.44 75.05
ReliefF 26.77 53.23 67.68 73.33 74.85 76.87 75.25 75.86 77.88 75.05

SVM FSDD 35.25 55.46 61.01 65.05 65.76 67.98 69.8 72.12 74.75 74.85
mrmrMID 16.36 22.02 33.74 48.49 63.84 67.37 68.99 72.02 73.64 74.85
ReliefF 32.53 50.4 59.29 64.14 65.35 69.8 71.01 72.02 73.03 74.85

Table 5
Ten-fold classification accuracy for Analcatdata

Classifier mtds m

1 5 10 15 20 25 30 35 40

KNN FSDD 61.12 90.84 96.2 95.96 97.5 98.22 97.86 97.98 98.45
mrmrMID 47.68 76.69 84.66 85.73 89.3 88.7 89.77 90.96 93.7
ReliefF 51.37 88.47 96.31 97.27 98.22 98.45 98.34 98.57 99.17

NB FSDD 64.69 92.87 97.27 97.62 97.86 97.98 97.86 98.22 98.45
mrmrMID 61.47 82.05 87.87 90.61 91.68 93.1 93.94 95.36 96.67
ReliefF 56.36 88.82 95.84 97.86 98.45 98.69 99.05 98.81 98.57

DT FSDD 63.5 88.94 94.53 94.53 94.17 94.17 93.82 94.53 94.41
mrmrMID 61.59 75.98 76.93 76.81 77.17 77.29 76.22 79.19 83.47
ReliefF 61 86.8 93.1 94.41 94.41 94.29 94.41 94.77 95.24

SVM FSDD 64.69 92.75 96.43 98.57 98.93 99.29 99.29 99.29 99.52
mrmrMID 61.95 82.4 88.82 91.32 92.87 94.06 94.17 96.31 96.91
ReliefF 58.38 89.54 97.27 98.1 98.93 99.52 99.41 99.52 99.64
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Table 6
Two-fold classification accuracy for Spectrometer

Classifier mtds m

1 5 10 15 20 25 30 35 40

KNN FSDD 68.17 77.21 80.94 85.86 89.59 90.37 89 88.21 88.02
mrmrMID 50.69 49.71 64.24 69.94 77.01 80.55 83.5 85.86 85.07
ReliefF 62.28 68.37 83.69 84.87 85.27 87.23 85.27 85.46 86.05

NB FSDD 75.44 81.14 83.69 83.69 81.73 82.71 84.28 84.09 83.5
mrmrMID 58.55 54.22 67.39 70.33 74.66 75.44 79.76 82.32 82.91
ReliefF 69.16 68.37 79.57 79.76 82.52 82.52 82.52 81.93 81.93

DT FSDD 71.32 78.98 79.76 83.3 83.89 84.09 84.28 83.5 84.09
mrmrMID 54.81 48.72 67.19 71.91 77.8 81.53 82.71 84.09 81.53
ReliefF 64.24 67.19 79.57 82.12 82.32 83.89 83.69 83.69 84.09

SVM FSDD 70.53 78 80.55 83.69 85.46 86.44 87.03 86.84 86.05
mrmrMID 59.14 54.22 69.35 70.73 79.18 81.93 82.71 86.25 87.03
ReliefF 69.75 71.51 81.93 84.68 84.48 85.86 87.03 87.03 86.44

50 features selected from all features. It is obvious that FSDD
outperform the other methods remarkably. For example, in
Fig. 1(a), when the number of features is 10, the classifica-
tion accuracy of FSDD, mrmrMID, ReliefF is 87.2%, 82.1%,
and 61.85%, respectively. FSDD obtains higher accuracy than
the other methods with all possible feature numbers for KNN,
SVM, and DT. For NB, when the number of features is few, the
performance curve of FSDD overlaps with that of mrmrMID.
However, FSDD outperforms mrmrMID when the number of
features increases. Figs. 2 and 3 are the benchmarks of Satim-
age and Spambase, respectively. For Satimage, all features are
used to compare the three algorithms while just 30 features
are chosen for Spambase. In these two data sets, FSDD also
outperforms the other two with the four classifiers.The experi-
mental results of the other five data sets are described in Tables
3–7, respectively. Since the number of features is small, we
choose all features for Iris, Vowel, and Wine. The top 40 fea-
tures are selected from the total features for Analcatdata and
Spectrometer. For the sake of saving space, only the results
of 1, 5, 10, . . . , 40 features are listed in the tables. For Wine,
FSDD outperforms the other two. For Analcatdata, when the
number of features is small, FSDD also outperforms the other
two. When the number of features increases, the performance
of FSDD is comparable to that of ReliefF and the two methods
outperform mrmrMID. It is almost the same case for Vowel.
The performance of FSDD is comparable to that of ReliefF
and the two outperform mrmrMID for Iris. For Spectrometer,
FSDD outperforms the other two methods.

As is shown in the figures and tables, when the number of
instances is large (For example, Mfeat, Satimage, and Spam-
base have thousands of samples), the performance of mrmr-
MID is better than that in such a case that there are only several
hundreds of instances. This is because when 3n (suppose that
there are n features and each feature has three values: −1, 0, 1
after discretization) is comparable to the number of instances,
the estimation of mutual information becomes unreliable and
mrmrMID prefers to select bad features. ReliefF is a feature
ranking algorithm, which suffers from redundant attributes. If

Table 7
Ten-fold classification accuracy for Iris

Classifier mtds m

1 2 3 4

KNN FSDD 88.67 96 95.33 95.33
mrmrMID 58.67 72 88.67 95.33
ReliefF 87.33 96 95.33 95.33

NB FSDD 94 96 95.33 96
mrmrMID 72.67 78 88 96
ReliefF 94 96 96 96

DT FSDD 94.67 96 96 96
mrmrMID 71.33 68 93.33 96
ReliefF 95.33 96 96 96

SVM FSDD 94.67 95.33 95.33 95.33
mrmrMID 74 79.33 92 95.33
ReliefF 95.33 95.33 95.33 95.33

the m features are independent, ReliefF promises good perfor-
mance. However, if the features are relevant to each other, the
classification accuracy increases slowly with the number of fea-
tures. It is known that the m best features are not always the
best m features. This is the reason why ReliefF shows worse
performance for Mfeat, Spambase, and Satimage than that for
the other five data sets.

4. Discussions

The value of � plays an important role in the proposed al-
gorithm and should vary with different classification problems.
However, we find that the feature selection order changes very
little with various values of � in the experiments. For example,
when �=0.1, 1, 2, 5, 10, 20, 50, and 100, respectively, the fea-
ture selection order for Iris data is the same: 3,4,1,2. The exper-
imental results show that a good performance can be promised
with � = 2.

As is shown in the experiments, FSDD leads to high classifi-
cation accuracy usually. Sometimes, the curve of the classifica-
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tion accuracy against the number of features is fluctuant. Many
factors account for the fluctuation. One cause is that the ad-
ditional features might be noisy ones, which degrade the clas-
sification performance. Another possible reason is that for the
use of difference of db and dw, FSDD could not prefer to se-
lect the features that correspond with good class separability
but large within-class distances. In such a case, a less penalty
on dw would alleviate this problem. The distribution overlap-
ping degrees of the classes are not considered in FSDD. Using
the overlapping degree between every two classes instead of a
constant � would be a reasonable method, which will be our
future work.

For the unbalanced data in which the numbers of samples in
each class are greatly different (for example, Spectrometer has
five classes and each class has 12, 90, 273, 38, and 96 samples,
respectively), FSDD also exhibits good performance because
the effect of unbalanced distributions is compensated by the
use of the prior probability of each class when calculating db

and dw.
FSDD does not provide the criterion to determine the op-

timal number of features. However, the methods that provide
stop criteria do not always reach the highest classification accu-
racy when the stop criterion is satisfied. We can make a trade-
off between the number of features and the classification accu-
racy and then determine an appropriate number of features in
accordance with the learning tasks.

5. Conclusions

We propose a new feature selection algorithm based on dis-
tance discriminant. The goal of the method is to select good
features that have good class separability as well as make the
instances in the same classes as close as possible. The pro-
posed criterion for selecting features is intuitional and easy to
understand. As is proved above, our method can find the opti-
mal feature subset through feature ranking such that it solves
the combination problem and overcomes the drawbacks of sub-
optimal methods. It is also invariant to linear transformations
of data when a diagonal transformation matrix is applied. So,
the data preprocessing methods such as z-score have no effect
on the result of FSDD. The experimental results on 8 data sets
with four classifiers confirm that the proposed algorithm is an
effective and efficient feature selection method.
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