
Knowl Inf Syst
DOI 10.1007/s10115-007-0081-7

REGULAR PAPER

Computing the minimum-support for mining frequent
patterns

Shichao Zhang · Xindong Wu · Chengqi Zhang ·
Jingli Lu

Received: 23 January 2006 / Revised: 12 October 2006 / Accepted: 8 March 2007
© Springer-Verlag London Limited 2007

Abstract Frequent pattern mining is based on the assumption that users can specify the
minimum-support for mining their databases. It has been recognized that setting the min-
imum-support is a difficult task to users. This can hinder the widespread applications of
these algorithms. In this paper we propose a computational strategy for identifying frequent
itemsets, consisting of polynomial approximation and fuzzy estimation. More specifically,
our algorithms (polynomial approximation and fuzzy estimation) automatically generate
actual minimum-supports (appropriate to a database to be mined) according to users’ mining
requirements. We experimentally examine the algorithms using different datasets, and dem-
onstrate that our fuzzy estimation algorithm fittingly approximates actual minimum-supports
from the commonly-used requirements.

This work is partially supported by Australian ARC grants for discovery projects (DP0449535, DP0559536
and DP0667060), a China NSF Major Research Program (60496327), a China NSF grant (60463003), an
Overseas Outstanding Talent Research Program of the Chinese Academy of Sciences (06S3011S01), and an
Overseas-Returning High-level Talent Research Program of China Human-Resource Ministry.
A preliminary and shortened version of this paper has been published in the Proceedings of the 8th Pacific
Rim International Conference on Artificial Intelligence (PRICAI ’04).

S. Zhang (B)
Faculty of Computer Science and Information Technology, Guangxi Normal University,
Guilin 541004, People’s Republic of China
e-mail: zhangsc@it.uts.edu.au

X. Wu
Department of Computer Science, University of Vermont, Burlington, VT 05405, USA
e-mail: xwu@cs.uvm.edu

C. Zhang
Faculty of Information Technology, University of Technology, Sydney, PO Box 123,
Broadway NSW 2007, Australia
e-mail: chengqi@it.uts.edu.au

J. Lu
Institute of Information Sciences and Technology, Massey University, Palmerston North, New Zealand
e-mail: J.Lu.1@massey.ac.nz

123

S. Zhang et al.

Keywords Data mining ·Minimum support · Frequent patterns · Association rules

1 Introduction

Frequent patterns, such as frequent itemsets, substructures, term-sets, phrase-sets, sequences,
linkage groups, and subgraphs, generally exist in real-world databases. Mining such frequent
patterns assists in various applications such as association analysis, information enhance-
ment, text indexing, image indexing, segmentation, classification, and clustering. Although
rooted in market basket analysis, it has been established that the efficiency of data mining
systems may be critically affected by frequent pattern discovery [14,40]. Indeed, frequent
pattern discovery must face exponential search spaces. This is becoming particularly evident
in the context of increasing database sizes when modern technology provides efficient and
low-cost methods for data collection.

Frequent itemset discovery is widely studied in data mining as a means of generating asso-
ciation rules [2], correlations [6], emerging patterns [9], negative rules [36], causality [28],
and classification rules [16,18]. A milestone in frequent itemset discovery is the development
of an Apriori-based, level-wise mining method for associations [4], which has encouraged the
development of various kinds of association mining algorithms [3,11,21,26,29,31,35,38–
40] and frequent itemset mining techniques [1,5,7,10,12,17,22,23,27,32,37]. There is also
much work on algorithm scale-up, for example, instance selection [19,41].

Apriori-based mining algorithms are based on the assumption that users can specify the
minimum-support for their databases. That is, a frequent itemset (or an association rule)
is interesting if its support is larger than or equal to the minimum-support. This causes a
challenging issue: performances of these algorithms heavily depend on some user-specified
thresholds. For example, if the minimum-support value is too big, nothing might be found in
a database, whereas a small minimum-support might lead to poor mining performance and
generating many uninteresting association rules. Therefore, users are unreasonably required
to know details of the database to be mined, in order to specify a suitable threshold. How-
ever, Han et al. [14] have pointed out that setting the minimum-support is quite subtle, which
can hinder the widespread applications of these algorithms; our own experiences of mining
transaction databases also tell us that the setting is by no means an easy task. In particular,
even though a minimum-support is explored under the supervision of an experienced miner,
we cannot examine whether or not the results (mined with the hunted minimum-support) are
just what users want.

Current techniques for addressing the minimum-support issue are underdeveloped. Some
approaches touch on the topic. In proposals for marketing, Piatetsky-Shapiro and Steingold
proposed to identify only the top 10 or 20% of the prospects with the highest score [24]; and
Han et al. designed a strategy to mine top-k frequent patterns for effectiveness and efficiency
[13,14]. In proposals for interesting itemset discovery, Cohen et al. developed a family of
effective algorithms for finding interesting associations [8]; Steinbach et al. generalized the
notion of support [30]; and Omiecinski designed a new interestingness measure for mining
association rules [20]. In proposals for dealing with temporal data, Roddick and Rice dis-
cussed independent thresholds and context-dependent thresholds for measuring time-varying
interestingness of events [25]. In proposals for exploring new strategies, Hipp and Guntzer
presented a new mining approach that postpones constraints from mining to evaluation [15].
In proposals for identifying new patterns, Wang et al. designed a confidence-driven mining
strategy without minimum-support [33,34]. However, these approaches only attempt to avoid
specifying the minimum-support.

123

Computing the minimum-support for mining frequent patterns

In real-world data-mining applications, users can provide their mining requirements in
two ways:

1. Identifying frequent itemsets. The term ‘frequent’ is already a threshold from a fuzzy
viewpoint, referred to the fuzzy threshold. Certainly, users may request for identifying
‘more or less frequent’, ‘highly frequent’ or ‘completely frequent’ itemsets. All the
terms ‘more or less frequent’, ‘high frequent’ and ‘completely frequent’ can be thresh-
olds from fuzzy viewpoints. Therefore, it is reasonable to generate potentially useful
itemsets in fuzzy sets. This has indicated that the key problem should be how to effi-
ciently find all frequent itemsets from databases without the necessity of specifying the
actual minimum-support threshold. This leaves a large gap between the natural fuzzy
threshold and the machinery available to frequent itemset discovery.

2. Similarly, for a database D, let the support of itemsets in D be distributed in an interval
[a, b]. Users would like to specify a relative minimum-support on the commonly-used
interval [0, 1] rather than on the interval [a, b].

In this paper, we propose a new strategy for addressing the minimum-support problem,
consisting of polynomial approximation for a specified minimum support on the commonly
used interval [0, 1] (see Sect. 3) and fuzzy estimation for a specified minimum-support in
fuzzy sets (see Sect. 4). More specifically, we take the specified threshold as user-specified
minimum-support and our algorithms (polynomial approximation and fuzzy estimation) com-
putationally convert the specified threshold into an actual minimum-support (appropriate to a
database to be mined). This allows users to specify their mining requirements in commonly-
used modes, which are independent of their databases (for the algorithms, see Sect. 5).
We experimentally examine the algorithms using different datasets, and demonstrate that
our approaches fittingly approximate actual minimum-supports from the commonly-used
requirements (see the experiment part in Sect. 6).

2 Problem statement

Let I = {i1, i2, . . . , iN } be a set of N distinct literals called items. D is a set of variable
length transactions over I . A transaction is a set of items, i.e., a subset of I . A transaction
has an associated unique identifier called T I D.

In general, a set of items (such as the antecedent or the consequent of a rule) is referred to
as an itemset. For simplicity, an itemset {i1, i2, i3} is sometimes written as i1i2i3. The number
of items in an itemset is the length (or the size) of the itemset. Itemsets of some length k are
referred to as k-itemsets.

Each itemset has an associated statistical measure called support, denoted as supp. For
an itemset A ⊆ I , supp(A) is defined as the fraction of transactions in D containing A, or

supp(A) = 1
n

n∑

i=1

1(A ⊆ Di), where, the database D is a vector of n records Di such that

each record is a set of items, and 1(A ⊆ Di) is 1 when A ⊆ Di and 0 otherwise.
An association rule is an implication of the form A→ B, where A, B ⊂ I , and A∩B = ∅.

A is the antecedent of the rule, and B is the consequent of the rule. The support of a rule
A → B is denoted as supp(A ∪ B). The confidence of the rule A → B is defined as
the ratio of the supp(A ∪ B) of itemset A ∪ B over the supp(A) of itemset A. That is,
con f (A→ B) = supp(A ∪ B)/supp(A).

The support–confidence framework [2]: The problem of mining association rules from
a database D is how to generate all rules A→ B, having both support and confidence greater

123

S. Zhang et al.

than, or equal to, a user-specified minimum-support (minsupp) and a minimum confidence
(minconf), respectively.

The first step of the support-confidence framework is to generate frequent itemsets using
the Apriori algorithm. In other words, for a given database, the Apriori algorithm generates
those itemsets whose supports are greater than, or equal to, a user-specified minimum-sup-
port. As have argued previously, the above definition has shown that the Apriori algorithm
and Apriori-like algorithms (see [12,29,40]) rely on the assumption that users can specify
the minsupp.

The main contribution of this paper is to provide a strategy to convert a (user-specified)
fuzzy threshold into an actual minimum-support. To construct the converting functions, we
must develop a technique for identifying some features concerning the database to be mined.
We illustrate the needed features by the distribution of itemsets in Sect. 2.1 and estimate them
in Sect. 2.2.

2.1 The distribution of itemsets

For a database D, let the support of itemsets in D be distributed in an interval
[a, b], where a = Min{supp(X) |X is an itemset in D} and b = Max{supp(X) | X is
an itemset in D}; M the number of itemsets in D; and ‘Aavesupp’ the average support of all
itemsets in D. That is,

Aavesupp =

∑

A is an itemset in D

supp(A)

M

For the database D, the distribution of the supports of itemsets in D, referred to the support
distribution, is very important for generating interesting itemsets. If the support distribution
in D is symmetrical, Aavesupp is a good reference point, written as G O R P , for generating
interesting itemsets. However, the support distribution in a database can be extremely gra-
dient. Therefore, we take into account the lean of the support distribution when generating
the G O R P appropriate to the database. For example, assume that most itemsets in D have
low supports and others have an extremely high support, and Aavesupp may be bigger than
(a + b)/2 (the median of these supports). If Aavesupp is still taken as the G O R P , we may
discover few patterns from D. Similarly, when most itemsets in D have high supports and
others have extremely low support, and the Aavesupp can be lesser than (a+b)/2. If Aavesupp

is taken as the G O R P , we may discover a great many patterns from D.
Based on the above analysis, we use the measure, Lean, for evaluating the support dis-

tribution when generating the G O R P for D, where Lean measures the tendency of support
distribution.

Lean =

m∑

k=1

1(supp(Xk) < Aavesupp)−
m∑

k=1

1(supp(Xk) > Aavesupp)

M

where supp(Xk) is the support of the itemset Xk .

2.2 Parameter estimation

This subsection estimates the parameters: Lean, [a, b] and Aavesupp for a database.
For a database D, suppose that there are N distinct items, I = {i1, i2, . . . , iN } in D, and

there are n records Di , each containing m items on an average. Using the Apriori algorithm,

123

Computing the minimum-support for mining frequent patterns

we assume that Apriori(D, k) generates a set of all k-itemsets in D, where k ≥ 1. Without
any prior knowledge we could estimate a, b and Aavesupp as follows.

1. a = 1
n

2. b = the maximum of the supports of k-itemsets in Apriori(D, k) for a certain k.
3. Approximating average support:

Aavesupp = 1

m − k + 1

m∑

i=k

(m

N

)i
(1)

It is easy to understand the assignment of a. For b, we can determine k according to a
mining task.

For Aavesupp
1, we make two assumptions: (1) each item has an equal chance to occur, and

(2) each item occurs independent of other items (which is an extreme case for the estimation
of average supports only). Then the number of records containing a specific item is

mn

N
,

and its support is

support1 = mn

Nn
= m

N
In fact, support1 can be taken as the approximate average support of 1-itemsets. According
to the assumptions, the approximate average support of 2-itemsets is

support2 = m

N

m

N
Generally, the average support of j-itemsets is

support j =
(m

N

) j

Consequently, because m is the average number of items in records, we can approximate
Aavesupp as

1

m − k + 1

((m

N

)k +
(m

N

)k+1 + · · · +
(m

N

)m
)

We now illustrate the use of the above technique by an example. Consider a supermarket
basket data set from the Synthetic Classification Data Sets on the Internet (http://www.kdnug-
gets.com/). The main properties of the dataset are as follows. There are 1,000 attributes and
100,000 rows. The average number of attributes per row is 5. Let k = 2 for computing b and
the maximum support of 2-itemsets is 0.0018. Then, we have

a = 10−5 (2)

b = 0.0018 (3)

Aavesupp = 1

m − k + 1

m∑

i=2

(m

N

)i

= 1

4

5∑

i=2

(
5

1000

)i

≈ 6.27× 10−6 (4)

1 Note that, there is only a traditional way of estimating Aavesupp . We can also estimate it by sampling.

123

http://www.kdnugdiscretionary {-}{}{}gets.com/

S. Zhang et al.

Note that, due to the assumption of independency, Aavesupp approximates to 1/n when n
is large enough. This is consistent with the probability theory.

It is often impossible to analyze the Lean of the support distribution for all itemsets in
the database D due to the fact that there may be billions of itemsets in D when D is large.
Therefore, we should find an approximate lean for the support distribution. In our approach,
we use the sampling techniques in [19,41] to approximate the lean of the support distribution
in D when D is very large.

For a sample SD of D, we can obtain the support of all itemsets in SD and calculate the
average support of itemsets, written as ASavesupp . The LeanS of SD is as follows.

LeanS =

m∑

j=1

1(supp(i j) < ASavesupp)−
m∑

j=1

1(supp(i j) > ASavesupp)

m
(5)

where supp(i j) is the support of the itemset i j and m is the number of itemsets in SD.
The average itemset support of a sampling database is larger than that of the original

database. This is because for a highly frequent itemset, the support in the sampling database
and that in the original database are almost the same, but for a less frequent itemset, the
support in the sampling database is higher than that in the original database. For example,
in the original database with 100 instances, if A appears once, then supp(A) = 0.01; but in
a sampling database with 10 instances, even if A also appears only once, supp(A) = 0.1.
From the sampling techniques in [19,41], LeanS is approximately the same with the gradient
degree as the distribution of itemsets in D. Therefore, we take the gradient degree of LeanS

as the gradient degree Lean.
After Lean, a, b, and Aavesupp are calculated, an approximate G O R P for D can be

estimated using the fuzzy rules in Sect. 4.

3 Computationally approximating actual minimum-support by a polynomial function

Suppose that the users specify a minimum-support r_minsupp with respect to the interval
[0, 1]. We need to determine the desired minsupp for mining database D for which the
support interval is [a, b], implemented by the mapping f : [a, b] 	→ [0, 1]. Very often, such
a mapping f is hidden. Therefore, we should find an approximate polynomial function f̂ for
f . We now propose a strategy for constructing the mapping.

Let X in [a, b] and Y in [0, 1] be x1, x2, . . ., xn , and y1, y2, . . . , yn as listed below:

X x1 x2 · · · xn

Y y1 y2 · · · yn

A method for finding an approximate polynomial function f̂ for f between X and Y can
be performed by the following theorem.

Theorem 1 For X and Y , the approximate polynomial function [40] for fitting the above
data can be constructed as

F(x) = F1(x)+
N∑

i=1

⎛

⎝Fi+1(x)

⎛

⎝
2i∏

j=1

(x − x j)

⎞

⎠

⎞

⎠

123

Computing the minimum-support for mining frequent patterns

where,

Fk(x) = (x − x2k)

(x2k−1 − x2k)
Gk(x2k−1)+ (x − x2k−1)

(x2k − x2k−1)
Gk(x2k)

k = 1, 2, . . . , N; N is the number of fitting times; and Gk is the fitted data.

The proof of this theorem is given in the Appendix.
F(x) is the approximation function of f that we desire. It is a polynomial function for

which the order is not over 2N + 1. Using this approximation function, we can generate an
approximate minsupp from the given r_minsupp.

3.1 Simplifying the polynomial function

It is unrealistic to obtain so many point pairs for constructing the approximation function
of f using Theorem 1. This subsection illustrates the construction of a simple and useful
approximation function of f .

1. Linear strategy

f (x) = 1

b − a
x + a

a − b
(6)

2. Polynomial strategy

f (x) = 1

bn − an
xn + an

an − bn
(7)

The average support of itemsets in D is an important parameter for constructing the
mapping, written as g for distinguishing from f , where g : [a, b] 	→ [0, 1] such that
g(a) = 0, g(b) = 1 and g(Aaveragesupp) = 0.5. Similar to approximating the mapping f ,
we can approximate g as follows.

3. Linear strategy

g(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

2(Aaveragesupp − a)
x + a

2(a − Aaveragesupp)
if x ∈ [a, Aaveragesupp]

1

2(b − Aaveragesupp)
x + b − 2Aaveragesupp

2(b − Aaveragesupp)
if x ∈ [Aaveragesupp, b]

4. Polynomial strategy

g(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

2(An
averagesupp − an)

xn + an

2(an − An
averagesupp)

if x ∈ [a, Aaveragesupp]

1

2(bn − An
averagesupp)

xn + bn − 2An
averagesupp

2(bn − An
averagesupp)

if x ∈ [Aaveragesupp, b]

The use of the mapping g will be demonstrated in Example 2 later. Here, we only illustrate
the use of f .

Example 1 Consider a database T D as shown in Table 1. Let r_minsupp = 0.7 with respect
to the interval [0, 1]. The itemsets and their supports are listed in Table 2.

123

S. Zhang et al.

Table 1 Transactions in
database T D

A B C
B C D

A C D
A B

Table 2 Itemsets in database
T D

Itemsets Support Itemsets Support Itemsets Support

A 0.75 B 0.75 C 0.75
D 0.5 AB 0.5 AC 0.5
AD 0.25 BC 0.5 BD 0.25
CD 0.5 ABC 0.25

For T D, a = 0.25 and b = 0.75. That is, the support values of itemsets in T D distribute
in the interval [0.25, 0.75]. The average support is as follows.

Aaveragesupp = (0.75+ 0.75+ 0.75+ 0.5+ 0.5+ 0.5+ 0.5

+0.25+ 0.25+ 0.5+ 0.25)/11

≈ 0.5

Using the linear strategy, we can construct the mapping as follows

f (x) = 1

0.75− 0.25
x + 0.25

0.25− 0.75
= 2x − 0.5 (8)

Therefore, the actual minimum-support for T D is

minsupp = f −1(r_minsupp) = f (r_minsupp)+ 0.5

2
== 0.7+ 0.5

2
= 0.6

Consequently, the frequent itemsets in T D are A, B and C .
Using the polynomial strategy, when n = 3, we can construct the mapping as follows.

f (x) = 1

0.753 − 0.253 x + 0.253

0.253 − 0.753

= 2.615x − 0.03846 (9)

Therefore, the actual minimum-support for T D is

minsupp= f −1(r_minsupp) = f (r_minsupp)+ 0.03846

2.615
== 0.7+ 0.03846

2.615
= 0.2824

Consequently, the frequent itemsets in T D are A, B, C , D, AB, AC , BC , and C D.

4 Estimating actual minimum-support by fuzzy techniques

4.1 Fuzzy rules

Fuzzy set, introduced by Zadeh in 1965, is a generalization of classical set theory that repre-
sents vagueness or uncertainty in linguistic terms. In a classical set, an element of the universe
belongs to, or does not belong to, the set, i.e., the membership of an element is crisp—either

123

Computing the minimum-support for mining frequent patterns

Table 3 Fuzzy rules

VS S SS M SL L VL

L V L SL M SH H V H V H
S V L L SL M SH H V H
R V L V L L SL M SH V H

yes or no. A fuzzy set allows the degree of membership for each element to range over the unit
interval [0, 1]. Crisp sets always have unique membership functions, whereas every fuzzy
set has an infinite number of membership functions that may represent it.

For a given universe of discourse U , a fuzzy set is determined by a membership function
that maps members of U on to a membership range usually between 0 and 1. Formally, let
U be a collection of objects, a fuzzy set F in U is characterized by a membership function
µF which takes values in the interval [0, 1] as follows

µF : U 	→ [0, 1]
Using fuzzy set theory, we can build a fuzzy strategy for identifying interesting itemsets

without specifying the actual minimum-support.
Let Fsupport be the mining requirements in common sentences (or the fuzzy threshold

specified by users). Fsupport is a fuzzy set, such as ‘large’ or ‘very large’.
In our fuzzy mining strategy, the sets of the fuzzy sets of parameters Fsupport , Lean

and G O R P are F_Fsupport , F_Lean and F_G O R P as follows:

F_Fsupport = {V S (V ery small), S (small), SS (More or less small), M (Medium),

SL (More or less large), L (large), V L (V ery large)} (10)

F_Lean = {L (Le f t gradient), S (Symmetry), R (Right gradient)} (11)

F_G O R P = {V L (V ery Low), L (Low), SL (more or less Low),

M (Medium), SH (more or less High),

H (High), V H (V ery High)} (12)

where, ‘Left gradient’ means that Lean < 0, ‘Symmetry’ means that Lean = 0, and ‘Right
gradient’ means that Lean > 0.

Note that we can use more states than the above to describe the concepts of Fsupport ,
Lean and G O R P . More states for every variable will simulate the system more accurately.
However, the product of the input variables and their states numbers determines the number
of rules directly. The greater the product, the more the rules. Considering both of them, we
set 7 states for Fsupport and 3 for Lean. It is a trade-off between accuracy and efficiency.

For F_G O R P , let F ∈ F_G O R P . The right part of F is {F, . . . , V H}, written as Fright .
For example, V Lright = F_G O R P and Mright = {M, SH, H, V H}.

Based on the above assumptions, the fuzzy rule F R in our fuzzy mining strategy is

IF Fsupport is A ∧ Lean is B
THEN G O R P is C

where A, B and C are fuzzy sets.
The following Table 3 is an example for illustrating the construction of fuzzy rules.
In Table 3, the first column is the fuzzy sets in F_Lean; the first row is the fuzzy sets

in F_Fsupport ; and others are the outputs generated for G O R P . Each output is a fuzzy

123

S. Zhang et al.

Fig. 1 Fuzzy triangular
functions for G O R P

Membership Function for GORP

0

0.2

0.4

0.6

0.8

1

1.2

a ave- ave-

0.6m 0.2m

ave+0.2n ave+0.6n b

RealSupport

m
em

be
rs

hi
p

VL

L

SL

M

SH

H
VH

rule. For example, M at the intersection of the second row and the fourth column indicates
the fuzzy rule: IF Fsupport is SS and Lean is L THEN G O R P is M . This means, the
lean of the itemsets in a mined database, Lean, matches the fuzzy set Left gradient; the
user-specified fuzzy requirement for the database, Fsupport , matches the fuzzy set more or
less small; and the fuzzy rule outputs the good reference point, G O R P , matches the fuzzy
set Medium.

Using these fuzzy rules, we can convert the user-specified fuzzy requirement for a data-
base to be mined into the actual G O R P appropriate to the database by considering the lean
of the itemsets in the database.

4.2 Generating interesting itemsets

We can identify interesting itemsets in the database D once the actual G O R P is determined.
Let the range of the support of itemsets in D be [a, b]. The triangular function of G O R P

is illustrated in Fig. 1. When a more complex function is selected, a greater computing
overhead is required to implement it. We selected a triangle as the function shape, not only
because it is simple but also because it matches the understanding of the concepts. We set
two sub-concepts to cover most of the domain area, because if only one sub-concept covers
an area, it degenerates to predicate logic. If many sub-concepts cover an area, the fuzzy rules
will be too complex.

Figure 1 has demonstrated the triangular membership function of G O R P with respect to
the fuzzy sets in F_G O R P . We provide the parameters according to their common use. In
Fig. 1, for the support x of an itemset A in D, the line support = x intersects each fuzzy
set in F_G O R P at a certain point pair (x, µF (x)). It says that µF (x) is the degree of A
belonging to fuzzy set F .

We now define the procedure of identifying potentially interesting itemsets as follows.

Let the range of the support of itemsets in D be [a, b], Fsupport be A(∈ F_Fsupport),
Lean be B(∈ F_Lean), and G O R P be F(∈ F_G O R P) obtained by using the above
fuzzy rules. Identifying interesting itemsets is to generate the set of the Potentially
interesting Itemsets (PI), written as πD/F . And πD/F is defined as

πD/F = {A ∈ I temset (D)|∃F ′ ∈ Fright ∧ µF ′(supp(A)) > 0}

123

Computing the minimum-support for mining frequent patterns

Table 4 Transactions in database T D1

A B D
A B C D

B D
B C D E

A C E
B D F

A E F
C F

B C F
A B C D F

where, I temset (D) is the set of all itemsets in D, and supp(A) is the support of A,
Fright is the right part of F .
A potentially interesting itemset A is represented as

(A, supp(A), µF (supp(A))) (13)

where, supp(A) is the support of A, µF (supp(A)) is the degree of A belonging to
fuzzy set F and

µF (x) =
{ 0, i f x ≤ aF

x−aF
cF−aF

i f x ∈ (aF , cF)

1, i f x ≥ cF

(14)

where, aF is the left endpoint of the triangular membership function of F , and cF is
the center point of the triangular membership function of F .

4.3 An example

Let T D1 be a transaction database with 10 transactions in Table 4. Let A = bread , B =
cof f ee, C = tea, D = sugar , E = beer , and F = butter . Assume Fsupport = L
(large).

For T D1, let k = 2. From Table 4, we have

a = 0.1

b = 0.6

Aavesupp = 0.23721

Lean = 0.5349

This means Lean = R. According to the fuzzy rules, we obtain G O R P = SH and
SHright = {SH, H, V H}. Hence, the set of the potentially interesting itemsets is

πT D1/SH = {X ∈ I temset (T D1)|∃F ′ ∈ SHright ∧ µF ′(supp(X)) > 0}
= {A, B, C, D, E, F, AB, AC, AD, BC, B D, B F, C D, C F, AB D, BC D}

Assume the membership function of fuzzy set SH for T D1 is

µSH (x) =
{ 0, i f x ≤ 0.23721

50000
7713 x − 7907

5142 i f x ∈ (0.23721, 0.39147)

1, i f x ≥ 0.39147
(15)

123

S. Zhang et al.

According to Eq. (13), we can represent the potentially interesting itemsets as follows

(A, 0.5, 1), (B, 0.7, 1)

(C, 0.6, 1), (D, 0.6, 1)

(E, 0.3, 0.4070386), (F, 0.5, 1)

(AB, 0.3, 0.4070386), (AC, 0.3, 0.4070386)

(AD, 0.3, 0.4070386), (BC, 0.4, 1)

(B D, 0.6, 1), (B F, 0.3, 0.4070386)

(C D, 0.3, 0.4070386), (C F, 0.3, 0.4070386)

(AB D, 0.3, 0.4070386), (BC D, 0.3, 0.4070386)

5 Algorithm design

5.1 Identifying frequent itemsets by polynomial approximation

Based on the polynomial approximation and the support–confidence framework, we can
define that J is a frequent itemset of potential interest, denoted by fipi(J)2, if and only if

f i pi(J) = supp(J) ≥ minsupp ∧
∃X, Y : X ∪ Y = J ∧

X ∩ Y = ∅ ∧
supp(X ∪ Y)/supp(X) ≥ mincon f ∧
supp(X ∪ Y)− supp(X)supp(Y) ≥ mininterest (16)

where minsupp, mincon f , and mininterest are the thresholds of minimum-support, mini-
mum confidence (for the purpose of association-rule analysis), and minimum interest, respec-
tively.

As we will see shortly, many frequent itemsets might be related to rules that are not of
interest. The search space can be significantly reduced if the extracted frequent itemsets are
restricted to frequent itemsets of potential interest. For this reason, we now construct an effi-
cient DI M S algorithm for finding frequent itemsets of potential interest, named as DIMSFIP
(DI M S for Frequent Itemsets by Pruning).

Algorithm 1 DIMSFIP

Input: D: data set; r_minsupp: user-specified minimum-support (in [0, 1]); min-
interest: minimum interest; k: size of itemsets for estimating Aaveragesupp;
m: average number of attributes per row; N: number of attributes in D;

Output: Frequentset: frequent itemsets;

(1) //calculate minsupp according to r_minsupp
let set Frequentset ← ∅;
let a← 1

|D| ;
let b← the maximum of the supports of k-itemsets;

2 Note that fipi is only used for simplifying the description. It is not a function.

123

Computing the minimum-support for mining frequent patterns

let Aaveragesupp ← 1

m − k + 1

m∑

i=k

(
m

N
)i ;

if x ∈ [a, Aaveragesupp] then

let g(x)← 1

2(Aaveragesupp − a)
x + a

2(a − Aaveragesupp)
;

else if x ∈ [Aaveragesupp, b] then

let g(x)← 1

2(b − Aaveragesupp)
x + b − 2Aaveragesupp

2(b − Aaveragesupp)
;

let minsupp← g−1(r_minsupp);
(2) //generate all frequent 1-itemsets

let L1 ← {frequent 1-itemsets in Apriori(D, 1, minsupp)};
let Frequentset ← Frequentset ∪ L1;

(3) //generate all candidate i-itemsets of potential interest in D
for (i = 2; Li−1 �= ∅; i ++) do

let Li ← Apriori(D, i, minsupp);
(4) //Prune all uninteresting i-itemsets in Li

for any itemset A in Li do
if ¬ f i pi(A) then

let Li ← Li − {A};
end
let Frequentset ← Frequentset ∪ Li ;

end
(5) output the frequent itemsets Frequentset in D;
(6) endall.

The algorithm DI M SF I P is used to generate all frequent itemsets of potential interest in
the database D. It is a database-independent and Apriori-like algorithm.

The initialization and generation of the desired factors a, b, Aaveragesupp, and minsupp
for the database D, are carried out in Step (1). Step (2) generates the set L1 from Apriori
(D, 1, minsupp), where Apriori(D, i , minsupp) generates a set of all frequent i-itemsets
in D for i ≥ 1 using the Apriori algorithm. Step (3) generates all sets Li for i ≥ 2 by a loop,
where Li is the set of all frequent i-itemsets in D generated in the i th pass of the algorithm,
and the end-condition of the loop is Li−1 = ∅. In Step (4), for i ≥ 2, all uninteresting i-item-
sets are pruned from the set Li . That is, for any itemset A ∈ Li , if |p(X ∪ Y)− p(X)p(Y)|
is less than mininterest for any X, Y ⊂ A, such that X ∪ Y = A and X

⋂
Y = ∅, then

A is an uninteresting frequent itemset, and it must be pruned from Li . Step (5) outputs the
frequent itemsets Frequentset in D, where each itemset A in Frequentset must satisfy
that f i pi(A) is true.

After all uninteresting frequent itemsets are pruned, the search space for i + 1 frequent
itemsets is reduced. The reduction in the number of frequent itemsets also reduces memory
requirements.

5.2 Identifying frequent itemsets by fuzzy estimation

Based on the fuzzy estimation in Sect. 4 and the support–confidence framework, we can
define that J is a potentially interesting itemset, denoted by pii(J)3, if and only if

3 Note that pii is only used for simplifying the description. It is not a function.

123

S. Zhang et al.

pii(J) = supp(J) > aF ∧
∃X, Y : X ∪ Y = J ∧

X ∩ Y = ∅ ∧
supp(X ∪ Y)/supp(X) ≥ mincon f ∧
supp(X ∪ Y) �≈ supp(X)supp(Y) (17)

where, aF is the left endpoint of the triangular membership function of F and F ∈ F_G O R P
is a fuzzy set obtained by the above fuzzy rules in Sect. 2; mincon f is the threshold of the
minimum confidence (for the purpose of association-rule analysis).

The search space can be greatly reduced if the extracted itemsets are restricted to itemsets
of potential interest. For this reason, we now construct an efficient algorithm for finding
itemsets of potential interest, named as FuzzyM S.

Algorithm 2 FuzzyMS

Input: D: data set; Fsupport: a fuzzy threshold (the user-specified mining require-
ment);

Output: I nterestset: the set of potentially interesting itemsets with supports and
membership values;

(1) //producing a sample SD of D and estimating the parameter Lean
let set SD← a sample of D;
let set ASavesupp ← the average support of itemsets in SD;

calculate LeanS ←
∑m

j=1 1(supp(i j)<ASavesupp)−∑m
j=1 1(supp(i j)>ASavesupp)

m ;
let set Lean← LeanS ;

(2) //estimating the parameters a, b and Aavesupp

let set Fsupport ← user’s mining requirement;
let set I nterestset ← ∅;
scan D;
let a← 1

|D| ;
let b← the maximum of the supports of 1-itemsets;
let set m ← average number of attributes per row;

let Aavesupp ← 1

m − k + 1

m∑

i=k

(
m

N
)i ;

Generate fuzzy concept of Lean according to LeanS ;
Generate ‘G O R P is F’ according to fuzzy concepts Fsupport and Lean;
let aF ← the left endpoint of the triangular membership function of F ;
let cF ← the center point of the triangular membership function of F ;

(3) //generating all potentially interesting 1-itemsets
let L1 ← {(A, supp(A), µF (supp(A))|A ∈ Apriori(D, 1, aF) i f pii(A)};
let I nterestset ← I nterestset ∪ {(A, supp(A), µF (supp(A))|A ∈ L1};

(4) //generating all candidate i-itemsets of potential interest in D
for (i = 2; Li−1 �= ∅; i ++) do

let Li ← Apriori(D, i, aF);
(5) //Pruning all uninteresting i-itemsets in Li

for any itemset A in Li do
if ¬pii(A) then

let Li ← Li − {A};

123

Computing the minimum-support for mining frequent patterns

end
let I nterestset ← I nterestset ∪ {(A, supp(A), µF (supp(A))|A ∈ Li };

end
(6) output the potentially interesting itemsets I nterestset in D;
(7) endall.

The algorithm FuzzyM S generates all itemsets of potential interest in the database D for
the given Fsupport . It is an Apriori-like algorithm without the actual minimum-support.

The approximation of the desired factor Lean for the database D is carried out by sam-
pling in Step (1). Step (2) firstly estimates the parameters a, b and Aavesupp . Secondly, the
fuzzy concept (∈ F_Lean) of Lean is generated according to LeanS . Thirdly, the fuzzy
concept F (∈ F_G O R P) of G O R P is determined according to Fsupport and Lean using
the fuzzy rules. Finally, the desired parameters aF and cF are obtained.

The remaining part of our algorithm (from Step (3) to (7)) is Apriori-like. Step (3) gen-
erates the set L1 from Apriori(D, 1, aF), where Apriori(D, i , aF) generates a set of all
potentially interesting i-itemsets in D for i ≥ 1 using the Apriori algorithm (with aF as the
minimum-support). Any 1-itemset A in L1 is appended to I nterestset if pii(A) is true. Step
(4) generates all sets Li for i ≥ 2 by a loop, where Li is the set of all potentially interesting
i-itemsets in D generated in the i th pass of the algorithm, and the end-condition of the loop is
Li−1 = ∅. In Step (5), for i ≥ 2, all uninteresting i-itemsets are pruned from the set Li . That
is, for any itemset A ∈ Li , if pii(A) is false, A must be pruned from Li . Any i-itemset A in
Li is appended to I nterestset if pii(A) is true. Step (5) outputs all potentially interesting
itemsets in I nterestset , where each itemset A in I nterestset must satisfy that pii(A) is
true and A is represented of the form (A, supp(A), µF (supp(A)).

After all uninteresting itemsets are pruned, the search space for i + 1 potentially interest-
ing itemsets is reduced. The reduction in the number of potentially interesting itemsets also
reduces memory requirements.

Generally speaking, the complexity of the checking property of f i pi and pii is exponen-
tial. Considering the process of rule generation, most systems focus on mining rules whose
right-hand side just has one item. Therefore, we limit the segmentation of any k-itemset to
a 1-itemset and (k − 1)-itemset. So in our experiments, the time complexity of checking is
linear with the length of the given itemsets.

6 Experiments

We have illustrated the use and statistical significance of our approach using an example
in the earlier sections. This section reports our experimental results. Our experiments were
conducted on a Dell Workstation PWS650 with 2 GB main memory and Win2000 OS. We
evaluate our algorithms using both real databases and synthesized databases. Below are two
sets of our experiments. Since our work is based on the Apriori framework, we compare our
approach with Apriori in this section.

6.1 Experiments for polynomial approximation

To illustrate the effectiveness of Algorithm DI M SF I P presented in Sect. 5.1, we choose
the tumor recurrence data from http://www.lib.stat.cmu.edu/datasets/tumor. The tumor data-
set has 86 records, each containing five items on average. Table 5 shows the results when
r_minsupp goes from 0.0 to 1.0 with a step of 0.1 and the minimum confidence is specified as

123

http://www.lib.stat.cmu.edu/datasets/tumor

S. Zhang et al.

Table 5 Results for the tumor dataset

r_minsupp min supp Apriori DIMSFIP

Itemsets Time cost Itemsets Time cost

0.0 1.16 4819 0.06s 1738 0.06s
0.1 1.69 280 0.00s 134 0.00s
0.2 2.21 280 0.00s 134 0.00s
0.3 2.74 104 0.00s 57 0.00s
0.4 3.26 104 0.00s 57 0.00s
0.5 3.79 55 0.00s 30 0.00s
0.6 14.89 10 0.00s 5 0.00s
0.7 25.99 6 0.00s 4 0.00s
0.8 37.10 3 0.00s 3 0.00s
0.9 48.20 2 0.00s 2 0.00s
1.0 59.30 1 0.00s 1 0.00s

Table 6 Results for the Mushroom dataset

r_minsupp min supp Apriori DIMSFIP

Itemsets Time cost Itemsets Time cost

0.0 0.01 – − – –
0.1 3.59 85883 11.86s 8663 3.36s
0.2 7.18 25308 5.66s 4150 2.19s
0.3 10.76 9070 3.13s 2272 1.48s
0.4 14.34 4522 2.53s 1431 1.10s
0.5 17.92 2621 1.54s 952 0.82s
0.6 33.82 175 0.27s 150 0.17s
0.7 49.72 25 0.05s 23 0.06s
0.8 65.62 5 0.00s 5 0.00s
0.9 81.52 2 0.00s 2 0.00s
1.0 97.42 1 0.00s 1 0.00s

80%. We first compute the corresponding supports by using the inverse mapping of g(x), and
then compare the numbers of generated itemsets and the times used, respectively, between the
Apriori algorithm and the DI M SF I P algorithm. We can see that the times are not different
because the database is too small. However, it is also shown that the mapping g(x) works
effectively, the threshold of minimum-support is normalized, and Algorithm DI M SF I P
does prune many itemsets.

Another larger dataset, Mushroom, from UCI at http://www.ics.uci.edu/∼mlearn, is also
used to show the efficiency of the DI M SF I P algorithm (see Table 6). Here, we also assume
that the minimum confidence is 80%. The dataset contains totally 8,124 records and 23 col-
umns. We only select the attributes from column 1 to column 16 and from column 21 to
column 23. Times are significantly reduced when the number of itemsets is somewhat large.

6.2 Experiments for fuzzy estimation

Firstly, we choose the Teaching Assistant Evaluation dataset from ftp://www.pami.sjtus.
edu.cn/. The Teaching Assistant Evaluation dataset has 151 records, and the average number
of attributes per row is 6. Table 7 shows the approximated values and real values of the
parameters.

123

http://www.ics.uci.edu/$sim $mlearn

Computing the minimum-support for mining frequent patterns

Table 7 The approximated values and real values of parameters

1_AveSupp AveSupp Lean a MaxSupp

Evaluate values 0.0562 0.0296 0.646 0.00662 0.848
Real values 0.0562 0.0255 0.630 0.00662 0.848

Table 8 Numbers of itemsets corresponding to different fuzzy concepts

Very low Low More or less low Medium More or less high High Very high

1972 1972 1032 328 189 150 1

Fig. 2 Running results The itemsets are right gradient.
The user’s motivation: more or less High.
The user-specified MinSupport: 0.8.
The actual MinSupport: 0.029371.
Notations:

4: Medium; 5: More or Less High
6: High; 7: Very High

19 3.3% [4:0.999][5:1.35e-003]
67 3.3% [4:0.999][5:1.35e-003]
68 4.0% [4:0.958][5:4.21e-002]
56 4.0% [4:0.958][5:4.21e-002]
7 5.3% [4:0.917][5:8.29e-002]
25 6.0% [4:0.876][5:0.124]
30 6.6% [4:0.876][5:0.124]
32 6.6% [4:0.876][5:0.124]
4 6.6% [4:0.876][5:0.124]

The numbers of potentially interesting itemsets corresponding to different fuzzy concepts
are shown in Table 8.

From Table 7, the approximated values of the parameters are very close to the real values.
This is because the data in the Teaching Assistant Evaluation dataset satisfies the conditions:
(1) all items are equally likely to occur, and (2) the items occur independent on each other.
From Table 8, we have seen the number of itemsets decreases from 1,032 to 328 when the
fuzzy threshold is changed from More or less Low to Medium.

For the Teaching Assistant Evaluation dataset, when the users’ mining requirement is
‘Mining large itemsets’, the running results are shown in Fig. 2.

Figure 2 was cut from the computer screen, where we have generated not only the support
of itemsets, but also the degree of itemsets belonging to fuzzy set G O R P = SH . This
provides more information than the support does, and thus provides a selective chance for
users when the interesting itemsets are applied to real applications.

To assess the efficiency, five synthesized databases are used. The main properties of the
five databases are as follows: the average number |T | of attributes per row is 5, the aver-
age size |I | of maximal frequent sets is 4, and |D| is the number of transactions. These
databases are DB1:T5.I4.D1K, DB2:T5.I4.D5K, DB3:T5.I4.D10K, DB4:T5.I4.D50K and
DB5:T5.I4.D100K. Let Fsupport = Medium. The efficiency is illustrated in Fig. 3.

123

S. Zhang et al.

Fig. 3 Running time

0

0.05

0.1

0.15

0.2

0.25

0.3

DB1 DB2 DB3 DB4 DB5

Database Name
A

dd
iti

on
al

 R
un

ni
ng

 T
im

e
(s

ec
) Time

Table 9 Evaluating the Mushroom dataset

AveSupp Lean a b

Evaluate values 0.013218 0.422743 0.000123 0.974151
Real values 0.011067 0.429965 0.000123 0.974151

Table 10 Results on the Mushroom dataset

User_Support Real_Support Running time (s) Itemset number

0.1 0.001651 30.38 1,142,524
0.2 0.002188 27.92 11,029,945
0.3 0.00574 21.33 738,871
0.4 0.005798 21.17 733,616
0.5 0.009492 14.31 442,855
0.6 0.012781 12.02 353,462
0.7 0.045249 3.36 68,745
0.8 0.316346 0.11 234
0.9 0.557746 0.09 14
1.0 0.964409 0.09 1

From Fig. 3, we can see that the largest increment of running time is 0.1 s when enlarging
the size of databases from 50 to 100K.

6.3 Analysis

Firstly, we choose the Mushroom data from ftp://www.pami.sjtus.edu.cn/. The Mushroom
dataset has 8,124 records, each containing 23 attributes on average, we select attributes from
1 to 16 and from 21 to 23. The sample ratio is 0.1 and the incremental time is 1.76 s.

We choose the Nursery data from ftp://www.pami.sjtus.edu.cn/. The Nursery dataset has
12,960 records, each containing nine attributes on average. The sample ratio is 0.1 and the
incremental time is 0.11 s.

We also perform experiments using data 9 question 2 aggregated test data file of KDD Cup
2002, downloaded from http://www.ecn.purdue.edu/KDDCUP/. The question 2 aggregated
test data has 62,913 records. The sample ratio is 0.05 and the incremental time is 3.97 s.

123

http://www.ecn.purdue.edu/KDDCUP/

Computing the minimum-support for mining frequent patterns

Table 11 Evaluating the Nursery dataset

AveSupp Lean a b

Evaluate values 0.006627 0.496451 0.000077 0.499961
Real values 0.006166 0.505252 0.000077 0.499961

Table 12 Results on the Nursery dataset

User_Support Real_Support Running time (s) Itemset number

0.1 0.000841 1.69 58,460
0.2 0.001062 1.66 57,793
0.3 0.002479 1.22 38,128
0.4 0.002916 1.08 32,032
0.5 0.004667 0.81 20,110
0.6 0.006409 0.67 14,612
0.7 0.023072 0.27 2,347
0.8 0.154978 0.13 65
0.9 0.286183 0.09 18
1.0 0.494962 0.06 2

Table 13 Evaluating a KDD-Cup-2002 dataset

AveSupp Lean a b

Evaluate values 0.001751 0.695501 0.000016 0.973201
Real values – – 0.000016 0.973201

Table 14 Results on a KDD-Cup-2002 dataset

User_Support Real_Support Running time (s) Itemset number

0.1 0.000218 44.78 1,458,522
0.2 0.000276 34.17 1,078,882
0.3 0.000652 16.83 410,618
0.4 0.000768 14.84 345,151
0.5 0.001230 10.88 204,077
0.6 0.001693 8.97 140,140
0.7 0.034132 3.98 4,092
0.8 0.293186 3.84 332
0.9 0.552239 3.84 60
1.0 0.963469 3.75 1

Number of transactions in database = 100,000; average transaction length = 25; number
of items = 1,000; large Itemsets:

Number of patterns = 10,000
Average length of pattern = 4
Correlation between consecutive patterns = 0.25
Average confidence in a rule = 0.75
Variation in the confidence = 0.1
The sample ratio is 0.05 and the incremental time is 5.31 s.
Number of transactions in database = 100,000; average transaction length = 15; number

of items = 1,000; large Itemsets:
Number of patterns = 10,000

123

S. Zhang et al.

Table 15 Evaluating a synthesized dataset D1

AveSupp Lean a b

Evaluate values 0.001415 0.552044 0.000010 0.172900
Real values – – 0.000010 0.172900

Table 16 Results on a synthesized dataset D1

User_Support Real_Support Running time (s) Itemset number

0.1 – − –
0.2 0.000221 117.91 1,962,902
0.3 0.000525 44.77 399,412
0.4 0.000619 38.80 309,041
0.5 0.000993 26.78 152,516
0.6 0.001368 21.28 96,758
0.7 0.007131 3.63 2,787
0.8 0.052860 2.25 131
0.9 0.098590 1.95 19
1.0 0.171171 1.78 1

Table 17 Evaluating a synthesized dataset D2

AveSupp Lean a b

Evaluate values 0.000610 0.643898 0.000010 0.106506
Real values – – 0.000010 0.106506

Table 18 Results on a synthesized dataset D2

User_Support Real_Support Running time (s) Itemset number

0.1 0.000080 59.94 1,415,150
0.2 0.000100 41.97 881,085
0.3 0.000230 18.75 266,338
0.4 0.000270 16.83 228,663
0.5 0.000430 12.83 144,428
0.6 0.000590 10.45 100,700
0.7 0.004140 2.03 1,185
0.8 0.032379 1.48 127
0.9 0.060618 1.23 15
1.0 0.105441 1.11 1

Average length of pattern = 4
Correlation between consecutive patterns = 0.25
Average confidence in a rule = 0.75
Variation in the confidence = 0.1
The sample ratio is 0.05 and the incremental time is 3.97s.
Number of transactions in database = 100,000; average transaction length = 15; number

of items = 10,000; large Itemsets:
Number of patterns = 10,000
Average length of pattern = 4
Correlation between consecutive patterns = 0.25
Average confidence in a rule = 0.75

123

Computing the minimum-support for mining frequent patterns

Table 19 Evaluating a synthesized dataset D3

AveSupp Lean a b

Evaluate values 0.001415 0.552044 0.000010 0.018015
Real values – – 0.000010 0.018015

Table 20 Results on a synthesized dataset D3

User_Support Real_Support Running time (s) Itemset number

0.1 0.000057 34.00 325,830
0.2 0.000071 30.33 290,637
0.3 0.000158 25.80 217,872
0.4 0.000185 24.64 201,891
0.5 0.000292 20.75 153,217
0.6 0.000400 17.53 116,978
0.7 0.001000 7.82 26,210
0.8 0.005694 1.78 419
0.9 0.010387 1.56 32
1.0 0.017834 1.50 1

Variation in the confidence = 0.1
The sample ratio is 0.05 and the incremental time is 11.98s.
From the above observations, our approach is effective, efficient and promising.

7 Conclusions

When users have stated their mining requirements for frequent itemsets, the term ‘frequent’
is already a threshold from a fuzzy viewpoint. However, existing Apriori-like algorithms still
require users to specify the actual minimum-support appropriate to the databases to be mined.
Unfortunately, it is impossible to specify the minimum-support appropriate to the database
to be mined if users are without knowledge concerning the database. On the other hand, even
though a minimum-support is explored under the supervision of an experienced miner, we
cannot examine whether or not the results (mined with the hunted minimum-support) are
really what the users want.

In this paper, we have proposed a computational strategy for addressing the issue of setting
the minimum-support. Our mining strategy is different from existing Apriori-like algorithms
because our mining strategy allows users to specify their mining requirements in commonly
used modes and our algorithms (polynomial approximation and fuzzy estimation) automati-
cally convert the specified threshold into actual minimum-support (appropriate to a database
to be mined). To evaluate our approach, we have conducted some experiments. The results
have demonstrated the effectiveness and efficiency of our mining strategy.

We would like to note that a different membership function can influence our experimental
results. In our experiments in this paper, we just selected a simple function for the input and
output variables. From the results, we can see that even the simple function worked. So we
are confident that if more appropriate functions are applied, the results will be even more
promising. It would be an interesting topic to explore how the membership function will
influence the results and find out what kind of function is more suitable for this field. That is
the next step that we are going to do.

123

S. Zhang et al.

Appendix

Proof As the proof of Theorem 1, we will now show how we construct this polynomial
function. For U , suppose the polynomial function is

F(x) = F1(x)+ (x − x1)(x − x2)G2(x)

where

F1(x) = (x − x2)

(x1 − x2)
G1(x1)+ (x − x1)

(x2 − x1)
G1(x2)

Now (x − x1)(x − x2)G2(X) represents a remainder term, and the values of G2(x) at the
other points can be solved as,

G2(xi) = G1(xi)− F1(xi)

(xi − x1)(xi − x2)

where i = 3, 4, . . . , m.

If |(G2(x3) + G2(x4) + · · · + G2(xm))(x − x1)(x − x2)| < δ, where δ > 0 is a small
value determined by an expert, or, m − 2 ≤ 0, then we end the procedure, and we obtain
F(x) = F1(x). The term G2(x) is neglected. Otherwise, we go on to the above procedure
for the remaining data as follows. For the data,

EX x3 x4 · · · xm

G2(x) G2(x3) G2(x4) · · · G2(xm)

let

G2(x) = F2(x)+ (x − x3)(x − x4)G3(x)

where

F2(x) = (x − x4)

(x3 − x4)
G2(x3)+ (x − x3)

(x4 − x3)
G2(x4)

And (x− x1)(x− x2)(x− x3)(x− x4)G3(x) is the remaining term. Then the values of G3(x)

at the other points can be solved as,

G3(xi) = G2(xi)− F2(xi)

(xi − x3)(xi − x4)

where i = 5, 6, . . . , m.
If (G3(x5)+G3(x6)+· · ·+G3(xm))(x− x1)(x− x2)(x− x3)(x− x4) < δ, where δ > 0

is a small value determined by an expert; or if m − 4 ≤ 0, then the procedure is ended, and
obtain F(x) = F1 + (x − x1)(x − x2)F2(x), where the term G3(x) is neglected. Otherwise,
we carry on with the above procedure for the remaining data.

We can obtain a function after repeating the above procedure several times. However,
the above procedure is repeated N times (N ≤ [m/2]) at most. Finally, we can gain an
approximation function as follows.

F(x) = F1(x)+ G2(x)(x − x1)(x − x2)

= F1(x)+ (F2(x)+ G3(x)(x − x3)(x − x4))(x − x1)(x − x2)

· · ·
= F1(x)+

m∑

i=1

(Fj+1(x)(

2i∏

j=1

(x − x j))) (18)

��

123

Computing the minimum-support for mining frequent patterns

References

1. Aggarawal C, Yu P (1998) A new framework for itemset generation. In: Proceedings of the ACM PODS,
pp 18–24–25

2. Agrawal R, Imielinski T, Swami A (1993) Mining association rules between sets of items in large data-
bases. In: Proceedings of the ACM SIGMOD conference on management of data, pp 207–216

3. Agrawal R, Shafer J (1996) Parallel mining of association rules. IEEE Trans Knowl Data Eng 8(6):
962–969

4. Agrawal R, Srikant R (1994) Fast algorithms for mining association rules. In: Proceedings of international
conference on very large data bases, pp 487–499

5. Bayardo B (1998) Efficiently mining long patterns from databases. In: Proceedings of ACM international
conference on management of data, pp 85–93

6. Brin S, Motwani R, Silverstein C (1997) Beyond market baskets: generalizing association rules to
correlations. In: Proceedings of the ACM SIGMOD international conference on management of data,
pp 265–276

7. Burdick D, Calimlim M, Gehrke J (2001) MAFIA: a maximal frequent itemset algorithm for transac-
tional databases. In: Proceedings of the 17th international conference on data engineering, Heidelberg,
pp 443–452

8. Cohen E, Datar M, Fujiwara S, Gionis A, Indyk P, Motwani R, Ullman JD, Yang C (2001) Finding
interesting associations without support pruning. IEEE Trans Knowl Data Eng 13(1): 64–78

9. Dong G, Li J (1999) Efficient mining of emerging patterns: discovering trends and differences. In: Pro-
ceedings of the 5th ACM SIGKDD international conference on knowledge discovery and data mining,
San Diego, pp 43–52

10. El-Hajj M, Zaiane O (2003) Inverted matrix: efficient discovery of frequent items in large datasets in
the context of interactive mining. In: Proceedings of the 9th ACM SIGKDD international conference on
knowledge discovery and data mining, Washington DC, pp 24–27

11. Han E, Karypis G, Kumar V (2000) Scalable parallel data mining for association rules. IEEE Trans Knowl
Data Eng 12(3): 337–352

12. Han J, Pei J, Yin Y (2000) Mining frequent patterns without candidate generation. In: Proceedings of the
ACM SIGMOD international conference on management of data, pp 1–12

13. Han J, Pei J, Yin Y, Mao R (2004) Mining frequent patterns without candidate generation: a frequent-
pattern tree approach. Data Mining Knowl Discov 8(1): 53–87

14. Han J, Wang J, Lu Y, Tzvetkov P (2002) Mining Top-K frequent closed patterns without minimum support.
In: Proceedings of the 2002 IEEE international conference on data mining, pp 211–218

15. Hipp J, Guntzer U (2002) Is pushing constraints deeply into the mining algorithms really what we want?
SIGKDD Explor 4(1):50–55

16. Li W, Han J, Pei J (2001) CMAR: accurate and efficient classification based on multiple class-association
rules. In: Proceedings of the 2001 IEEE international conference on data mining, San Jose, California,
pp 369–376

17. Lin D, Kedem Z (1998) Pincer-search: a new algorithm for discovering the maximum frequent set. In:
Proceedings of the 6th international conference on extending database technology (EDBT’98), Valencia,
pp 105–119

18. Liu B, Hsu W, Ma Y (1998) Integrating classification and association rule mining. In: Proceedings of the
4th international conference on knowledge discovery and data mining, New York, pp 80–86

19. Liu H, Motoda H (2001) Instance selection and construction for data mining. Kluwer, Dordrecht
20. Omiecinski ER (2003) Alternative interest measures for mining associations in databases. IEEE TKDE

15(1): 57–69
21. Park J, Chen M, Yu P (1995) An effective hash based algorithm for mining association rules. In: Proceed-

ings of the ACM SIGMOD international conference on management of data, pp 175–186
22. Pei J, Han J, Lakshmanan L (2001) Mining frequent itemsets with convertible constraints. In: Proceedings

of 17th international conference on data engineering, Heidelberg, pp 433–442
23. Pei J, Han J, Lu H, Nishio S, Tang S, Yang D (2001) H-Mine: hyper-structure mining of frequent patterns

in large databases. In: Proceedings of the 2001 IEEE international conference on data mining (ICDM’01),
San Jose pp 441–448

24. Piatetsky-Shapiro G, Steingold S (2000) Measuring lift quality in database marketing. SIGKDD Explor
2(2): 76–80

25. Roddick JF, Rice S (2001) What’s interesting about cricket?—on thresholds and anticipation in discovered
rules. SIGKDD Explor 3: 1–5

26. Savasere A, Omiecinski E, Navathe S (1995) An efficient algorithm for mining association rules in large
databases. In: Proceedings of international conference on very large data bases, pp 688–692

123

S. Zhang et al.

27. Silberschatz A, Tuzhilin A (1996) What makes patterns interesting in knowledge discovery systems. IEEE
Trans Knowl Data Eng 8(6): 970–974

28. Silverstein C, Brin S, Motwani R, Ullman J (1998) Scalable techniques for mining causal structures. In:
Proceedings of ACM SIGMOD workshop on research issues in data mining and knowledge discovery,
pp 51–57

29. Srikant R, Agrawal R (1997) Mining generalized association rules. Future Gener Comput Syst 13: 161–
180

30. Steinbach M, Tan P, Xiong H, Kumar V (2004) Generalizing the notion of support. KDD04 689–694
31. Tan P, Kumar V, Srivastava J (2002) Selecting the right interestingness measure for association patterns.

In: Proceedings of the 8th international conference on knowledge discovery and data mining, Edmonton,
pp 32–41

32. Wang J, Han J (2004) BIDE: efficient mining of frequent closed sequences. In: Proceedings of the 20th
international conference on data engineering, Boston, pp 79–90

33. Wang K, He Y, Cheung D, Chin F (2001) Mining confident rules without support requirement. In: Pro-
ceedings of the 10th ACM international conference on information and knowledge management (CIKM
2001), Atlanta

34. Wang K, He Y, Han J (2003) Pushing support constraints into association rules mining. IEEE Trans Knowl
Data Eng 15(3): 642–658

35. Webb G (2000) Efficient search for association rules. In: Proceedings of international conference on
knowledge discovery and data mining pp 99–107

36. Wu X, Zhang C, Zhang S (2004) Efficient mining of both positive and negative association rules. ACM
Trans Inf Syst 22(3): 381–405

37. Xu Y, Yu J, Liu G, Lu H (2002) From path tree to frequent patterns: a framework for mining frequent
patterns. In: Proceedings of 2002 IEEE international conference on data mining (ICDM’02), Maebashi
City, Japan, pp 514–521

38. Zaki M, Ogihara M (1998) Theoretical foundations of association rules. In: Proceedings of the 3rd ACM
SIGMOD’98 workshop on research issues in data mining and knowledge discovery, Seattle, pp 85–93

39. Zaki M, Parthasarathy S, Ogihara M, Li W (1997) New algorithms for fast discovery of association rules.
In: Proceedings of the 3rd international conference on knowledge discovery in databases (KDD’97),
Newport Beach, pp 283–286

40. Zhang C, Zhang S (2002) Association rules mining: models and algorithms. Publishers in Lecture Notes
on Computer Science, vol 2307, Springer Berlin, p. 243

41. Zhang C, Zhang S, Webb G (2003) Identifying approximate itemsets of interest in large databases. Appl
Intell 18: 91–104

Authors’ biographies

Shichao Zhang is a professor and the chair of Faculty of Computer
Science and Information Technology at the Guangxi Normal University,
Guilin, China. He holds a PhD degree in Computer Science from Deakin
University, Australia. He is also a principal research fellow of the Faculty
of Information Technology at UTS, Australia. His research interests in-
clude data analysis and smart pattern discovery. He has published about
40 international journal papers, including 7 in IEEE/ACM Transactions,
2 in Information Systems, 6 in IEEE magazines; and over 40 international
conference papers, including 3 AAAI, 2 ICML, 1 KDD, and 1 ICDM pa-
pers. He has won 4 China NSF/863 grants, 1 Overseas-Returning High-
level Talent Research Program of China Hunan-Resource Ministry, 2
Australian large ARC grants and 2 Australian small ARC grants. He is
a senior member of the IEEE; a member of the ACM; and serving as
an associate editor for IEEE Transactions on Knowledge and Data En-
gineering, Knowledge and Information Systems, and IEEE Intelligent
Informatics Bulletin.

Xindong Wu is a Professor and the Chair of the Department of Computer Science at the University of Vermont.
He holds a Ph.D. in Artificial Intelligence from the University of Edinburgh, Britain. His research interests
include data mining, knowledge-based systems, and Web information exploration. He has published exten-
sively in these areas in various journals and conferences, including IEEE TKDE, TPAMI, ACM TOIS, DMKD,
KAIS, IJCAI, AAAI, ICML, KDD, ICDM, and WWW, as well as 14 books and conference proceedings.

123

Computing the minimum-support for mining frequent patterns

Dr. Wu is the Editor-in-Chief of the IEEE Transactions on Knowledge and Data Engineering (by the IEEE
Computer Society), the founder and current Steering Committee Chair of the IEEE International Conference on
Data Mining (ICDM), an Honorary Editor-in-Chief of Knowledge and Information Systems (by Springer), and
a Series Editor of the Springer Book Series on Advanced Information and Knowledge Processing (AI&KP). He
was Program Committee Chair for ICDM ’03 (the 2003 IEEE International Conference on Data Mining) and is
Program Committee Co-Chair for KDD-07 (the 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining). He is the 2004 ACM SIGKDD Service Award winner, the 2006 IEEE ICDM
Outstanding Service Award winner, and a 2005 Chaired Professor in the Cheung Kong (or Yangtze River)
Scholars Programme at the Hefei University of Technology sponsored by the Ministry of Education of China
and the Li Ka Shing Foundation. He has been an invited/keynote speaker at numerous international conferences
including IEEE EDOC’06, IEEE ICTAI’04, IEEE/WIC/ACM WI’04/IAT’04, SEKE 2002, and PADD-97.

Chengqi Zhang has been a Research Professor of Information Tech-
nology at University of Technology, Sydney (UTS) since 2001. He re-
ceived a Ph.D. degree from the University of Queensland, Brisbane and
a Doctor of Science (higher doctorate) degree from Deakin University,
Australia, all in Computer Science. His research interests include Busi-
ness Intelligence and Multi-Agent Systems. He has published more than
200 refereed papers and three monographs, including a dozen of high
quality papers in renowned international journals, such as, Artificial In-
telligence, Information Systems, IEEE Transactions, and ACM Trans-
actions. He has been invited to present six Keynote speeches in inter-
national conferences before. He has been elected as the Chairman of
Australian Computer Society’s National Committee for Artificial Intel-
ligence from 2006. He has also been elected as the Chairman of the
Steering Committee of KSEM (International Conference on Knowledge
Science, Engineering, and Management) in August 2006. He has served
as General Chair, PC Chair, or Organizing Chair for six international

Conferences and a member of Program Committees for many international or national conferences. He is
an Associate Editors for three international journals, including IEEE Transactions on Knowledge and Data
Engineering. His personal web page is at http://www-staff.it.uts.edu.au/ chengqi/.

Jingli Lu is a Ph.D. candidate of the Institute of Information Sciences and Technology at Massey University,
New Zealand. She received a Bachelor degree in Computer Science from Hebei University, China, in 2001;
and a Master degree in Artificial Intelligence from Guangxi Normal University, China, in 2004. Her research
interests include data mining and machine learning. She has published several papers in international journals
and conference.

123

http://www-staff.it.uts.edu.au/~chengqi/

	Computing the minimum-support for mining frequent patterns
	Abstract
	Introduction
	Problem statement
	The distribution of itemsets
	Parameter estimation
	Computationally approximating actual minimum-support by a polynomial function
	Simplifying the polynomial function
	Estimating actual minimum-support by fuzzy techniques
	Fuzzy rules
	Generating interesting itemsets
	An example
	Algorithm design
	Identifying frequent itemsets by polynomial approximation
	Identifying frequent itemsets by fuzzy estimation
	Experiments
	Experiments for polynomial approximation
	Experiments for fuzzy estimation
	Analysis
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

