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Abstract—BRIEF emerged as a novel alternative to conven-
tional floating-point-based descriptors such as SIFT or SURF. In
contrast to these descriptors, BRIEF is a descriptor represented
by a binary number offering two main advantages: low memory
footprint and fast descriptor comparison. These qualities make
it a suitable descriptor to be implemented on a hardware ar-
chitecture, where the comparison operation can be implemented
efficiently via a parallel scheme. However, the construction of
BRIEF involves a sequential operation in the form of a set
of pairwise tests on the image intensities, and as consequence,
sequential memory access is necessary. In this paper, we propose
a novel way to construct the BRIEF descriptor by arranging the
pairwise tests such that data retrieval from memory is exploited,
thus accelerating the descriptor construction up to 4 times when
compared to the sequential way.

I. INTRODUCTION

Over the last years, local feature point descriptors proved to
be efficient for several applications such as: object recognition,
3D reconstruction, image retrieval, and camera localization.
Several of these computer vision tasks are now at the core of
many real-time systems, as a consequence, there is a growing
need to accelerate these tasks in order to achieve real-time
performance. FPGA-based architectures have emerged as a
way of bridging the gap in between software implementations
and dedicated hardware. Thus, vision tasks can be broken down
in their essential components such that some of these can be
implemented on a hardware version that can be run on an
FPGA.

Visual descriptors are one of those essential components
in computer vision tasks, however, substantive processing time
has to be invested in their construction. For instance, one of the
most popular descriptor is the SIFT (Scale-Invariant Feature
Transform) descriptor [1], albeit not very suitable for real-time
performance because of the complex calculations that have to
be carried out in order to construct this descriptor. Alterna-
tives to SIFT have been proposed such as SURF (Speeded
Up Robust Features) [2] and HOG (Histogram of Oriented
Gradients) [22], among others, aiming at reducing processing
time, whilst maintaining similar discrimination capabilities.
Real-time performance has been achieved by means of FPGA-
based hardware architecture such as those reported in [15],
[16], [17], [18], [19] for SIFT and those in [11], [12], [13],
[14] for SURF.

The BRIEF (Binary Robust Independent Elementary Fea-
tures) descriptor [3] emerged as an alternative to histogram-
based or floating-point-based descriptors such as SIFT or

SURF. In contrast to these descriptors, BRIEF is a binary
number constructed through a less complex process, this is,
out of the response of a set of pairwise tests applied to the
image intensities; with the caveat that this descriptor losses
some discrimination power, the main advantages are two fold:
(i) low memory footprint; (ii) fast comparison operation, which
can be efficiently implemented on dedicated hardware-level
processor instructions.

Despite the fact that comparison operations for BRIEF
are faster than those for floating-point-based descriptors, the
pairwise tests used in BRIEF involve sequential memory
access, hence its construction is sequential. Thus, motivated by
the need to reduce processing time, in this paper we propose
a novel way to construct BRIEF descriptors by exploiting
data memory organization. For the latter, the key idea is to
arrange pairwise tests following a format that enables us to take
advantage of memory accessing scheme. Under this approach,
pairwise tests can be carried out 4 times faster than in the
usual sequential way of the conventional BRIEF descriptor.

In order to describe the proposed approach, the rest of
the paper is organised as follows. In the next section, related
work is presented. Section III describes BRIEF algorithm and
a learning method to construct a discriminant descriptor. Both,
data memory organization and memory access scheme are
described in Section IV. Section V describes the proposed
parallel FPGA architecture. An analysis of experimental results
is drawn in Section VI. Finally, conclusions and future work
are presented in Section VII.

II. RELATED WORK

BRIEF requires far less storage capacity and offers much
faster matching speed than conventional floating-point descrip-
tors such as SIFT and SURF. However, these latter proved to
be robust against visual transformations such as scaling and
rotation transformations. BRIEF is not robust against these
transformation and therefore, some approaches were proposed
in order to add robustness to BRIEF.

From the above, Ethan Rublee et al. proposed a BRIEF
descriptor that is invariant to rotation called ORB (Oriented
FAST and Rotated BRIEF) [4], the main contributions in this
work lies in adding an orientation component to the FAST
[6] feature detector and proposing a learning method for
choosing pairwise tests with good discrimination power and
low correlation response among them.



Similar to ORB, in [20] Leutenegger et al. proposed a
binary descriptor invariant to rotation and scale. It uses the
AGAST corner detector [21], which is an improvement of
FAST [6]. This binary descriptor is constructed by pixel
comparisons whose distribution forms a concentric circle sur-
rounding the feature. More recently, in [23], a binary descriptor
based on the human retina was proposed, it received the name
of FREAK (Fast Retina Keypoint).

Hardware implementation of binary descriptors have been
proposed in [10], [24], [25], [26]. However, in contrast to our
work, these approaches implement a sequential scheme for the
descriptor construction.

III. BRIEF DESCRIPTOR

BRIEF is a feature descriptor that uses binary tests between
pixels in a smoothed image patch. More specifically, if p is a
smoothed image patch, corresponding binary test τ is defined
by:

τ(p;x, y) :=

{
1 if p(x) < p(y)
0 otherwise

(1)

where p(x) is the intensity of p at a point x. The feature is
defined as a vector of n binary tests:

fnd(p) :=
∑

1<i≤1

2i−1τ(p;xi, yi) (2)

In order to construct a BRIEF descriptor that presents good
performance in terms of speed, storage, efficiency, and recog-
nition rate, it is important to take into account two elements:
descriptor’s length and binary tests distribution. Descriptors of
128,256, and 512 bits proved to be efficient. For this reason,
the proposed architecture is able to obtain BRIEF descriptor
vectors of up to 256 bits. On the other hand, many different
types of distributions were considered in [3] for selecting nd
test locations. Figure 1 taken from [3] shows the explored
distributions, where experimental results reported that G III
gives the most discriminant BRIEF descriptor.

Fig. 1. Several explored binary tests distributions (figure taken from [3].

A. Learning good binary features

Rublee et al. [4], pointed out two properties presented in
BRIEF, discriminative and uncorrelated binary tests. These
properties are assessed with two statistic measures, mean and
covariance respectively. A mean near 0.5 per descriptor’s bit,
gives the maximum sample variance, and as a consequence
discriminative descriptors. On the other hand, a minimum co-
variance between BRIEF vector indicates uncorrelated binary
tests. Hence, in [3], a typical Gaussian BRIEF pattern (see
Figure 1,G III) was reported as the best binary test distribution.

Taking the above into account, a learning method for
choosing a good set of binary tests was developed in [4].
Generically, the algorithm consists of extracting m keypoints
from a set of images using FAST [6] or its variants [7]. Then,
a binary test is computed for all possible pixel combinations.
The resulting vector is ordered by their distance from a mean
of 0.5, from which a greedy search is done with the purpose of
selecting n uncorrelated tests. As a result, a BRIEF descriptor
that accomplishes the desired properties is obtained. In order to
validate the proposed architecture algorithmically, a binary test
distribution is chosen using this method. In the next section,
the proposed memory scheme is drawn in detail.

IV. MEMORY SCHEME

A. Image data allocation

As we mentioned, BRIEF algorithm implies FAST points
detection and binary tests between pixels in a smoothed
image patch. Therefore, it is assumed that FAST points were
previously computed and stored in a single port RAM, and an
8-bit smoothed image is stored in a dual port RAM.

On FPGAs’ RAM blocks, memory data is allocated in 32-
bit words. Accordingly, a smoothed gray scale image is allo-
cated in memory by clustering 4 pixels per memory address,
in such a way that 8 image pixels are retrieved per clock cycle.
Figure 2 clarifies the above mentioned.

Fig. 2. a) Image with m x n resolution, b) Image memory organization

In order to obtain the memory address (l) of a specific 32-
bit word. It is necessary to know the pixel’s location within an
image, which is given by its corresponding (x, y) coordinates,
for an image with resolution of m×n. This relation is described



by the following equation:

l = ((x− 1)(
n

4
)) +

y − 1

4
(3)

On the other hand, corner key points found by FAST
method are allocated in a single port RAM. The first 16
memory word bits refers to the row address and the remainder
to the column address. Thus, dual port and single port memory
depth relies on the image size and the number of FAST points
detected, respectively.

B. Memory access

Considering this scheme of image data allocation. A fast
and relatively simple scheme is proposed to help avoiding
sequential memory access to compute binary tests per image
patch. The proposed memory accessing scheme exploits image
data allocation in order to construct a BRIEF descriptor
keeping both qualities explored in [4]: discriminative and
uncorrelated binary tests.

The proposed scheme, consists of selecting 88 image pixels
grouped in 22 memory words located within a patch around a
key point value, such as in Figure 3. Image pixels location, and
therefore their corresponding memory allocation, is delimited
by a 24 × 24 image patch. Size of the image patch area is
determined by the fact that pixels near key points offer relevant
information. A 3 pixels offset is considered for dealing with
image patch boundaries.

From selected memory words, a set of binary tests is
determined based on the method described in Section II, with
a set of 2k FAST points extracted from images of the ZuBuD
set [5]. Figure 4 shows a selection example of 32 out of
256 binary tests obtained according to the proposed learning
method reported in [4]. In this graphical example, random
positions within 4 pixels blocks and among 22 of them are
chosen in order to provide information diversity when building
the binary descriptor.

Fig. 3. Image memory words location for each keypoint.

In order to assess the binary test quality, the mean of every
feature bit is calculated for all 2k samples. This measure is
shown in Figure 5, where the blue line points out that the
mean of each k-bit descriptor is close to 0.5, this numerical

metric indicates that the obtained binary test vectors are good
enough for discrimination.

Fig. 4. Example of 32 binary tests via the learning method proposed in [4].

Fig. 5. Bit feature mean over 2k samples.

The proposed memory access scheme helps to construct a
binary test distribution suitable to compute a quality BRIEF
descriptor for discrimination while taking advantage of the re-
trieved image data. In the next section, the proposed hardware
architecture for acceleration computation of BRIEF descriptors
is described in detail.

V. PROPOSED ARCHITECTURE

Previously, it has been detailed the proposed memory
access scheme that significantly reduce the number of memory
accesses needed for selecting a good set of binary tests. Mo-
tivated by the latter, we propose a parallel FPGA architecture
for computing BRIEF descriptors with length of up to 256 bits.
The proposed architecture has been developed using Xilinx’s
System Generator for Simulink and Vivado version 2014.2 and
Matlab version 2014a.

An overview of the proposed parallel architecture is drawn
by a block diagram in Figure 6, where FAST points and a
smoothed image are stored in a single port and a dual port
RAM memory, respectively. The following steps describe the
process for calculating BRIEF descriptors:



Fig. 6. BRIEF descriptor FPGA design: Overview.

1) The first corner location is read by the address
control.

2) The memory address of a 4-pixels block (see Figure
3) is computed by the address generator block.

3) 4-pixels blocks are stored in a buffer.
4) Once the buffer is filled, binary tests are computed

in parallel.

In the next subsections, functional description of every
module presented in Figure 6 is provided.

A. Address control block

Address control block aims at synchronizing the entire
process, as well as loading all 4-pixels blocks in the buffer.
The design of a Mealy state machine is shown in Figure 7.

Fig. 7. Mealy state machine designed to model address control behaviour.

A Mealy state machine consist of five states. First, an
address generator flag and a corresponding key point memory
address are initialized in S0. After, a corresponding key point
is chosen by increasing the corner address counter in S1.
In S2, an address generator flag is increased by one unit,

in order to load 22 4-pixels image blocks corresponding to
current key point in the buffer. The dual port RAM memory is
synchronized with the address control block by a stall. Finally,
in S4, two 4-pixels image blocks are sent to the buffer. S2,S3
and S4, can be seen as a loop iteration that stops after 11
clock cycles when 22 4-pixels image blocks have been sent to
the buffer. After that, the state machine returns to S0 and the
process is repeated for the next key points.

B. Address generator block

In Section IV, it has been demonstrated that only 22
memory locations, corresponding to 4-pixels image blocks are
needed for choosing a discriminative and uncorrelated set of
256 binary tests. In this way, the memory address for each
key point location is computed by the address generator block.
Since a key point location is known, memory addresses showed
in Figure 3 are computed by adding predetermined constants to
the memory address of a FAST point. It is important to mention
that these constant values depend on an address generator’s
flag.

In order to reduce the amount of hardware resources needed
to compute the address of a 4-pixels image block, only integer
operations are implemented (additions and multiplications),
while divisions are implemented by a 2-bit shifter.

C. Buffer and demux

A shift register is implemented with the purpose of tem-
porarily store all 4-pixels image blocks corresponding to each
FAST point before the binary test is carried out in parallel.
Thus, the buffer is designed using a cascade of 21 D-flip-flops
with an enable input (see Figure 8). Since 4 pixels are clustered
in one memory word, a demultiplexer is used to split each 32-
bit word in 4 pixels of 8 bits, see Figure 9. In consequence,
once the buffer is filled, 21 demultiplexers are placed to split
22 4-pixels blocks in 88 pixels.



Fig. 8. Temporary storage via a shift register.

Fig. 9. 32-bit to 8-bit word demultiplexer.

D. Binary test block

Finally, binary tests are computed in parallel by imple-
menting 256 comparators. Corresponding inputs are previously
defined based on the binary tests distribution described in
Section IV. As a final step, the binary test result can be stored
in a RAM memory block to be used for data post-processing
such as feature matching.

VI. RESULTS

The architecture is synthesized for Xilinx Zynq XC7Z020
SoC platform. A 320× 240 smoothed image is stored in dual
port RAM, and 50 FAST points are stored in a single port
RAM. Figure 6 gives an overview of the FPGA architec-
ture which is assessed in terms of hardware resources and
throughput. Table I shows the number of hardware resources
used to compute a 256-bit BRIEF descriptor. A minimum
programmable logic area is required for the whole architecture,
resulting in a compact module. Calculating BRIEF descriptors
is a sub-task common to complex computer vision operations.
The proposed architecture is a self-contained module that can
be instantiated within a more complex vision machine system.

On the other hand, as opposed to [10], a sequential memory
access is avoided. A 256-bit BRIEF descriptor is calculated in
15 clock cycles, thus accelerating the descriptor construction
up to 4 times. Therefore, since clock frequency is 125 MHz,
for the synthesized device, the proposed hardware architecture
is capable of computing BRIEF descriptors of 50 key points
in 6 ms.

The most important highlights from previous results are

Resource Utilization Available Utilization %
Slice LUTs 478 17600 2.72

Slice Registers 397 35200 1.13
Memory 19 60 31.67

DSP 1 80 1.25
TABLE I. HARDWARE RESOURCES .

twofold: i) Since the proposed architecture requires a reduced
amount of hardware resources, it can be integrated within
other cores such as: feature detector, feature matching or
preprocessing image stage, ii) Tests distribution chosen for
FPGA architecture design is based on a data memory orga-
nization commonly used, that helps to notably reduce the rate
for computing a 256-bit BRIEF descriptor, while preserving
descriptor quality. From this analysis, our work is highly
motivated by the scenario where an image is preprocessed and
FAST points previously computed by a computer processing
unit using OpenCV[9] or by a module designed in Vivado HLS
using Xilinx video libraries [8]. As a final note, a comparative
table is avoided, due to hardware architectures presented in
related work reported results of the whole architecture, and we
are only focusing on accelerating the construction of BRIEF
descriptors.

VII. CONCLUSION

The proposed hardware architecture is designed to calculate
256-bit BRIEF descriptors based on a predefined pattern of
binary tests. This approach contributes to reduce the number
of memory accesses required to obtain the descriptor while
maintaining its discrimination quality. This latter is assessed
with the same methodology proposed by Rublee et. al. in [4].
Moreover, by following the same scheme, this architecture can
be scaled to compute 512-bit descriptors by increasing the
number of 4-pixels image blocks around the key point. Future
work includes the FPGA implementation of FAST feature de-
tector invariant to orientation together with a feature matching
stage, and their adjustment with the current proposed archi-
tecture. It is also considered increasing flexibility through the
address generator module, by enabling calculation of pixels’
blocks distributions that ensure discriminant descriptors within
key point patches, without requiring predefined locations.
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