
Advances in Electrical and Computer Engineering Volume 14, Number 2, 2014

An Area Efficient Composed CORDIC
Architecture

Francisco AGUIRRE-RAMOS, Alicia MORALES-REYES, Rene CUMPLIDO, Claudia FEREGRINO-URIBE
Instituto Nacional de Astrofisica, Optica y Electronica, 72840, Puebla, Mexico

a.morales@inaoep.mx

1Abstract—This article presents a composed architecture for

the CORDIC algorithm. CORDIC is a widely used technique to
calculate basic trigonometric functions using only additions
and shifts. This composed architecture combines an initial
coarse stage to approximate sine and cosine functions, and a
second stage to finely tune those values while CORDIC
operates on rotation mode. Both stages contribute to shorten
the algorithmic steps required to fully execute the CORDIC
algorithm. For comparison purposes, the Xilinx CORDIC
logiCORE IP and previously reported research are used. The
proposed architecture aims at reducing hardware resources
usage as its key objective.

Index Terms—digital systems, computer architecture, field
programmable gate arrays, signal processing, circuit
optimization.

I. INTRODUCTION

Complex digital systems use trigonometric functions as a
fundamental component. These functions are widely used in
many areas including digital image and signal processing,
cryptography and watermarking. Several approaches have
been developed to calculate trigonometric functions, most of
them based on polynomial or rational approximations which
are not easily mapped into hardware architectures.

CORDIC (Coordinate Rotation Digital Computer) is an
iterative algorithm designed to calculate trigonometric
functions using basic addition and shift operations,
characteristic that makes it suitable for hardware
architectures design [1,2]. The algorithm can be configured
to operate in vectoring or rotation mode in several
coordinate systems, providing the possibility to calculate
hyperbolic functions. In rotation mode, a vector is iteratively
rotated by an angle, to calculate a final vector corresponding
to the sine and cosine functions of an input angle. A new
vector is obtained every iteration, after a small rotation
(micro-rotation). Each rotation has a specific direction
which is calculated every step based on the sign of an
angular variable. In vectoring mode, the algorithm follows
similar steps but it also allows calculating divisions and
logarithmic functions.

At an application level, CORDIC is widely used in the
signal processing arena [3-6]. In [3], CORDIC
compensation is implemented instead of using
multiplications, helping to significantly reduce hardware
complexity. In [4], CORDIC algorithm is included in an
efficient filtering design where power of two coefficients are
calculated. CORDIC algorithm is applied directly in the
implementation of a Givens rotation module used in [5],

improving computational time and decreasing complexity.
In [6] an adaptive CORDIC rotator with constant scaling
factor is proposed aiming to reduce resources usage.

This work was supported partially by the Mexican National Council for

Science and Technology (CONACYT) through grant number 261243.

Researchers have focused on improving the CORDIC
algorithmic core and its implementation. Algorithmic
improvements commonly consist in reducing the number of
rotations [7-8], modifying the scaling factor [9-10] or
changing the determination of rotations direction [8,11,12].
On the other hand, most popular improvements in the
hardware arena are related to operational frequency,
throughput and occupied area [13].

In this paper, a composed architecture is proposed, it
consists in combining a Lookup Table (LUT) with a rotation
prediction and a CORDIC pipeline modules. The
algorithmic approach takes an input angle and obtains a
coarse initial approach of its sine and cosine functions from
a LUT. The remaining rotations are algorithmically
predicted, and the final result is approximated with the
CORDIC pipeline module. Results show a reduction in the
number of rotations and in hardware resources usage per
iteration.

The paper is organized as follows. In Section III the
CORDIC algorithm is presented including specifics for the
proposed architectural approach. Section IV introduces the
proposed composed hardware architecture design followed
by obtained results in Section V. Section VI presents
conclusions of this research.

II. RELATED WORK

Related work is extensive and varied, among the
approaches aiming to improve CORDIC's algorithmic
performance, in [7] Lakshmi et al. proposed a pipelined
architecture for radix-4 CORDIC rotations. This VLSI
approach refines previously proposed radix-2 techniques in
terms of latency and throughput by using redundant
arithmetic and higher radix techniques. Originally, radix-4
rotations for a second stage of small rotations were used to
accelerate radix-2 CORDIC algorithm [9]. Lee et al.
approach was modified to use radix-4 for the entire set of
rotations reducing the number of iterations and the hardware
resources usage. In [8], a modification of the angle recoding
method that avoids an increase in cycle time and allows an
arbitrary input angle is presented. This approach calculates
in one step all angle constants by comparing the input angle
to several adjacent rotation ranges. The lower the number of
comparative ranges the lower the number of cycles during
the iterative process. In [11], authors follow a similar
approach to improve CORDIC by reducing the number of
required micro-rotations when large bit-width (64-bit) input

 113

Digital Object Identifier 10.4316/AECE.2014.02019

1582-7445 © 2014 AECE

[Downloaded from www.aece.ro on Friday, July 11, 2014 at 22:51:43 (UTC) by 200.23.5.195. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 2, 2014

angles are calculated. The improvement comes from
recoding two bits of the input angle concurrently leading to
a reduction of 21% in area/delay. In [10] an adaptive
approach is proposed which executes necessary iterations
with a 50% reduction while maintaining a constant scaling
factor. A reduction in hardware resources usage is also
reported.

Most popular improvements in the hardware arena are
related to operational frequency, throughput and occupied
area. In [14] an analysis of standard CORDIC
implementations is carried out to reduce the
interconnections delay. Several reconfigurable platforms
are used for implementing three pre-computing sign
methods: Para-CORDIC [12], P-CORDIC [15] and Flat-
CORDIC [16]. Results showed P-CORDIC performs better
in newer devices and Flat and Para-CORDIC in older
FPGAs devices.

III. CORDIC BASIS

CORDIC's algorithmic approach performs vector
rotations by arbitrary angles using shifts and additions. The
algorithm is based on a general rotation transformation with
angles restricted to: , reducing multiplications to
shift operations. Thus, arbitrary angles are obtained while
applying a series of micro-rotations. Basic CORDIC
equations are shown in (1) and (2):

tan 2 i  

 (1) 1 · ·2 i
i i i i ix k x y  
   

 (2) 1 · ·2 i
i i i i iy k y x  
  

where 21 1 2 i
ik   and 1i   ; approaches a

constant and can be applied at any stage of the process. The
necessary micro-rotations to calculate sine and cosine
functions are defined by a sequence of directions
represented by a decision vector. A set of decision vectors
can be stored in a LUT or can be integrated into the system
through an extra adder-subtracter that accumulates rotation
angles at every iteration. Having an angle accumulator
requires the extra equation (3).

ik

 (3)  1
1 · 2 i

i i iz z tan  
  

This equation is eliminated in the proposed architecture
by pre-calculating rotations directions.

IV. ARCHITECTURE DESIGN

Overall, the proposed hybrid CORDIC architecture
consists of three main stages, see Figure 1. During the first
stage, sine ( sin ) and cosine ( cos ) functions are

roughly approximated by obtaining an initial estimation
from a Lookup Table, the input value for this stage is the
input angle (). On a second stage, rotations directions are
obtained by a module implementing the P-CORDIC
algorithm [15]. The pre-calculated rotations are then applied
to determine the final trigonometric values using a CORDIC
pipeline module.

Figure 1. Hybrid CORDIC architecture blocks diagram

A. LUT Module

A LUT is implemented within the hybrid architecture for
an initial approximation of the input angle's trigonometric
functions. Precision for an unsigned output angle is 19-bit.
The LUT stores ix and values. In the proposed design iy

5i  , thus 51 angles within 0 and 4 radians, and their

corresponding  values for rotations prediction are stored.
The input angle's 6-msb (most significant bits) are used for
memory addressing to retrieve ix , and iy  .

The proposed hybrid architecture shown in Figure 1
requires an input angle within 0 4   with 16-bit

precision format, for a resulting output angle with 14-bit
precision format for its fractional part.

B. Rotations Prediction

The second stage in the proposed architecture performs
the P-CORDIC algorithm, which helps to speed up
CORDIC computation by predicting the sequence of
directions for all rotations to perform. Rotations directions
are calculated in equation (4) by adding the input angle (),
a constant (stored in the current stage) and an adjustment
variable () which is calculated previously and stored in
the LUT module.

 0
0

1
1 (

2 2 i
i

d sign


) 




      (4)

where and ; -bit

calculates its corresponding rotation (

12 tan (2i i
i

   )
0 i ii
d 


  

i

id

) according to

equation (5).
 2i id 1   (5)

In Figure 2(a) a detailed view of the P-CORDIC module
is drawn. Removing datapath from the CORDIC
algorithm in the proposed architecture is achieved by the P-
CORDIC algorithm. Since the sequence of rotations
directions to perform is known in advance, it is not
necessary to verify sign in every iteration, thus

eliminating datapath.

z

iz

z

 114

[Downloaded from www.aece.ro on Friday, July 11, 2014 at 22:51:43 (UTC) by 200.23.5.195. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 2, 2014

Figure 2. Hybrid CORDIC architecture submodules

C. CORDIC Pipeline

The final stage in the proposed architecture carries out a
pipeline for the CORDIC algorithm; details are shown in
Figure 2(b). This implementation only uses x and

datapaths, every rotation direction is obtained from the
previous module and

y

ix and values are retrieved from

the LUT, where previously computed approximations are
stored. In order to reduce the truncation error in every
iteration,

iy

x and datapaths are 21-bit wide, enough to

achieve 14-bit final precision for trigonometric functions
fractional part.

y

V. RESULTS DISCUSSION

FPGA devices are the chosen implementation platform
due to its proven advantages, such as fast prototyping and
advanced reconfigurability. The design was coded using
VHDL and the tools used to implement the architecture
were Mentor's ModelSim, Xilinx System Generator,
Matlab/Simulink and Xilinx's ISE 13.2.

Previously proposed approaches and the CORDIC

logiCORE IP by Xilinx are used as reference [13], [17-18].
Table 1 shows results in terms of hardware resources and
maximum operational frequency. The proposed architecture
and the CORDIC logiCORE IP are synthesized for Xilinx
Spartan 3 (XC3S50-5) and 6 (XC 6SLX45-2) for direct
comparison. However, the approach presented in [13] is
synthesized for Spartan 2E not available on Xilinx's ISE
13.2. There is a significant reduction in the used logical
resources achieved by the proposed architecture on a Xilinx
Spartan 3 of 49% and 26% slices, and 75% and 65% FF for
the logiCORE IP [18] and the approach reported in [17]
respectively. A reasonable operational frequency, limited by
the LUT access latency, is maintained. On the other hand,
comparing both performance parameters on a Spartan 6, the
logiCORE IP [18] increases in 40% and 70% the number of
occupied slices and FF with respect to the proposed
approach. In terms of frequency, the logiCORE IP achieves
higher frequencies; however, its hardware resources usage is
significantly greater.

An example of an application domain suitable for the
proposed CORDIC architecture would be a hard real-time
problem such as the GPS attitude determination for vehicles
navigation [19]. In [20], a high performance hardware
architecture is proposed to tackle this problem. The most
expensive sub-module has as its core the CORDIC
algorithm taking 116 clock cycles to calculate the attitude
parameters. Throughput reported is approximately 48.2 s .

The proposed architecture would take 72 clock cycles to
calculate the attitude parameters, improving the overall
throughput to 30.6 s , considering the same

implementation technology used in [20]. In the next section,
conclusions of this research are presented.

TABLE 1. AREA AND SPEED RESULTS

Device Slices FF
Max. Freq.

(MHz)

Spartan 2E [13] 231 - 58.37

Spartan 3 [17] 373 723 198.27

Spartan 3 logiCORE
IP [18]

541 995 180.72

Spartan 3, our
approach

276 248 83.99

Spartan 6 logiCORE
IP [18]

286 995 284.56

Spartan 6, our
approach

172 356 110.40

VI. CONCLUSIONS

An efficient and novel hybrid architecture for the
CORDIC algorithm was described. The design strategy is
the combination of a LUT to obtain a coarse initial approach
of the basic trigonometric functions and the elimination of
the datapath by predicting the sequence of directions for
all rotations to perform. It provides several advantages such
as a reduction in the number of necessary rotations as well
as usage of hardware resources per iteration, while offering
significant throughput and a reduction in the occupied area.

z

Implementation results show that the architecture offers a
good balance between high performance and low area
complexity. The highly efficient resources usage achieved
by the proposed architecture makes it suitable for low

 115

[Downloaded from www.aece.ro on Friday, July 11, 2014 at 22:51:43 (UTC) by 200.23.5.195. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 2, 2014

 116

precision systems with limited resources such as mobile
devices.

REFERENCES
[1] J. E. Volder, “The CORDIC Trigonometric Computing Technique,”

IEEE Transactions on Electronic Computers, vol. EC-8, no. 3, pp.
330–334, Sep. 1959. Available:
http://dx.doi.org/10.1109/TEC.1959.5222693

[2] J.S. Walther, "A unified algorithm for elementary functions", in Proc.
AFIPS Conf., vol. 38, 1971, pp. 385-389. Available:
http://dx.doi.org/10.1145/1478786.1478840

[3] C.-C. Sun, P. Donner, and J. Götze, “VLSI implementation of a
configurable IP Core for quantized discrete cosine and integer
transforms,” International Journal of Circuit Theory and Applications,
vol. 40, no. 11, pp. 1107–1126, Nov. 2012. Available:
http://dx.doi.org/10.1002/cta.774

[4] J.-H. Lee, T.-H. Cheng, and H.-C. Chen, “Design of IIR linear-phase
nonuniform-division filter banks with signed powers-of-two
coefficients,” International Journal of Circuit Theory and
Applications, vol. 37, no. 7, pp. 811–834, Sep. 2009. Available:
http://dx.doi.org/10.1002/cta.501

[5] M. Abo-Zahhad and M. F. Fahmy, “Synthesis of low-sensitivity
orthogonal digital filters,” International Journal of Circuit Theory and
Applications, vol. 25, no. 6, pp. 503–520, Nov. 1997. Available:
http://dx.doi.org/10.1002/(SICI)1097-
007X(199711/12)25:6<503::AID-CTA972>3.0.CO;2-#

[6] Maharatna, K., Banerjee, S., Grass, E., Krstic, M., & Troya, A.
(2005). Modified virtually scaling-free adaptive CORDIC rotator
algorithm and architecture. IEEE Transcations on Circuits and
Systems Video Technology, 11(11), 1463–1474. Available:
http://dx.doi.org/ 10.1109/TCSVT.2005.856908

[7] B. Lakshmi and a. S. Dhar, “VLSI architecture for low latency radix-4
CORDIC,” Computers & Electrical Engineering, vol. 37, no. 6, pp.
1032–1042, Nov. 2011. Available:
http://dx.doi.org/10.1109/TCSVT.2005.856908.

[8] T. K. Rodrigues and E. E. Swartzlander Jr., “Adaptive CORDIC:
Using Parallel Angle Recoding to Accelerate Rotations,” IEEE
Transactions on Computers, vol. 59, no. 4, pp. 522–531, Apr. 2010.
Available: http://doi.ieeecomputersociety.org/10.1109/TC.2009.190.

[9] J.-A. Lee and T. Lang, “Constant-factor redundant CORDIC for angle
calculation and rotation,” Computers, IEEE Transactions on, vol. 41,
no. 8, pp. 1016–1025, 1992. Available:
http://dx.doi.org/10.1109/12.156544.

[10] K. Maharatna, S. Banerjee, E. Grass, M. Krstic, and A. Troya,
“Modified virtually scaling-free adaptive CORDIC rotator algorithm

and architecture,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 15, no. 11, pp. 1463–1474, Nov. 2005.
Available: http://dx.doi.org/10.1109/TCSVT.2005.856908

[11] T. Juang, “Low Latency Angle Recoding Methods for the Higher Bit-
Width Parallel CORDIC Rotator Implementations,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 55, no.
11, pp. 1139–1143, Nov. 2008. Available:
http://dx.doi.org/10.1109/TCSII.2008.2002566.

[12] T.-B. Juang, S.-F. Hsiao, and M.-Y. Tsai, “Para-CORDIC: Parallel
CORDIC Rotation Algorithm,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 51, no. 8, pp. 1515–1524, Aug. 2004.
Available: http://dx.doi.org/10.1109/TCSI.2004.832734.

[13] S. Aggarwal and K. Khare, “Leading One Detection Hyperbolic
CORDIC with Enhanced Range of Convergence,” Journal of Signal
Processing Systems, Feb. 2012. Available:
http://dx.doi.org/10.1007/s11265-012-0658-6.

[14] D.-M. Ross, S. Miller, M. Sima, and M. McGuire, “Exploration of
sign precomputation-based CORDIC in reconfigurable systems,” in
2011 Conference Record of the Forty Fifth Asilomar Conference on
Signals, Systems and Computers (ASILOMAR), 2011, pp. 2186–
2191. Available: http://dx.doi.org/10.1109/ACSSC.2011.6190419.

[15] M. Kuhlmann and K. K. Parhi, “P-CORDIC : A Precomputation
Based Rotation,” EURASIP Journal on Applied Signal Processing,
vol. 2002, no. 1, pp. 936–943, 2002. Available:
http://dx.doi.org/10.1155/S1110865702205028.

[16] B. Gisuthan, “Flat CORDIC: a unified architecture for high-speed
generation of trigonometric and hyperbolic functions,” in Proceedings
of the 43rd IEEE Midwest Symposium on Circuits and Systems,
2000, 2000, pp. 1414–1417. Available:
http://dx.doi.org/10.1109/MWSCAS.2000.951478.

[17] M. S. Sinith and K. Jismi, “A comparison of pipelined parallel and
iterative CORDIC design on FPGA,” in 2010 5th International
Conference on Industrial and Information Systems, 2010, no. i, pp.
239–243. Available:
http://dx.doi.org/10.1109/ICIINFS.2010.5578702.

[18] Xilinx Inc., “LogiCORE IP CORDIC v4.0. Product Specification,
DS249,” 2011.

[19] J. Xu, T. Arslan, D. Wan, and Q. Wang, “GPS attitude determination
using a genetic algorithm,” in Evolutionary Computation,
Proceedings of the 2002 Congress on, 2002, vol. 1, pp. 998–1002.
Available: http://dx.doi.org/10.1109/CEC.2002.1007061.

[20] E. F. Stefatos and T. Arslan, “High-performance adaptive GPS
attitude determination VLSI architecture,” in Signal Processing
Systems, 2004. SIPS 2004. IEEE Workshop on, 2004, pp. 233–238.
Available: http://dx.doi.org/10.1109/SIPS.2004.1363055.

[Downloaded from www.aece.ro on Friday, July 11, 2014 at 22:51:43 (UTC) by 200.23.5.195. Redistribution subject to AECE license or copyright.]

