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1Abstract—This article presents a composed architecture for 

the CORDIC algorithm. CORDIC is a widely used technique to 
calculate basic trigonometric functions using only additions 
and shifts. This composed architecture combines an initial 
coarse stage to approximate sine and cosine functions, and a 
second stage to finely tune those values while CORDIC 
operates on rotation mode. Both stages contribute to shorten 
the algorithmic steps required to fully execute the CORDIC 
algorithm. For comparison purposes, the Xilinx CORDIC 
logiCORE IP and previously reported research are used. The 
proposed architecture aims at reducing hardware resources 
usage as its key objective. 
 

Index Terms—digital systems, computer architecture, field 
programmable gate arrays, signal processing, circuit 
optimization. 

I. INTRODUCTION 

Complex digital systems use trigonometric functions as a 
fundamental component. These functions are widely used in 
many areas including digital image and signal processing, 
cryptography and watermarking. Several approaches have 
been developed to calculate trigonometric functions, most of 
them based on polynomial or rational approximations which 
are not easily mapped into hardware architectures. 

CORDIC (Coordinate Rotation Digital Computer) is an 
iterative algorithm designed to calculate trigonometric 
functions using basic addition and shift operations, 
characteristic that makes it suitable for hardware 
architectures design [1,2]. The algorithm can be configured 
to operate in vectoring or rotation mode in several 
coordinate systems, providing the possibility to calculate 
hyperbolic functions. In rotation mode, a vector is iteratively 
rotated by an angle, to calculate a final vector corresponding 
to the sine and cosine functions of an input angle. A new 
vector is obtained every iteration, after a small rotation 
(micro-rotation). Each rotation has a specific direction 
which is calculated every step based on the sign of an 
angular variable. In vectoring mode, the algorithm follows 
similar steps but it also allows calculating divisions and 
logarithmic functions. 

At an application level, CORDIC is widely used in the 
signal processing arena [3-6]. In [3], CORDIC 
compensation is implemented instead of using 
multiplications, helping to significantly reduce hardware 
complexity. In [4], CORDIC algorithm is included in an 
efficient filtering design where power of two coefficients are 
calculated. CORDIC algorithm is applied directly in the 
implementation of a Givens rotation module used in [5], 

improving computational time and decreasing complexity. 
In [6] an adaptive CORDIC rotator with constant scaling 
factor is proposed aiming to reduce resources usage.  
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Researchers have focused on improving the CORDIC 
algorithmic core and its implementation. Algorithmic 
improvements commonly consist in reducing the number of 
rotations [7-8], modifying the scaling factor [9-10] or 
changing the determination of rotations direction [8,11,12]. 
On the other hand, most popular improvements in the 
hardware arena are related to operational frequency, 
throughput and occupied area [13]. 

In this paper, a composed architecture is proposed, it 
consists in combining a Lookup Table (LUT) with a rotation 
prediction and a CORDIC pipeline modules. The 
algorithmic approach takes an input angle and obtains a 
coarse initial approach of its sine and cosine functions from 
a LUT. The remaining rotations are algorithmically 
predicted, and the final result is approximated with the 
CORDIC pipeline module. Results show a reduction in the 
number of rotations and in hardware resources usage per 
iteration. 

The paper is organized as follows. In Section III the 
CORDIC algorithm is presented including specifics for the 
proposed architectural approach. Section IV introduces the 
proposed composed hardware architecture design followed 
by obtained results in Section V. Section VI presents 
conclusions of this research. 

II. RELATED WORK  

Related work is extensive and varied, among the 
approaches aiming to improve CORDIC's algorithmic 
performance, in [7] Lakshmi et al. proposed a pipelined 
architecture for radix-4 CORDIC rotations. This VLSI 
approach refines previously proposed radix-2 techniques in 
terms of latency and throughput by using redundant 
arithmetic and higher radix techniques. Originally, radix-4 
rotations for a second stage of small rotations were used to 
accelerate radix-2 CORDIC algorithm [9]. Lee et al. 
approach was modified to use radix-4 for the entire set of 
rotations reducing the number of iterations and the hardware 
resources usage. In [8], a modification of the angle recoding 
method that avoids an increase in cycle time and allows an 
arbitrary input angle is presented. This approach calculates 
in one step all angle constants by comparing the input angle 
to several adjacent rotation ranges. The lower the number of 
comparative ranges the lower the number of cycles during 
the iterative process. In [11], authors follow a similar 
approach to improve CORDIC by reducing the number of 
required micro-rotations when large bit-width (64-bit) input 
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angles are calculated. The improvement comes from 
recoding two bits of the input angle concurrently leading to 
a reduction of 21% in area/delay. In [10] an adaptive 
approach is proposed which executes necessary iterations 
with a 50% reduction while maintaining a constant scaling 
factor. A reduction in hardware resources usage is also 
reported.  

Most popular improvements in the hardware arena are 
related to operational frequency, throughput and occupied 
area. In [14] an analysis of standard CORDIC 
implementations is carried out to reduce the 
interconnections delay.  Several reconfigurable platforms 
are used for implementing three pre-computing sign 
methods: Para-CORDIC [12], P-CORDIC [15] and Flat-
CORDIC [16]. Results showed P-CORDIC performs better 
in newer devices and Flat and Para-CORDIC in older 
FPGAs devices. 

III. CORDIC BASIS  

CORDIC's algorithmic approach performs vector 
rotations by arbitrary angles using shifts and additions. The 
algorithm is based on a general rotation transformation with 
angles restricted to: , reducing multiplications to 
shift operations. Thus, arbitrary angles are obtained while 
applying a series of micro-rotations. Basic CORDIC 
equations are shown in (1) and (2): 

tan 2 i  

  (1) 1 · ·2 i
i i i i ix k x y  
   

  (2) 1 · ·2 i
i i i i iy k y x  
  

where 21 1 2 i
ik    and 1i   ; approaches a 

constant and can be applied at any stage of the process. The 
necessary micro-rotations to calculate sine and cosine 
functions are defined by a sequence of directions 
represented by a decision vector. A set of decision vectors 
can be stored in a LUT or can be integrated into the system 
through an extra adder-subtracter that accumulates rotation 
angles at every iteration. Having an angle accumulator 
requires the extra equation (3).  

ik

  (3)  1
1 · 2 i

i i iz z tan  
  

This equation is eliminated in the proposed architecture 
by pre-calculating rotations directions. 

IV. ARCHITECTURE DESIGN 

Overall, the proposed hybrid CORDIC architecture 
consists of three main stages, see Figure 1. During the first 
stage, sine (  sin  ) and cosine (  cos  ) functions are 

roughly approximated by obtaining an initial estimation 
from a Lookup Table, the input value for this stage is the 
input angle ( ). On a second stage, rotations directions are 
obtained by a module implementing the P-CORDIC 
algorithm [15]. The pre-calculated rotations are then applied 
to determine the final trigonometric values using a CORDIC 
pipeline module. 

 
 

Figure 1. Hybrid CORDIC architecture blocks diagram 

A. LUT Module 

A LUT is implemented within the hybrid architecture for 
an initial approximation of the input angle's trigonometric 
functions. Precision for an unsigned output angle is 19-bit. 
The LUT stores ix  and  values. In the proposed design iy

5i  , thus 51 angles within 0 and 4  radians, and their 

corresponding   values for rotations prediction are stored. 
The input angle's 6-msb (most significant bits) are used for 
memory addressing to retrieve ix ,  and iy  . 

The proposed hybrid architecture shown in Figure 1 
requires an input angle within 0 4     with 16-bit 

precision format, for a resulting output angle with 14-bit 
precision format for its fractional part. 

B. Rotations Prediction 

The second stage in the proposed architecture performs 
the P-CORDIC algorithm, which helps to speed up 
CORDIC computation by predicting the sequence of 
directions for all rotations to perform. Rotations directions 
are calculated in equation (4) by adding the input angle ( ), 
a constant (stored in the current stage) and an adjustment 
variable ( ) which is calculated previously and stored in 
the LUT module. 

 0
0

1
1 (

2 2 i
i

d sign

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
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calculates its corresponding rotation (
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
  

i

id

 ) according to 

equation (5). 
 2i id 1    (5) 

In Figure 2(a) a detailed view of the P-CORDIC module 
is drawn. Removing  datapath from the CORDIC 
algorithm in the proposed architecture is achieved by the P-
CORDIC algorithm. Since the sequence of rotations 
directions to perform is known in advance, it is not 
necessary to verify  sign in every iteration, thus 

eliminating  datapath. 

z

iz

z
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Figure 2. Hybrid CORDIC architecture submodules 

C. CORDIC Pipeline 

The final stage in the proposed architecture carries out a 
pipeline for the CORDIC algorithm; details are shown in 
Figure 2(b). This implementation only uses x  and  

datapaths, every rotation direction is obtained from the 
previous module and 

y

ix  and  values are retrieved from 

the LUT, where previously computed approximations are 
stored. In order to reduce the truncation error in every 
iteration, 

iy

x  and  datapaths are 21-bit wide, enough to 

achieve 14-bit final precision for trigonometric functions 
fractional part.  

y

V. RESULTS DISCUSSION 

FPGA devices are the chosen implementation platform 
due to its proven advantages, such as fast prototyping and 
advanced reconfigurability. The design was coded using 
VHDL and the tools used to implement the architecture 
were Mentor's ModelSim, Xilinx System Generator, 
Matlab/Simulink and Xilinx's ISE 13.2. 

Previously proposed approaches and the CORDIC 

logiCORE IP by Xilinx are used as reference [13], [17-18]. 
Table 1 shows results in terms of hardware resources and 
maximum operational frequency. The proposed architecture 
and the CORDIC logiCORE IP are synthesized for Xilinx 
Spartan 3 (XC3S50-5) and 6 (XC 6SLX45-2) for direct 
comparison. However, the approach presented in [13] is 
synthesized for Spartan 2E not available on Xilinx's ISE 
13.2. There is a significant reduction in the used logical 
resources achieved by the proposed architecture on a Xilinx 
Spartan 3 of 49% and 26% slices, and 75% and 65% FF for 
the logiCORE IP [18] and the approach reported in [17] 
respectively. A reasonable operational frequency, limited by 
the LUT access latency, is maintained. On the other hand, 
comparing both performance parameters on a Spartan 6, the 
logiCORE IP [18] increases in 40% and 70% the number of 
occupied slices and FF with respect to the proposed 
approach. In terms of frequency, the logiCORE IP achieves 
higher frequencies; however, its hardware resources usage is 
significantly greater.  

An example of an application domain suitable for the 
proposed CORDIC architecture would be a hard real-time 
problem such as the GPS attitude determination for vehicles 
navigation [19]. In [20], a high performance hardware 
architecture is proposed to tackle this problem. The most 
expensive sub-module has as its core the CORDIC 
algorithm taking 116 clock cycles to calculate the attitude 
parameters. Throughput reported is approximately 48.2 s . 

The proposed architecture would take 72 clock cycles to 
calculate the attitude parameters, improving the overall 
throughput to 30.6 s , considering the same 

implementation technology used in [20]. In the next section, 
conclusions of this research are presented. 

 
TABLE 1.  AREA AND SPEED RESULTS 

Device Slices FF 
Max. Freq.  

(MHz) 

Spartan 2E [13] 231 - 58.37 

Spartan 3 [17] 373 723 198.27 

Spartan 3 logiCORE 
IP [18] 

541 995 180.72 

Spartan 3, our 
approach 

276 248 83.99 

Spartan 6 logiCORE 
IP [18] 

286 995 284.56 

Spartan 6, our 
approach 

172 356 110.40 

VI. CONCLUSIONS 

An efficient and novel hybrid architecture for the 
CORDIC algorithm was described. The design strategy is 
the combination of a LUT to obtain a coarse initial approach 
of the basic trigonometric functions and the elimination of 
the  datapath by predicting the sequence of directions for 
all rotations to perform. It provides several advantages such 
as a reduction in the number of necessary rotations as well 
as usage of hardware resources per iteration, while offering 
significant throughput and a reduction in the occupied area.  

z

Implementation results show that the architecture offers a 
good balance between high performance and low area 
complexity. The highly efficient resources usage achieved 
by the proposed architecture makes it suitable for low 
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precision systems with limited resources such as mobile 
devices. 
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