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(ECC). A natural choice for implementing this time consuming multiplication defined on
finite fields, mainly over GF(2™), is the use of Field Programmable Gate Arrays (FPGAs)
for being reconfigurable, flexible and physically secure devices. FPGAs allow the
implementation of this kind of algorithms in a broad range of applications with different
area-performance requirements. In this paper, we explore alternative architectures for con-
structing GF(2™) digit-serial Montgomery multipliers on FPGAs based on Linear Feedback
Shift Registers (LFSRs) and study their area-performance trade-offs. Different Montgomery
multipliers were implemented using several digits and finite fields to compare their perfor-
mance metrics such as area, memory, latency, clocking frequency and throughput to show
suitable configurations for ECC implementations using NIST recommended parameters. The
results achieved show a notable improvement against FPGA Montgomery multiplier previ-
ously reported, achieving the highest throughput and the best efficiency.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Public key cryptography [1] is a kind of cryptography used for ensuring the security services of confidentiality, integrity
and authentication on digital information. Generally, the security of a public key cryptographic algorithm is based on a con-
jectured difficult problem, such as integer factorization [2], discrete logarithm [3] or the elliptic curve discrete logarithm
(ECDL) [4]. Elliptic Curve Cryptography (ECC) is based on the ECDL problem defined on a mathematical structure called
elliptic curve, a set of points satisfying an equation which is defined over a finite field [5,6]. The ECC cryptographic algorithms
for confidentiality, integrity, and authentication services require arithmetic operations on the elliptic curve such as scalar
multiplication, implemented as several additions of points in the elliptic curve. A point addition operation in ECC is
implemented using several finite field arithmetic operations, like addition, inversion, division, and multiplication. It has been
shown that efficient implementations of ECC are achieved by using projective coordinates [7] to represent the points of the
elliptic curve. Under this representation, the point addition operation is implemented using only field additions, subtractions
and multiplications. While field additions and subtractions are considered fast operations, multiplications are significantly
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more time demanding, becoming the bottleneck of cryptographic algorithms like ECDSA [8]. This is the reason why efficient
implementation of field multiplication has been one of the main topics studied in recent times. Several algorithms for field
multiplication have been proposed [9], one of the most attractive has been the Montgomery algorithm [10]. Several imple-
mentations of this algorithm have been reported in the literature, mainly hardware architectures for FPGAs. The Montgom-
ery multiplication algorithm performs several iterations to achieve a field multiplication in a finite field, such as GF(2™). The
bit-serial version of this algorithm processes one bit from one of the involved operands at each iteration and delivers the
multiplication after m iterations. The digit-serial version reduces the latency of field multiplication from m to [m/D] itera-
tions by processing a group of D bits (digit) at each iteration. However, this last kind of multiplier requires more area re-
sources as D grows, increasing the delay in the critical path. Bit-parallel multipliers are built by taking D = m, performing
a field multiplication in only one iteration. Bit-serial multipliers exhibit the highest latency compared to digit-serial and
bit parallel multipliers but bit serial multipliers use less area resources and can achieve higher clock frequencies. In most
cases, application requirements determine which multiplier configuration is better to use, ranging from a pure bit-serial
implementation to a fully parallel one. The digit-serial approach could be a better choice for getting a better performer mul-
tiplier compromising area and speed as the application demands.

In order to find this better multiplier configuration, the area-performance of Montgomery multiplication can be evalu-
ated by implementing digit-serial multipliers for different digits while analyzing how the area-time (AT) metric is affected.
FPGAs are very attractive for this study as they join the flexibility of software and the performance of hardware. The design
flow is achieved by using CAD tools and several versions of the circuit can be tested on the same hardware resources, reduc-
ing costs and increasing productivity. This capability of FPGAs allows the exploration of different versions of the digit-serial
multiplier in order to select the most appropriate according to the application requirements in terms of area resources or
performance.

In this work we present an area/performance trade-off analysis of a digit-serial Montgomery Multiplier based on a Linear
Feedback Shift Register [11] well suited for use in ECC cryptographic algorithms. The multiplier is defined over the finite field
GF(2™) using polynomial basis. We have studied this multiplier using different digits and different finite fields currently rec-
ommended in standards of ECC by organizations like IEEE [8], NIST [12] and SEC [13]. A related work to the one presented in
this paper has been published in [14], that includes an FPGA area-performance trade offs analysis of a GF(2™) “classic” mul-
tiplier. Unlike this paper, we are working with GF(2™) multiplication in the Montgomery domain. The algorithm for Mont-
gomery multiplication is quite different to the one studied in [14], and hence, the architectural design and corresponding
results achieved here cannot be directly compared. In [11], the complexity of the digit-serial Montgomery multiplier was
analyzed theoretically and expressed in terms of the digit D and field size m, and the complexity of hardware designs for
bit serial and digit-serial GF(2™) multipliers is presented in terms of ANDs, XORs, latency and critical path delay. On the con-
trary, the contributions presented in this work are:

(i) A GF(2™) Montgomery multiplier implemented in FPGA, for which area/performance trade-off is studied.

(ii) An area/performance trade off study of GF(2™) Montgomery multiplier for elliptic curve cryptography. Different con-
figuration for the digit-serial multiplier were considered, using the finite fields m = 193, 233, 239, 277, 409 and 571
and the digits D =2, 4, 8, 16, 32, and 64.

(iii) A comparison against previous FPGA implementations of Montgomery multipliers, in order to demonstrate the advan-
tage of using LFSR in the construction of the multiplier for practical applications.

(iv) An evaluation of the GF(2™) digit-serial Montgomery multiplier in practical FPGA implementation using several met-
rics, such as throughput, efficiency and AT metric.

To our knowledge, this is the first work that provides an area/performance trade-off analysis for digit-serial Montgomery
multiplier over GF(2™). As an application example, consider the design of a security protocol on chip. Depending on the
available area for the whole protocol or the performance it must meet, the study presented in this work allows the designer
to compare performance metrics of the multiplier such as area, memory, latency, clocking frequency and throughput, in or-
der to select the most suitable digit that meets the application requirements.

The rest of this paper is organized as follows: next section overviews the digit-serial Montgomery Multiplier and its archi-
tecture. The results, analysis, and comparison are presented and discussed in Section 3. Finally, the conclusions are pointed
out in Section 4.

2. Digit-serial Montgomery multiplication and hardware architecture

The Montgomery multiplier considered in this work is for arbitrary finite fields of the form GF(2™) defined by an arbitrary
irreducible polynomial f{x), where the main component in the architecture is a Linear Feedback Shift Register (LFSR) imple-
menting the multiplication of a polynomial A(x) by x~! (mod f(x)). The objective of using an LFSR was to reduce the time com-
plexity of the Montgomery multiplier, reducing both the latency and the critical path delay to increase the multiplier
throughput.
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2.1. GF(2™) Montgomery multiplication

In polynomial basis, each element e € GF(2™) corresponds to a binary polynomial e(x) of degree less than m defined as
e(x)=en_1x™ 1 +... +e.x+eywith e; € {1,0}. Usually, e is denoted by the bit-vector (e,,_1, ém_2, - . . , €1,€0) of length m [15,16].

The GF(2™) Montgomery multiplication [10] between A(x) and B(x) is defined as A(x) x B(x) x R~'(x) mod f(x), where f(x)
is an irreducible polynomial that generates the field GF(2™) and R(x) is a fixed field element in GF(2™). The field element
R~'(x) denotes the multiplicative inverse of the element R(x) € GF(2™); in this work, R(x) = x™. Using this polynomial, most
of the modulo reduction operations required in the algorithm consist on ignoring terms which have powers of x larger than
or equal to m. Also, the division of an arbitrary polynomial by x™ is accomplished by shifting the polynomial to the right by m
places, which are faster operations in hardware.

2.2. Digit-serial GF(2™) Montgomery multiplier

The main idea in a digit-serial multiplier (word level) is to process a group of D bits at a time from A(x) instead of one bit
at each clock cycle. The word level description of the polynomial A(x) = @,,_1x™" 1 + a,,_ox™ 2+ ... +a;x + ao implies a partition
of A(x) into blocks of equal length. Let D be the size of these blocks such that A(x) has s blocks, s = [m/D]. Thus, A(x) = Ao(-
(x) =Ag(x) + A1(X)+ - - - +As_»(x) + A;_1(x), where each A{(x) is of length D and defined as in Eq. (1).

Ai(X) = amip 1 X™ P @ i oX™ P2 4 bay g p g™ PP gy gy px™ PP 1)

Using the word level representation of A(x), we can express C(x) = A(x) x B(x) x R™1(x) mod f(x) as

s—1

C(x) =Y Ai(x) x B(x) x R (x)mod f(x) @
i=0
Let Ci(x) = Ai(x)B(x)R~"(x) mod f(x) and R(x) = x™. Eq. (3) defines C(x):
O R ) B A )
Xm Xm xm
B(x) B(x) B(x)

= Qm-ip-1 XxiD+1 + dm-ip-2 xiD+2 + -+ Gm-ip-p xiD+D
= Ap_ip_1BX)Xx™ 0V fay i oBx)Xx" 0D 4o 4 ay_ip_pB(x)x~P+D) (3)

According to the last expression of Aj(x) x B(x) x x ™ mod f(x) in Eq. (3), j(1 <j < D) consecutive outputs of the LFSR are
processed instead of a single one. Each output B(x)x P* is multiplied by the bit an_ip_; from A(x). As in a bit-serial imple-
mentation, this multiplication is implemented by ANDing each bit value of polynomial B(x)x""*) with the bit a,_jp_;. At
each clock cycle i(0 < i< s — 1))j multiplications a,, ip_jB(x)x " are performed in parallel and added all together to get
Ci(x) = Ai(x)B(x)x ™mod f(x).

Generalizing the idea of an LFSR computing A(x) x x~! mod f{x) we built a parallel LFSR (PLFSR) that computes A(x) x X~
mod f{x) in a single iteration. This was achieved by replicating the combinatorial logic (CL-LFSR block in Fig. 1b) for comput-
ing A(x) x x_'mod f{x) in a cascade way, as depicted in Fig. 1a).

The CL-LFSR block computes B(x)x 1V from B(x)x . The word Ai(x) = (@m_ip_1, Gm_ip_2, - - - , Gm_ip_p) could be obtained by
a D-bit shift register. Each bit a,,_ip_; is multiplied by the corresponding polynomial B(x)x ", (1 <j < D) and all these par-
tial multiplications are added to get C(x). After s = [m/D] clock cycles the whole multiplication A(x) x B(x) x R~!(x)mod f(x) is
finally computed.

The factor R(x) = x™! could be used by taking the D outputs of PLFSR before the first CL-LFSR block. Our digit-serial mul-
tiplier could be configured for any arbitrary irreducible polynomial f{x) as it is shown in Fig. 1b). Since the finite fields used in
ECC are typically defined on trinomials or pentanomials, the area usage is lower because several AND gates are not required
in the CL-LFSR blocks. The complexity of the digit-serial multiplier shown in Fig. 1 is presented in Table 1. Three configura-
tions are considered for the linear feedback register, using general irreducible polynomials, trinomials and pentanomials. The
delay is mainly determined by the depth of a binary tree of D XOR gates used in the multiplication phase of a digit in A(x) by
B(x)x~".

D-

3. Results

The GF(2™) digit-serial Montgomery multiplier was coded and verified using the VHDL hardware description language
and Xilinxs tools. The design has been synthesised using Xilinxs ISE 13.2 design tools targeting a Xilinx Virtex6 FPGA. A single
slice in this device contains four LUTs and eight flip flops.

The multiplier architecture was tested using digits 2, 4, 8, 16, 32 and 64 for recommended ECC key-lengths. Table 2 shows
the finite field used and the corresponding irreducible polynomials. These parameters are widely used and recommended in
several standards of elliptic curve cryptography, as in [8,12,13,17].
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B(X) = bm-1xm-1+bm.2Xm.2+ ... + bix+b,

l

Am-(iD+1} | 8m-{iD+2}|Am-{iD+3)|

bO bm—1 @ bm—Z @ bm—3 @ b1 @

Combinatorial logic for LFSR
m (CL-LFSR)

C(x) B(x)x" mod f(x)
(a) (b)

Fig. 1. (a) Digit-serial Montgomery multiplier using a parallel LESR. (b) Combinatorial logic block for computing A(x) x x~' mod f(x).

Table 1

Area and time complexity of digit-serial GF(2™) Montgomery multiplier.
Multiplier complexity fix)

General Trinomials Pentanomials

1-bit FF 2m 2m 2m
2-in AND D(2m —1) Dm D(m +2)
2-in XOR D(2m — 1) D(m+1) D(m +3)
Latency [m/D] [m/D] [m/D]
Delay (D+1)To +[D + P]Tx Ta+[1+P]|Tx Ta+[1+P]Tx

Tx: Time delay of an XOR gateT,: Time delay of an AND gateP: Depth of a binary tree of D XOR gates = logy(D).

Table 2

Finite fields and irreducible polynomials used for implementation.
Finite field fx) Recommended by
GF(2'%) xS+ +1 SEG group [13]
GF(2%?) P71 IEEE [8], NIST [12]
GF(2%9) X294+ 536 +1 SEG group [13], NIST [12]
GF(2?77) X7+ x2+x0+ 53 +1 IPSec [17]
GF(2) X499+ x%7 +1 IEEE [8], NIST [12]
GF(2°") X Ex0e +x2 41 IEEE [8], NIST [12]

The area and time implementation results are presented in Table 3. This table shows how area resources increase as the
digit size gets bigger. While the sequential logic remains the same for different digits, the cost in the FPGA comes in terms of
LUTs for combinatorial logic for implementing the replication of CL-LFSR blocks. This increase in combinatorial logic affects
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Table 3

Area/performance results of digit-serial GF(2™) Montgomery multiplier for different digits and finite fields in Virtex6é FPGA.
m=193
Digit 2 4 8 16 32 64
FlipFlops 590 588 588 590 533 512
LUTs 590 785 1173 1954 2494 3395
Slices 148 196 293 489 624 849
Latency 97 48 24 12 6 3
Freq. (MHz) 777.363 647.627 583.805 557.693 466.408 450.348
m=233
Digit 2 4 8 16 32 64
FlipFlops 710 708 708 710 635 629
LUTs 710 945 1413 2352 2995 4123
Slices 178 236 353 588 749 1031
Latency 117 58 29 15 7 4
Freq. (MHz) 777.363 641.807 583.805 539.055 482.346 450.659
m=239
Digit 2 4 8 16 32 64
FlipFlops 728 726 726 728 658 643
LUTs 728 969 1449 2412 3069 4233
Slices 182 242 362 603 767 1058
Latency 120 60 30 15 7 4
Freq. (MHz) 777.363 641.807 583.805 539.055 480.491 450.628
m=277
Digit 2 4 8 16 32 64
FlipFlops 841 840 840 844 762 849
LUTs 846 1130 1693 2847 3676 5293
Slices 212 283 423 712 919 1323
Latency 139 69 35 17 9 4
Freq. (MHz) 777.363 647.333 558.424 445.752 370.636 390.778
m =409
Digit 2 4 8 16 32 64
FlipFlops 1238 1236 1236 1238 1112 1067
LUTs 1238 1649 2469 4112 5094 6986
Slices 310 412 617 1028 1274 1747
Latency 205 102 51 26 13 6
Freq. (MHz) 777.363 641.807 583.805 539.055 489.285 450.659
m=571
Digit 2 4 8 16 32 64
FlipFlops 1723 1722 1723 1727 1546 1727
LUTs 1728 2304 3957 5075 6428 10983
Slices 432 576 989 1269 1607 2746
Latency 286 143 71 36 18 9
Freq. (MHz) 777.363 638.121 577.35 379.313 254.321 258.558

the maximum delay which is reflected in a decreasing of the clock frequency. However, even for the greatest digit (D = 64)
the reached frequency is at least above 250 MHz, which is higher than the best frequency previously reported in the liter-
ature. The best clock frequency achieved by the multiplier is around 770 MHz using the minimum finite field m = 193, an
acceptable security key-length for ECC cryptography comparable to the existing architectures.

Fig. 2 shows area usage for the digit-serial Montgomery multiplier in terms of slices used. Graphically, we can observe the
regular structure of the digit-serial multiplier, exhibiting a linear behavior with respect the digit and finite field used. This
structure is essential to achieve high clock frequencies and high throughputs.

In all cases, the ratio between the area required by the multiplier using the maximum digit (64) and the minimum (2) is
about 5.8, while the improvement in the timing for computing a Montgomery multiplication using the greatest digit respect
to the minimum is around 30x.

In order to find a relation between the area and performance achieved by the multiplier, the Area-Time (AT) metric is used
to characterize the FPGA-based implementations, which is shown in Fig. 3 for evaluating the implemented multipliers. In
this work, AT is defined as the number of slices used (area) multiplied by the time to compute a single field multiplication,
in ps. The computing time of GF(2™) Montgomery multiplications is determined by the latency and period of the clock cycle.
In all cases, latency is [m/D] and the period is obtained as 1/F, being F the operational frequency of the circuit. The behavior of
the AT metric in Fig. 3 demonstrates that the increase on area resources in the Montgomery multiplier is justified, as the
curves tend to decrease rapidly as the digit size increases. The AT value is the smallest when the digit is the biggest. Regard-
less the frequency decreases as the digit increases, the reduction in the latency allows smaller AT values.

The results shown in Table 3, Figs. 2 and 3, have the purpose of serving as a guide to select the most suitable configuration
for the GF(2™) Montgomery multiplier. For example, a multiplier with small digit size is well suited for area constrained
implementations while the one with large digit size is better suited for applications with high performance requirements.
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Fig. 2. Area results (slices) of LFSR-based GF(2™) digit-serial Montgomery multiplier.
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Fig. 3. AT results (slices-us) of GF(2™) LFSR-based digit-serial Montgomery multiplier.

Comparison results.

547

Ref. Precision Time (ms) Device FPGA slices Throughput (Mbps)  Efficiency (Mbps/slices)
[20] 512 (prime field) - Virtex Il 5782 121.55 0.021
[21] 256 (prime field) 0.38 VirtexIl LUTs = 4997, REGs = 4051 - -
[22] 192 (prime field) - VirtexII 2347 - -
[22] 256 (prime field) - VirtexII 3109 - -
This work 409 (binary field), D=8 0.00019 VirtexIl 1800 2146.18 1.192
[23] 512 (prime field) - Virtex2Pro 5671 148.32 0.026
[24] 256 (prime field) - Virtex2Pro 4663 209.66 0.045
This work 409 (binary field), D=8 0.00015 Virtex2Pro 1792 2645.18 1.476
[25] 512 (prime field) - Virtex-E 6293 85.06 0.014
[18] 256 (prime field) 0.9 Virtex-E LUTs = 1407, REGs= - - -
[18] 163 (binary field) 0.9 Virtex-E LUTs = 1417, REGs= - - -
This work 409 (binary field), D=8 0.00038 Virtex-E 1800 1058.33 0.588
This work 233 (binary field), D=2 0.00016 VirtexlII 523 2529.96 4.837
This work 233 (binary field), D=2  0.00013 Virtex2Pro 523 3027.50 5.789
This work 233 (binary field), D =2 0.00030 VirtexE 536 1361.53 2.540

Few works [18,19] have considered to study digit-serial GF(2™) Montgomery multiplier trade-off so it is hard to provide a
fair comparison. Most of the related works of Montgomery multipliers are for the field GF(p) (see Table 4) and the precision
used in these fields does not correspond exactly to the precision used in GF(2™) fields used for elliptic curve cryptography.
For these fields, m is not an exact integer multiple of the word size as in the case of GF(p). In the case of GF(p), currently
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accepted security levels for ECC are for a key length around 256 bits. On the contrary, for GF(2™), key length in the range
233-409 bits is considered secure. Regardless of this fact, in Table 4 we provide a comparison of our results against repre-
sentative works in the literature. Since related works have used FPGAs no longer supported by current synthesis tools, the
HDL designs were implemented using Xilinx’s ISE 8.2 for the same FPGAs used in related works. According to Table 4, our
proposed digit-serial multiplier exhibits better performance than previous approaches for constructing Montgomery multi-
pliers. For m =233 and D = 2, the throughput of the proposed multiplier on the Virtex2Pro is up to 3 Gbps and 29 Gbps on the
Virtex6. In all cases the GF(2™) Montgomery multiplier discussed in this work obtained the best efficiency, expressed as the
ratio Mbps/Slices. In [18] authors have proposed a Montgomery multiplier implemented on FPGA for the binary field
GF(2'%). Their design is based on modified four-to-two carry-save adders (CSAs). However, their implementation uses more
area resources than the multiplier reported in this work even though they used a minor finite field order.

In [19], the digit serial systolic architecture reported for GF(2™) Montgomery multiplication exhibits a latency of 2([m/
D7) — 1, twice the latency of our proposed multiplier. The digits used were D = 16 and D = 32 with m = 160. This field is being
no longer supported in current security standards. The clock cycle reported in [19] for this finite field is 20.53 ns and 16.47 ns
using a digit size of 32 and 16 respectively. This leads to a clock frequency of 48.7MHz and 60.71MHz, that are lower than the
frequencies achieved by our designs even using greater finite fields. The lower frequency and greater latency of the multi-
plier cause that the throughput achieved in [19] to be lower than the one achieved by the multiplier in this work. The mul-
tiplier presented in this work exhibits the highest throughput and efficiency among previously reported FPGA
implementations of Montgomery algorithm for field multiplication. The main reason for this is the use of the LFSR as the
core component in the multiplier architecture. LFSRs have a very simple and regular structure which minimizes the required
hardware resources resulting in shorter critical paths thus increasing the operating clock frequency. As a result, the hardware
architecture of the field multiplier is more compact and exhibits better performance when it is implemented in the FPGA.

4. Concluding remarks

This work discussed the area/performance trade-offs of digit-serial hardware architectures for GF(2™) Montgomery mul-
tipliers implemented in FPGA technology. The main functional core is a Linear Feedback Shift Register (LFSR), which provides
to the multiplier architecture a regular structure that allows it to achieve high clock frequencies at the cost of few area re-
sources, obtaining an efficiency and throughput do not previously reported in the literature. The applications of this multi-
plier are for public key cryptography, particularly Elliptic Curve Cryptography (ECC). Because of this, the finite fields and
corresponding irreducible polynomials used for implementation are the ones recommended by NIST, [EEE and SEC. In all
cases, the ratio between the area required by the multiplier using the maximum digit (64) and the minimum (2) is about
5.8, while the improvement in the timing for computing a Montgomery multiplication using the greatest digit respect to
the minimum is around 30x. The multiplier hardware requirements increase when the digit grows, it is justified because
the area time (AT) metric decreases rapidly, obtaining the minimum AT metric for the greater digit. The area/performance
trade off study presented in this work provides a useful guide to the designer in order to select the most suitable configu-
ration for the multiplier, (m,D), compromising area, throughput and efficiency to meet given implementation requirements.
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