
�
����� ������

��� �����	
�����

This and the next chapter describe the two remaining components for implementing

the filter algorithms described thus far: the motion and the measurement models. This

chapter focuses on the motion model. It provides in-depth examples of probabilistic

motion models as they are being used in actual robotics implementations. These mod-

els comprise the state transition probability ���� � ��� �����, which plays an essential
role in the prediction step of the Bayes filter. The subsequent chapter will describe

probabilistic models of sensor measurements ���� � ���, which are essential for the
measurement update step. The material presented here will find its application in all

chapters that follow.

Robot kinematics, which is the central topic of this chapter, has been studied thor-

oughly in past decades. However, is has almost exclusively been addressed in deter-

ministic form. Probabilistic robotics generalizes kinematic equations to the fact that

the outcome of a control is uncertain, due to control noise or unmodeled exogenous

effects. Following the theme of this book, our description will be probabilistic: The

outcome of a control will be described by a posterior probability. In doing so, the

resulting models will be amenable to the probabilistic state estimation techniques de-

scribed in the previous chapters.

Our exposition focuses entirely on mobile robot kinematics for robots operating in

planar environments. In this way, it is much more specific than most contemporary

treatments of kinematics. No model of manipulator kinematics will be provided, nei-

ther will we discuss models of robot dynamics. However, this restricted choice of

material is by no means to be interpreted that probabilistic ideas are limited to kine-

matic models of mobile robots. Rather, it is descriptive of the present state of the art, as

91



92 ������� �

probabilistic techniques have enjoyed their biggest successes in mobile robotics, using

models of the types described in this chapter. The use of more sophisticated probabilis-

tic models (e.g., probabilistic models of robot dynamics) remains largely unexplored

in the literature. Such extensions, however, are not infeasible. As this chapter illus-

trates, deterministic robot actuator models are “probilified” by adding noise variables

that characterize the types of uncertainty that exist in robotic actuation.

In theory, the goal of a proper probabilistic model may appear to accurately model the

specific types of uncertainty that exist in robot actuation and perception. In practice,

the exact shape of the model often seems to be less important than the fact that some

provisions for uncertain outcomes are provided in the first place. In fact, many of the

models that have proven most successful in practical applications vastly overestimate

the amount of uncertainty. By doing so, the resulting algorithms are more robust to

violations of the Markov assumptions (Chapter 2.4.4), such as unmodeled state and the

effect of algorithmic approximations. We will point out such findings in later chapters,

when discussing actual implementations of probabilistic robotic algorithms.

��� ������������

����� ��������� ������������

Kinematics is the calculus describing the effect of control actions on the configuration

of a robot. The configuration of a rigid mobile robot is commonly described by six

variables, its three-dimensional Cartesian coordinates and its three Euler angles (roll,

pitch, yaw) relative to an external coordinate frame. The material presented in this

book is largely restricted to mobile robots operating in planar environments, whose

kinematic state, or pose, is summarized by three variables. This is illustrated in Fig-

ure 5.1. The robot’s pose comprises its two-dimensional planar coordinates relative to

an external coordinate frame, along with its angular orientation. Denoting the former

as � and � (not to be confused with the state variable ��), and the latter by �, the pose
of the robot is described by the following vector:

�

�

�
�
�

�

� (5.1)



Robot Motion 93

<0,0>

θ

<x,y>

x

y

Figure 5.1 Robot pose, shown in a global coordinate system.

The orientation of a robot is often called bearing, or heading direction. As shown in

Figure 5.1, we postulate that a robot with orientation � � � points into the direction
of its �-axis. A robot with orientation � � ��	 points into the direction of its �-axis.

Pose without orientation will be called location. The concept of location will be im-

portant in the next chapter, when we discuss measures to perceive robot environments.

For simplicity, locations in this book are usually described by two-dimensional vec-

tors, which refer to the �-� coordinates of an object:

�

�
�

�

(5.2)

Sometimes we will describe locations in the full 3D coordinate frame. Both the pose

and the locations of objects in the environment may constitute the kinematic state ��

of the robot-environment system.

����� �� � �!�"��� ���������"

The probabilistic kinematic model, or motion model plays the role of the state transi-

tion model in mobile robotics. This model is the familiar conditional density

���� � ��� ����� (5.3)

Here �� and ���� are both robot poses (and not just its �-coordinates), and �� is a

motion command. This model describes the posterior distribution over kinematics



94 ������� �

(a) (b)

Figure 5.2 The motion model: Posterior distributions of the robot’s pose upon executing

the motion command illustrated by the solid line. The darker a location, the more likely it

is. This plot has been projected into 2D. The original density is three-dimensional, taking

the robot’s heading direction � into account.

states that a robots assumes when executing the motion command �� when its pose is

����. In implementations, �� is sometimes provided by a robot’s odometry. However,

for conceptual reasons we will refer to �� as control.

Figure 5.2 shows two examples that illustrate the kinematic model for a rigid mobile

robot operating in a planar environment. In both cases, the robot’s initial pose is

����. The distribution ���� � ��� ����� is visualized by the grayly shaded area: The
darker a pose, the more likely it is. In this figure, the posterior pose probability is

projected into �-�-space, that is, the figure lacks a dimension corresponding to the
robot’s orientation. In Figure 5.2a, a robot moves forward some distance, during which

it may accrue translational and rotational error as indicated. Figure 5.2b shows the

resulting distribution of a more complicated motion command, which leads to a larger

spread of uncertainty.

This chapter provides in detail two specific probabilistic motion models ���� �
��� �����, both for mobile robots operating in the plane. Both models are some-

what complimentary in the type of motion information that is being processed. The

first model assumes that the motion data �� specifies the velocity commands given to

the robot’s motors. Many commercial mobile robots (e.g., differential drive, synchro

drive) are actuated by independent translational and rotational velocities, or are best

thought of being actuated in this way. The second model assumes that one is provided

with odometry information. Most commercial bases provide odometry using kine-

matic information (distance traveled, angle turned). The resulting probabilistic model

for integrating such information is somewhat different from the velocity model.



Robot Motion 95

In practice, odometry models tend to be more accurate than velocity models, for the

simple reasons that most commercial robots do not execute velocity commands with

the level of accuracy that can be obtained by measuring the revolution of the robot’s

wheels. However odometry is only available post-the-fact. Hence it cannot be used for

motion planning. Planning algorithms such as collision avoidance have to predict the

effects of motion. Thus, odometry models are usually applied for estimation, whereas

velocity models are used for probabilistic motion planning.

��# $������% ������ ��	��

The velocity motion model assumes that we can control a robot through two veloci-

ties, a rotational and a translational velocity. Many commercial robots offer control

interfaces where the programmer specifies velocities. Drive trains that are commonly

controlled in this way include the differential drive, the Ackerman drive, the synchro-

drive, and some holonomic drives (but not all). Drive systems not covered by our

model are those without non-holonomic constraints, such as robots equipped with

Mecanum wheels or legged robots.

We will denote the translational velocity at time 
 by ��, and the rotational velocity by

��. Hence, we have

�� �

�

��

��

�

(5.4)

We arbitrarily postulate that positive rotational velocities �� induce a counterclockwise

rotation (left turns). Positive translational velocities �� correspond to forward motion.

��#�� �!�"�& '��� ��!��!�����

A possible algorithm for computing the probability ���� � ��� ����� is shown in Ta-
ble 5.1. It accepts as input an initial pose ���� � �� � ��� , a control �� � �� ��� ,

and a hypothesized successor pose �� � ��� �� ���� . It outputs the probability

���� � ��� ����� of being at �� after executing control �� beginning in state ����, as-

suming that the control is carried out for the fixed duration �
. The parameters � to

� are robot-specific motion error parameters. This algorithm first calculates the con-

trols of an error-free robot; the meaning of the individual variables in this calculation

will become more apparent below, when we derive it. These parameters are given by

�� and ��.



96 ������� �

(a) (b) (c)

Figure 5.3 The velocity motion model, for different noise parameter settings.

The function prob��� �� models the motion error. It computes the probability of its
parameter � under a zero-centered random variable with variance �. Two possible
implementations are shown in Table 5.2, for error variables with normal distribution

and triangular distribution, respectively.

Figure 5.3 shows examples of this velocity motion model, projected into �-�-space. In
all three cases, the robot sets the same translational and angular velocity. Figure 5.3a

shows the resulting distribution with moderate error parameters � to �. The dis-

tribution shown in Figure 5.3b is obtained with smaller angular error (parameters �

and �) but larger translational error (parameters � and �). Figure 5.3c shows the

distribution under large angular and small translational error.

��#�� ���(!��� �!�����)�

For particle filters (cf. Section 4.2.1), it suffices to sample from the motion model

���� � ��� �����, instead of computing the posterior for arbitrary ��, �� and ����.

Sampling from a conditional density is different than calculating the density: In sam-

pling, one is given �� and ���� and seeks to generate a random �� drawn according to

the motion model ���� � ��� �����. When calculating the density, one is also given ��

generated through other means, and one seeks to compute the probability of �� under

���� � ��� �����.

The algorithm sample motion model velocity in Table 5.3 generates random sam-

ples from ���� � ��� ����� for a fixed control �� and pose ����. It accepts ���� and ��

as input and generates a random pose �� according to the distribution ���� � ��� �����.
Line 2 through 4 “perturb” the commanded control parameters by noise, drawn from

the error parameters of the kinematic motion model. The noise values are then used

to generate the sample’s new pose, in Lines 5 through 7. Thus, the sampling pro-



Robot Motion 97

1: Algorithm motion model velocity(��� ��� ����):

2: � �
�

	

��� ��� 
�� �  �� � ��� ��� �

�� � ��� 
�� � � ��� ��� ��� �

3: �� �
�  ��

	
 ��� � ���

4: �� �
�  ��

	
 ���� � ��

5: �� �
�

��� ����  �� � ����

6: �� � ����	��� � ��� �� � ��� � ����	�� � ��� �� ���

7: �� �
��

�

��

8: �� �
��

�


9: �� � ����
��

� ��

10: return ������ � ��� ����  ����� � ������ � ��� ����  �����
� �������� ����  �����

Table 5.1 Algorithm for computing ���� � ��� ����� based on velocity information.
Here we assume ���� is represented by the vector �� � ��� ; �� is represented by

��� �� ���� ; and �� is represented by the velocity vector �� ��� . The function prob�	� 
�
computes the probability of its argument 	 under a zero-centered distribution with variance


. It may be implemented using any of the algorithms in Table 5.2.

1: Algorithm prob normal distribution(�� �):

2: return ��
���

��
�

�

�
�

�

3: Algorithm prob triangular distribution(�� �):

4: if ��� �
�

��

5: return 0

6: else

7: return
�

������
��

Table 5.2 Algorithms for computing densities of a zero-centered normal distribution and

the triangular distribution with variance 
.



98 ������� �

1: Algorithm sample motion model velocity(��� ����):

2: �� � �  �����	�����  �����
3: �� � �  �����	�����  �����
4: �� � �����	�����  �����
5: �� � �� ��

�� ��� �  ��
�� �����  ���
�

6: �� � �  ��
�� 
�� � � ��

�� �����  ���
�

7: �� � �  ���
  ���


8: return �� � ���� ��� ����

Table 5.3 Algorithm for sampling poses �� � ��� �� ���� from a pose ���� �
�� � ��� and a control �� � �� ��� . Note that we are perturbing the fi nal orienta-

tion by an additional random term, ��. The variables �� through �� are the parameters of

the motion noise. The function sample�
� generates a random sample from a zero-centered

distribution with variance 
. It may, for example, be implemented using the algorithms in

Table 5.4.

1: Algorithm sample normal distribution(�):

2: return
�

�

��
�

		�

��
����� ��

3: Algorithm sample triangular distribution(�):

4: return � � ��
����� �� � ��
����� ��

Table 5.4 Algorithm for sampling from (approximate) normal and triangular distributions

with zero mean and variance 
. The function rand��� �� is assumed to be a pseudo random
number generator with uniform distribution in ��� ��.



Robot Motion 99

(a) (b) (c)

Figure 5.4 Sampling from the velocity motion model, using the same parameters as in

Figure 5.3. Each diagram shows 500 samples.

cedure implements a simple physical robot motion model that incorporates control

noise in its prediction, in just about the most straightforward way. Figure 5.4 illus-

trates the outcome of this sampling routine. It depicts 500 samples generated by sam-

ple motion model velocity. The reader might want to compare this figure with the

density depicted in in Figure 5.3.

We note that in many cases, it is easier to sample �� than calculate the density of a

given ��. This is because samples require only a forward simulation of the physical

motion model. To compute the probability of a hypothetical pose amounts to retro-

guessing of the error parameters, which requires to calculate the inverse of the physical

motion model. The fact that particle filters rely on sampling makes them specifically

attractive from an implementation point of view.

��#�# ���)�������! 	���*�����

We will now derive the algorithms mo-

tion model velocity and sample motion model velocity. As usual, the reader not

interested in the mathematical details is invited to skip this section at first reading, and

continue in Section 5.4 (page 107). The derivation begins with a generative model of

robot motion, and then derives formulae for sampling and computing ���� � ��� �����
for arbitrary ��, ��, and ����.

Exact Motion

Before turning to the probabilistic case, let us begin by stating the kinematics for an

ideal, noise-free robot. Let �� � �� ��� denote the control at time 
. If both velocities
are kept at a fixed value for the entire time interval �
��� 
�, the robot moves on a circle



100 ������� �

<x ,y >c c

θ90−θ

<x,y>

r

x

y

Figure 5.5 Motion carried out by a noise-free robot moving with constant velocities � and

� and starting at �� � ��� .

with radius

� �
	

	

	

�

�

	

	

	
(5.5)

This follows from the general relationship between the translational and rotational

velocities � and � for an arbitrary object moving on a circular trajectory with radius �:

� � � � �� (5.6)

Equation (5.5) encompasses the case where the robot does not turn at all (i.e., � � �),
in which case the robot moves on a straight line. A straight line corresponds to a circle

with infinite radius, hence we note that � may be infinite.

Let ���� � ��� �� ��� be the initial pose of the robot, and suppose we keep the velocity

constant at �� ��� for some time �
. As one easily shows, the center of the circle is
at

�
 � �� �

�
��� � (5.7)

�
 � � 
�

�

�� � (5.8)



Robot Motion 101

The variables ��
 �
�
� denote this coordinate. After �
 time of motion, our ideal

robot will be at �� � ���� ��� ���� with

�

�

��

��

��

�

� �

�

�

�
  �
�

�����  ��
�
�
 � �

�

����  ��
�

�  ��


�

�

�

�

�

�
�
�

�

� 

�

�

� �
�

��� �  �
�

�����  ��
�
�
�


�� � � �
�


����  ��
�
��


�

� (5.9)

The derivation of this expression follows from simple trigonometry: After �
 units
of time, the noise-free robot has progressed � � �
 along the circle, which caused it’s
heading direction to turn by � � �
. At the same time, its � and � coordinate is given
by the intersection of the circle about ��
 �
�

� , and the ray starting at ��
 �
�
� at the

angle perpendicular to � ��
. The second transformation simply substitutes (5.8) into
the resulting motion equations.

Of course, real robots cannot jump from one velocity to another, and keep velocity

constant in each time interval. To compute the kinematics with non-constant veloci-

ties, it is therefore common practice to use small values for �
, and to approximate
the actual velocity by a constant within each time interval. The (approximate) final

pose is then obtained by concatenating the corresponding cyclic trajectories using the

mathematical equations just stated.

Real Motion

In reality, robot motion is subject to noise. The actual velocities differ from the com-

manded ones (or measured ones, if the robot possesses a sensor for measuring ve-

locity). We will model this difference by a zero-centered random variable with finite

variance. More precisely, let us assume the actual velocities are given by

�

��
��

�

�

�

�
�

�



�

������
�����
������
�����

�

(5.10)

Here �� is a zero-mean error variable with variance �. Thus, the true velocity equals
the commanded velocity plus some small, additive error (noise). In our model, the

variance of the error is proportional to the commanded velocity. The parameters � to

� (with 	 � � for � � �� � � � � �) are robot-specific error parameters. They model the
accuracy of the robot. The less accurate a robot, the larger these parameters.



102 ������� �

-b b

(a)

b-b

(b)

Figure 5.6 Probability density functions with variance 
: (a) Normal distribution, (b)

triangular distribution.

Two common choices for the error �� are:

Normal distribution. The normal distribution with zero mean and variance � is
given by the density function

����� �
��

		 � �
��

�

�

�
�

� (5.11)

Figure 5.6a shows the density function of a normal distribution with variance �.
Normal distributions are commonly used to model noise in continuous stochastic

processes, despite the fact that their support, that is the set of points �with ���� �
�, is �.
Triangular distribution. The density of triangular distribution with zero mean

and variance � is given by

����� �




� if ��� �
�

���
������
��

otherwise
(5.12)

which is non-zero only in ��
�

���
�

���. As Figure 5.6b suggests, the density
resembles the shape of a symmetric triangle—hence the name.

A better model of the actual pose �� � ��� �� ���� after executing the motion com-

mand �� � �� ��� at ���� � �� � ��� is thus

�

�

��

��

��

�

� �

�

�

�
�
�

�

� 

�

�

� ��
�� ��� �  ��

�� �����  ���
�
��
�� 
�� � � ��

�� 
����  ���
�
���


�

� (5.13)



Robot Motion 103

This equation is simply obtained by substituting the commanded velocity �� � �� ���

with the noisy motion ��� ��� in (5.9). However, this model is still not very realistic,
for reasons discussed in turn.

Final Orientation

The two equations given above exactly describe the final location of the robot given

that the robot actually moves on an exact circular trajectory with radius � � ��
�� . While

the radius of this circular segment and the distance traveled is influenced by the con-

trol noise, the very fact that the trajectory is circular is not. The assumption of cir-

cular motion leads to an important degeneracy. In particular, the support of the den-

sity ���� � ��� ����� is two-dimensional, within a three-dimensional embedding pose
space. The fact that all posterior poses are located on a two-dimensional manifold

within the three-dimensional pose space is a direct consequence of the fact that we

used only two noise variables, one for � and one for �. Unfortunately, this degeneracy
has important ramifications when applying Bayes filters for state estimation.

In reality, any meaningful posterior distribution is of course not degenerate, and poses

can be found within a three-dimensional space of variations in �, �, and �. To gener-
alize our motion model accordingly, we will assume that the robot performs a rotation

�� when it arrives at its final pose. Thus, instead of computing �� according to (5.13),
we model the final orientation by

�� � �  ���
  ���
 (5.14)

with

�� � ������
����� (5.15)

Here � and � are additional robot-specific parameters that determine the variance

of the additional rotational noise. Thus, the resulting motion model is as follows:

�

�

��

��

��

�

� �

�

�

�
�
�

�

� 

�

�

� ��
�� ��� �  ��

�� �����  ���
�
��
�� 
�� � � ��

�� 
����  ���
�
���
  ���


�

� (5.16)

Computation of ���� � ��� �����



104 ������� �

The algorithm motion model velocity in Table 5.1 implements the computation of

���� � ��� ����� for given values of ���� � �� � ��� , �� � �� ��� , and

�� � ��� �� ���� . The derivation of this algorithm is somewhat involved, as it ef-

fectively implements an inverse motion model. In particular, motion model velocity

determines motion parameters ��� � ��� ���� from the poses ���� and ��, along with

an appropriate final rotation ��. Our derivation makes it obvious as to why a final ro-
tation is needed: For most values of ����, ��, and ��, the motion probability would

simply be zero without allowing for a final rotation.

Let us calculate the probability ���� � ��� ����� of control action �� � �� ���

carrying the robot from the pose ���� � �� � ��� to the pose �� � ��� �� ����

within �
 time units. To do so, we will first determine the control �� � ��� ����

required to carry the robot from ���� to position ��� ���, regardless of the robot’s
final orientation. Subsequently, we will determine the final rotation �� necessary for
the robot to attain the orientation ��. Based on these calculations, we can then easily
calculate the desired probability ���� � ��� �����.

The reader may recall that our model assumes that the robot assumes a fixed velocity

during �
, resulting in a circular trajectory. For a robot that moved from ���� �
�� � ��� to �� � ��� ���� , the center of the circle is defined as ��� ���� and given

by

�

��

��

�

�

�

�
�

�



�

�� ��� �
� 
�� �

�

�

�

�
��

�  ��� � ���

�

�  ���� � ��

�

(5.17)

for some unknown �� � � �. The first equality is the result of the fact that the cir-
cle’s center is orthogonal to the initial heading direction of the robot; the second is

a straightforward constraint that the center of the circle lies on a ray that lies on the

half-way point between �� ��� and ��� ���� and is orthogonal to the line between

these coordinates.

Usually, Equation (5.17) has a unique solution—except in the degenerate case of � �
�, in which the center of the circle lies at infinity. As the reader might want to verify,
the solution is given by

� �
�

	

��� ��� 
�� �  �� � ��� ��� �

�� � ��� 
�� � � ��� ��� ��� �
(5.18)



Robot Motion 105

and hence

�

��

��

�

�

�

�
��

�  �
�

������ �� �
���� ��� �

���� �� �������� ��� �
�� � ���


�

�  �
�

������ �� �
���� ��� �

���� �� �������� ��� �
��� � ��

�

(5.19)

The radius of the circle is now given by the Euclidean distance

�� �
�

��� ����  �� � ���� �
�

��� � ����  ��� � ���� (5.20)

Furthermore, we can now calculate the change of heading direction

�� � ����	��� � ��� �� � ��� � ����	�� � ��� �� ��� (5.21)

Here ����	 is the common extension of the arcus tangens of ��� extended to the ��

(most programming languages provide an implementation of this function):

����	��� �� �



�

�

�

�

�

�

��������� if � � �
������� �	 � ������������ if � � �
� if � � � � �
������� 	�	 if � � �� � �� �

(5.22)

Since we assume that the robot follows a circular trajectory, the translational distance

between �� and ���� (along this circle) is

����� � �� � �� (5.23)

From����� and ��, it is now easy to compute the velocities �� and ��:

��� �

�

��
��

�

� �
��

�

�����
��

�

(5.24)

The angle of the final rotation �� can be determined according to (5.14) as:

�� � �
����� � �� � �� (5.25)



106 ������� �

The motion error is the deviation of ��� and �� from the commanded velocity �� �
�� ��� and � � �, as defined in Equations (5.24) and (5.25).

���� � � � �� (5.26)

���� � � � �� (5.27)

���� � �� (5.28)

Under our error model, specified in Equations (5.10), and (5.15), these errors have the

following probabilities:

������
����������� (5.29)

������
����������� (5.30)

������
����������� (5.31)

where �� denotes a zero-mean error variable with variance �, as before. Since we
assume independence between the different sources of error, the desired probability

���� � ��� ����� is the product of these individual errors:

���� � ��� ����� � ������
����������� � ������
����������� � ������
�����������(5.32)

To see the correctness of the algorithmmotion model velocity in Table 5.1, the reader

may notice that this algorithm implements this expression. More specifically, lines 2

to 9 are equivalent to Equations (5.18), (5.19), (5.20), (5.21), (5.24), and (5.25). Line

10 implements (5.32), substituting the error terms as specified in Equations (5.29) to

(5.31).

Sampling from ���� � �� ��

The sampling algorithm sample motion model velocity in Table 5.3 implements a

forward model, as discussed earlier in this section. Lines 5 through 7 correspond

to Equation (5.16). The noisy values calculated in lines 2 through 4 correspond to

Equations (5.10) and (5.15).

The algorithm sample normal distribution in Table 5.4 implements a common ap-

proximation to sampling from a normal distribution. This approximation exploits

the central limit theorem, which states that any average of non-degenerate random

variables converges to a normal distribution. By averaging 12 uniform distribu-

tions, sample normal distribution generates values that are approximately normal



Robot Motion 107

�����

������

�����

Figure 5.7 Odometry model: The robot motion in the time interval � � �� � is approxi-
mated by a rotation �����, followed by a translation ������ and a second rotation ����	. The

turns and translation are noisy.

distributed; though technically the resulting values lie always in ��	�� 	��. Finally,
sample triangular distribution in Table 5.4 implements a sampler for triangular dis-

tributions.

��+ �	�����% ������ ��	��

The velocity motion model discussed thus far uses the robot’s velocity to compute pos-

teriors over poses. Alternatively, one might want to use the odometry measurements

as the basis for calculating the robot’s motion over time. Odometry is commonly

obtained by integrating wheel encoders information; most commercial robots make

such integrated pose estimation available in periodic time intervals (e.g., every tenth

of a second). Practical experience suggests that odometry, while still erroneous, is

usually more accurate than velocity. Both suffer from drift and slippage, but veloc-

ity additionally suffers from the mismatch between the actual motion controllers and

its (crude) mathematical model. However, odometry is only available in retrospect,

after the robot moved. This poses no problem for filter algorithms, but makes this

information unusable for accurate motion planning and control.



108 ������� �

1: Algorithm motion model odometry(��� ��� ����):

2: ����� � ����	���� � ��� ��� � ��� � ��

3: ������ �
�

���� �����  ��� � �����

4: ����� � ��� � �� � �����

5: ������ � ����	��� � �� �� � �� � �

6: ������� �
�

��� ����  �� � ����

7: ������ � �� � � � ������

8: �� � ���������� � ������� �
������  �

��������

9: �� � ����������� � �������� �
�������  ��������  ��������

10: �� � ���������� � ������� �
������  �

��������

11: return �� � �� � ��

Table 5.5 Algorithm for computing ���� � ��� ����� based on odometry information.
Here the control �� is

��+�� �!�"�& '��� ��!��!�����

This section defines an alternative motion model that uses odometry measurements

in lieu of controls. Technically, odometry are sensor measurements, not controls. To

model odometry as measurements, the resulting Bayes filter would have to include the

actual velocity as state variables—which increases the dimension of the state space.

To keep the state space small, it is therefore common to simply consider the odometry

as if it was a control signal. In this section, we will do exactly this, and treat odometry

measurements as controls. The resulting model is at the core of many of today’s best

probabilistic robot systems.

Let us define the format of our control information. At time 
, the correct pose of
the robot is modeled by the random variable ��. The robot odometry estimates this

pose; however, due to drift and slippage there is no fixed coordinate transformation

between the coordinates used by the robot’s internal odometry and the physical world

coordinates. In fact, knowing this transformation would solve the robot localization

problem!



Robot Motion 109

(a) (b) (c)

Figure 5.8 The odometry motion model, for different noise parameter settings.

The odometry model uses the relative information of the robot’s internal odometry.

More specifically, In the time interval �
 � �� 
�, the robot advances from a pose ����

to pose ��. The odometry reports back to us a related advance from ����� � ��� �� ���
to ��� � ���� ��� ����. Here the bar indicates that these are odometry measurements,
embedded in a robot-internal coordinate whose relation to the global world coordinates

is unknown. The key insight for utilizing this information in state estimation is that the

relative difference between ����� and ���, under an appropriate definition of the term

“difference,” is a good estimator for the difference of the true poses ���� and ��. The

motion information �� is, thus, given by the pair

�� �

�

�����

���

�

(5.33)

To extract relative odometry, �� is transformed into a sequence of three steps: a rota-

tion, followed by a straight line motion (translation) and another rotation. Figure 5.7

illustrates this decomposition: the initial turn is called �����, the translation ������, and

the second rotation �����. As the reader easily verifies, each pair of positions ��� ����
has a unique parameter vector ������ ������ ������

� , and these parameters are suffi-

cient to reconstruct the relative motion between �� and ���. Thus, ������ ������� ����� is a
sufficient statistics of the relative motion encoded by the odometry. Our motion model

assumes that these three parameters are corrupted by independent noise. The reader

may note that odometry motion uses one more parameter than the velocity vector de-

fined in the previous section, for which reason we will not face the same degeneracy

that led to the definition of a “final rotation.”

Before delving into mathematical detail, let us state the basic algorithm for calculating

this density in closed form. Table 5.5 depicts the algorithm for computing ���� �
��� ����� from odometry. This algorithm accepts as an input an initial pose ����, a



110 ������� �

1: Algorithm sample motion model odometry(��� ����):

2: ����� � ����	���� � ��� ��� � ��� � ��

3: ������ �
�

���� �����  ��� � �����

4: ����� � ��� � �� � �����

5: ������ � ����� � �����	�������  ��������

6: ������� � ������ � �����	�� ������  �������  �������

7: ������ � ����� � �����	�������  ��������

8: �� � �  ������� 
����  �������

9: �� � �  ������� �����  �������

10: �� � �  ������  ������

11: return �� � ���� ��� ����

Table 5.6 Algorithm for sampling from ���� � ��� ����� based on odometry information.
Here the pose at time  is represented by ���� � �� � ��� . The control is a differentiable

set of two pose estimates obtained by the robot’s odometer, �� � ������ ����� , with

����� � ��� �� ��� and ��� � ���� ��� ����.

pair of poses �� � ������ ����
� obtained from the robot’s odometry, and a hypothesized

final pose ��. It outputs the numerical probability ���� � ��� �����.

Let us dissect this algorithm. Lines 2 to 4 recover relative motion parame-

ters ������ ������ ������
� from the odometry readings. As before, they im-

plement an inverse motion model. The corresponding relative motion parameters

������� �������
�������

� for the given poses ���� and �� are calculated in Lines 5 through

7 of this algorithm. Lines 8 to 10 compute the error probabilities for the individual

motion parameters. As above, the function prob��� �� implements an error distribu-
tion over � with zero mean and variance �. Here the implementer must observe that all
angular differences must lie in ��	� 	�. Hence the outcome of ����� � ������ has to be
truncated correspondingly—a common error that tends to yield occasional divergence

of software based on this model. Finally, Line 11 returns the combined error proba-

bility, obtained by multiplying the individual error probabilities ��, ��, and ��. This



Robot Motion 111

(a) (b) (c)

Figure 5.9 Sampling from the odometry motion model, using the same parameters as in

Figure 5.8. Each diagram shows 500 samples.

last step assumes independence between the different error sources. The variables �

through � are robot-specific parameters that specify the noise in robot motion.

Figure 5.8 shows examples of our odometry motion model for different values of the

error parameters � to �. The distribution in Figure 5.8a is a “proto-typical” one,

whereas the ones shown in Figures 5.8b and 5.8c indicate unusually large transla-

tional and rotational errors, respectively. The reader may want to carefully compare

these diagrams with those in Figure 5.3 on page 96. The smaller the time between to

consecutive measurements, the more similar those different motion models. Thus, if

the belief is updated frequently e.g., every tenth of a second for a conventional indoor

robot, the difference between these motion models is not very significant. In gen-

eral, the odometry model is preferable to the velocity model when applicable, since

odometers are usually more accurate than velocity controls—especially if those veloc-

ity values are not sensed but instead submitted to a PID controller that sets the actual

motor currents.

��+�� ���(!��� �!�����)�

If particle filters are used for localization, we would also like to have an algorithm for

sampling from ���� � ��� �����. Recall that particle filters (cf. Chapter 4.2.1) require
samples of ���� � ��� �����, rather than a closed-form expression for computing ���� �
��� ����� for any ����, ��, and ��. The algorithm sample motion model odometry,

shown in Table 5.6, implements the sampling approach. It accepts an initial pose ����

and an odometry reading �� as input, and outputs a random �� distributed according

to ���� � ��� �����. It differs from the previous algorithm in that it randomly guesses

a pose �� (Lines 5-10), instead of computing the probability of a given ��. As before,

the sampling algorithm sample motion model odometry is somewhat easier to im-



112 ������� �

10 meters

Start location

Figure 5.10 Sampling approximation of the position belief for a non-sensing robot. The

solid line displays the actions, and the samples represent the robot’s belief at different points

in time.

plement than the closed-form algorithm motion model odometry, since it side-steps

the need for an inverse model.

Figure 5.9 shows exam-

ples of sample sets generated by sample motion model odometry, using the same

parameters as in the model shown in Figure 5.8. Figure 5.10 illustrates the motion

model “in action” by superimposing sample sets from multiple time steps. This data

has been generated using the motion update equations of the algorithm particle filter

(Table 4.3), assuming the robot’s odometry follows the path indicated by the solid line.

The figure illustrates how the uncertainty grows as the robot moves. The samples are

spread across an increasingly larger space.



Robot Motion 113

��+�# ���)�������! 	���*�����

The derivation of the algorithms is relatively straightforward, and once again may be

skipped at first reading. To derive a probabilistic motion model using odometry, we

recall that the relative difference between any two poses is represented by a concatena-

tion of three basic motions: a rotation, a straight-line motion (translation), and another

rotation. The following equations show how to calculate the values of the two rotations

and the translation from the odometry reading �� � ������ ����
� , with ����� � ��� �� ���

and ��� � ���� ��� ����:

����� � ����	���� � ��� ��� � ��� � �� (5.34)

������ �
�

���� �����  ��� � ����� (5.35)

����� � ��� � �� � ����� (5.36)

To model the motion error, we assume that the “true” values of the rotation and trans-

lation are obtained from the measured ones by subtracting independent noise �� with

zero mean and variance �:

������ � ����� � �������	��
����	�
��� (5.37)

������� � ������ � ��� ��	�
���
������	�
���	�� (5.38)

������ � ����� � �������	��
����	�
��� (5.39)

As in the previous section, �� is a zero-mean noise variable with variance � (e.g., with
normal or triangular distribution). The parameters � to � are robot-specific error

parameters, which specify the error accrued with motion.

Consequently, the true position, ��, is obtained from ���� by an initial rotation with

angle ������, followed by a translation with distance �������, followed by another rotation

with angle ������. Thus,

�

�

��

��

��

�

� �

�

�

�
�
�

�

� 

�

�

������� 
����  �������
������� �����  �������

�  ������  ������

�

� (5.40)

Notice that algorithm sample motion model odometry implements Equations (5.34)

through (5.40).



114 ������� �

The algorithm motion model odometry is obtained by noticing that Lines 5-7 com-

pute the motion parameters ������, �������, and ������ for the hypothesized pose ��, rela-

tive to the initial pose ����. The difference of both,

����� � ������ (5.41)

������ � ������� (5.42)

����� � ������ (5.43)

is the error in odometry, assuming of course that �� is the true final pose. The error

model (5.37) to (5.39) implies that the probability of these errors is given by

�� � �������	��
����	�
��������� � ������� (5.44)

�� � ��� ��	�
���
������	�
���	��������� � �������� (5.45)

�� � �������	��
����	�
��������� � ������� (5.46)

with the distributions � defined as above. These probabilities are computed in Lines
8-10 of our algorithm motion model odometry, and since the errors are assumed to

be independent, the joint error probability is the product �� � �� � �� (cf., Line 11).

��� ������ ��	 ���

By considering ���� � ��� �����, we defined robot motion in a vacuum. In particular,
this model describes robot motion in the absence of any knowledge about the nature

of the environment. In many cases, we are also given a map �, which may contain
information pertaining to the places that a robot may or may not be able to navigate.

For example, occupancy maps, which will be explained in Chapter ??, distinguish

free (traversable) from occupied terrain. The robot’s pose must always be in the free

space. Therefore, knowing � gives us further information about the robot pose ��

before, during, and after executing a control ��.

This consideration calls for a motion model that takes the map � into account. We

will write this model as ���� � ��� �������, indicating that it considers the map� in

addition to the standard variables. If� carries information relevant to pose estimation,

we have

���� � ��� ����� �� ���� � ��� ������� (5.47)



Robot Motion 115

The motion model ���� � ��� ������� should give better results than the map-free
motion model ���� � ��� �����. We will refer to ���� � ��� ������� as map-based
motion model. The map-based motion model computes the likelihood that a robot

placed in a world with map � arrives at pose �� upon executing action �� at pose

����. Unfortunately, computing this motion model in closed form is difficult. This

is because to compute the likelihood of being at �� after executing action ��, one has

to incorporate the probability that an unoccupied path exists between ���� and �� and

that the robot might have followed this unoccupied path when executing the control

��—a complex operation.

Luckily, there exists an efficient approximation for the map-based motion model,

which works well if the distance between ���� and �� is small (e.g., smaller than

half a robot diameter). The approximation factorizes the map-based motion model

into two components:

���� � ��� ������� �  ���� � ��� ����� ���� � �� (5.48)

where  is the usual normalizer. According to this factorization, we simply multiply
the map-free estimate ���� � ��� ����� with a second term, ���� � ��, which expresses
the “consistency” of pose �� with the map �. In the case of occupancy maps, ���� �
�� � � if and only if the robot “collides” with an occupied grid cell in the map;
otherwise it assumes a constant value. By multiplying ���� � �� and ���� � ��� �����,
we obtain a distribution that assigns all probability mass to poses ���� consistent

with the map, which otherwise has the same shape as ���� � ��� �����. As  can be
computed by normalization, this approximation of a map-based motion model can be

computed efficiently without any significant overhead compared to a map-free motion

model.

Table 5.7 states the basic algorithms for computing and for sampling from the map-

based motion model. Notice that the sampling algorithm returns a weighted sample,

which includes an importance factor proportional to ���� � ��. Care has to be taken in
the implementation of the sample version, to ensure termination of the inner loop. An

example of the motion model is illustrated in Figure 5.11. The density in Figure 5.11a

is ���� � ��� �����, computed according to the velocity motion model. Now suppose

the map � possesses a long rectangular obstacle, as indicated in Figure 5.11b. The

probability ���� � �� is zero at all poses �� where the robot would intersect the

obstacle. Since our example robot is circular, this region is equivalent to the obstacle

grown by a robot radius (this is equivalent to mapping the obstacle from workspace to

the robot’s configuration space [19] or pose space). The resulting probability ���� �
��� �������, shown in Figure 5.11b, is the normalized product of ���� � �� and ���� �



116 ������� �

1: Algorithm motion model with map(��� ��� ������):

2: return ���� � ��� ����� � ���� � ��

1: Algorithm sample motion model with map(��� ������):

2: do

3: �� � sample motion model(��� ����)

3: 	 � ���� � ��

4: until 	 � �

5: return 	��� 	


Table 5.7 Algorithm for computing ���� � ��� ����� ��, which utilizes a map � of the

environment. This algorithms bootstraps previous motion models (Tables 5.1, 5.3, 5.5, and

5.6) to models that take into account that robots cannot be placed in occupied space in the

map�.

��� �����. It is zero in the extended obstacle area, and proportional to ���� � ��� �����
everywhere else.

Figure 5.11 also illustrates a problem with our approximation. The region marked ���
possesses non-zero likelihood, since both ���� � ��� ����� and ���� � �� are non-
zero in this region. However, for the robot to be in this particular area it must have

gone through the wall, which is impossible in the real world. This error is the result

of checking model consistency at the final pose ���� only, instead of verifying the

consistency of the robot’s path to the goal. In practice, however, such errors only occur

for relatively large motions ��, and it can be neglected for higher update frequencies.

To shed light onto the nature of the approximation, let us briefly derive it. Equation

(5.48) can be obtained by applying Bayes rule:

���� � ��� ������� �  ��� � ��� ��� ����� ���� � ��� ����� (5.49)

If we approximate ��� � ��� ��� ����� by ��� � ���, we obtain the desired equation
by once again applying Bayes rule:

���� � ��� ������� �  ��� � ��� ���� � ��� �����



Robot Motion 117

(a) ���� � ��� ����� (b) ���� � ��� ����� ��

� ���

Figure 5.11 Velocity motion model (a) without a map and (b) conditioned on a map�.

�  ���� � �� ���� � ��� ����� (5.50)

where  is the normalizer (notice that the value of  is different for the different steps
in our transformation). This brief analysis shows that our map-based model is justified

under the rough assumption that

��� � ��� ��� ����� � ��� � ��� (5.51)

Obviously, these expressions are not equal. When computing the conditional over �,
our approximation omits two terms: �� and ��. By omitting these terms, we discard

any information relating to the robot’s path leading up to ��. All we know is that its

final pose is ��. We already noticed the consequences of this omission in our example

above, when we observed that poses behind a wall may possess non-zero likelihood.

Our approximate map-based motion model may falsely assume that the robot just went

through a wall, as long as the initial and final poses are in the unoccupied space. How

damaging can this be? As noted above, this depends on the update interval. In fact,

for sufficiently high update rates, and assuming that the noise variables in the motion

model are bounded, we can guarantee that the approximation is tight and this effect

will not occur.

This analysis illustrates a subtle insight pertaining to the implementation of the algo-

rithm. In particular, one has to pay attention to the update frequency. A Bayes filter

that is updated frequently might yield fundamentally different results than one that is

updated occasionally only.



118 ������� �

��, �
����%

This section derived the two principal probabilistic motion models for mobile robots

operating on the plane.

We derived an algorithm for the probabilistic motion model ���� � ��� �����
that represents control �� by a translational and angular velocity, executed over a

fixed time interval �
. In implementing this model, we realized that two control
noise parameters, one for the translational and one for the rotational velocity,

are insufficient to generate a space-filling (non-generate) posterior. We therefore

added a third noise parameter, expressed as a noisy “final rotation.”

We presented an alternative motion model that uses the robot’s odometry as input.

Odometry measurements were expressed by three parameters, an initial rotation,

followed by a translation, and a final rotation. The probabilistic motion model

was implemented by assuming that all three of these parameters are subject to

noise. We noted that odometry readings are technically not controls; however, by

using them just like controls we arrived at a simpler formulation of the estimation

problem.

For both motion models, we presented two types of implementations: One in

which the probability ���� � ��� ����� is calculated in closed form, and one that
enables us to generate samples from ���� � ��� �����. The closed-form expres-

sion accepts as an input ��, ��, and ����, and outputs a numerical probability

value. To calculate this probability, the algorithms effectively invert the motion

model, to compare the actual with the commanded control parameters. The sam-

pling model does not require such an inversion. Instead, it implements a forward

model of the motion model ���� � ��� �����. It accepts as an input the values ��

and ���� and outputs a random �� drawn according to ���� � ��� �����. Closed-
formmodels are required for some probabilistic algorithms. Others, most notably

particle filters, utilize sampling models.

Finally we extended all motion models to incorporate a map of the environment.

The resulting probability ���� � ��� ������� incorporates a map � in its condi-

tional. This extension followed the intuition that the map specifies where a robot

may be; which has an effect of the ability to move from pose ���� to ��. Our

extension was approximate, in that we only checked for the validity of the final

pose.

The motion models discussed here are only examples: Clearly, the field of robotic

actuators is much richer than just mobile robots operating in flat terrain. Even within



Robot Motion 119

the field of mobile robotics, there exist a number of devices that are not covered by

the models discussed here. Examples include holonomic robots which can move side-

wards. Further, our description does not consider robot dynamics, which are impor-

tant for fast-moving vehicles such as cars on highways. Most of these robots can be

modeled analogously: simply specify the physical laws of robot motion, and spec-

ify appropriate noise parameters. For dynamic models, this will require to extend the

robot state by a velocity vector which captures the dynamic state of the vehicle. In

many ways, these extensions are straightforward. Rather than cluttering this book

with more motion models, it is now time to move on to the important topic of sensor

measurements.

��- .�.���/��0���� �������

Typical drives covered by this model are the the differential drive, the Ackerman drive,

or the synchro-drive [4, ?]. Drive systems not covered by our model are those without

non-holonomic constraints [19] like robots equipped with Mecanum wheels [4, ?] or

even legged robots.


