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Abstract— The aim of this work is to provide a fast approach
for monocular SLAM initialization by constructing an initial
3-D map with interest points that are susceptible to be auto-
matically tracked. Interest points’ depth is inferred by means
of a linear regression model, which estimates depth on the basis
of local image appearance. Our contributions are: (1) a new
scheme for learning and predicting associations between depth
and local image appearance using RGB-D data; and (2) the
use of this scheme for the initialization of state-of-the-art visual
SLAM systems from a single image frame. To the best of our
knowledge, this is the first attempt to automatically initialize a
SLAM system by associating depth to sensor features through
machine learning techniques. We performed a series of tests by
making use of the celebrated PTAM system and obtained very
promising results. We show successful one-shot initialization
examples accomplished by applying our proposed approach to
unstructured scene environments.

I. INTRODUCTION
In the last years, monocular simultaneous localization and

mapping (SLAM) systems have become very popular in the
robotics community as a map building and localization tools.
This is mainly because of their low cost, as well as the
richness of information that images can convey for solving
the data association problem. Since the pioneering work
of Davison and collaborators [1], the development of new
SLAM algorithms has been a persistent trend in Augmented
Reality and Mobile Robotics research. However, all monocu-
lar SLAM systems reported in the literature depend critically
on specific 3-D map initialization mechanisms due to the
projective nature of monocular sensors. The initialization
process is required in order to provide an initial distance
estimate of particular landmarks in the sensor field of view.

Several methods have been proposed for solving the
initialization problem. The leading approach detects known
landmarks in the scene, providing information that consid-
erably simplifies the initialization problem. In the absence
of both landmarks and known points to be inserted in the
visual map, previous solutions typically determine an initial
value for the point depth by means of triangulation. This
may be implicitly performed by using estimation-oriented
schemes such as [1] or explicitly performed in structure
from motion-oriented schemes such as [2]. In both cases,
several frames may be necessary to accomplish accurate
initialization. Moreover, if no prior knowledge is given on
the motion of the camera, the reconstruction may only be
recovered up to a scale.

1All authors are with the Computer Science Department, at the Center
for Research in Mathematics (CIMAT), 36240 Guanajuato, GTO., México
samota@cimat.mx
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Fig. 1. Overview of our system: We use collected RGB-D data (upper
left part) to learn regression parameters in an appearance space (lower part)
around corner points to infer depth. The inference system is used to initialize
a VSLAM system from a single shot (upper right part).

The paradigm we follow here is based on a key observa-
tion. Monocular visual SLAM systems typically operate in
environments for which one may have some prior informa-
tion. Visual reconstruction is often sought in common spaces
such as rooms and offices, where visual appearances are not
so different from those of places we have already acquired
knowledge. Since useful prior information can be readily
gathered by means of inexpensive sensors such as RGB-D
cameras, designing a prediction scheme that is capable of
inferring depth from image appearance is a feasible task.

The aim of this work is to provide a fast approach to
initialize a VSLAM system by constructing an initial 3-
D map utilizing interest points that are susceptible to be
automatically tracked. Interest points’ depth is inferred by
means of a linear regression model, which estimates depth
on the basis of local image appearance (Figure 1).

In summary, our main contributions are: (1) a new scheme
for learning and predicting associations between depth and
local image appearance using RGB-D data; and (2) the use
of this scheme for the initialization of a state-of-the-art visual
SLAM system from a single image frame. To the best of our
knowledge, this is the first attempt to automatically initialize
a SLAM system by associating depth to image features
through machine learning techniques.

The reminder of this article is organized as follows.
Related work is reported in Section II. The proposed depth-
inference strategy that is used for SLAM initialization is
described in Section III and the learning of regression
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parameters in Section IV. We discuss depth inference results
in Section V and draw conclusions in Section VI.

II. PREVIOUS WORK

Due to the projective nature of monocular sensors, the
initialization problem on visual SLAM is present whenever
a new landmark is observed. Early approaches used delayed
initialization strategies to solve this problem, where new
landmarks are managed by an auxiliary process until they
exhibit enough parallax to allow accurate estimations of
their degrees of freedom. That is the case of [1], where
a uniform distribution over landmarks depth is proposed,
and successive observations are used to reduce the depth
distribution variance until it can be considered as a low-
variance Gaussian.

Delayed initialization strategies do not take advantage of
landmark observations until they are fully initialized. This
can take a long time when sensor movement is in the
direction of landmark location. An approach for undelayed
initialization is developed in [3]. This approach maintains
multiple depth hypothesis into a Gaussian map for each
landmark. Depth hypothesis are spread following a geo-
metric series, and bad hypothesis are pruned by successive
observations. In [4], the fact that perspective projection
results in a nearly linear image measurement process in
inverse depth coordinates has been exploited. This leads to
a parametrization that can be used directly into an EKF
framework. More of these parametrizations fit to the VSLAM
problem, for both points and lines, are presented in [5].
Although these approaches allow for undelayed landmarks
initialization, landmark depth is initialized in the form of a
widespread distribution.

These approaches have proven useful on robotics and aug-
mented reality applications. However, their applicability is
conditioned to the fact of knowing the camera movement be-
tween landmark observations. When a scene map is known,
camera movement can be estimated from observations. But
when there is no map, as when VSLAM applications are
started, the sensor motion cannot be estimated. To cope with
this problem, the most common strategy has been to assume
some a priori knowledge. In [1], a known object is set in
the scene and the camera is placed at a specific location
relative to this object. In this way, the 3-D locations of
the landmarks on the object are known, and constitute the
initial map. However, it is not always possible to incorporate
known objects to the scene. Moreover, the need for a specific
camera pose limits the initialization flexibility. In [2], user
intervention is required to tackle this problem. The user is
asked to move the camera following a predefined movement
between two scene snapshots. Because camera displacement
is known, and assuming a planar scene, the camera poses
and landmarks locations can be computed. In this approach,
the initialization depends on the user ability to perform
the predefined movements accurately. Moreover, during the
movement, landmarks are tracked by using appearance infor-
mation only. In order to provide a robust tracking, landmarks

are searched over a small image neighborhood. Therefore,
smooth movement during initialization is required.

III. INTEREST POINTS DEPTH INFERENCE
Our approach for achieving efficient 3-D initialization of

a VSLAM system was motivated by the work of Saxena and
colleagues [6]. Their work is aimed at supervised learning for
3-D scene structure recovery in still images of unstructured
environments. Broadly, successful learning is achieved by
training a Markov random field that encodes spatial rela-
tionships between different parts of an image, with local
visual features that are highly correlated with depth. Here,
we achieve depth learning by means of regularized linear
regression over interest points characterized by suitable color
and texture features.

Interest points correspond to corner image features that
are detected at various scales by means of the FAST algo-
rithm [7]. The i-th interest point of an image is denoted by
pi. Color and texture features associated with pi are denoted
by the D-dimensional feature vector qi. These include con-
volution responses to derivative and Laws’ masks operators
computed at 3 different scales, leading to feature vectors
in R510. Derivative and Laws’s operators are designed to
characterize texture features from an image [8].

Let ρi be the unknown depth of interest point pi. The goal
is to compute an estimate ρ̂i by modeling image appearance
around pi. To achieve this, we use a linear regression model

ρ̂i = qTi vρ + vρ,0,

where vρ ∈ RD and vρ,0 ∈ R are the regression parameters
to be learned from a training set.

One can expect that this linear model will result in ap-
proximate estimations due to large feature vector variability
across real data sets. For this reason it is useful to compute
an empirical estimate of the error ei = ρi− ρ̂i from training
data. Namely, we use a regression model given by

êi = qTi ve + ve,0,

where ve ∈ RD and ve,0 are the regression parameters. A
confidence measure νi for ρ̂i can be computed from êi and
the average absolute empirical error ê as follows

νi = 1− |êi|
ê+ |êi|

. (1)

The key idea of our proposed approach is to initialize a
3-D map using a set of interest points possessing confidence
values above a given threshold τν . In practice, a single image
may contain a large number of interest points out of which
only relatively few possess high confidence values. However,
we have observed that as long as the regression model gener-
alizes reasonably well on unseen data, the number of selected
points is enough to perform successful initialization. Good
generalization performance can be achieved by controlling
model complexity and performing training on suitable data
sets. The estimation procedure for the (vTρ , vρ,0,v

T
e , ve,0, ê)

parameters is described in the section that follows. The pro-
cess for acquiring our training data is described in Section V.
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IV. LEARNING REGRESSION PARAMETERS

Training and testing datasets. Our training data set T
consists of a random sample of N (qi, ρi) pairs. This set
is obtained from a database of labeled images by ancestral
sampling. Ancestral sampling consists of random sampling
of an image from the database, and random sampling of
an interest point calculated from that image, from which
a feature vector is computed. This process is replicated N
times to form T . This set is randomly partitioned into four
subsets Ti, i = 1, . . . , 4. The first three are used for training,
and T4 for testing.

Learning parameters. Parameters vρ and vρ,0 are learned
by the minimization of the following error function using T1:

v∗ρ, v
∗
ρ,0 = arg min

vρ,v0ρ

1

|T1|
∑
i∈T1

(
1

ρi
(qTi vρ+vρ,0)−1)2+λρ‖vρ‖1.

(2)
Note that λρ‖vρ‖1 is a regularization term that controls the
complexity of the model and produces sparse regression co-
efficients. This formulation is the classical LASSO (least ab-
solute shrinkage and selection operator) formulation, which
produces a sparse set of regression coefficients, thus enabling
automatic feature relevance determination. The interested
reader is invited to consult [9] for a detailed description.
Implementation details can be found elsewhere [10].

Parameters ve and ve,0 are learned by the minimization
of the following error function using T2 :

v∗e , v
∗
e,0 = arg min

ve,ve,0

1

|T2|
∑
i∈T2

(qTi ve+ve,0−ei)2+λe‖ve‖1,

(3)
where ei = ρi−ρ̂i

ρi
= 1 − 1

ρi
(qTi v

∗
ρ + v∗ρ,0) is the fractional

error obtained with a depth estimation ρ̂i vs. training depth
ρi. Finally, parameter ê is estimated by summing fractional
errors over a third subset T3, as

ê =
1

|T3|
∑
i∈T3

|qTi v∗e + v∗e,0|. (4)

Notice that estimation of the optimal v∗e , v
∗
e,0 depends

on v∗ρ, v
∗
ρ,0, i.e. the errors are inferred under the model

built through the first step of the learning phase. Parameter
learning in (3) is also done by the method described in [10].

VSLAM initialization. One-shot initialization simply con-
sists of three steps: (1) detecting FAST points in the first
image frame provided by the robot/user, and compute their
respective descriptors qi; (2) compute their estimated depths
by means of the model ρ̂ = qTi v

∗
ρ + v∗ρ,0; and (3) compute

their estimated errors using ê = qTi v
∗
e + v∗e,0.

Depth and error estimates could be used differently ac-
cording to the nature of the monocular approach being used.
In the case of Kalman-filter-based algorithms, this estimates
could allow initial tuning of the Gaussian distributions as-
sociated with each map point. In this work, we test our
proposed approach in a VSLAM application that uses the
well-known PTAM system.

V. RESULTS

This section describes the database used in our experi-
ments, as well as the learning results obtained during the
training and testing steps of our proposed approach. It
also shows one-shot initialization examples accomplished by
applying our approach in unstructured scene environments.

A. Depth/texture database

We acquired RGB images and their corresponding depth
maps from indoor environments by means of a Kinect
sensor. The sensor is calibrated in order to ensure good
correspondences between color and depth maps [11]. Our
database consists of 427 RGB-D images, which were cap-
tured so that the scene elements are situated within the Kinect
sensing range, which is between 800 and 4000 (mm). A few
examples of our datasets are shown in Figure 2. Our image
database captures a wide range of indoor appearances and
depths inside office buildings. We collated a set of 12,810
appearance-depth interest point pairs (qi, ρi) from our RGB-
D images in order to compute a training and testing data sets.
Interest points are selected according the procedure described
in Section IV. Our training and testing sets consisted of 7686
and 5124 interest point pairs, respectively.

B. Depth estimation experiments

An empirical estimate of the expected value of the actual
fractional error in (5), conditioned to the estimated confi-
dence ν̂i is greater than a given threshold τν is shown in the
plot of Figure 3(a). The shaded area represents the point wise
mean plus and minus the estimated 95% confidence interval
values. Confidence intervals were computed by means of an
approach described in [12]. These calculations were made
using data set T4. This plot shows that high confidence points
possess low fractional error values. For instance, points
with confidence values higher 80% are expected to have a
fractional error ei around 5%, where ei is computed as

ei =
1

ρi
(qTi v

∗
ρ + v∗ρ,0)− 1. (5)

Similarly, in Figure 3(b), we plot the percentage of points
for which ν̂i > τν as a function of τν . The plot shows that
about 14.5% of interest points possess a confidence greater
than 80%. In general, only relatively few points possess high
confidence values, however, we observed in the experiments
that a small number of high-confidence points is sufficient
to perform fast and successful initialization.

A key observation is that our approach results in high-
confidence points across all the images in our database.
About 11% percent of the points on each image possesses
a confidence greater than 80% (Figure 4). We suggest that
our proposed algorithm is generalizing well enough for our
application purposes, even-though the distribution of points
across images is not completely uniform.

We note that the coefficients vρ and ve are rela-
tively sparse, having 73 and 158 non-zero components
(out of 510), respectively. The confidence interval for ¯̂e is
[.3413, .4164] m, and its mean value .3783 m.
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Fig. 2. Image examples of our training/testing datasets. The images were collected inside building offices by means of a KINECT sensor.
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Fig. 3. (a) Empirical estimate of the expected value of the fractional error conditioned to the estimated confidence ν̂i is greater than a given threshold
τν . (b) Percentage of interest points for which ν̂i > τν as a function of τν .
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Fig. 4. Percentage of points with in the images of our database that possess
confidence values greater than 80%.

C. Initialization of a visual SLAM system

To test the usefulness of our model regarding the ini-
tialization of monocular vision systems, we modified the
initialization mechanism of the PTAM [2] with our proposed
approach. We henceforth refer to the original PTAM initial-
ization as the conventional initialization. In the conventional
initialization, the user is asked to perform a camera trans-
lation between two snapshots of a planar scene. Given that
the camera motion is known and that the scene has planar
geometry, both camera poses at the beginning and ending of
the motion can be related through an homography. Moreover,

3-D scene point locations can be computed by triangulation.
While this initialization mechanism has been used quite

successfully, it is somewhat limited in the sense that it has
been designed for use on planar scenes and the scale of the
scene can not be recovered accurately (the scale is being
given up to the error in the user translation amplitude w.r.t.
the suggested motion).

In contrast, our approach not only allows us to perform
instantaneous initialization from a single shot, but it can also
recover the scene scale, as our method relies on accurate
depth learning from a labeled training set. Furthermore, by
essence, our approach does not depend on the scene structure,
so the planar assumption is unnecessary (Figure 5). We re-
mark that a subset of the interest points used for initialization
exhibit persistence along the video sequences as 3-D map
elements. This means that their depth estimates were accurate
enough to provide an approximately correct initial 3-D map.
The reader is referred to the supplementary material for an
illustration of the performance of our initialization approach.

We quantitatively compared the conventional and our
proposed initialization approach by testing over a set of 20
planar scenes. The Kinect sensor is used to determine a set
of ground truth landmarks depths.

The estimated depth for each landmark using the con-
ventional initialization is computed as the magnitude of the
vector from the camera center to the estimated landmark
position in the scene. Since the estimated depth is known up-
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Fig. 5. Our approach allows us to perform instantaneous initialization from a single shot and also recover the scene scale. Our approach does not depend
on the scene structure, so the planar assumption is unnecessary. Temporal evolution of the interest points are shown in the sequence of images (from left
to right). Red points correspond to interest points obtained with our algorithm. Yellow points correspond to those aggregated by the PTAM engine. Top
row: initialization on a planar surface. Bottom row: initialization on a general scene.

to a scale, an additional measurement is performed in order
to adjust the estimated depth value of each of the landmarks.
The average fractional depth error resulted in a value of 48%.

An empirical estimate of the expected value of the frac-
tional error obtained with our proposed technique, con-
ditioned to the estimated confidence ν̂i is greater than a
given threshold τν is shown Figure 6(a). The plot indicates
that estimates obtained by our approach outperform the
conventional initialization regarding landmarks possessing
confidence values greater than 65.8%.

Similarly, in Figure 6(b), we plot the percentage of points
for which ν̂i > τν as a function of τν . The plot shows that
about 18.2% of interest points possess a confidence greater
than 65.8%. This percentage of points was enough to perform
successful initialization.

The temporal evolution of the location of the interest
points with confidence values above 65% in a typical initial-
ization performed by our approach is shown in Figure 7. We
observed that our initial depth estimates are accurate enough
to provide the PTAM engine with a suitable 3-D initial map.
Illustrations of initial maps are shown in Figure 8. This
initial map is modified through the PTAM bundle-adjustment
procedure until the original position estimates converge to a
stationary value (Figure 7). When this is the case, interest
points can be reliably tracked across time and space.

We used video sequences from diverse environments in
order to check the generalization ability of our approach as
well as the robustness of our depth estimates. We observed
that, for indoor scenes our approach allows successful ini-
tializations for most of the test cases1. Initialization failures
occurred mainly on poorly textured images, which are diffi-
cult scenarios for approaches based on detection and tracking
of interest points. For outdoor scenes the performance of
our approach decayed significantly. This is explained by the
nature of the images in our database. To overcome this
limitation, we re-estimate the model parameters using an

1Examples can be found at http://www.cimat.mx/˜samota/
projects/VSLAMInitialization.html

outdoor range image dataset [6]. We have obtained promising
results under this setting on our preliminary tests.

We found that the learning process was fairly efficient.
Convergence was fast and the processing time was adequate.
For instance, learning depth from a test data set of 12,000
images takes about 4 min of processing time running Matlab
with a 2.5 Gz single Xenon Core. This processing time can
be further reduced by using optimized C/C++ and modern
computers parallel processing capabilities.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have described an automatic approach
for one-shot initialization of monocular SLAM systems. Our
proposed approach is based on depth learning and inference
from local image features through standard regularized linear
regression. We have shown that our approach results in a
set of high-confidence interest points that can be reliably
used for construction an initial 3-D visual map. These points
tend to be persistent across time and space and therefore
can be readily tracked. Several existing issues are guiding
our current and future work: a tighter selection of texture
descriptors could help us in accelerating the image extraction
process; we also aim at better exploiting the nature of interest
points, as potential source of depth discontinuities; lastly, we
could combine our approach with recursive Bayesian filtering
localization and mapping methods, such as the EKF.
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[3] J. Solà, A. Monin, M. Devy, and T. Lemaire, “Undelayed initialization
in bearing only slam.” in Proc. of IEEE/RSJ Int. Conf. on Intelligent
Robot and Systems, 2005.

2295



0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τν

E
[e
|
ν
>
τ
ν
]

 

 

Our approach

PTAM

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τν

In
te

re
s
t 

p
o

in
ts

 p
e

rc
e

n
ta

g
e

(b)

Fig. 6. Our model as an alternative to PTAM initialization. (a) Empirical estimate of the expected value of the fractional error conditioned to the estimated
confidence ν̂i is greater than a given threshold τν . (b) Percentage of interest points for which ν̂i > τν as a function of τν .

0 50 100 150 200 250 300 350 400 450 500
−4

−2

0

2

4

6

8

10

Frame

x
 e

s
ti
m

a
te

d
 (

m
)

(a)

0 50 100 150 200 250 300 350 400 450 500
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Frame

y
 e

s
ti
m

a
te

d
 (

m
)

(b)

0 50 100 150 200 250 300 350 400 450 500
−2

−1

0

1

2

3

4

5

6

Frame

z
 e

s
ti
m

a
te

d
 (

m
)

(c)

Fig. 7. Spatial-temporal evolution of interest points possessing high confidences. Evolution over time of the 3-D coordinates of the reconstructed landmarks
with highest confidences, after a typical initialization. Each curve corresponds to a specific point initially introduced to the map using our method. (a)
x-coordinate. (b) y-coordinate. (c) z-coordinate.
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