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Abstract— The task addressed in this paper is to plan
iteratively a set views in order to reconstruct an object usig
a mobile manipulator robot with an “eye-in-hand” sensor. The
proposed method plans views directly in the configuration sace
avoiding the need of inverse kinematics. It is based on a fast
evaluation and rejection of a set of candidate configuratios.
The main contributions are: a utility function to rank the vi ews
and an evaluation strategy implemented as a series of filters
Given that the candidate views are configurations, motion
planning is solved using a rapidly-exploring random tree. The
system is experimentally evaluated in simulation, contragng it
with previous work. We also present experiments with a real
mobile manipulator robot, demonstrating the effectivenes of
our method.

|. INTRODUCTION Fig. 1. The proposed method is able to plan each robot coafigar

Three-dimensional (3D) models from real objects havé order to reconstruct a real object. In our experiments & a mobile
several applications in robotics. For example, collisi@n d a,“:;"&“gﬁtnot;gffndtﬁgrfggoct’;freeneddg'f?eg(;fco”S"L'Ct a chatinkct sensor
tection, object recognition, pose estimation, etc. Thaeef
a mobile robot must have the ability of building 3D models
from the objects in its environment for interacting withtfie contribution is a fast novel method to determining the NBV
further. The task of building a 3D model of an object iswith a mobile manipulator robot. We propose a new a utility
known as automated 3D object reconstruction [1]. It is &unction, implemented by a series of filters, that efficigntl
cycling process of observing and deciding where to see nefihds the NBV. Our approach contrasts with related work
First, a range sensor is placed by the robot at certain mtatiwhere the candidates are generated in the workspace and
where a scan is taken. Then, if there are scans taken franverse kinematics is required reach them. The drawback
previous iterations, the new one is transformed to a globaf those methods is that the robot might not be physically
reference frame and registered with previous scans. Aftable to reach a planned view (e.g. to observe the top of a
that, the robot has to compute the next sensor pose whigiven object). We directly generate views in the configorati
increases the reconstructed surface based on the availaface avoiding inverse kinematics calculation and takitay i
information (called next-best-view). The reconstructisn account only feasible views.
finished when a termination criterion is satisfied. The proposed approach provides an effective and fast

The problem addressed in this paper is to plan the nextethod for a mobile manipulator to build 3D models of
best-view (NBV) in order to reconstruct an object usinginknown objects. Effective means that a large percentage
a mobile manipulator robot with an “eye-in-hand” sensorof the object surface is reconstructed, in our experiments,
In this work, the NBV is a robot configuration that seest is in the order 0f95%. Fast means that the processing
(covers) the greatest amount of unknown area while sevetihe to plan the NBV and a path to reach it takes typically
constraints are satisfied (detailed in IlI-A). To find theless than a minute. We present different experimental tesul
minimum set that covers an area has been demonstrated tdbaimulation, several complex objects are reconstrudiés.
NP-Hard [2]. Therefore, the main challenge is to iterativel validate the effectiveness of our utility function, comiparit
determine a set of NBV configurations that collectively aoveversus information gain. The proposed utility function e
the object, and a set of paths to reach them in a shdtte same surface’s percentage in a shorter processing time.
processing time. We also present experimental results with a real mobile

In [3], we proposed a utility function for a free-flyer manipulator robot (see Fig. 1) with 8 degrees of freedom
robot. In [4], we proposed a hierarchical ray tracing fo{DOF), showing the effectiveness of the method to deal with
fast visibility calculationln contragt, in thiswork, our main  real objects.



Il. RELATED WORK

Since the 80’s the next-best-view (NBV) problem has bee
addressed. For a detailed review of classic methods see
According to [1], our algorithm is volumetric and search/
based, so we will mainly review similar methods in this
section. The work of Connolly [5] was one of the first in|
this field, it represents the object with an octree and deteb" o
mines the NBV with one of two approaches. The first ongig 2. partial Model of the scene. To the left is the recartsion scene. To
determines the NBV as the sum of normals from unknowthe right is the partial model. The robot is represented byaagular mesh.
voxels. The second method, called pIanetary, determires t!;\nknown voxels'are painted in yellow and occupied voxelsiated in

. . . ue (best seen in color).
NBV by testing views from a set around the object.

Foissotteet al. [6] propose an optimization algorithm to
max_imize the amount of unkn_ov_vn Qata in the camera’s fi_eld 1) New information. The NBV configuration must see
of view (FOV). .H.owever, optimization methods can easily unknown surfaces to completely observe the object.
fall into local minima. 2) Positioning constraint. The NBV must be collision free

In our previous work [3], we have proposed a search over  \yith the environment and the object.

measures surface, quality and distance. A limitation of tha camera’s field of view and depth of view. Also, the
approach is that the predefined set of pointing views might angle formed between the sensor’s orientation and the

sensor can be occluded. Krairehal. [7] proposed a method defined by the vision angle [10].

to grasp and move the object. match with previous scans. Therefore, a registration
Few works have considered both, the problem of finding step is required [11]. The NBV should guarantee that

good views, and the problem of obtaining the paths to reach the scan will be registered.

them. Torabi and Gupta [8] address both problems, but 5y Cost of the robot's motion. In a mobile manipulator,

differently to the approach proposed in this work. In that moving each degree of freedom (DOF) has a different

work, the authors plan a NBV in the workspace and then cost, e.g., to move the arm instead of the base con-

they use inverse kinematics to obtain a configuration that  gymes less energy and causes lower positioning error.

matches the desired sensor location in the workspace. In  Tnerefore, a path where the degrees of freedom with
this work, we select sensing configurations directly in the the larger costs move less is desirable.

configuration space and we plan the controls to reach them,
also we take into account the length of the collision fredapat B. Working assumptions

A short path is better in terms of spatial uncertainty and it e take the following assumptions: i) the environment is
spends less robot’s energy. Another work that addressés b@hown and it is represented by a 3D triangular mesh, ii) the
problems is the one presented by Kriegekl. in [9]. The position and maximum size of the object is knowapriori
authors combine two approaches for determining the NBV, @ the robot and iii) the object is inside an object bounding
surface based and a volumetric method. First, they compyigx (OBB) marked as unknown volume.

a set of candidate paths over the triangular mesh border, the

they evaluate the goodness on the volumetric representatio IV. PARTIAL MODEL

Two important differences with our approach are: (i) Kriegea, Probabilistic occupancy map

et al. propose the use of information gain (IG) to evaluate

. o . The partial model stores the information about the recon-
views, while in this work, the unknown surface is measured : . ) . .
struction scene, including the object and the environniént.

to evaluate views, (ii) in this work we consider a mobile .
. L ; hows what spaces have been sensed and what spaces remain
manipulator while in [9], the authors only consider a robot DA .
unknown. In addition is also used detect collisions between
arm. .
the robot and the environment.

1. PRELIMINARIES We use a probabilistic occupancy map based on the
_ _ octomap structure [12], which is an octree with probabdist
A. Next-best-view constraints occupancy estimation. See figure \B stress the fact that

The set of candidate views used to perform the next-beste use a probabilistic octree, because it is able to deal with
view search is denoted by = {vg,v1 ...v,}. Each view noise on the sensor readings. From now on we refer to a
is a tuple of the formw; = (¢;,x;, g) whereg; is the robot probabilistic occupancy map as octree. Depending on the
configuration,r; is the sensor pose; € R3 x SO(3), andg  probability of been occupied, we classify each voxel with
is the utility of the view. Our goal is to select a viewe V' one of three possible labels: @ccupied which represents
with the following characteristics: surface points measured by the range sensdired, which
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represents free space and ii)known, whose space has not!
been seen by the sensor. Each label has a defined probability
interval. In our implementation the unknown voxel label ha?:. _ o . , .

. . ig. 4. 3D object reconstruction with next-best-view plizugn The diagram
the 'nte_rval [0-457 0-55]_- To use aljl. 'nterval_ for unknown shows the whole process of object reconstruction. The pseserelated with
voxels, instead of a fixed probability @f.5, increases the the NBV computation are filled in gray (see Section V-C forails}.
confidence of the occupied or empty volumes of the resultant

octree.
In order to evaluate new information, sensing and registr&0cess. To mitigate this problem, we propose an efficient

tion constraints of a candidate view, we perform a visipilit €valuation scheme, in which if a candidate view does not
computation over the octree. Usually, this task is achieve®fiSs a filter it is deleted from the set of candidate views.

with a uniform ray tracing, it traces a number of rays insidex  ytjlity function

the map simulating a range sensor (Fig. 3(a)). Howeve_r, The utility function ranks the candidate views according

such process can be highly expensive if the voxels’ size 13 their goodness for the reconstruction process. We peopos

small. To reduce the processing time, we use a variant of the .- . )
. ; . . a utility function as a product of factors:
hierarchical ray tracing presented in [4].

B. Hierarchical ray tracing 9(v) = pos(v)-reg(v)- sur(v)- dist(v) @)

In [4], we proposed a hierarchical ray tracing (HRT). ltwhere each factor evaluates a constraint, below we detail
is based on tracing few rays in a rough resolution maggach constraint.
then, only when occupied voxels are touched by a ray, the 1) Positioning: pos(v) is 1 when a robot configuration
resolution is increased for observing details (see FigTBg is collision free, and a collision free path from the current
coarsest resolution where the HRT starts is defined by g@nfiguration to the evaluated configuration is available;
resolution parametera); when a is equal to 0 a uniform otherwise it is 0.
ray tracing is performed, for > 0 the ray tracing starts in ~ 2) Registration: To register the new scan, previous works
a octree resolution with a voxel size #f times the original have proposed to assure a minimum amount of overlap [4]
size. Such strategy typically reduces the processing tinf§ consider all causes of failure [13]. A minimum overlap
needed to evaluate a view in at least one order of magnitudé. @ necessary but not sufficient condition to guarantee
In our previous work we only increase the resolution wheregistration. However, it requires a small processing ti®e
a occupied voxels is touched. In this work, we increase tHge other hand, to measure all causes of failure guarantee a
resolution when occupied and unknown voxels are touckuccessful registration but is very expensive (as destiibe
This upgrade allow us to reduce the processing time bi{i4]). Therefore, in this work, we propose a simple factatth
usually keeping the same coverage with the same numbérfast for evaluationreg(v). It is 1 if a minimum percent
of required views. Section VII-B details several experitgen of overlap with previous surfaces exist, and 0 otherwise. Se
where there is 60% of processing time reduction with onlgquation (2).
a loss of 1% of coverage.
L(’U) > h
V. NEXT-BEST-VIEW SELECTION reg(v) = 0co(v) + uno(v) (2)

We propose a search based method to compute the NBV. 0 otherwise

Fig. 4 shows the flowchart of the proposed method. Firstyhereoc,(v) indicates the amount of occupied voxels that
a set of candidate views is generated, then the views amee touched by the sensor and lie inside the object bounding
evaluated and ranked with a utility function. The NBV is thebox (OBB), un,(v) is the amount of unknown voxels in the
one that maximizes the utility. The evaluation of the utilit OBB, andh is a threshold (in our experiments in the real
function for a large set of views can be a highly expensiveobot this threshold is set t85%). This factor allows us to



deal with a big amount of views and has been tested in thbke positioning factor. This verifies for collisions betwee
experiments with a real robot with good results. the candidate configuration and the environment (repredent
3) New surface: sur(v) evaluates a view depending onby an octree, in which occupied and unknown voxels are
how much surface from the unknown volume is seen, i.&onsidered as obstacles). Then, we compute visibility with
the amount of visible unknown voxels. Such function returnkierarchical ray tracing, as explained in section IV-B.ekft
values between 1 and 0. It iswhenv sees all the unknown that, registration and surface factors are evaluated. ,Taen
voxels in the OBB, see equation (3). subset of candidates is sent to the motion planner, the giann
tries to find a trajectory to each candidate. If no solutios wa
(3) found a new subset is sent. Finally, the weighted length of
the path is considered.
whereunqq is the total amount of unknown voxels inside |n the previous evaluation process, the processing time for
the OBB. finding collision free paths for several configurations nigh
4) Distance: Candidate views are also evaluated accorche too large, in particular if some of those are not reachable
ing to their distance to the current robot configuration. Than alternative is to estimate the distance as a straightitine
function is shown in eq. (4): the configuration space. Then, this estimation could be used
1 to rank the set of views before motion planning and only the
=1 ol o 4) best_one i_s given as goal to the RRT planner. If thg se_lected
+ (a0, 4n) configuration cannot be reached, the second best is given as
wherep is the summation of the weighted Euclidean distanca goal to the RRT, and so on. In the simulation experiments
between the nodes of the path= {qo, ¢1...¢» } between the we compare both alternatives.
current robot configuratiog, and the candidate configura- o
tion ¢,,, as defined in equation (5). D. Sop Criterion
Establishing a good stop criterion for object reconstarcti
n is a challenging problem. Previous works have proposed

(40, qn) = Z ij(qi(al, aj,am) — i—1(a1, a;, am))? several criteria based on the partial model of the object [8]
Jj=1

uny(v)

sur(v) =
( ) UNtotal

dist(gn)

[9]. However, to consider only the object is not enough,

(5) i.e., the robot configuration can be in collision with the
where a; is the j-th degree of freedomy; is a weight environment or an obstacle is blocking the way. In this work,
assigned that degree of freedom, andis the number of the process is finished if the surface factor is lower than a
degrees of freedom. threshold, or no path was found for any of the candidate

Unlike our previous approach, where a distance in theiews.
workspace was defined [3], this distance measures the path
followed by the robot, which in most of the cases is not a
straight line, i.e., the robot has to avoid obstacles or seed The Rapidly Exploring Random Trees method (RRT) is a
a trajectory different to a straight line due to non-holomom data structure and algorithm that is designed for efficyentl

=1

VI. MOTION PLANNING

constraints. searching no convex high-dimensional configurations space
. _ [15], [16]. RRT can be considered as a Monte Carlo way
B. Candidate views of biasing search into largest Voronoi regions. RRT and

In this work, we directly generate views in the robot'srelated methods have been used in a variety of applications,
configuration space. For each iteration a set of randofar instance motion planning for humanoid robots [17], or
samples using a uniformly distribution is generated. Thei® plan navigation routes for a Mars rover that take into
they are filtered though the evaluation strategy. Robotgccount dynamics [18]. In [19], a sensor-based RRT, called
configuration space could be very vast and many sampl&RT, is used for exploration of 2D environments. In [20],
could be needed to get useful samples. However, our firdte authors have extended RRT and other sampling-based
filter is to check if the sensor points to the object, a cortstamotion planning algorithms to find optimal paths.
time process that fast discards views. In our experimeaots, f In this work, we adapt the RRT to plan robotic paths for
each iteration, 10,000 random samples are generated.lWsudluilding 3-D models of unknown objects. We use the RRT-
for each 10,000 views few hundreds of views are useful. OnXT-EXT variant, which grows two balanced trees, one from
the useful views are kept for further evaluation. the initial configuration and one from the goal.

C. Evaluation strategy VII. EXPERIMENTS

In order to evaluate the candidates efficiently we perform In this section, we present experiments both in simulation
the evaluation trough several filters. If a candidate doés nand with a real robot. First, we validate our utility functio
pass a filter it is deleted from the candidate view set. Figgomparing it with a state of the art utility function [9].

4 shows how the filters are applied. First, we discard viewSecond, we measure the processing time gain that we can
if the sensor director’s rays does not intersect a sphete thechieve when the hierarchical ray tracing is used. Third,
encapsulates the object. Then, we test the candidates witle show the effectiveness of the method by reconstructing
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Fig. 5. Synthetic objects used for testing. ol

several complex objects. Fourth, we experimentally compar ‘ ‘ ‘
the two different ways to select the views for the motion Heration
planner. Fifth, the reconstruction of a office chair with alre

robot is described, in order to show the effectiveness of thFe 6 C ) ‘i . —
method in a real case. 1g. O. omparison o € average surface coverage usimg on

. ] ) . gain (IG) and unknown surface (CU). Both methods convergihdéosame
Simulation experiments are performed in a scene wheteverage. Note that coverage does not reach 100% giventtadiase of

the objects are placed over a table; the object boundingdoxtie object is occluded by the table.
over the table, the simulated sensor is a time of flight camera

The robot is the same as our real robot with 8 degrees of o1 : : : :
freedom (Fig. 1). Three complex objects have been tested, th I ——cu||
Stanford Bunny, a Dragon and a Teapot, see figure 5. For the
simulation experiments we have fixed a voxel resolution of
2 cm. The percentage of covered surface is computed as the
ratio of correspondent points in the built model over thaltot
number of points in the ground truth model. A point in the
built 3-D model finds a correspondence in the ground truth
model if it is closer than a threshold (3 mm). Average results
are calculated after repeating the reconstruction 5 times. 003y T
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A. Utility function validation o 2 z 5 b io 2

Iteration
In this work, we estimate the goodness of a view mea-

suring three main factors: I) unknown surface (amount olgig. 7. Comparison of the unknown volume in the octree ugifigrmation

unknown voxels), ii) overlap and iii) c-space path distanceyain (1G) and unknown surface (CU). Both methods leave theesanknown
We call this utility function combined utility (CU). Anotie volume in the octree.

way to estimate the goodness is computing the Information

Gain (IG) of a scan [9]. In this experiment we compare CU . , ,

versus 1G. The comparison was done by reconstructing % SPeed up of the utility function evaluation

times the Bunny object using CU, and 5 times using IG.  The proposed Hierarchical Ray Tracing (HRT) reduces
Figures 6 and 7 show the average surface coverage athe visibility computation time, depending on the resalnti

average unknown volume, respectively. In this experimenparameter (section IV-B). We have tested different regmtut

IG at initial iterations gets a higher coverage than CUparameters for the reconstruction of the Bunny object. The

This happens, because IG only takes into account the neasults of the required processing time are shown in table

information that is expected to see. Unlike CU that takes intl. The first column shows the resolution parameteused

account overlap and distance to reach a view configuratiofor the reconstruction. Remember thatequal to zero is

After several scans both utilities converge to the same coequivalent to a uniform ray tracing. The second column

erage. Thus, after several scans our utility function reachshows the average time required to evaluate a single view

the same coverage than IG, but assures overlap and meastine$ points to the object. The third column shows the voxel

the cost of the path (distance traveled). size at the roughest resolution, in which HRT starts. The
Processing time for evaluating both function is quite simfourth column shows the coverage percentage after 12 scans

ilar. In our implementation, to evaluate CU for all candi&lat of the Bunny. A reduction of 60% of the processing time is

views takes an average time of 428 s., in contrast, I@ained witha = 1. For higher resolution parameters there is

factor takes 484 s., that is 13% more than CU. It is wortla further reduction in processing time, until= 4. Larger

to say that, the evaluation processing time of CU can besolution parameters do not imply time reduction, given

significant reduced using the hierarchical tray tracing. Tthat the overhead of the ray tracing structure increases the

the best of our knowledge there is no speed up technigypeocessing time.

for IG computation. Next section specifies the time required Using the HRT allow us to evaluate a large set of views in

for evaluating a single view using HRT. a short time, making possible that even a naive set of random



time (Vis.), the motion planning processing time (M.P.)
and the percentage of covered surface. The results show
that the method is able to plan each NBV for 3D object
reconstruction with a mobile manipulator with eight DOF.

TABLE Il
RECONSTRUCTION RESULTS FOR EACH OBJECT
(a) Initial robot configuration. (b) I;irst five mre]xt-bs_st-views com- Object | Views | Vis. MP. Coverage.
puted to scan the object. Teapot | 12 4892s| 79.05s5 | 93.90 %
Bunny | 12 33.81s| 114.07s| 9551 %
Dragon | 12 3245 s| 95.60 s 87.26 %

D. Evaluation strategies

In this experiment, we compare the two evaluation strate-
gies described in Section V-C, they differ on how many goals
are sent to the RRT. These strategies are related with the
navigation distance estimation. In the experiment we also
Fig. 8. lllustrations from different stages of the recoustion of the Bunny compare the performance of the method if no navigation
object. Unknown voxels are shown in orange, occupied vaxelsnging to  distance is used. Table Ill presents, average results for th
l‘(he object are displayed in blue and the occupied voxelsngelg to the o4 nstryction of the Bunny object for each strategy in germ

nown environment are displayed in gray (best seen in color) - . . . . .

of the visibility processing time (Vis.), the motion plangi
processing time (M.P.), the percentage of coverage and the
distance traveled to visit all the sensing configuratiortee T
compared strategies are: no navigation distance factalesi
goal (distance is estimated as a straight line in the cordigur
tion space) and subset nfgoals (distance is calculated with
equation (5) and: goals are sent to the Motion Planner).
The results show that, in general, the traveled distance is
Fig. 9. Final representations (point clouds) from the retarcted 3D decreased whether a navigation factor is used, also, they
synthetic objects. show that the strategy of sending a subset of goals to the
RRT covers more surface with a shorter path with respect

, ) to one single goal. However, such strategy requires more
views could be useful to determine the NBV. A drawback o rocessing time.

this method is that there is no finner ray tracing for obstacle

(c) Octree at a given iteration. (d) Updated octree after scan.

outside the bounding box. Therefore, the best performance TABLE Il
of the HRT is when the object has a clear space around it. RECONSTRUCTION RESULTS FOR EACH STRATEGY
TABLE | Strategy Vis. M.P. | Coverage| Dist.
No distance 33.85s| 40.21s| 96.21 % | 89.24
VIEW EVALUATION TIME WITH HIERARCHICAL RAY TRACING . Single goal 35.68 S 1581 s 9540 % | 72.26

Subset of 5 goals | 32.89 s| 117.53s| 97.23 % | 72.31

ses' param. ngBeS(S) gf’g;'nf'ze % CO":;.E‘Ggee Subset of 10 goald 35.90 5| 182.87 5| 96.32 % | 62.45
1 0.063 0.04 m 96.35

2 0.035 0.16 m 96.26

3 0.024 0.3Zm 96.25 E. Real case reconstruction

This experiment performs the reconstruction of an office
chair with a Microsoft Kinect sensor mounted on a mobile
manipulator. See Figure 2. The objective is to show exper-

In this experiment, we test the method using the Bunnymentally that the method can deal with a real environment
the Dragon and the Teapot. We present quantitative resuiltsacceptable processing times. The implemented redtrat
to evaluate the performance and efficiency of the proposgulocess uses lterative Closest Point Algorithm (ICP) [it4,
approach. Fig. 8 depicts several stages in the reconsiructiregistration factor was set &% and the size of the voxels
of the Bunny. Fig. 9 shows the final representation of thevas 3 cm, the HRT resolution parameter was set to 2.
reconstructed objects. We use a resolution parameter2 The proposed method provides a reliable and fast solution
and4 goals were sent to the motion planner. for finding the NBV according to the robot capabilities. Fig.

Table Il presents average results for the reconstructidt® shows the acquired model of the chair. The object was
of the objects in terms of the number of views neededeen from different locations and most of the surface was
to reconstruct the 3-D model, the visibility computationreconstructed. Table IV shows the average times for each

C. Reconstruction of complex objects



iteration of the reconstruction. Average times are the mean
of the spent time per iteration. [1]

TABLE IV
RESULTS OF THE REAL RECONSTRUCTION

(2]

Number of scans | 11 [3]
Traveled distance 76.06

Visibility evaluation | 10.74 s

Motion planning 822s [4]
Octree update 6.61 s

(5]

(6]

(7]

(8]

El

[10]
[11]
Fig. 10. Qualitative comparison of two views of the reconstied object [12]
versus the real object. Almost all surface was seen, exbeplotv part of
the seat where the robot cannot reach due to the size of the arm
VIIl. CONCLUSIONS ANDFUTURE WORK (13]

We have presented a method for next-best-view planning
for 3D object reconstruction. This is one of the first method
that determines the NBV directly in the configuration space,
following a methodology in which a set of candidate views is
directly generated in the configuration space, and latey ont15]
a subset of these views is kept by filtering the original set.
The method proposes a utility function that integratesisdve
relevant aspects of the problem and an efficient strateé’;ﬁ]
to evaluate the candidate views. This method avoids the
problems of inverse kinematics and unreachable poses.

We compare the proposed approach with related work¥!
both qualitatively and quantitatively. Qualitatively,ighap- 1)
proach measures the goodness of the path in terms of
unknown surface, overlap and the cost of each degree @&
freedom and also performs an efficient evaluation of th
candidate views. Quantitatively, this method achieves the
same coverage but with smaller processing time compared
with previous works. In our experiments we have used a
mobile manipulator of 8 DOF with an eye-in-hand sensor.
To our knowledge, this is one of the first works in which a
method to reconstruct a 3-D object is implemented in a real
mobile manipulator robot.

As future work, we want to deal with spatial uncertainty,
which decreases the real goodness of a planned view or
causes collision between the robot and the object.

4]
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