
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 61, NO. 12, DECEMBER 2014 6871

Ad Hoc Network-Based Task Allocation With
Resource-Aware Cost Generation

for Multirobot Systems
Dong-Hyun Lee, Sheir Afgen Zaheer, and Jong-Hwan Kim, Fellow, IEEE

Abstract—The objective of multirobot task allocation (MRTA)
is to assign tasks to robots to minimize the overall cost of task per-
formance. This paper proposes a decentralized MRTA approach
considering the robots’ residual expendable resources and their
limited communication ranges. The proposed approach consists
of two algorithms, namely, resource-aware cost generation (RCG)
and ad hoc network-based task allocation (ANTA). The RCG
algorithm allows each robot to generate a credible cost of task per-
formance considering its residual resources in task planning. The
ANTA algorithm constructs the minimal spanning tree network
among the robots and determines the robot with the lowest cost for
the task through multihop communication in a decentralized man-
ner. The advantages of the proposed approach are minimization of
unnecessary task performance cost caused by resource shortage of
robots during task execution and the use of an ad hoc network
among the robots to allow more robots to participate in the task
allocation process. The effectiveness of the proposed approach
is demonstrated through computer simulations for multirobot
foraging as a test problem.

Index Terms—Ad hoc network-based task allocation (ANTA),
decentralized task allocation, multirobot systems, resource-aware
cost generation (RCG).

I. INTRODUCTION

MULTIROBOT systems have been widely applied in
many different areas that are dangerous, difficult, and

expensive for humans [1]. These application domains include
exploration [2], [3], vehicle formation control [4]–[6], coopera-
tive surveillance [7], and target tracking [8]. The multirobot task
allocation (MRTA) problem is one of the important research
areas in multirobot systems. The MRTA problem can be viewed
as an optimization problem in which tasks are allocated in a way
that minimizes the total task performance cost or maximizes the
total utility [1], [9].

This paper is motivated by the MRTA problem for a long-
duration mission in which tasks continuously occur at arbitrary
locations. In the mission, a team of robots with limited com-

Manuscript received May 28, 2013; revised March 4, 2014; accepted
April 23, 2014. Date of publication May 29, 2014; date of current version
September 12, 2014. This work was supported by the Ministry of Trade, Indus-
try and Energy of Korea under the Technology Innovation Program supervised
by the Korea Evaluation Institute of Industrial Technology, Development of
Robot Task Intelligence Technology, under Grant 10045252.

The authors are with the Department of Electrical Engineering, Korea
Advanced Institute of Science and Technology, Daejeon 305-701, Korea
(e-mail: dhlee@rit.kaist.ac.kr; sheir@rit.kaist.ac.kr; johkim@rit.kaist.ac.kr).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIE.2014.2326987

munication range negotiate with each other for task allocation
and autonomously execute the tasks as fast as possible, as well
as occasionally refill their resources in refill stations. Exam-
ples of such application areas are planetary exploration [10],
automated warehouse management [11], [12], urban hygiene
management [13], and agriculture automation [14]. One of the
important issues for such domains is the consideration of the
robots’ finite expendable resources. The robot resources in this
paper refer to any kind of expendable supplies that robots
consume during task execution. Examples of such resources
include batteries for surveillance robots [15], dust filters for
cleaning robots [16], herbicide for weeder robots [17], and
snacks for refreshment delivery robots [18]. If the resources are
not considered in task allocation, the tasks might be allocated
to robots that will run out of resources in the middle of task
execution. Since robots with insufficient resources should stop
performing the tasks and visit resource stations to refill, the cost
generation without considering the robot resources might cause
extra expenses, including an increase in task completion time
and extra resource consumption.

There have been various studies on multirobot coordination
considering robot resources. In [19], each robot uses offline
temporal interval propagation to decide which task to execute
and when to execute it considering its remaining resources.
However, it assumes that all information of tasks is given
a priori and that the information needed for each robot to make
a decision is available. The hybrid planning/learning system
developed in [20] schedules a group of robots for a heteroge-
neous stream of tasks. It applies a reinforcement learning model
to obtain a value function to consider positioning of robots
in readiness for new tasks and preserving resources. However,
since it requires fully connected communication for the robots
to form joint plans, it suffers from a scalability problem. In
[21] and [22], energy-aware bid generation methods for market-
based task allocation are presented. They define the cost as the
estimated energy consumption for a robot to complete a task
such that the task is assigned to the robot that can perform
the task with the lowest energy consumption. However, the
approach in [22] assumes that all the tasks should be completed
by the robots with initially given energy resources such that
it is not applicable for a long-duration mission in which each
robot must recharge its resources periodically. In the case of the
approaches presented in [22] and [23], the robot that has a lower
energy level than a specified threshold autonomously recharges
its battery by visiting a charging station. However, they only
considered a single resource, i.e., energy, and did not take into

0278-0046 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

6872 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 61, NO. 12, DECEMBER 2014

account the measurement noise and the prediction uncertainty
while estimating the robot’s resource level.

In addition to the robot resources, limited communication
range of the robot is also an important factor in MRTA. The
auction methods have been shown to efficiently produce sub-
optimal solutions with limited communication range [23]–[26].
In an auction approach, any robot that tries to allocate a task
becomes an auctioneer and broadcasts an auction call for the
task. The others that are interested in the auctioned task become
bidders and submit their costs to the auctioneer. The auctioneer
then allocates the task to the bidder that has the lowest cost.
However, only the direct neighbors of the auctioneer, i.e., the
robots that are within a single-hop communication range of
the auctioneer, can participate in the task allocation process.
Thus, the auction methods might suffer from a misassignment
problem if none of the robots in a single-hop distance is capable
of performing the task. The probability of misassignment in-
creases as the heterogeneity among the robots increases and/or
the robot density within the communication range decreases. To
complement the robot’s limited communication range, sensor-
network-based MRTA approaches have been developed in [27]
and [28]. Using a sensor network, the robots that are not within
communication range of each other can share their information.
However, a static sensor network should be predeployed in
the task environment. Its application is hence limited to pre-
structured environments with a large number of static sensors.
Instead of using sensor networks, the approaches in [29] and
[30] employ a multihop messaging protocol for task assign-
ment. However, they are limited to homogeneous swarm robots
and require the information of the diameter of the network.
Moreover, the desired robot assignment rates for the fixed
number of tasks should be given to the robots in advance.

In order to address the aforementioned two practical issues
in the MRTA problem, this paper proposes two algorithms,
namely, a resource-aware cost generation (RCG) algorithm and
an ad hoc network-based task allocation (ANTA) algorithm,
for efficient decentralized task allocation. The RCG algorithm
models multiple resources of a robot as a multivariate normal
distribution and utilizes them to estimate the cost of the path
consisting of the refill stations that the robot should visit before
the task to avoid resource depletion while performing the
task. Since the algorithm estimates the residual resources after
completing the task, it is capable of minimizing extra resource
consumption and time delay due to detour of the robots to
refill stations for refilling their resources during task execution.
Moreover, unlike the approaches in [21]–[23], where robots do
not participate in the task allocation process when they do not
have enough energy resources, the RCG algorithm allows the
robots to participate in the task allocation process regardless of
their residual resources since it is capable of selecting multiple
paths consisting of different combinations of refill stations
based on their resource levels. On the other hand, the ANTA
algorithm constructs the minimal spanning tree and the robots
in the network exchange information about the best candidate
robot that has the lowest cost for the task. This requires neither
perfect communication links among the robots nor infinite
bandwidth since the robots in the local network simply share
the information about which robot has the lowest cost for the

task. Moreover, it is capable of finding a better solution than the
auction algorithms with single-hop communication since more
robots are allowed to participate in the task allocation process
by using the multihop communication network.

This paper is organized as follows. Section II describes the
resource-aware task allocation problem and the broadcast tree
communication as the background for this paper. Sections III
and IV propose the RCG and ANTA algorithms, respectively.
In Section V, the performance of the proposed approach is
tested using multirobot foraging simulations, and the results are
discussed and analyzed. Finally, concluding remarks follow in
Section VI.

II. BACKGROUND

A. Resource-Aware MRTA Problems

The objective of MRTA is to assign tasks to the robots
that can minimize the global cost. For a robot set R (R =
{1, . . . , NR}), where NR is the number of robots, and a task
set T (T = {1, . . . , NT }), where NT is the number of tasks,
the MRTA problem can be represented as minimizing the global
cost, which is defined as

min
∑
i∈R

∑
j∈Ai

cij , i ∈ R; Ai ⊂ T

subject to

Ai ∩Ak = ∅, i �= k; i, k ∈ R (1)

where cij is the cost of robot i for task j, and Ai is the task list
of robot i, where its accepted tasks are stored. The constraint
in (1) represents that one task should be allocated to a single
robot. The cost, in general, depends on the completion time or
the travel distance of the robot for the task.

In realistic scenarios where the robots consume their re-
sources during task execution, the task should be allocated to
the robot that has enough resources to perform the task with
the lowest cost. If the robot resources are not considered in
task allocation, the robots might not be able to complete the
tasks due to unexpected depletion of their resources during task
execution. Moreover, since they should stop performing the
tasks and visit resource refill stations to refill their resources,
extra cost, such as time delay in task completion or extra re-
source consumption, is incurred. This implies that an additional
constraint is required in (1) to prevent the MRTA algorithm
from allocating the tasks to resource-depleted robots. In order
to consider the robot resources in task allocation, the resource-
aware MRTA problem is defined by adding the resource
constraint in (1), which is defined as∑

i∈R

∑
j∈Ai

∑
l∈L

yij,l = 0

with

yij,l =

{
0, if xi

j,l > γi
l

1, otherwise
(2)

where L is the resource set (L = {1, . . . , NL}), NL is the
number of resources, xi

j,l is the lth resource level of robot i
after completing task j, and γi

l represents the threshold of the

LEE et al.: ANTA WITH RCG FOR MULTIROBOT SYSTEMS 6873

Fig. 1. Illustration of broadcast tree communication. (a) Ad hoc communi-
cation network of ten nodes is constructed with limited communication range.
(b) Root on the top of the network broadcasts its message to its neighbors, and
a minimal spanning tree is constructed as the messages propagate from the root
to the other nodes in the network.

lth resource level. The resource constraint represents that all the
resource levels of the robot after completing the assigned tasks
should be higher than their threshold levels.

One of the most common decentralized approaches to solve
the resource-aware MRTA problem is to let each robot estimate
its future resource levels after completing the task, assuming
that the task is assigned to itself [22], [23]. If all of the robot’s
resource levels exceed the thresholds, the robot is allowed to
participate in the task allocation process. Otherwise, it either
waits for a new task that it is capable of fulfilling with its resid-
ual resources or goes to a refill station. The RCG algorithm,
on the other hand, solves the problem by taking into account
robot resources in task planning such that the robot generates
the cost for the plan that satisfies the resource constraint in
(2). As a result, any robot can participate in the task allocation
process regardless of its resource levels. The RCG algorithm is
described in detail in Section III.

B. Broadcast Tree Communication

The broadcast tree communication is a multihop messaging
procedure used in sensor networks and routing protocols to find
routes through ad hoc networks [31]–[33]. It builds a minimal
spanning tree, i.e., a directed acyclic message propagation tree,
as the message propagates from the root to the leaf nodes. Fig. 1
shows an illustration of broadcast tree communication, where
the nodes and the dotted edges represent the robots and the
communication links among the robots, respectively. First, the
root robot broadcasts a message to its neighbors. The message
contains a level, i.e., the number of communication hops from
the root. The robot that has received multiple messages of the
same type only selects the one that has the lowest level, and
it chooses the sender of the selected message as its parent.
The robot then increments the level in the selected message by
one, sets the incremented level as its level, and broadcasts its
message to its neighbors. Since the message that has traveled
the least number of hops from the root is selected by the robots
in the network, the message propagation produces a directed
acyclic spanning tree from the ad hoc network graph G. The
total computation of the tree construction requires O(diam(G))
rounds, where diam(G) is the maximum distance over all
vertices in the graph G.

Fig. 2. Flowchart of the RCG algorithm.

In order to form a minimal spanning tree network among
the robots with limited communication range, the proposed
ANTA algorithm utilizes a modified version of the broadcast
tree communication. The ANTA algorithm lets the robots ex-
change local information about the best candidate robot that
has the lowest cost for the task while constructing the tree
network. If there is no capable robot in the network, the robots
incrementally extend the communication tree to the maximum
tree level until finding the capable robot with the minimum cost.
The ANTA algorithm is described in detail in Section IV.

III. RCG

A. Algorithm Description

The RCG algorithm is an iterative method that searches for
the path that satisfies the resource constraint in (2) with the
minimum cost. Each robot in a group calculates its cost using
the algorithm and negotiates with other robots to determine
the one with the lowest cost. A flowchart of the algorithm is
shown in Fig. 2. First, the algorithm plans a path for the task,
assuming that the residual resources are enough to complete the
task. It then calculates the predicted resource levels that would
be left after completing the task by taking the measurement
and prediction uncertainties of the resources into account. In
order to examine whether the task plan satisfies the resource
constraint in a probabilistic manner, the algorithm calculates
the competence probability of each resource, which is defined
as the probability of the resource being greater than its thresh-
old. If all the competence probabilities are greater than the
predefined probability threshold, which is denoted by PT , the
algorithm assumes that the path satisfies the resource constraint.
Thus, it calculates the cost for the path and terminates the cost
generation process. On the other hand, if any of the competence
probabilities is lower than PT , the algorithm replans a path via
the refill stations for resources with low competence probabil-
ities and repeats the process, as shown in Fig. 2. The visiting

6874 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 61, NO. 12, DECEMBER 2014

order of the refill stations that the robot plans to visit is recorded
in a station list. It is used for calculating the predicted resource
levels and the cost for the task. As a result, the algorithm allows
the robot to plan a path that visits the refill stations for the
resources that are likely to be depleted in the middle of task
execution and to find the minimum cost of the path that satisfies
the resource constraint.

In the RCG algorithm, the array of resource levels, which
is defined as the resource vector, is modeled as a multivariate
normal distribution of a NL-dimensional random vector, such
that the resource vector of robot i, i.e., xi, is defined as

xi = [xi
1 xi

2 . . . xi
NL

] ∼ NNL
(μi,Σi) (3)

where μi and Σi are the mean vector and the covariance of xi,
respectively; and xi

l ∼ N (μi
l, σ

i
l
2
) is the lth resource level of

robot i with mean μi
l and standard deviation σi

l . The predicted
resource vector of robot i for task j, i.e., xi

j , is defined as

xi
j = g

(
xi
start, s

i
j

)
+ εij (4)

where xi
start is the estimated resource vector when the robot

starts the task, sij is the station list of robot i for task j,
g(xi

start, s
i
j) is the residual resource prediction function, and

εij is the random vector that models the uncertainty introduced
by the resource prediction. Its mean is zero, and its covariance
is denoted by Ri

j . If the robot does not have any assigned
task, xi

start is the same as the robot’s current resource vector.
Otherwise, xi

start is set to the predicted resource vector after
the robot completes its last assigned task. The residual resource
prediction function returns the predicted resource vector after
visiting the refill stations in sij and completing task j, given the
initial resource vector as xi

start.
Similar to the prediction step of the extended Kalman filter,

the RCG algorithm utilizes a (first order) Taylor expansion to
estimate the covariance of the predicted resource vector [34].
From (4), the mean and the covariance of the predicted resource
vector, i.e., μi

j and Σi
j , respectively, are calculated as

μi
j = g

(
μi

start, s
i
j

)
Σi

j =GjΣ
i
startG

T
j +Ri

j (5)

with

Gj =
∂g

(
μi

start, s
i
j

)
∂μi

start

(6)

where μi
start and Σi

start are the mean and the covariance of
the resource vector at the start location, respectively; and Gj

is the Jacobian of g(·) evaluated at μi
start. Using the predicted

resource vector, the competence probability of the lth resource
for task j, i.e., pij,l, is defined as

pij,l = P
(
xi
j,l > γi

l

)
=

1

2

[
1− erf

(
γi
l − μi

j,l√
2σi

j,l

)]
(7)

with

erf(x) =
1√
π

x∫
−x

exp(−t2) dt (8)

where μi
j,l and σi

j,l are the mean and the standard deviation
of the lth predicted resource level, respectively; and γi

l is the
threshold of the lth resource level. If μi

j,l is equal to γi
l , the com-

petence probability is 0.5 regardless of the standard deviation of
the predicted resource level. However, if μi

j,l is greater than γi
l ,

the competence probability decreases as the standard deviation
of the predicted resource level increases. This represents that
the competence probability takes into account the measurement
and prediction uncertainties of the resource level. Note that PT

should be higher than 0.5 to keep the predicted resource level
greater than its threshold level.

As shown in Fig. 2, if any of the competence probabilities
of the resources is the same or lower than PT , the refill
station for the resource is added to the station list. In order
to plan the optimal visiting order of the stations on the list,
the depth-first branch-and-bound (DFBB) search algorithm is
applied [35], [36]. The idea of the DFBB search is to make the
depth-first search more efficient by keeping track of the lowest
cost solution found so far. The root node in the search tree
represents the start location of the robot, and the node at the
nth level represents the station that the robot plans to visit in
the nth order. The cost of the nth level, i.e., n ∈ {2, . . . , |sij |},
represents the sum of the costs from the start location to the
station at the nth level in the search tree, where |sij | denotes the
cardinality of the station list. The cost of the nth level of robot
i for task j, i.e., cij,n, is defined as

cij,n = ci
(
Lstart, s

i
j,1

)
+ ci1:n, n ∈

{
2, . . . ,

∣∣sij∣∣} (9)

with

ci1:n =

n−1∑
q=1

ci
(
sij,q, s

i
j,q+1

)
(10)

where Lstart is the start location of task j, sij,q is the qth station
in sij , and ci(a, b) is a nonnegative cost function that returns the
estimated cost for robot i to move from location a to b. Since
the node of the last level of the tree is task j, the cost of robot i
for task j while visiting the stations in sij is defined as

cij =

⎧⎪⎪⎨
⎪⎪⎩

ci(Lstart, j), if sij = ∅
ci
(
Lstart, s

i
j,1

)
+ ci

(
sij,1, j

)
, if

∣∣sij∣∣ = 1

ci
(
Lstart, s

i
j,1

)
+ ci

1:|sij| + ci
(
si
j,|sij|, j

)
, otherwise

(11)

where ci(Lstart, j) is the cost of robot i for task j by taking the
direct path, i.e., without visiting any stations. Since the DFBB
algorithm keeps the lowest cost solution found so far, the costs
of the partial branches in the search tree are compared with
the lowest cost, and whenever the cost of the branch is equal
to or exceeds the lowest cost, the branch is pruned from the
search tree. Using the DFBB algorithm, the optimal sequence
of visiting stations can be found. If all of the competence
probabilities of the resources are higher than PT , the sequence
of the branch with the lowest cost becomes the visiting order of
the stations, and the cost of the branch is regarded as the final
cost for the task.

LEE et al.: ANTA WITH RCG FOR MULTIROBOT SYSTEMS 6875

Fig. 3. Illustrative example of the RCG algorithm. (a) Robot i calculates the
competence probabilities of its resources when it takes the direct path to task j
and realizes that the competence probabilities of resources 1, 3, and 4 are lower
than PT . (b) Optimal visiting sequence of the three stations, namely, S1, S3,
and S4, to task j is found by using DFBB, where the costs at the right side
of the search tree represent the costs of the branches. (c) Robot calculates the
competence probabilities by taking the optimal visiting sequence from (b).

B. Illustrative Example

An example of the RCG algorithm is illustrated in Fig. 3,
where robot i consumes four resources to perform task j, and
the four refill stations are located apart from each other. In the
figure, Sl is the refill station for the lth resource, � is the location
of task j, and the dotted arrows represent the path that the robot
plans. First, the robot calculates the competence probabilities of
its resources without visiting any stations, as shown in Fig. 3(a),
and detects that the competence probabilities of the first, third,
and fourth resources are lower than PT . The robot then deter-
mines the optimal sequence of visiting the stations by using
DFBB, as shown in Fig. 3(b). The numbers next to the nodes in
the figure represent the costs of the paths from the start location
to the nodes, and the branches that have the same or higher costs
than the minimum cost, 10 in this example, are pruned from the
search tree. As a result, the visiting order of the stations with
minimum cost is Lstart → S1 → S3 → S4 → task j, as shown
in Fig. 3(b). Since all the competence probabilities are higher
than PT by taking the optimal visiting order, the cost of the task
with the path in Fig. 3(c) becomes the final cost for the task.

IV. ANTA

A. Algorithm Description

In the ANTA algorithm, any robot that wants to allocate a
task becomes a root robot and broadcasts a trade message for
the task. The robots within a certain number of communication
hops away from the root robot then construct the minimal

spanning tree using the broadcast tree communication with lim-
ited tree size. While constructing the tree network, each robot
exchanges its winner information, each of which consists of the
ID and the cost of the robot that has the lowest cost, with its
parent and children, through multihop ad hoc communication.
After waiting a certain amount of time, the ID of the winner in
the winner information converges to a single robot, and the task
is assigned to the winner.

Since the network topology with mobile robots varies with
time, it is necessary to limit the size of the network tree.
Otherwise, it will expand until it reaches the leaf node such that
it requires more time for the winner information for the task to
be converged and the network is more likely to be disconnected
during the task allocation process. In order to limit the size
of the network tree, each trade message contains the message
broadcaster’s level and the tree level of the task. The trade
message for task j, i.e., Mj , is defined as

Mj =
[
j i�j c

i�j
j L Lj

]
(12)

where j is the task ID; i�j and c
i�j
j are the ID and the cost of

the winner for task j, respectively; L is the level of the message
broadcaster, and Lj is the tree level of task j. In the message,
L and Lj are used to limit the size of the network tree. If a robot
receives a trade message that has a smaller L than Lj , it sets its
level as L+ 1 and participates in the task allocation process. On
the other hand, if L is the same as Lj , the robot is not allowed
to participate in the task allocation process. However, if there
is no suitable robot that is capable of performing the task, the
root robot increases the tree level by one at a time and repeats
the task allocation process to improve the chances of finding a
capable robot in the extended network tree. Note that the tree
level is allowed to be increased up to the predefined maximum
tree level.

The robots in the network tree exchange trade messages until
the winner information for the task is converged. The winner
determination time is defined as the convergence time of the
winner information such that each robot in the network tree
waits until the winner determination time and then decides the
winner for the task. Since the robots receive the first trade
message at different times due to the different hop distances
from the root robot, each has its own winner determination time
such that the winner determination time of robot i for task j is
defined as

tij = tic + LjtI (13)

with

tI = 2tH + tP (14)

where tic is the time when robot i first receives the trade
message, tI is the time interval for exchanging the message
between neighbors, tH is the communication latency per hop,
and tP is the robot process time.

Fig. 4 shows a flowchart of the ANTA algorithm for a robot.
When a robot receives a trade message for a new task, it starts
the task allocation process only when the message broadcaster’s
level is smaller than the tree level. The robot sets its parent to the

6876 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 61, NO. 12, DECEMBER 2014

Fig. 4. Flowchart of the ANTA algorithm for a robot.

message broadcaster, assigns its own level to be the level of the
received message plus one, and sets the winner determination
time from (13). It also sets the winner information to its own
ID and cost. While waiting until the winner determination
time, the robot exchanges the trade message with its parent
and children and updates the winner information whenever the
cost from the received message is lower than the cost in the
winner information. At the winner determination time, the robot
checks whether the ID in the winner information is its own and
terminates the process. If it is the winner, it adds the task to its
task list.

B. Illustrative Example

A simple example of the ANTA algorithm is shown in Fig. 5.
In this example, the costs of robots 1, 2, 3, 4, 5, and 6 are 10,
8, 7, 3, 8, and 4, respectively. The root robot is robot 1, and
the tree level is set to 2. In Fig. 5(a), robot 1 first broadcasts its
trade message to its neighbors. The pair (ID, cost) next to each
node in the figure represents the ID and the cost of the winner
robot’s information. In Fig. 5(b), since both robots 2 and 3 have

Fig. 5. Illustrative example of the ANTA algorithm. The white nodes repre-
sent the robots that are processing the ANTA algorithm, and the gray nodes
represent the robots that completed the task allocation. The dotted lines are
the network connections among the robots, and the arrows show the direction
of messages. The numbers in the nodes are the robot IDs, and the pair next
to each node is the ID and the cost of the winner information of the node.
For example, (1,10) in (a) represents that robot 1 currently regards itself as the
winner, and its cost is 10.

lower costs than robot 1, each considers itself as the winner,
and thus, robots 2 and 3 broadcast (2,8) and (3,7), respectively.
Since robot 3 has lower cost than robots 1 and 2, robot 1 updates
its pair from (1,10) to (3,7) after receiving the messages from
robots 2 and 3, as shown in Fig. 5(c). In the case of robot 4,
since its cost is lower than the received cost from robot 2, it
sets its pair to (4,3) and broadcasts it, as shown in Fig. 5(c).
Likewise, robot 6 also sets its pair to its ID and cost, i.e., (6,4).
In the case of robot 5, however, its cost is higher than the re-
ceived cost, and therefore, it sets its pair to the received pair, i.e.,
(3,7), as shown in Fig. 5(c). In Fig. 5(d), robots 2 and 3 update
their pairs to (4,3) and (6,4), respectively, and broadcast their
messages. In Fig. 5(e), the pairs of the robots in the left branch,
i.e., robots 2 and 4, are converged to (4,3), and the pairs of the
robots in the right branch, i.e., robots 3, 5, and 6, are converged
to (6,4). The root robot then selects the pair with lower cost, i.e.,
(4,3), and broadcasts its message to its neighbors. In Fig. 5(f),
robot 1 terminates its task allocation upon realizing that robot 4
is the winner. After receiving the message from robot 1, robot 3
also updates its pair to (4,3) and broadcasts its message. In
Fig. 5(g), the pairs of all the robots are converged to (4,3),
and robots 2 and 3 terminate their task allocation processes. In
Fig. 5(h), the rest of the robots also terminate the task allocation
processes, and robot 4 becomes the winner for the task.

LEE et al.: ANTA WITH RCG FOR MULTIROBOT SYSTEMS 6877

Fig. 6. Screenshot of the multirobot foraging simulation. (a) Five refill
stations, i.e., energy station; maintenance station; and red, green, and blue puck
stations, are located around the arena. (b) Heterogeneous robots collect pucks
with different colors and weights. The circle around each robot represents the
communication range.

V. MULTIROBOT FORAGING

The foraging task can be considered as a simplified version
of complex applications, such as autonomous exploration and
distributed surveillance. In a classical foraging task, a group of
robots collect preys from an environment and either consume
or return them to the nest. The robots regulate their behaviors,
either foraging or resting, and they receive energy from the
collected preys. The task allocation in multirobot foraging is
mainly obtained through the use of finite state machines with
different state transition strategies. Examples of these strate-
gies include a bioinspired approach, a threshold-based mech-
anism, a behavior-based approach, and a probabilistic approach
[37]–[40]. In order to demonstrate the effectiveness of the
proposed approach, a modified multirobot foraging scenario
is considered in this paper. The modified version differs from
the traditional one in two aspects. First, the robots do not get
energy from their collected preys. Instead, they can refill their
resources from refill stations. Second, the robots forage most of
the time, and they only rest for a short time in the refill stations
while refilling their resources.

The simulations were carried out using a commercially
available robot simulator called Webots [41]. Fig. 6 shows a
screenshot of the foraging simulation, where 15 heterogeneous
robots collect pucks with different colors and weights. The
pucks continuously appear in an arena with a 10.0-m radius at
any time. The locations of the pucks are not known a priori
and must be discovered by the robots in real time. The goal
of the foraging mission is to allocate the puck collecting tasks
to the robots that can minimize the task completion time.
During the simulation, the robots randomly move around the
arena searching for the pucks. If a robot senses a puck, it
informs this to its neighbors within its communication range

by broadcasting the puck collection task message. The cost of
the robot for the task is defined as the estimated task completion
time. While all robots are equally capable of sensing any type
of puck (regardless of their colors and weights), each robot can
collect only a specific type of puck.

A. Robot Resources

The robots use three types of resources, namely, energy,
expendable components, and live load. The robots consume
energy whenever they move around and pick up the pucks.
When the energy level falls below a threshold, the robot should
stop foraging and visit the energy station to recharge its energy.
The robot also must replace its expendable components in the
maintenance station once in every predefined period. When a
robot loads up a puck, the live load of the robot increases. If
the live load exceeds the predefined allowable load, the robot
should empty its pucks in the puck station with the same color.

B. Algorithms

The overall performance results of five task allocation
algorithms, namely, sequential single-item auctions (SSIA)
[42], repeated sequential single-item auctions (RSSIA) [43],
MURDOCH [23], ANTA1 with RCG, and ANTA4 with RCG,
were compared and analyzed. The subscript in ANTA repre-
sents the maximum tree level. The details of the algorithms are
described in the following.

• SSIA: In SSIA, the robot that has found a puck becomes an
auctioneer and broadcasts an auction message to its direct
neighbors, i.e., the robots that are located in a single hop
away from the auctioneer. Any capable robots that have
received the message become bidders and generate bids
for the task considering the sequential execution order of
their previously assigned tasks. After receiving the bids
from the bidders, the auctioneer selects the winner, which
has the lowest cost, and allocates the task to the winner by
broadcasting the assignment message.

• RSSIA: The RSSIA is a modified version of the SSIA
such that the robot reauctions the rest of its assigned tasks
whenever it completes a task.

• MURDOCH: The MURDOCH uses a sequence of first-
price one-round auctions. Unlike the SSIA and RSSIA, in
which the robots do not consider their resources in task al-
location, the robot with MURDOCH will not participate in
the auction process when its resource levels are sufficiently
low. Instead, it visits refill stations to refill the depleted
resources.

• ANTA1 with RCG and ANTA4 with RCG: In order to
compare the proposed approach with different maximum
tree levels, the two algorithms are compared. In the case
when the maximum tree level is one, only the robots that
are located a single hop away from the root robot are
allowed to participate in the task allocation process. In the
case of the maximum tree level with four, the network
tree can be extended up to four levels until finding the
capable robot in the network tree. Note that PT for the
RCG algorithm was set to 0.6.

6878 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 61, NO. 12, DECEMBER 2014

TABLE I
TASK TYPES AND CORRESPONDING CAPABLE ROBOTS

C. Simulation Results

1) Results With Different CCRs: In the first simulation ex-
periment, the results of the algorithms were compared by
changing the communication coverage rate (CCR), which is
defined as

CCR =
Area of communication coverage

Area of arena
· 100 (%) (15)

where the area of the arena is 100π m2 in the simulation, and
the area of a communication coverage is πr2 m2 with the com-
munication radius r m. The CCR is related with the probability
of finding a capable robot in a single-hop communication range.
The task type is defined by the color and weight of the puck, and
each puck has different color types, namely, red (R), green (G),
and blue (B), and different weight types, namely, light (L) and
heavy (H). Table I shows the task types and the corresponding
capable robots. For example, task type R&L represents the red-
colored lightweight puck collecting task, and only the robots
with IDs from 1 to 3 are capable of performing this task. Since
the number of neighbors of each robot becomes larger as the
CCR increases, the probability of finding a capable robot in a
single-hop communication range is also increased. On the other
hand, the chance of finding a capable robot becomes lower as
the CCR decreases.

In order to examine the effect of the CCR in task allocation,
the communication ranges were set to 3.2, 4.5, 5.5, 6.3, and
7.1 m for CCRs with 10%, 20%, 30%, 40%, and 50%, respec-
tively. The sensing range of the robots was set to 1.6 m, which is
half of the minimum communication range. The simulation was
terminated when the 100th task was completed, and 30 simula-
tion runs were performed with each CCR. Fig. 7(a) shows the
average task completion time of the algorithms with respect to
five different CCRs. Since the robots with the RCG algorithm
were capable of planning whether to visit the refill stations
before starting the tasks, they were able to minimize extra time
delay due to resource depletion during task execution. As a
result, the overall task completion time of the algorithms with
RCG, i.e., ANTA1 with RCG and ANTA4 with RCG, was lower
than that of the other algorithms. Moreover, since the ANTA4

algorithm is capable of extending the network tree up to four
tree levels, it had higher probability of finding the capable robot
in the network than SSIA, RSSIA, MURDOCH, and ANTA1.
However, as the CCR was increased to 50%, the difference
between the results of ANTA1 and ANTA4 decreased. This
can be explained by the probability that the capable robot
is within a single-hop communication range. The single-hop
winner probability, i.e., PS , is defined as

PS = 1−
(

1

m

)n

(16)

Fig. 7. Simulation results with different CCRs. (a) Average task completion
time. (b) Average normalized resource consumption. (c) Average amount of
communications.

where n is the number of direct neighbors, i.e., the number of
robots within a single-hop communication range, and m is the
number of task types. It is assumed that the probability that
a robot is capable of performing one type of task out of m
types is 1/m. For the first simulation, the number of task types
m is six, as shown in Table I. Since n is proportional to the
CCR, PS decreases with a decrease in the CCR. In the case of
ANTA1, only the direct neighbors were allowed to participate in
task allocation, and consequently, the algorithm suffered from
a misassignment problem when the CCR was low. However,
as the CCR was increased to 50%, PS also increased, i.e.,
the likelihood of finding a capable robot in a single hop was
improved. Thus, the results of ANTA1 and ANTA4 were almost
the same when the CCR was 50%. Likewise, the results of the
other algorithms also decreased with an increase in the CCR, as
shown in Fig. 7(a).

In order to compare the amount of resource consumption
between the algorithms, the normalized resource consumption

LEE et al.: ANTA WITH RCG FOR MULTIROBOT SYSTEMS 6879

of algorithm a, i.e., Ēa, is defined as

Ēa =
1

NL

∑
l∈L

Ea
l

max
a′

Ea′
l

(17)

with

Ea
l =

∑
r∈R

Ea
i,l,

a ∈ {SSIA, RSSIA, MURDOCH, ANTA1 with RCG

ANTA4 with RCG} (18)

where Ea
i,l is the total consumption of the lth resource of robot i

with algorithm a. Fig. 7(b) shows the normalized resource
consumption of the algorithms for different CCRs. Since the
robots with RCG were less prone to resource depletion in
the middle of task execution, they had less instances of extra
resource consumption than the other algorithms. Similar to
the results in Fig. 7(a), the ANTA4 algorithm consumed less
resources than the ANTA1 algorithm because it could find the
capable robots faster than ANTA1.

Fig. 7(c) shows the average amount of communications of
the algorithms with different CCRs. In the simulation, the robot
that has sensed a puck broadcasts messages until either the task
is allocated or the puck is out of the robot’s sensing range. Since
the ANTA4 algorithm completed the tasks faster than the others,
the amount of communications of the algorithm was lower than
those of the other algorithms. The results of the first simulation
demonstrate that the combination of ANTA4 and RCG can
allocate tasks more efficiently with less task completion time,
lower resource consumption, and fewer communications than
all the other algorithms through all values of the CCRs.

2) Results With Different Numbers of Task Types: In the
second simulation experiment, the effect of different numbers
of task types on the five algorithms was tested and analyzed
with the fixed CCR of 30%. The numbers of task types were
set to 3, 6, 9, 12, and 15; and the corresponding team of
heterogeneous robots was also divided into 3, 6, 9, 12, and
15, groups, respectively. The robots in each group are capable
of one type of task only. For example, in the case where the
number of task types is 3, the robots are divided into three
groups, and the robots in group 1, group 2, and group 3 can
collect only type-1, type-2, and type-3 pucks, respectively.

Fig. 8(a) shows the average task completion time of the
algorithms for different numbers of task types. The average
task completion time increased as the number of task types
increased. This was because it took more time to find a capable
robot among the heterogeneous robots as the number of task
types increased. Similar to the first simulation results, the
graph shows that ANTA4 with RCG resulted in the lowest
task completion time. Since increasing the number of task
types causes lower PS in (16), the single-hop algorithms, i.e.,
SSIA, RSSIA, MURDOCH, and ANTA1 with RCG, resulted
in longer task completion time than ANTA4 with RCG. The
normalized resource consumption in Fig. 8(b) and the amount
of communications in Fig. 8(c) also show similar pattern as
in Fig. 8(a). As a result, ANTA4 with RCG outperforms the

Fig. 8. Simulation results with different numbers of task types. (a) Average
task completion time. (b) Average normalized resource consumption. (c) Aver-
age amount of communications.

other algorithms in terms of task completion time, resource
consumption, and communication load.

3) Results With Different CCRs and Numbers of Task Types:
In the third simulation experiment, the task completion times
of the algorithms with different combinations of the CCR and
the number of task types were compared. Fig. 9 shows the
simulation results of SSIA, RSSIA, MURDOCH, ANTA1 with
RCG, and ANTA4 with RCG, respectively. As shown in the
figures, the overall task completion time was increased either by
a decrease in the CCR or by an increase in the number of task
types. The graphs also show that the algorithms without using
RCG had higher average task completion time and had steeper
slope than those with RCG. In order to numerically show the
difference between the algorithms, the average task completion
time and the average slope of the graphs are presented in
Table II. The table also shows that ANTA4 with RCG is more
consistent than the other algorithms with different CCRs and
numbers of task types.

6880 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 61, NO. 12, DECEMBER 2014

Fig. 9. Average task completion time with different CCRs and different
numbers of task types. (a) SSIA. (b) RSSIA. (c) MURDOCH. (d) ANTA1 with
RCG. (e) ANTA4 with RCG.

TABLE II
AVERAGE TIME AND AVERAGE SLOPE OF TASK COMPLETION TIME

VI. CONCLUSION

This paper has proposed the RCG and ANTA algorithms for
MRTA. The RCG algorithm enabled a robot to keep its resource
levels higher than the thresholds after completing a task. Using
this algorithm, unexpected increase in task completion time, re-
source consumption, and communication load due to depletion
of resources during task execution could be minimized. The
ANTA algorithm constructed a minimal spanning tree network
and found a capable robot in the tree that has the lowest cost for
the task. Since this algorithm uses a multihop ad hoc communi-
cation network in task allocation, it is more efficient in finding
a capable robot with a limited communication range than the
other algorithms that use single-hop communication. The pro-
posed approach was tested in multirobot foraging simulations
with different CCRs and numbers of task types. The simulation
results demonstrated the effectiveness of the proposed approach
in terms of task completion time, resource consumption, and
communication load.

For future work, a method to select the maximum task tree
level in ANTA should be developed for efficient and robust
task allocation. In addition, heuristic algorithms should be
investigated to improve the DFBB search in the RCG algorithm
for a large number of resources. Finally, the proposed approach
should be implemented on physical robots and tested in a real
environment to demonstrate its effectiveness and robustness.

REFERENCES

[1] L. E. Parker, “Distributed intelligence: Overview of the field and its appli-
cation in multi-robot systems,” J. Phys. Agent, vol. 2, pp. 5–14, 2008.

[2] J. C. Elizondo-Leal, G. Ramirez-Torres, and G. T. Pulido, “Multi-robot
exploration and mapping using self biddings,” in Proc. Adv. Artif. Intell.,
2008, pp. 392–401.

[3] W. Xu, R. Jiang, and Y. Chen, “Map alignment based on PLICP algo-
rithm for multi-robot SLAM,” in Proc. IEEE Symp. Ind. Electron., 2012,
pp. 926–930.

[4] I. Bayezit and B. Fidan, “Distributed cohesive motion control of flight
vehicle formations,” IEEE Trans. Ind. Electron., vol. 60, no. 12, pp. 5763–
5772, Dec. 2013.

[5] Y. Toda and N. Kubota, “Self-localization based on multiresolution map
for remote control of multiple mobile robots,” IEEE Trans. Ind. Informat.,
vol. 9, no. 3, pp. 1772–1781, Aug. 2013.

[6] B. Ranjbar-Sahraei, F. Shabaninia, A. Nemati, and S.-D. Stan, “A novel
robust decentralized adaptive fuzzy control for swarm formation of multi-
agent systems,” IEEE Trans. Ind. Electron., vol. 59, no. 8, pp. 3124–3134,
Aug. 2012.

[7] L. Doitsidis et al., “Optimal surveillance coverage for teams of micro
aerial vehicles in GPS-denied environments using onboard vision,” Auton.
Robots, vol. 33, no. 1/2, pp. 173–188, Aug. 2012.

[8] Z. Wang and D. Gu, “Cooperative target tracking control of multiple
robots,” IEEE Trans. Ind. Electron., vol. 59, no. 8, pp. 3232–3240,
Aug. 2012.

LEE et al.: ANTA WITH RCG FOR MULTIROBOT SYSTEMS 6881

[9] B. P. Gerkey and M. J. Matarić, “A formal analysis and taxonomy of
task allocation in multi-robot systems,” Int. J. Robot. Res., vol. 23, no. 9,
pp. 939–954, Sep. 2004.

[10] F. Cordes et al., “LUNARES: Lunar crater exploration with heteroge-
neous multi robot systems,” Intell. Serv. Robot., vol. 4, no. 1, pp. 61–89,
Jan. 2011.

[11] P. R. Wurman, R. D’andrea, and M. Mountz, “Coordinating hundreds
of cooperative, autonomous vehicles in warehouses,” Artif. Intell. Mag.,
vol. 29, pp. 9–19, 2008.

[12] K. C. T. Vivaldini et al., “Robotic forklifts for intelligent warehouses:
Routing, path planning, and auto-localization,” in Proc. IEEE Conf. Ind.
Technol., 2010, pp. 1463–1468.

[13] B. Mazzolai et al., “Networked and cooperating robots for urban hygiene:
The EU funded DustBot project,” in Proc. Int. Conf. Ubiquitous Robot.
Ambient. Intell., 2008, pp. 447–452.

[14] J. B. Grau et al., “Sustainable agriculture using an intelligent mechatronic
system,” in Proc. IEEE Conf. Ind. Elec., 2009, pp. 3416–3421.

[15] G. Song, H. Wang, J. Zhang, and T. Meng, “Automatic docking system
for recharging home surveillance robots,” IEEE Trans. Consum. Electron.,
vol. 57, no. 2, pp. 428–435, May 2011.

[16] A. Carlini et al., “Analysis and design in providing a robotised cleaning
and validation system for hospital environment,” in Proc. Int. Conf. Adv.
Serv. Comput., 2012, pp. 58–63.

[17] D. C. Slaughter, D. K. Giles, and D. Downey, “Autonomous robotic weed
control systems: A review,” Comput. Electron. Agric., vol. 61, no. 1,
pp. 63–78, Apr. 2008.

[18] M. K. Lee, S. Kiesler, J. Forlizzi, S. Srinivasa, and P. E. Rybski, “Grace-
fully mitigating breakdowns in robotic services,” in Proc. IEEE Conf.
HRI, 2010, pp. 203–210.

[19] A. Beynier and A.-I. Mouaddib, “Decentralized Markov decision pro-
cesses for handling temporal and resource constraints in a multiple robot
system,” Distrib. Auton. Robot. Syst., vol. 6, pp. 191–200, 2007.

[20] M. Strens and N. Windelinckx, “Combining planning with reinforcement
learning for multi-robot task allocation,” in Proc. Adap. Agents Multi-
Agent Syst. II, 2005, pp. 260–274.

[21] D.-H. Lee, J.-H. Han, and J.-H. Kim, “Market-based multiagent frame-
work for balanced task allocation,” in Proc. Adv. Intell. Syst. Comput.,
2013, vol. 208, pp. 549–559.

[22] B. Kaleci and O. Parlaktuna, “Performance analysis of bid calculation
methods in multirobot market-based task allocation,” Turkish J. Elect.
Eng. Comput. Sci., vol. 21, no. 2, pp. 565–585, 2013.

[23] B. P. Gerkey and M. J. Matarić, “Sold!: Auction methods for multirobot
coordination,” IEEE Trans. Robot. Autom., vol. 18, no. 5, pp. 758–768,
Oct. 2002.

[24] M. B. Dias, R. Zlot, N. Kalra, and A. Stentz, “Market-based multi-
robot coordination: A survey and analysis,” Proc. IEEE, vol. 94, no. 7,
pp. 1257–1270, Jul. 2006.

[25] R. Zlot and A. Stentz, “Market-based multirobot coordination for complex
tasks,” Int. J. Robot. Res., vol. 25, no. 1, pp. 73–101, Jan. 2006.

[26] G. Li, Y. Tamura, M. Wu, A. Yamashita, and H. Asama, “Hybrid dynamic
mobile task allocation and reallocation methodology for distributed multi-
robot coordination,” in Proc. IEEE/ASME Conf. Adv. Intell. Mechatronics,
2012, pp. 190–195.

[27] M. A. Batalin and G. S. Sukhatme, “Sensor network-based multi-
robot task allocation,” in Proc. IEEE Conf. Intell. Robot. Syst., 2003,
pp. 1939–1944.

[28] M. A. Batalin and G. S. Sukhatme, “Using a sensor network for distributed
multi-robot task allocation,” in Proc. IEEE Conf. Robot. Autom., 2004,
pp. 158–164.

[29] J. McLurkin, “Analysis and implementation of distributed algorithms
for multi-robot systems,” M.S. thesis, Massachusetts Inst. Technol.,
Cambridge, MA, USA, 2008.

[30] J. McLurkin and D. Yamins, “Dynamic task assignment in robot swarms,”
Proc. Robot. Sci. Syst., 2005.

[31] D. Li, X. Jia, and H. Liu, “Energy efficient broadcast routing in static
ad hoc wireless networks,” IEEE Trans. Mobile Comput., vol. 3, no. 2,
pp. 144–151, Apr.–Jun. 2004.

[32] A. Jüttner and Á. Magi, “Tree based broadcast in ad hoc networks,”
Mobile Netw. Appl., vol. 10, no. 5, pp. 753–762, Oct. 2005.

[33] I. Maric and R. D. Yates, “Cooperative multihop broadcast for wireless
networks,” IEEE J. Sel. Areas Commun., vol. 22, no. 6, pp. 1080–1088,
Aug. 2004.

[34] G. A. Einicke and L. B. White, “Robust extended Kalman filtering,” IEEE
Trans. Signal Process., vol. 47, no. 9, pp. 2596–2599, Sep. 1999.

[35] K. S. Macarthur, R. Stranders, S. D. Ramchurn, and N. R. Jennings, “A
distributed anytime algorithm for dynamic task allocation in multi-agent
systems,” in Proc. AAAI Conf. Artif. Intell., 2011, pp. 701–706.

[36] B. Cai et al., “Multiobjective optimization for autonomous straddle carrier
scheduling at automated container terminals,” IEEE Trans. Autom. Sci.
Eng., vol. 10, no. 3, pp. 711–725, Jul. 2013.

[37] T. H. Labella, M. Dorigo, and J.-L. Deneubourg, “Division of labor in a
group of robots inspired by ants’ foraging behavior,” ACM Trans. Auton.
Adap. Syst., vol. 1, no. 1, pp. 4–25, Sep. 2006.

[38] M. J. B. Krieger and J.-B. Billeter, “The call of duty: Self-organised task
allocation in a population of up to twelve mobile robots,” Robot. Auton.
Syst., vol. 30, pp. 65–84, 2000.

[39] K. Lerman, C. Jones, A. Galstyan, and M. J. Matarić, “Analysis of dy-
namic task allocation in multi-robot systems,” Int. J. Robot. Res., vol. 25,
no. 3, pp. 225–241, Mar. 2006.

[40] W. Liu and A. F. T. Winfield, “Modeling and optimization of adaptive
foraging in swarm robotic systems,” Int. J. Robot. Res., vol. 29, no. 14,
pp. 1743–1760, Dec. 2010.

[41] O. Michel, “Webots: Professional mobile robot simulation,” Int. J. Adv.
Robot. Syst., vol. 1, no. 1, pp. 39–42, 2004.

[42] S. Koenig et al., “The power of sequential single-item auctions for agent
coordination,” in Proc. Nat. Conf. Artif. Intell., 2005, pp. 1625–1629.

[43] M. Nanjanath and M. Gini, “Repeated auctions for robust task execu-
tion by a robot team,” Robot. Auton. Syst., vol. 58, no. 7, pp. 900–909,
Jul. 2010.

Dong-Hyun Lee received the B.S. degree in elec-
trical engineering in 2007 from Kyungpook Na-
tional University, Daegu, Korea, and the M.S. degree
in electrical engineering in 2009 from the Korea
Advanced Institute of Science and Technology,
Daejeon, Korea, where he is currently working to-
ward the Ph.D. degree.

Sheir Afgen Zaheer received the B.S. degree in
mechatronics engineering in 2008 from the National
University of Sciences and Technology, Islamabad,
Pakistan, and the M.S. degree in electrical engineer-
ing in 2012 from the Korea Advanced Institute of
Science and Technology, Daejeon, Korea, where he
is currently working toward the Ph.D. degree.

Jong-Hwan Kim (F’09) received the B.S., M.S., and
Ph.D. degrees from Seoul National University, Seoul,
Korea, in 1981, 1983, and 1987, respectively, all in
electronics engineering.

Since 1988, he has been with the Department
of Electrical Engineering, Korea Advanced Insti-
tute of Science and Technology, Daejeon, Korea,
where he is currently a KT Chair Professor and the
Director of the National Robotics Research Center
for Robot Intelligence Technology. His research in-
terests include intelligence technology, intelligence

super agents, ubiquitous and genetic robots, and humanoid robots.
Dr. Kim is the Founder and currently the President of the Federation of

International Robot-soccer Association (FIRA, www.FIRA.net) and the Inter-
national Robot Olympiad Committee (IROC, www.IROC.org). He is an Asso-
ciate Editor of the IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

and the IEEE Computational Intelligence Magazine. His name was included in
The Barons 500: Leaders for the New Century in 2000 as the Father of Robot
Football.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

