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Incremental nonlinear dynamic inversion is a sensor-based control approach that promises to provide high-

performance nonlinear control without requiring a detailed model of the controlled vehicle. In the context of attitude

control of micro air vehicles, incremental nonlinear dynamic inversion only uses a control effectiveness model and

uses estimates of the angular accelerations to replace the rest of themodel. This paperprovides solutions for twomajor

challenges of incremental nonlinear dynamic inversion control: how to deal with measurement and actuator delays,

and how to deal with a changing control effectiveness. Themain contributions of this article are 1) a proposedmethod

to correctly take into account the delays occurring when deriving angular accelerations from angular rate

measurements; 2) the introduction of adaptive incremental nonlinear dynamic inversion, which can estimate the

control effectiveness online, eliminating the need formanual parameter estimation or tuning; and3) the incorporation

of themomentum of the propellers in the controller. This controller is suitable for vehicles that experience a different

control effectiveness across their flight envelope. Furthermore, this approach requires only very coarse knowledge of

model parameters in advance. Real-world experiments show the high performance, disturbance rejection, and

adaptiveness properties.

Nomenclature

b = width of the vehicle, m
I = identity matrix
Ir = moment of inertia matrix of the rotor, kg · m2

Iv = moment of inertia matrix of the vehicle, kg · m2

i = rotor index
k1 = force constant of the rotors, kg · m∕rad
k2 = moment constant of the rotors, kg · m2∕rad
l = length of the vehicle, m
Ma = aerodynamic moment vector acting on the vehicle, N · m
Mc = control moment vector acting on the vehicle, N · m
Mr = moment vector acting on the propeller, N · m
Ts = sample time of the controller, s
u = actuator input vector, rad∕s
v = vehicle velocity vector, m∕s
μ = adaptation rate diagonal matrix
Ω = vehicle angular rate vector, rad∕s
_Ω = angular acceleration vector, rad∕s2
ω = angular rate vector of the four rotors around the body

z axis, rad∕s
ωi = angular rate vector of rotor i around each of the body axes,

rad∕s

I. Introduction

M ICRO air vehicles (MAVs) have increased in popularity as
low-cost lightweight processors and inertial measurement

units have become available through the smartphone revolution. The
inertial sensors allow stabilization of unstable platforms by feedback
algorithms. Typically, the stabilization algorithm used for MAVs is
simple proportional integral derivative (PID) control [1,2]. Problems

with PID control occur when the vehicle is highly nonlinear or when
the vehicle is subject to large disturbances like wind gusts.
Alternatively, we could opt for amodel-based attitude controller. A

model-based controller that can deal with nonlinear systems is
nonlinear dynamic inversion (NDI), which involves modeling all of
the MAV’s forces and dynamics. Theoretically, this method can
remove all nonlinearities from the system and create a linearizing
control law. However, NDI is very sensitive to model inaccuracies
[3]. Obtaining an accurate model is often expensive or impossible
with the constraints of the sensors that are carried onboard a
small MAV.
The incremental form of nonlinear dynamic inversion (INDI) is

less model-dependent and more robust. It has been described in the
literature since the late 1990s [4,5], sometimes referred to as
simplified [6] or enhanced [7] NDI. Compared to NDI, instead of
modeling the angular acceleration based on the state and inverting the
actuator model to get the control input, the angular acceleration is
measured, and an increment of the control input is calculated based
on a desired increment in angular acceleration. This way, any
unmodeled dynamics, including wind gust disturbances, are
measured and compensated. Because INDI makes use of a sensor
measurement to replace a large part of the model, it is considered a
sensor-based approach.
INDI faces two major challenges. First, the measurement of

angular acceleration is often noisy and requires filtering. This
filtering introduces a delay in the measurement, which should be
compensated for. Second, the method relies on inverting and
therefore modeling the controls. To achieve a more flexible
controller, the control effectiveness should be determined adaptively.
Delay in the angular acceleration measurement has been a prime

topic in INDI research. A proposed method to deal with these
measurement delays is predictive filtering [8]. However, the
prediction of angular acceleration requires additional modeling.
Moreover, disturbances cannot be predicted. Initially, a setup with
multiple accelerometers was proposed by Bacon and Ostroff [5] to
measure the angular acceleration. This setup has some drawbacks
because it is complex and the accelerometers are sensitive to
structural vibrations. Later, they discussed the derivation of angular
acceleration from gyroscope measurements by using a second-order
filter [9]. To compensate for the delay introduced by the filter, Bacon
and Ostroff [5] use a lag filter on the applied input to the system. We
show in this paper that perfect synchronization of input andmeasured
output can be achieved by applying the filter used for the gyroscope
differentiation on the incremented input as well.

Received 23May 2015; revision received 25 September 2015; accepted for
publication 2 October 2015; published online 28 December 2015. Copyright
© 2015 by Smeur, E. J. J., Chu, Q., and de Croon, G. C. H. E., Delft University
of Technology. Published by the American Institute of Aeronautics and
Astronautics, Inc., with permission. Copies of this paper may be made for
personal or internal use, on condition that the copier pay the $10.00 per-copy
fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers,
MA 01923; include the code 1533-3884/15 and $10.00 in correspondence
with the CCC.

*Ph.D. Candidate, Control and Simulation Department.
†Associate Professor, Control and SimulationDepartment.MemberAIAA.
‡Assistant Professor, Control and Simulation Department.

Article in Advance / 1

JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

C
A

L
IF

O
R

N
IA

 S
A

N
 D

IE
G

O
 o

n 
Ja

nu
ar

y 
24

, 2
01

6 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
14

90
 

http://dx.doi.org/10.2514/1.G001490


Other research focused on compensating delays in the inputs by
using a Lyapunov-based controller design [10]. In this paper, we
show that delayed inputs (actuator dynamics) are naturally handled
by the INDI controller.
The control effectiveness is the sole model still required by INDI.

The parameters can be obtained by careful modeling of the actuators
and the moment of inertia or by analyzing the input output data from
flight logs. However, even if such a tedious process is followed, the
control effectiveness can change during flight. For instance, this can
occur due to changes in flight conditions [11] or actuator damage
[12]. To copewith this, we propose a method to adaptively determine
the control effectiveness matrices.
In this paper, we present three main contributions: 1) a

mathematically sound way of dealing with the delays originating
from filtering of the gyroscope measurements, 2) the introduction of
an adaptive INDI scheme, which can estimate the control
effectiveness online, and 3) incorporation of propeller momentum
in the controller design. These contributions are implemented and
demonstrated on a Parrot Bebop quadrotor running the Paparazzi
open-source autopilot software. This is a commercially available
quadrotor, and the code is publicly available on Github.§

The presented theory and results generalize to other vehicles in a
straightforward manner. We have applied this control approach
successfully to a variety of quadrotors. Some of these MAVs were
able to measure the rotational rate of the rotors (actuator feedback),
but some did not have this ability. The INDI controller is believed to
scalewell to different types ofMAVs like helicopter,multirotor, fixed
wing, or hybrid.
The outline of this paper is as follows. First, a model of the MAV

will be discussed in Sec. II. Second, Sec. III will deal with INDI and
the analysis for this controller for a quadrotor. Section IV is about the
adaptive extension of INDI. Finally, in Sec. V, the experimental setup
is explained, followed by the results of the experiments in Sec. VI.

II. Micro Air Vehicle Model

TheBebop quadrotor is shown in Fig. 1 alongwith axis definitions.
The actuators drive the four rotors, whose angular velocity in the
body frame is given byωi � �ωix ;ωiy ;ωiz �, where i denotes the rotor
number. The center of gravity is located in the origin of the axis
system, and the distance to each of the rotors along theX axis is given
by l and along the Y axis by b.
If the angular velocity vector of the vehicle is denoted by Ω �

�p; q; r�T and its derivative by _Ω, the rotational dynamics are given by
Euler’s equation of motion [13], more specifically the one that
describes rotation. If we consider the body axis system as our
coordinate system, we get Eq. (1) for the angular velocity of the
vehicle:

Iv _Ω�Ω × IvΩ � M (1)

whereM is the moment vector acting on the vehicle. If we consider
the rotating propellers, still in the body coordinate system, we obtain

Ir _ωi �Ω × Irωi � Mri (2)

where ωi is the angular rate vector of the ith propeller in the vehicle
body axes, and Ω is the angular rotation of the coordinate system,
equal to the vehicle body rates. The rotors are assumed to be flat in the
z axis, such that the inertia matrix Ir has elements that are zero:
Irxz � Iryz � 0. Because the coordinate system is fixed to the vehicle,
Irxx , Irxy , and Iryy are not constant in time. However, as is shown later
on, the terms containing these moments of inertia will disappear.
Expanding Eq. (2) into its three components gives

Irxx _ωix − IryyΩzωiy − IrxyΩzωix � IrzzΩyωiz � Mrix

Iryy _ωiy � IrxxΩzωix � IrxyΩzωiy − IrzzΩxωiz � Mriy

Irzz _ωiz − IrxxΩyωix − IrxyΩyωiy � IryyΩxωiy � IrxyΩxωix � Mriz
(3)

The propellers are lightweight and have a small moment of inertia
compared to the vehicle. Relevant precession terms are therefore
those that contain the relatively large ωiz . Because the rotors spin
around the z axis, it is safe to assume that ωix ≪ ωiz and ωiy ≪ ωiz
and that _ωix and _ωiy are negligible. Then, the moments exerted on the
rotors due to their rotational dynamics are given by Eq. (4). Note the
presence of the term Irzz _ωiz , which is themoment necessary to change
the angular velocity of a rotor. In Sec. VI, it will be shown that this
term is important

Mri �
2
4Mrix
Mriy
Mriz

3
5 �

2
4 IrzzΩyωiz
−IrzzΩxωiz
Irzz _ωiz

3
5 (4)

This equation holds for each of the four rotors, and so the moment
acting on a rotor is given a subscript i to indicate the rotor number.
The totalmoment due to the rotational effects of the rotors is shown in
Eq. (5). Because motors 1 and 3 spin in the opposite direction of
rotors 2 and 4, a factor �−1�i is introduced. Because we are left
with only the z component for the angular velocity of each rotor,
we will omit this subscript and continue with the vector
ω � �ω1z

; : : : ;ω4z
�T � �ω1; : : : ;ω4�T :

Mr �
X4
i�1

Mri �
X4
i�1

�−1�i�1

2
64

IrzzΩyωi

−IrzzΩxωi

Irzz _ωi

3
75

�

2
64

0 0 0 0

0 0 0 0

Irzz −Irzz Irzz −Irzz

3
75
2
66664

_ω1

_ω2

_ω3

_ω4

3
77775

�

2
664

IrzzΩy −IrzzΩy IrzzΩy −IrzzΩy

−IrzzΩx IrzzΩx −IrzzΩx IrzzΩx

0 0 0 0

3
775
2
66664
ω1

ω2

ω3

ω4

3
77775 (5)

Now consider the Euler equation [Eq. (1)] for the entire vehicle.
The moments from the rotor dynamics are subtracted from the other
moments, yielding

Iv _Ω�Ω × IvΩ � Mc�ω� �Ma�Ω; v� −Mr�ω; _ω;Ω� (6)

Here, Iv is the moment of inertia matrix of the vehicle,
Mr�ω; _ω;Ω� is the gyroscopic effect of the rotors, Mc�ω� is the
control moment vector generated by the rotors, andMa�Ω; v� is the
moment vector generated by aerodynamic effects, which depends on
the angular rates and theMAVvelocity vector v. The control moment
Mc�ω� is elaborated in Eq. (7), where k1 is the force constant of the
rotors, k2 is themoment constant of the rotors, and b and l are defined
in Fig. 1

Fig. 1 Bebop quadcopter used in the experiments with axis definitions.

§Data available online at https://github.com/EwoudSmeur/paparazzi/tree/
bebop_indi_experiment [retrieved 23 November 2015].
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Mc �

2
64
bk1�−ω2

1 � ω2
2 � ω2

3 − ω2
4�

lk1�ω2
1 � ω2

2 − ω2
3 − ω2

4�
k2�ω2

1 − ω2
2 � ω2

3 − ω2
4�

3
75

�

2
64
−bk1 bk1 bk1 −bk1
lk1 lk1 −lk1 −lk1
k2 −k2 k2 −k2

3
75ω2 (7)

If we now take Eq. (6), insert Eqs. (4) and (7), and solve for the
angular acceleration _Ω, we arrive at the following:

_Ω � I−1v �Ma�Ω; v� −Ω × IvΩ� � I−1v �Mc −Mr�

� F�Ω; v� � 1

2
G1ω2 − TsG2 _ω − C�Ω�G3ω (8)

where F�Ω; v� � I−1v �Ma�Ω; v� −Ω × IvΩ� are the forces inde-
pendent of the actuators, and G1, G2, G3, and C�Ω� are given by
Eqs. (9–12), respectively. Note that the sample time Ts of the
quadrotor is introduced to ease future calculations:

G1 � 2I−1v

"−bk1 bk1 bk1 −bk1
lk1 lk1 −lk1 −lk1
k2 −k2 k2 −k2

#
(9)

G2 � I−1v T−1
s

" 0 0 0 0

0 0 0 0

Irzz −Irzz Irzz −Irzz

#
(10)

G3 � I−1v

"
Irzz −Irzz Irzz −Irzz
−Irzz Irzz −Irzz Irzz
0 0 0 0

#
(11)

C�Ω� �
"Ωy 0 0

0 Ωx 0

0 0 0

#
(12)

Note that traditionally in the literature, the system solved by INDI
has the form of _x � f�x� � g�x; u�where x is the state of the system
and u the input to the system. However, as becomes clear from
Eq. (8), the quadrotor is actually a system of the form
_x � f�x� � g�x; u; _u�. In Sec. III, a solution to this type of problem
will be shown.

III. Incremental Nonlinear Dynamic Inversion

Consider Eq. (8) from the previous section. This equation has some
extra terms compared to previous work [8] because the gyroscopic
and angular momentum effects of the rotors are included. We can
apply a Taylor expansion to Eq. (8) and if we neglect higher-order
terms, this results in Eq. (13):

_Ω � F�Ω0; v0� �
1

2
G1ω2

0 � TsG2 _ω0 − C�Ω0�G3ω0

� ∂
∂Ω

�F�Ω; v0� � C�Ω�G3ω0�jΩ�Ω0
�Ω −Ω0�

� ∂
∂v

�F�Ω0; v��jv�v0�v − v0�

� ∂
∂ω

�
1

2
G1ω2 − C�Ω0�G3ω

�����
ω�ω0

�ω − ω0�

� ∂
∂ _ω

�TsG2 _ω�
����
_ω� _ω0

� _ω − _ω0� (13)

This equation predicts the angular acceleration after an
infinitesimal time step ahead in time based on a change in angular
rates of the vehicle and a change in rotational rate of the rotors.
Now observe that the first terms give the angular acceleration based
on the current rates and inputs: F�Ω0; v0� � 1

2
G1ω2

0 � TsG2 _ω0−
C�Ω0�G3ω0 � _Ω0. This angular acceleration can be obtained by
deriving it from the angular rates, which are measured with the
gyroscope. In other words, these terms are replaced by a sensor
measurement, which is why INDI is also referred to as sensor-based
control.
The second and third term, partial to Ω and v, are assumed to be

much smaller than the fourth and fifth term, partial toω and _ω. This is
commonly referred to as the principle of time scale separation [14].
This assumption only holds when the actuators are sufficiently fast
and have more effect compared to the change in aerodynamic and
precessionmoments due to changes in angular rates and body speeds.
These assumptions and calculation of the partial derivatives give
Eq. (14):

_Ω � _Ω0 � G1 diag�ω0��ω − ω0� � TsG2� _ω − _ω0�
− C�Ω0�G3�ω − ω0� (14)

Previously, it is stated that the angular acceleration is measured by
deriving it from the angular rates. In most cases, the gyroscope
measurements from aMAVare noisy due to vibrations of the vehicle
due to the propellers and motors. Because differentiation of a noisy
signal amplifies the noise, some filtering is required. The use of a
second-order filter is adopted from the literature [9], of which a
transfer function in the Laplace domain is given by Eq. (15).
Satisfactory resultswere obtainedwithωn � 50 rad∕s and ζ � 0.55.
Other low-pass filters are also possible, for instance the Butterworth
filter

H�s� � ω2
n

s2 � 2ζωns� ω2
n

(15)

The result is that, instead of the current angular acceleration, a
filtered and therefore delayed angular acceleration _Ωf is measured.
Because all the terms with the zero subscript in the Taylor expansion
should be at the same point in time, they are all replaced with the
subscript f, yielding Eq. (16). This indicates that these signals are
also filtered and are therefore synchronous with the angular
acceleration:

_Ω � _Ωf � G1 diag�ωf��ω − ωf� � TsG2� _ω − _ωf�
− C�Ωf�G3�ω − ωf� (16)

This equation is not yet ready to be inverted because it contains the
derivative of the angular rate of the propellers. Becausewe are dealing
with discrete signals, consider the discrete approximation of the
derivative in the z domain: _ω � �ω − ωz−1�T−1

s , where Ts is the
sample time. This is shown in Eq. (17):

_Ω � _Ωf � G1 diag�ωf��ω − ωf� � G2�ω − ωz−1 − ωf � ωfz
−1�

− C�Ωf�G3�ω − ωf� (17)
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Collecting all terms with (ω − ωf) yields Eq. (18):

_Ω � _Ωf � �G1 diag�ωf� � G2 − C�Ωf�G3��ω − ωf�
−G2z

−1�ω − ωf� (18)

Inversion of this equation for ω yields Eq. (19), where � denotes
the Moore–Penrose pseudoinverse:

ωc � ωf � �G1 diag�ωf� � G2 − C�Ωf�G3��

�ν − _Ωf � G2z
−1�ωc − ωf�� (19)

Note that the predicted angular acceleration _Ω is now instead a
virtual control, denoted by ν. Thevirtual control is the desired angular
acceleration, and with Eq. (19), the required inputs ωc can be
calculated. The subscript c is added to ω to indicate that this is the
command sent to the motors. This input is given with respect to a
previous inputωf. If we define the increment in themotor commands
as ~ω � ωc − ωf, it is clearly an incremental control law.

A. Parameter Estimation

Equation (19) shows the general quadrotor INDI control law. The
parameters of this equation are the three matrices G1, G2, and G3,
which need to be identified for the specific quadrotor. This can be
done through measurement of each of the components that make up
thesematrices, including themoments of inertia of the vehicle and the
propellers as well as the thrust and drag coefficients of the rotors.
Identifying the parameters in this way requires a significant amount
of effort.
A more effective method is to use test flight data to determine the

model coefficients. Of course, to do this, theMAV needs to be flying.
This can be achieved by initially tuning the parameters. Alternatively,
a different controller can be used at first to gather the test flight data,
such as PID control. Once a test flight has been logged, Eq. (18) is
used for parameter estimation and is written as Eq. (20). From this
equation, a least-squares solution is found for the matrices G1, G2,
and G3

Δ _Ωf � �G1 G2 C�Ωf�G3 �
" diag�ωf�Δωf

�Δωf − z−1Δωf�
−Δωf

#
(20)

Here, Δ denotes the finite difference between two subsequent
samples. From the data, we can also investigate the importance of
some of the terms by comparing the least-squares error with and
without the terms. It turns out that, on a typical dataset, leaving out the
matrix G3 only results in an estimation squared error increase of
∼0.2%. Furthermore, modeling the rotor as linear with the rotational
speed of the rotor instead of quadratic gives an estimation squared
error increase of∼0.9%. Therefore, we can simplify the INDI control
law of Eq. (19) into Eq. (21):

ωc � ωf � �G1 � G2���ν − _Ωf � G2z
−1�ωc − ωf�� (21)

B. Implementation

With the simplifications described in Sec. III.A, the final INDI
control scheme is shown in Fig. 2. The input to the system is the
virtual control ν, and the output is the angular acceleration of the
system, _Ω. The angular velocity measurement from the gyroscope is
fed back through the differentiating second-order filter and
subtracted from the virtual control to give the angular acceleration
error _Ωerr.
Because the matrices G1 and G2 are not square, we take the

pseudoinverse to solve the problem of control allocation, denoted by
�. The contents of the block “MAV” are shown in Fig. 3 because it
allows the closed-loop analysis in Sec. III.C. In this diagram, d is a
disturbance term that bundles disturbances and unmodeled
dynamics.
Note that Eq. (21) provides a desired angular velocity of the rotors.

However, the actuators do not have an instantaneous response.
Instead, it is assumed they have first-order dynamics A�z�. The
reference sent to the motors is denoted by ωc and ~ω � ωc − ωf. In
Fig. 2, it is assumed that actuator feedback is available. However, if
this is not the case, the actuator state ω0 has to be estimated with a
model of the actuator dynamics as is shown in Fig. 4. Here,A 0�z� is a
model of the actuator dynamics.

C. Closed-Loop Analysis

Consider the control diagram shown in Fig. 2. We can verify that
this is a stable controller by doing a closed-loop analysis. First, the
transfer function of each of the two small loops is calculated, shown
byEqs. (22) and (23).Here,TFx→y denotes the transfer function from
point x to y in the control diagram:

~ω � �G1 � G2�� _Ωerr � �G1 � G2��G2z
−1 ~ω

�G1 � G2� ~ω � _Ωerr � G2z
−1 ~ω

�G1 � G2 −G2z
−1� ~ω � _Ωerr

TF _Ωerr→ ~ω�z� � �G1 � G2 − G2z
−1�� (22)

Fig. 2 INDI control scheme. A�z� denotes the actuator dynamics, andH�z� is the second-order filter.

Fig. 3 Contents of the block named “MAV” in Fig. 2.

Fig. 4 Block diagram for estimation of actuator state if actuator
feedback is not available.
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We define H�z� � IH�z� and assume that all actuators have the
same dynamics, and so A�z� � IA�z�. This means that each matrix
in TF ~ω→ω�z� is a diagonal matrix, and therefore TF ~ω→ω�z� is a
diagonal matrix function:

TF ~ω→ω�z� � �I −A�z�H�z�z−1�−1A�z�
� �I − IA�z�IH�z�z−1�−1IA�z�
� �I�1 − A�z�H�z�z−1��−1IA�z�
� I�1 − A�z�H�z�z−1�−1A�z� (23)

Then, the last part of the open loop is from ω to _Ω, as shown by
Fig. 3.Using this figure, the transfer function is calculated in Eq. (24).
Note that, for this analysis, disturbances are not taken into account:

TFω→ _Ω�z� � G1 �
z − 1

z
G2 � G1 � G2 −G2z

−1 (24)

Using these intermediate results, the open-loop transfer function of
the entire system is shown in Eq. (25):

TF _Ωerr→ _Ω�z� � TFω→ _Ω�z�TF ~ω→ω�z�TF _Ωerr→ ~ω�z�
� �G1 � G2 −G2z

−1�I�1 − A�z�H�z�z−1�−1A�z�
�G1 � G2 −G2z

−1��
� I�1 − A�z�H�z�z−1�−1A�z� (25)

Using Eq. (25) and Fig. 2, we can calculate the closed-loop transfer
function of the entire system in Eq. (26):

TFν→ _Ω�z� � �I� TF _Ωerr→ _Ω�z�IH�z�z−1�−1TF _Ωerr→ _Ω�z�
� �I� I�1 − A�z�H�z�z−1�−1A�z�IH�z�z−1�−1
I�1 − A�z�H�z�z−1�−1A�z�

� I
�1 − A�z�H�z�z−1�−1A�z�

1� �1 − A�z�H�z�z−1�−1A�z�H�z�z−1

� I
A�z�

1 − A�z�H�z�z−1 � A�z�H�z�z−1
� IA�z� (26)

From this equation, it appears that the closed-loop transfer function
from the virtual input to the angular acceleration is, in fact, the
actuator dynamics A�z�. In most cases, the actuator dynamics can be
represented by first- or second-order dynamics. Note that this shows
the importance of applying the H�z� filter on the input as well. By
doing this, a lot of terms cancel, and all that remains is the actuator
dynamics.
Now, consider the transfer function from disturbances d (see

Fig. 2) to the angular acceleration. The derivation is given in Eq. (27)
in which use is made of Eq. (25):

TFd→ _Ω�z� � �I − TF _Ωerr→ _Ω�z��−1�H�z�z−1�−1I
� �I� I�1 − A�z�H�z�z−1�−1A�z�IH�z�z−1�−1I

� I
1

1� �1 − A�z�H�z�z−1�−1A�z�H�z�z−1

� I
1 − A�z�H�z�z−1

1 − A�z�H�z�z−1 � A�z�H�z�z−1
� I�1 − A�z�H�z�z−1� (27)

With Eq. (27), we show that disturbances in the angular
acceleration are rejected as long as the actuator dynamics and the
designed filter are stable. The term A�z�H�z�z−1 will go to 1 over
time, with a response determined by the actuator dynamics, filter
dynamics, and a unit delay. Thismeans that if the angular acceleration
is measured faster, the drone can respond to disturbances faster.
Moreover, if the actuators can react faster, disturbances can be
neutralized faster.

D. Attitude Control

The angular acceleration of the MAV is accurately controlled by
the system shown in Fig. 2. To control the attitude of the MAV, a
stabilizing angular acceleration reference needs to be passed to the
INDI controller. This outer-loop controller can be as simple as a
proportional derivative (PD) controller (a gain on the rate error and a
gain on the angle error), as shown in Fig. 5. Here, η represents the
attitude of the quadcopter. The benefit of the INDI inner-loop
controller is that the outer PD controller commands a reference,
independent of the effectiveness of the actuators (including the inertia
of the quadrotor).
This means that the design of this controller depends only on the

speed of the actuator dynamics A�z�. In case the actuator dynamics
are known (through analysis of logged test flights, for instance),
values of Kη and KΩ can be determined that give a stable response.
This outer-loop controller does not involve inversion of the attitude

kinematics, as has been done in other work [3]. However, the attitude
angles for a quadrotor are generally small, inwhich case the inversion
of the attitude kinematics can be replaced with simple angle
feedback.

E. Altitude Control

The INDI controller derived in the beginning of this section
controls the angular acceleration around the axes x, y, and z, which
correspond to roll, pitch, and yaw. However, there is a fourth degree
of freedom that is controlled with the rotors, which is the acceleration
along the z axis.
Control of this fourth axis is handled by a separate controller. This

controller scales the average input to the motors to a value
commanded by the pilot, after the input has been incremented by the
INDI controller.

IV. Adaptive IncrementalNonlinearDynamic Inversion

The INDI approach only relies on modeling of the actuators. The
control effectiveness depends on the moment of inertia of the vehicle
as well as the type of motors and propellers. A change in any of these
will require re-estimation of the control effectiveness. Moreover, the

Fig. 5 Design of the attitude controller based on the closed-loop response of the INDI controller.
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control effectiveness can even change during flight, due to a change
in flight velocity, battery voltage, or actuator failure.
To counteract these problems and obtain a controller that requires

no manual parameter estimation, the controller was extended with
onboard adaptive parameter estimation using a least mean squares
(LMS) [15] adaptive filter. This filter is often used in adaptive signal
filtering and adaptive neural networks.
The LMS implementation is shown in Eq. (28), where μ1 is a

diagonal matrix whose elements are the adaptation constant for each
input, and μ2 is a diagonal matrix to adjust the adaptation constants
per axis. This is necessary because not all axes have the same signal-
to-noise ratio.
The LMS formula calculates the difference between the expected

acceleration based on the inputs and themeasured acceleration. Then,
it increments the control effectiveness based on the error. The control
effectiveness includes both G1 and G2, as is shown in Eq. (29):

G�k� � G�k − 1� − μ2

�
G�k − 1�

�
Δωf

Δ _ωf

�
− Δ _Ωf

��
Δωf

Δ _ωf

�
T

μ1

(28)

G � �G1 G2 � (29)

Clearly, when there is no change in input, the control effectiveness
is not changed. The reverse is also true; more excitation of the system
will result in a faster adaptation. This is a benefit of the LMS
algorithm over, for instance, recursive least squares with a finite
horizon because recursive least squares will “forget” everything
outside the horizon. Note that the filtering for the online parameter
estimation can be different from the filtering for the actual control.
Equation (28) makes use ofΔ _Ωf, which is the finite difference of _Ωf

in the control Eq. (21). Because differentiating amplifies high
frequencies, a filter that provides more attenuation of these high
frequencies is necessary.We still use the second-order filter described
by Eq. (15), but with ωn � 25 rad∕s and ζ � 0.55.
When an approximate control effectiveness is given before takeoff,

the adaptive systemwill estimate the actual values online and thereby
tune itself. The only knowledge provided to the controller is an initial
guess of the control effectiveness. It is generally not possible to take
off without any estimate of the control effectiveness because theUAV
might crash before the adaptive system has converged.
The choice of the adaptation constants μ1 and μ2 determines the

stability and the rate of adaptation. By making these constants larger,
a faster convergence is achieved. By making them too large, the
adaptation will no longer be stable. The theoretical limit has been
discussed in the literature [15], and it depends on the autocorrelation
matrix of the input to the filter. In practice, the filter stability
deteriorates before the theoretical limit, and so to find a good
adaptation constant, some tuning is required.

V. Experimental Setup

To validate the performance of the INDI controller developed in
Sec. III and the adaptive parameter estimation from Sec. IV, several
experiments were conducted. These experiments were performed
using the Bebop quadcopter from Parrot shown in Fig. 1. The Bebop
weighs 396.2 g and can be equippedwith bumpers, which are 12 g per
bumper. For these experiments, the bumpers were not equipped
unless explicitly stated. The quadcopter was running the Paparazzi
open-source autopilot software, which contains all the code for
wireless communication, reading sensor measurements, etc. The
accelerometer, gyroscope, and control loops were running at 512 Hz.
Four experiments test the key properties of the controller:

1) performance, 2) disturbance rejection, and 3) adaptation.
During these experiments, the reference attitude and average thrust

level were controlled by a pilot and sent to the drone over Wi-Fi. All
other computations were done on the drone itself, including the
online adaptation.

A. Performance

To put the responsiveness of the system to the test and tomake sure
that the angular acceleration reference is tracked by the INDI
controller, a doublet input was applied on the attitude roll angle. The
amplitude of the doublet is 30 deg, and the period is half a second
(0.25 s positive and 0.25 s negative). This test is only done for the roll
and not for the pitch because there is no fundamental difference
between these axes. The yaw axis is covered separately in Sec. V.D.
Note that this experiment is performed without the adaptation.
The performance is compared to a manually tuned PID controller.

The INDI controller is not expected to be faster or slower than a
traditional PID controller because the result of Eq. (26) shows that the
response of the INDI inner loop is simply the actuator dynamics.
Considering that the outer loop is a PD controller, the rise time and
overshoot should be similar.
Finally, this test will also be performedwith an INDI controller that

does not contain the filter delay compensation, more specifically by
usingω0 in the controller increment instead ofωf. It is expected that
this will not fly well, because in Sec. III.C, we showed that with this
compensation all terms cancel, and the closed-loop transfer function
reduces to IA�z�.
By inspection of Fig. 2, we can get a feel for what will happen if we

omit this filter compensation. When there is an angular acceleration
error, a control increment ~ωwill be the result, which is added toω0 to
produce ωc. ωc goes through the actuator dynamics to produce the
newω. The next time step, the result of this newω, does not yet appear
in _Ωf, because it is filtered and therefore delayed. Therefore, ~ω will
be the same. However,ω0 did update, and soωc will be incremented
even more, while we are still waiting to see the result of the first
increment in _Ωf.

B. Disturbance Rejection

The disturbance rejection property is validated by adding a
disturbance to the system. One possibility would be to apply
aerodynamic disturbances by flying in the wake of a big fan. The
disturbances occurring would be realistic but not very repeatable.
Moreover, the magnitude of the disturbance would be unknown.
Instead, it is possible to apply a disturbance in the form of a step

function to the system. This is done by adding a weight of 42.5 g to a
container located in an off-centered position on the quadrotor while it
is flying, as shown in Fig. 6. The container is located on the front of
the drone and has a distance of about 11 cm to the center of gravity,
and so any weight added will shift the center of gravity forward. This
will cause a misalignment of the thrust vector with respect to the
center of gravity and therefore a pitch moment. This moment will be
persistent and therefore have the form of a step disturbance. This is
indicated with d in Fig. 2. Although this moment is created with a
center of gravity shift, the situation is the same as in the case of a
persistent gust or an unmodeled aerodynamic moment.
A normal PID controller would respond to such a disturbance very

slowly because it takes time for the integrator to accumulate. But the
introduction of the INDI inner loop leads to a cascaded control
structure, which is muchmore resistant to disturbances than a single-

Fig. 6 Container attached to the nose of the quadrotor with one weight
inside.
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loop design [16]. Because of this, the reference pitch angle is
expected to be tracked shortly after the disturbance.

C. Adaptation

TheBebop quadcopter has the possibility to flywith bumpers, as is
shown in Fig. 7. Though these bumpers only weigh 12 g apiece, they
are located far from the center of gravity and therefore increase the
moment of inertia. Furthermore, they can influence the airflow
around the propellers. These system changes affect the G1 and G2

matrices. Therefore, the adaptive algorithm from Sec. IV should deal
with adding or removing the bumpers.
First, two flights are performed to show the effect of adding or

removing the bumpers when the adaptive algorithm is not active. For
the first flight, the bumpers are added, whereas the G1 and G2

matrices correspond to the quadrotor without bumpers. For the
second flight, the bumpers are removed, and theGmatrices from the
quadrotor with bumpers are used. In both flights, doublets are
performed like in Sec. V.A. The performance is expected to degrade
compared to the previous results for both cases because the G
matrices do not correspond to what they should be.
Second, the ability of the quadrotor to adapt itsG1 andG2 matrices

is tested. In this experiment, the drone starts with bumpers equipped,
but with system matrices that represent the configuration without
bumpers. The pilot flies the drone in a confined areawhile performing
some pitch, roll, and yaw maneuvers to excite the system. While
flying, the correct matrices should be estimated. Then, the Bebop is
landed, and the bumpers are removed. After takeoff, the matrices
should converge to their original state.
Finally, doublets are performed with and without the bumpers

equipped while the adaptation algorithm is active. We expect the
same performance as in Sec. V.A.

D. Yaw Control

The purpose of this experiment is to show the improvement in yaw
performance due to the incorporation of the rotor spin-up torque in
the controller design. This is done by applying a doublet input on the
yaw set point. The amplitude of the doublet is 5 deg, and the period is
1 s (0.5 s positive and 0.5 s negative). As a comparison, the same
experiment is performed with a traditional PID controller. This PID
controller is manually tuned to give a fast rise time with minimal
overshoot.
Additionally, the same test is performed with a zero G2 matrix.

Here, we expect an oscillation because the persistent effect of a
change in rotor angular velocity on the yaw axis is small. We take the
pseudoinverse in Eq. (21), and so the resulting gainwill be very large.
Because there is the angular momentum effect of the propellers, the
initial angular acceleration will be larger than expected, and the
controller will start to oscillate.

VI. Results

This section deals with the results of the experiments described in
Sec. V. The angular acceleration shown in the plots in this section is
not the onboard estimate of the angular acceleration because it is
delayed through filtering. Instead, it is computed after the experiment
from the finite difference of the gyroscope data. The signal is filtered
with a fourth-order Butterworth filter with a cutoff frequency of
15 Hz. It is filtered twice (forward and reverse), resulting in a zero-
phase (noncausal) filter. For the actual control, the onboard filtered
(and delayed) angular acceleration was used.

A. Performance

Figure 8 shows the angular acceleration around the x axis denoted
by _p and the reference angular acceleration denoted by _pref.
Additionally, the reference is filtered with the actuator dynamics,
resulting in _prefA

. This signal is the angular acceleration that is
expected based on the calculations in Sec. III.C, specifically Eq. (26).
It might seem that the controller does not track the reference well
because it lags behind the reference, but this was expected based on
the model of the actuator dynamics. The angular acceleration is
actually very close to the expected angular acceleration _prefA

. Finally,
we also show the angular acceleration as calculated onboard the
quadrotor using the second-order filter. The filtered angular
acceleration onboard the quadrotor is significantly delayed with
respect to the actual angular acceleration, which is why we will run
into problems if we do not take this delay into account in the INDI
controller.
The outer-loop controller, which generates the angular

acceleration reference to track, was designed such that the resultant
accelerations give a desired response of the roll angle, shown in
Fig. 9. From this figure, it can be seen that the quadcopter reaches its
reference roll angle within 0.2 s with a very small overshoot.
The roll angle response of the PID controller is shown in Fig. 10.

As expected, the PID controller performs very similar to the INDI
controller in terms of rise time and overshoot. The integral gain
included in the PID controller, which needs to eliminate steady-state
offsets, degrades the dynamic performance of the closed-loop
system. This shows that the INDI controller marginally improves the

Fig. 7 Bebop quadrotor with bumpers.

Fig. 8 Angular acceleration in the roll axis during doublet input.

Fig. 9 Roll angle during the doublet for the INDI controller.
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performance of a traditional PID controller in terms of
responsiveness for the roll.
As discussed previously, the onboard filtered measurement of the

angular acceleration is significantly delayed. If we remove the filter
delay compensation from the INDI controller, the quadrotor was
severely oscillating, as can be seen in Fig. 11. The doublet was not
performed because this did not seem safe. The oscillation might be
reduced by lowering Kη and KΩ, but this will make the response
slower as well. From this figure, we can conclude that the filter delay
compensation is an important part of the INDI controller and is
crucial in obtaining good performance with an INDI controller.

B. Disturbance Rejection

The weight, shown in Fig. 6, was placed in the container attached
to the nose of the quadrotor by hand. The weight was placed in the
container gently, but it probably arrived in the container with some
small velocity. The disturbance in the angular acceleration is
therefore a combination of a step and a delta pulse.
Figure 12 shows the angular acceleration that is the result of the

disturbance. From the figure, it is clear that the disturbance happened
just after 13 s. As the angular acceleration increases in the negative
direction, the reference angular acceleration starts to go the opposite
way, because now an angular rate and a pitch angle error start to arise.
About 0.1 s after losing track of the reference, the angular
acceleration again coincides with the expected angular acceleration,
having overcome the disturbance in the angular acceleration.
This results in a pitch angle with no steady-state error, as can be

seen from Fig. 13. After 0.3 s, the pitch angle is back at zero. To show
that theweight in the container really is a step disturbance, which can

be compared to a constant aerodynamic moment, consider Fig. 14. It
shows the difference of the rotational rate of the front and rear motors
divided by 4: �ω1 � ω2 − ω3 − ω4�∕4. This indicates the average
magnitude in rounds per minute that each motor contributes to the
pitch control; seeEq. (7). Clearly, there is a difference before and after
the disturbance, which can be quantified as an average change of 578
rounds per minute over the interval [12.6 13.0] versus [13.4 13.8].

Fig. 10 Roll angle during the doublet for the PID controller.

Fig. 11 Roll angle for the INDI controller without filter compensation.

Fig. 12 Angular acceleration during the disturbance.

Fig. 13 Pitch angle during the disturbance.

Fig. 14 Difference between the rotational rate of the front motors and
the rear motors.
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This demonstrates that the disturbance was really a step and that the
INDI controller can rapidly cope with such a disturbance.
Figure 15 shows the same experiment performed with a PID

controller. Of course, the weight was not dropped in exactly the same
manner and with the same velocity, and so the initial disturbance was
probably different. However, the persisting disturbance is the same
because the weight has exactly the same mass. It takes about 1.5 s
before the pitch angle is back at zero again, which is approximately
five times longer than for the INDI controller. One might say that the
integral gain of the PID controller should be larger, but this will
deteriorate the performance in the previous experiment.

C. Adaptation

Figures 16 and 17 show the response to a roll doublet without
adaptation if there is a mismatch in the control effectiveness. Even
though the bumpers are lightweight, their effect is significant because
they are located far from the center of gravity. In Fig. 16, we seewhat
happens if the actuators are less effective than in the model because
the inertia is higher. Additional increments of the input are needed to
reach a desired angular acceleration. The oscillation occurs because
this takes more time. The oscillation can be reduced by reducing the
Kη and Kω gains, at the cost of having a slower response.
In Fig. 17, we see the opposite; the control effectiveness is higher

than what was modeled. This results in a fast oscillation, which
cannot be removed by reducing the attitude gains. This is because the
cause of the oscillation is different; now, too much input is applied to
reach a certain angular acceleration. This will happen regardless of
what angular acceleration is requested by the attitude controller.

We can conclude that the performance degradeswhen themodeled
control effectiveness does not closely correspond to the actual control
effectiveness.When the adaptation algorithm is enabled, Figs. 18–20
show how each row of the G1 matrix evolves over time as a result of
the second experiment described in Sec. V.C. The same is shown in
Fig. 21 for the third row of theG2 matrix. Each line represents one of

Fig. 15 Pitch angle during the disturbance for the PID controller.

Fig. 16 Flight without adaptation, with bumpers equipped, while the
control effectiveness has been determined without bumpers.

Fig. 17 Flightwithout adaptation,without bumpers equipped,while the
control effectiveness has been determined with bumpers.

Fig. 18 First row of the G1 matrix corresponding to the roll.

Fig. 19 Second row of the G1 matrix corresponding to the pitch.
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the elements of that row, indicating the effectiveness of that motor on
the specified axis.
Note that the drone is flying in the interval of [8 54 s] and again in

[66 125 s]; in between these times, the drone is landed and the
bumpers are removed.This is indicated by vertical lines in the figures.
A large change in effectiveness due to the addition and removal of the
bumpers can be seen in the third row of the G1 matrix, shown in
Fig. 20, which corresponds to the yaw.
Also in Fig. 18, a change in effectiveness can be seen between the

flights with and without bumpers. Once converged, the effectiveness
values are stable with little noise. Upon takeoff and landing, the
effectiveness seems to diverge for a short period of time. This is not a
failure of the adaptation algorithm but merely the result of the
interaction with the floor.
The controller is engaged once the pilot gives a thrust command

that exceeds idle thrust. At that point, the quadrotor does not produce
enough lift to take off, and so it is still standing on the floor.When the
INDI controller tries to attain certain angular accelerations, the
quadrotor does not rotate, and the adaptation algorithm will adapt to
this. When landing, these interactions with the floor can also occur.
Notice the large difference in effectiveness between the actuators

in the second part of the flight in Fig. 20. This illustrates the added
value of adaptive INDI because often the actuators are assumed to
perform equal to each other, whereas in this case, they do not. These
differences between the actuators are also observed with the
estimation method described in Sec. III.A for multiple flights. The
differences may be caused by small imperfections that are not clearly
visible on some of the rotors.

Finally, we can observe how the online parameter estimation
affects the response to a roll doublet in Figs. 22 and 23. Regardless of
whether the bumpers are equipped or not, or with what control
effectivenessmodel the quadrotor starts flying, the sameperformance
is achieved as in Sec. V.A. This shows the robustness of the adaptive
algorithm against control effectiveness changes.

D. Yaw Control

Finally, consider Fig. 24. It shows for each time step the change in
angular acceleration in the yaw axis, Δ_r, during the large control
inputs discussed previously. A careful reader up until this point may
wonder: “Is the rotor spin-up torque really significant? Can we not
omit the G2 matrix?” The figure shows the predicted change in
angular acceleration based on the change in motor speeds according
to Eq. (21), which is a close match. Additionally, the figure also
shows the predicted change in angular acceleration if we neglectG2,
denoted by Δ_rsimple. Clearly, the motor spin-up torque is very
significant.
Moreover, if we try to fly with a zero G2 matrix, the resulting

oscillation is so strong that a takeoff is not possible. To fly without this
matrix,we cannot use the estimated values for the control effectiveness
in the yaw axis. Instead, we can take a higher effectiveness for the
model parameters than in reality to avoid overshooting the reference
angular acceleration due to the rotor spin-up torque that is now not
taken into account. Figure 25 shows that it is possible to fly with a zero
G2 matrix, at the cost of a severe performance penalty.

Fig. 20 Third row of the G1 matrix corresponding to the yaw.

Fig. 21 Third row of the G2 matrix corresponding to the yaw.

Fig. 22 Flight with adaptation, with bumpers equipped, while the
control effectiveness has been determined without bumpers.

Fig. 23 Flight with adaptation, without bumpers equipped, while the
control effectiveness has been determined with bumpers.
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If we do take the rotor angular momentum into account, Fig. 26
shows the resultant doublet response of the yaw angle. Compare this
with Fig. 27,which shows the doublet response for the PID controller.
The INDI controller clearly has a faster rise time and less overshoot.

VII. Conclusions

Adaptive incremental nonlinear dynamic inversion is a very
promising technique for control of micro air vehicles (MAVs).
Because of incorporation of the spin-up torque, fast yaw control is
possible, which is typically very slowon a quadrotor. The disturbance
rejection capabilities are vital when flying in windy conditions or
with MAVs that have complex aerodynamics. Because unmodeled
aerodynamic moments are measured with the angular acceleration,
no complex aerodynamic modeling is needed. Even the control
effectiveness matrices are shown to be adapted online, resulting in a
controller that can handle changes in the MAV configuration and
needs little effort to set up on a new platform. Only when a high-
performance outer loop is required is some knowledge of the actuator
dynamics needed. These properties result in a very flexible and
powerful controller.

Acknowledgments

This work was financed by the Delphi Consortium. The authors
would like to thank Bart Remes and the MAVLab for their support.

References

[1] Mahony, R., Kumar, V., and Corke, P., “Multirotor Aerial Vehicles:
Modeling, Estimation and Control of Quadrotor,” IEEE Robotics and

Automation Magazine, Vol. 38, No. 12, 2012, pp. 20–32.
doi:10.1109/MRA.2012.2206474

[2] Fresk, E., and Nikolakopoulos, G., “Full Quaternion Based Attitude
Control for a Quadrotor,” Proceedings of the European Control

Conference, IEEE Publ., Piscataway, NJ, 2013, pp. 3864–3869.
[3] da Costa, R., Chu, Q., andMulder, J., “Reentry Flight Controller Design

Using Nonlinear Dynamic Inversion,” Journal of Spacecraft and

Rockets, Vol. 40, No. 1, 2003, pp. 64–71.
doi:10.2514/2.3916

[4] Smith, P. R., “A Simplified Approach to Nonlinear Dynamic Inversion
Based Flight Control,” 23rd Atmospheric Flight Mechanics Conference

and Exhibit, AIAA Paper 1998-4461, 1998.
doi:10.2514/6.1998-4461

[5] Bacon, B. J., and Ostroff, A. J., “Reconfigurable Flight Control Using
Nonlinear Dynamic Special Accelerometer Implementation,” AIAA

Guidance, Navigation, and Control Conference and Exhibit, AIAA
Paper 2000-4565, Aug. 2000.
doi:10.2514/6.2000-4565

[6] Cox, T. H., and Cotting, M. C., “A Generic Inner-Loop Control Law
Structure for Six-Degree-of-Freedom Conceptual Aircraft Design,”
43rd AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper
2005-0031, Jan. 2005.
doi:10.2514/6.2005-31

[7] Ostroff, A. J., and Bacon, B. J., “Enhanced NDI Strategies for
Reconfigurable Flight Control,” Proceedings of the American Control

Conference, IEEE Publ., Piscataway, NJ, 2002, pp. 3631–3636.
doi:10.1109/ACC.2002.1024492

Fig. 24 Change in angular acceleration in the yaw axis along with the
predicted change.

Fig. 25 Yawangleduring the doublet for the INDI controllerwithoutG2

matrix.

Fig. 26 Yaw angle during the doublet for the INDI controller.

Fig. 27 Yaw angle during the doublet for the PID controller.

Article in Advance / SMEUR, CHU, AND DE CROON 11

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

C
A

L
IF

O
R

N
IA

 S
A

N
 D

IE
G

O
 o

n 
Ja

nu
ar

y 
24

, 2
01

6 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
14

90
 

http://dx.doi.org/10.1109/MRA.2012.2206474
http://dx.doi.org/10.1109/MRA.2012.2206474
http://dx.doi.org/10.1109/MRA.2012.2206474
http://dx.doi.org/10.1109/MRA.2012.2206474
http://dx.doi.org/10.2514/2.3916
http://dx.doi.org/10.2514/2.3916
http://dx.doi.org/10.2514/2.3916
http://dx.doi.org/10.2514/6.1998-4461
http://dx.doi.org/10.2514/6.1998-4461
http://dx.doi.org/10.2514/6.1998-4461
http://dx.doi.org/10.2514/6.2000-4565
http://dx.doi.org/10.2514/6.2000-4565
http://dx.doi.org/10.2514/6.2000-4565
http://dx.doi.org/10.2514/6.2005-31
http://dx.doi.org/10.2514/6.2005-31
http://dx.doi.org/10.2514/6.2005-31
http://dx.doi.org/10.1109/ACC.2002.1024492
http://dx.doi.org/10.1109/ACC.2002.1024492
http://dx.doi.org/10.1109/ACC.2002.1024492
http://dx.doi.org/10.1109/ACC.2002.1024492


[8] Sieberling, S., Chu, Q. P., and Mulder, J. A., “Robust Flight Control
Using Incremental Nonlinear Dynamic Inversion and Angular
Acceleration Prediction,” Journal of Guidance, Control, andDynamics,
Vol. 33, No. 6, 2010, pp. 1732–1742.
doi:10.2514/1.49978

[9] Bacon, B. J., Ostroff, A. J., and Joshi, S. M., “Reconfigurable NDI
Controller Using Inertial Sensor Failure Detection and Isolation,” IEEE
Transactions on Aerospace and Electronic Systems, Vol. 37, No. 4,
2001, pp. 1373–1383.
doi:10.1109/7.976972

[10] Koschorke, J., Falkena, W., van Kampen, E.-J., and Chu, Q. P., “Time
Delayed Incremental Nonlinear Control,” AIAA Guidance, Navigation,

and Control (GNC) Conference, AIAA Paper 2013-4929, 2013.
doi:10.2514/6.2013-4929

[11] Theys, B., Dimitriadis, G., Andrianne, T., Hendrick, P., and de Schutter,
J., “Wind Tunnel Testing of a VTOLMAVPropeller in Tilted Operating
Mode,” Proceedings of the International Conference on Unmanned

Aircraft Systems, IEEE Publ., Piscataway, NJ, 2014, pp. 1064–1072.
doi:10.1109/ICUAS.2014.6842358

[12] Chowdhary, G., Johnson, E. N., Chandramohan, R., Kimbrell, M. S.,
and Calise, A., “Guidance and Control of Airplanes Under Actuator
Failures and Severe Structural Damage,” Journal of Guidance, Control,
and Dynamics, Vol. 36, No. 4, 2013, pp. 1093–1104.
doi:10.2514/1.58028

[13] Bedford, A., and Fowler, W., Engineering Mechanics Dynamics,
Prentice–Hall, Upper Saddle River, NJ, 2008, pp. 507–515.

[14] Simplicio, P., Pavel,M., vanKampen, E., andChu,Q., “AnAcceleration
Measurements-Based Approach for Helicopter Nonlinear Flight
Control Using Incremental Nonlinear Dynamic Inversion,” Control

Engineering Practice, Vol. 21, No. 8, 2013, pp. 1065–1077.
doi:10.1016/j.conengprac.2013.03.009

[15] Haykin, S., and Widrow, B., Least-Mean-Square Adaptive Filters,
Wiley, Hoboken, NJ, 2003, pp. 1–12.

[16] Love, J., Process Automation Handbook, Springer–Verlag, London,
2007, pp. 173–178.
doi:10.1007/978-1-84628-282-9

12 Article in Advance / SMEUR, CHU, AND DE CROON

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

C
A

L
IF

O
R

N
IA

 S
A

N
 D

IE
G

O
 o

n 
Ja

nu
ar

y 
24

, 2
01

6 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
14

90
 

http://dx.doi.org/10.2514/1.49978
http://dx.doi.org/10.2514/1.49978
http://dx.doi.org/10.2514/1.49978
http://dx.doi.org/10.1109/7.976972
http://dx.doi.org/10.1109/7.976972
http://dx.doi.org/10.1109/7.976972
http://dx.doi.org/10.2514/6.2013-4929
http://dx.doi.org/10.2514/6.2013-4929
http://dx.doi.org/10.2514/6.2013-4929
http://dx.doi.org/10.1109/ICUAS.2014.6842358
http://dx.doi.org/10.1109/ICUAS.2014.6842358
http://dx.doi.org/10.1109/ICUAS.2014.6842358
http://dx.doi.org/10.1109/ICUAS.2014.6842358
http://dx.doi.org/10.2514/1.58028
http://dx.doi.org/10.2514/1.58028
http://dx.doi.org/10.2514/1.58028
http://dx.doi.org/10.1016/j.conengprac.2013.03.009
http://dx.doi.org/10.1016/j.conengprac.2013.03.009
http://dx.doi.org/10.1016/j.conengprac.2013.03.009
http://dx.doi.org/10.1016/j.conengprac.2013.03.009
http://dx.doi.org/10.1016/j.conengprac.2013.03.009
http://dx.doi.org/10.1016/j.conengprac.2013.03.009
http://dx.doi.org/10.1007/978-1-84628-282-9
http://dx.doi.org/10.1007/978-1-84628-282-9

