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1
Usually represented by
arrows that have:

magnitude
and direction

Mathematics

Anything.

As long as it respects
certain rules.
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Vectors

Vectors in the plane

Definition

A vector is a directed line segment that corresponds to a displacement from one

point A to another point B. The vector from A to B is denoted by
−−→
AB; the point

A is called its initial point, or tail, and the point B is called its terminal point
or head. Often, a vector is simply denoted by a single boldface, lowercase letters
such as v.
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Vectors

Vectors in the plane

The set of all points in the plane corresponds to the set of all vector whose tail are
at the origin O.

Definition

Vectors with its tail at the origin are called position vectors.
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Vectors

Vectors in the plane

Point A corresponds to the position vector a =
−→
OA = [3, 2]. The other vectors in

the figure are b = [−1, 3] and c = [2,−1].

The individual coordinates (3 and 2 in the case of a) are called the components
of the vector.
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Vectors

Vectors in the plane

Two vectors are equal if and only if their corresponding components are equal.
Thus, [x, y] = [1, 5] implies that x = 1 and y = 5.

Using column vectors instead of row vectors is frequently convenient.

So, [3, 2] can be represented as

[
3
2

]
.
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Vectors

Vectors in the plane

We cannot draw the vector [0, 0] =
−−→
OO from the origin to itself. Nevertheless, it

is a perfectly good vector and has a special name: the zero vector. The zero
vector is denoted by 0.
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Vectors

Vectors in the plane

What can you say about these three vectors?

By setting the tail of each vector in the origin, we observe they all coincide.
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Vectors

New vectors from old

We often want to follow one vector by another. This leads to the notion of vector
addition.

If we follow u by v, we can visualize the total displacement as a third vector,
denoted by u+ v.
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Vectors

New vectors from old

In general, if u = [u1, u2] and v = [v1, v2], the their sum u+ v is the vector

u+ v = [u1 + v1, u2 + v2]
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Vectors

New vectors from old

Our next vector operation is scalar multiplication. Given a vector v and a real
number c, the scalar multiplication cv is the vector contained by multiplying
each component of v by c. In general,

cv = c[v1, v2] = [cv1, cv2]

Geometrically, cv is a “scaled” version of v.
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Vectors

Vectors in Rn

Rn is a shorthand for R× R× · · · × R, the cartesian product of R with itself n
times. So, it is the set of all ordered n-tuples of real numbers written as row or
column vectors. Thus, a vector v ∈ Rn is of the form

[v1, v2, .., vn] or


v1
v2
...
vn


The individual entries of v are its components; vi is called the i-th component.
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Vectors

Vectors in Rn

We extend the definitions of vector addition and scalar multiplication to Rn in the
obvious way:

If u = [u1, u2, ..., un] and v = [v1, v2, ..., vn], the i-th component of u+ v is
ui + vi and the i-th component of cv is just cvi.
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Vectors

Vectors in Rn

Algebraic properties of vectors in Rn.

Theorem

Let u, v, and w be vectors in Rn and let c and d be scalars. Then

u+ v = v+ u (commutativity)

(u+ v) +w = u+ (v+w) (additive associativity)

u+ 0 = u (zero vector)

u+ (−u) = 0 (additive inverses)

c(u+ v) = cu+ cv (distributivity across vector addition)

(c+ d)u = cu+ du (distributivity across scalar addition)

c(du) = (cd)u (scalar multiplication associativity)

1u = u (one)
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Vectors

Vectors in Rn

Each bullet must be proved. In general, they all inherit the properties of the
operations over real numbers. For instance,

u+ v =


u1

u2

...
un

+


v1
v2
...
vn

 =


u1 + v1
u2 + v2

...
un + vn

 =


v1 + u1

v2 + u2

...
vn + un

 =


v1
v2
...
vn

+


u1

u2

...
un

 = v+ u
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Vectors

Example

Simplify (x in terms of a)

5x− a = 2(a+ 2x)

5x− a = 2a+ 2(2x)

5x− a = 2a+ (2 · 2)x
5x− a = 2a+ 4x

(5x− a)− 4x = (2a+ 4x)− 4x

(−a+ 5x)− 4x = 2a+ (4x− 4x)

− a+ (5x− 4x) = 2a+ 0

− a+ (5− 4)x = 2a

− a+ (1)x = 2a

− a+ x = 2a

a+ (−a+ x) = a+ 2a

(a+ (−a)) + x = (1 + 2)a

0+ x = 3a

x = 3a
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Linear combinations and coordinates

Linear combinations and coordinates
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Linear combinations and coordinates

Linear combinations and coordinates

Definition

A vector v is a linear combination of vectors v1, v2, ..., vk if there are scalars
c1, c2, ..., ck such that

v = c1v1 + c2v2 + · · ·+ ckvk

The scalars c1, c2, ..., ck are called the coefficients of the linear combination.
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Linear combinations and coordinates

Example

Let u =

[
3
1

]
and v =

[
1
2

]
. We can use u and v to locate a new set of axes (in the

same way that e1 =

[
1
0

]
and e2 =

[
0
1

]
locate the standard coordinate axes). We

can use these new axes to determine a coordinate grid that will let us easily
locate linear combinations of u and v.

w = −
[
3
1

]
+ 2

[
1
2

]
=

[
−1
3

]
(Observe that −1 and 3 are the coordinates of

w with respect to e1 and e2.)
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The dot product

The dot product
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The dot product

The dot product

The vector versions of length, distance, and angle can all be described using the
notion of the dot product of two vectors.
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The dot product

The dot product

Definition

If

u =


u1

u2

...
un

 and v =


v1
v2
...
vn


then the dot product u · v of u and v is defined by

u · v = u1v1 + u2v2 + · · ·unvn

Since u · v is a number, it is sometimes called the scalar product of u and v.
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The dot product

The dot product

Theorem

Let u, v, and w be vectors in Rn and let c be a scalar. Then

u · v = v · u (commutativity)

u · (v+w) = u · v+ v ·w (distributivity)

(cu) · v = c(u · v)
u · u ≥ 0

u · u = 0 if and only if u = 0
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The dot product

The dot product

Each bullet must be proved. For instance,

u · v =


u1

u2

...
un

 ·


v1
v2
...
vn

 = u1v1 + u2v2 + · · ·+ unvn

= v1u1 + v2u2 + · · ·+ vnun =


v1
v2
...
vn

 ·


u1

u2

...
un

 = v · u
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The dot product

Example

Show that (u+ v) · (u+ v) = u · u+ 2(u · v) + v · v

(u+ v) · (u+ v) = (u+ v) · u+ (u+ v) · v
= u · u+ v · u+ u · v+ v · v
= u · u+ u · v+ u · v+ v · v
= u · u+ 2(u · v) + v · v
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The dot product

Length

The length (or norm) of a vector v =


v1
v2
...
vn

 ∈ Rn is the nonnegative scalar

defined by

||v|| =
√
v · v =

√
v21 + v22 + · · ·+ v2n
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The dot product

Length

Theorem

Let v be a vector in Rn and let c be a scalar. Then

||v|| = 0 if and only if v = 0

||cv|| = |c| ||v||

Proof.

(b)

||cv||2 = cv · cv = c2v21 + c2v22 + · · ·+ c2v2n

= c2(v21 + v22 + · · ·+ v2n)

= c2(v · v) = c2||v||2

Apply the square root function in both sides

||cv|| = |c| ||v||
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The dot product

Length

A vector of length 1 is called a unit vector. In R2, the set of all unit vectors can
be identified with the unit circle, the circle of radius 1 centered at the origin.
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The dot product

Length

Given any nonzero vector v, we can always find a unit vector in the same direction
as v by dividing v by its own length (or, equivalently, multiplying by 1/||v||).

If u = (1/||v||) v, then

||u|| = ||(1/||v||)v||
= | 1/||v|| | ||v||
= (1/||v||)||v||
= 1

and u is in the same direction as v, since 1/||v|| is a positive scalar.
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The dot product

Length

Finding a unit vector in the same direction is often referred to as normalizing a
vector.
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The dot product

Length

In general, in Rn, we define unit vectors e1, e2, ..., en, where ei has 1 in its i-th
component and zeros elsewhere.

These vectors arise repeatedly in linear algebra and are called the standard unit
vectors.
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The dot product

Example

Normalize the vector v =

 2
−1
3



||v|| =
√
22 + (−1)2 + 32 =

√
14

So, the unit vector in the same direction as v is given by

u =
1

||v||
v =

1√
14

 2
−1
3

 =

 2/
√
14

−1/
√
14

3/
√
14


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The dot product

Length

Theorem

The Cauchy-Schwarz inequality. For all vectors u and v in Rn

|u · v| ≤ ||u|| ||v||

Proof.

This inequality is equivalent to

(u · v)2 ≤ ||u||2 ||v||2

In R2, u =

[
u1

u2

]
and v =

[
v1
v2

]
(u1v1 + u2v2)

2 ≤? (u2
1 + u2

2)(v
2
1 + v22)

u2
1v

2
1 + 2u1v1u2v2 + u2

2v
2
2 ≤? u2

1v
2
1 + u2

1v
2
2 + u2

2v
2
1 + u2

2v
2
2

2u1v1u2v2 ≤? u2
1v

2
2 + u2

2v
2
1
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The dot product

Length

Proof (cont.)

2u1v1u2v2 ≤? u2
1v

2
2 + u2

2v
2
1

2(u1v2)(u2v1) ≤? (u1v2)
2 + (u2v1)

2

Let a = u1v2 and b = u2v1

2ab ≤? a2 + b2

0 ≤? a2 + b2 − 2ab

Since

a2 + b2 − 2ab = (a− b)2 ≥ 0

we can remove the “?” sign from all the previous inequalities. (In a conventional
style, the proof goes backward).
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The dot product

Length

Theorem

The triangle inequality. For all vectors u and v in Rn

||u+ v|| ≤ ||u||+ ||v||

Proof.

||u+ v||2 = (u1 + v1)
2 + · · ·+ (un + vn)

2

= (u+ v) · (u+ v)

= u · u+ 2(u · v) + v · v
≤ ||u||2 + 2|u · v|+ ||v||2

≤ ||u||2 + 2||u|| ||v||+ ||v||2

= (||u||+ ||v||)2
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Distance

Distance
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Distance

Distance

d(5,−3) = |5− (−3)| = | − 3− 5|
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Distance

Distance

Definition

The distance d(u, v) between vectors u and v in Rn is defined by

d(u, v) = ||u− v||
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Distance

Distance
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Distance

Example

Find the distance between u =

√2
1
−1

 and v =

 0
2
−2



u− v =

√2
−1
1


So,

d(u, v) = ||u− v|| =
√

(
√
2)2 + (−1)2 + 12 =

√
4 = 2
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Angles

Angles
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Angles

Angles

The dot product can also be used to calculate the angle between a pair of vectors.
In R2 or R3, the angle between the nonzero vector u and v will refer to the angle
θ determined by these vectors that satisfies 0 ≤ θ ≤ 180.
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Angles

Angles

Consider the triangle with sides u, v, and u− v, where θ is the angle between u
and v. Applying the law of cosines to this triangle yields

||u− v||2 = ||u||2 + ||v||2 − 2||u|| ||v|| cos θ
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Angles

Angles

After simplification, we get

u · v = ||u|| ||v|| cos θ

Definition

For nonzero vectors u and v in Rn,

cos θ =
u · v

||u|| ||v||

By Cauchy-Schwarz
∣∣∣ u·v
||u|| ||v||

∣∣∣ ≤ 1. So, u·v
||u|| ||v|| take values between −1 and 1.
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Angles

Orthogonal vectors

We now generalize the idea of perpendicularity to vectors in Rn, where it is called
orthogonality.

In R2 or R3, two nonzero vectors u and v are perpendicular if the angle θ
between them is a right angle - that is, if θ = π/2 radians, or 90.

(CONAHCYT INAOE) Linear algebra July 9 2024 47 / 56



Angles

Orthogonal vectors

Thus,
u · v

||u|| ||v||
= cos 90 = 0

and it follows that u · v = 0. This motivates the following definition.

Definition

Two vectors u and v in Rn are orthogonal to each other if u · v = 0.

Since 0 · v for every vector in Rn, the zero vector is orthogonal to every vector.

Is the zero vector orthogonal to itself?
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Angles

Orthogonal vectors

Theorem

Pythagora’s theorem. For all vectors u and v in Rn

||u+ v||2 = ||u||2 + ||v||2

if and only if u and v are orthogonal.
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Projections

Projections
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Projections

Projections

Consider two nonzero vectors u and v. Let p be the vector obtained by dropping a
perpendicular from the head of v onto u and let θ be the angle between u and v.
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Projections

Projections

Definition

If u and v are vectors in Rn and u ̸= 0, the projection of v onto u is the vector
proju(v) defined by

proju(v) =

(
u · v
u · u

)
u

(You can prove it for R2)
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Ending

Ending
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Ending

Homework

You have three vectors u, v, and w such that u · v = u ·w. Is always v = w?

Prove that u · v = ||u|| ||v|| cos θ (slide 46).

Prove the Pythagora’s theorem for vectors in Rn (slide 49).

Prove the definition of projection over R2 (slide 52).

||proju(v)|| ≤ ||v|| in R2 and R3 (Can you see why?).

Show that this inequality is true in Rn.
Show that this inequality is equivalent to the Cauchy-Schwarz inequality.
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Ending

Next topics

A bit more on vectors
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Ending

Thank you
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