Linear algebra Vectors

Jesús García Díaz

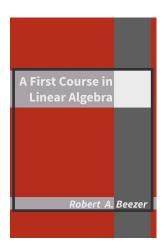
CONAHCYT INAOE

July 9 2024

Contents

- Vectors
- Linear combinations and coordinates
- The dot product
- Oistance
- 6 Angles
- Operation Projections
- Ending

Bibliography



http://linear.ups.edu/

Physics

- Usually represented by arrows that have:
 - magnitude
 - and direction

Physics

- Usually represented by arrows that have:
 - magnitude
 - and direction

Computer science

$$= \begin{bmatrix} 200,000 \\ 4 \\ 60 \end{bmatrix}$$

List of numbers.

Physics

1

- Usually represented by arrows that have:
 - magnitude
 - and direction

Mathematics

- Anything.
- As long as it respects certain rules.

Computer science

$$= \begin{bmatrix} 200,000 \\ 4 \\ 60 \end{bmatrix}$$

• List of numbers.

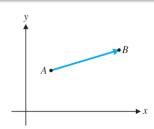
Definition

A **vector** is a directed line segment that corresponds to a displacement from one point A to another point B. The vector from A to B is denoted by \overrightarrow{AB} ; the point A is called its **initial point**, or **tail**, and the point B is called its **terminal point** or **head**. Often, a vector is simply denoted by a single boldface, lowercase letters such as \mathbf{v}

6/56

Definition

A **vector** is a directed line segment that corresponds to a displacement from one point A to another point B. The vector from A to B is denoted by \overrightarrow{AB} ; the point A is called its **initial point**, or **tail**, and the point B is called its **terminal point** or **head**. Often, a vector is simply denoted by a single boldface, lowercase letters such as \mathbf{v} .



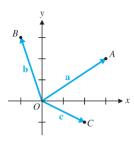
6/56

The set of all points in the plane corresponds to the set of all vector whose tail are at the origin \mathcal{O} .

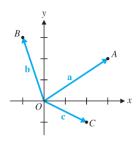
Definition

Vectors with its tail at the origin are called **position vectors**.

Point A corresponds to the position vector $\mathbf{a} = \overrightarrow{OA} = [3,2]$. The other vectors in the figure are $\mathbf{b} = [-1,3]$ and $\mathbf{c} = [2,-1]$.



Point A corresponds to the position vector $\mathbf{a} = \overrightarrow{OA} = [3,2]$. The other vectors in the figure are $\mathbf{b} = [-1,3]$ and $\mathbf{c} = [2,-1]$.



The individual coordinates (3 and 2 in the case of a) are called the **components** of the vector.

4□ > 4問 > 4 = > 4 = > ■ 900

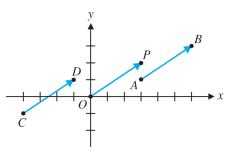
Two vectors are equal if and only if their corresponding components are equal. Thus, [x, y] = [1, 5] implies that x = 1 and y = 5.

Using column vectors instead of row vectors is frequently convenient.

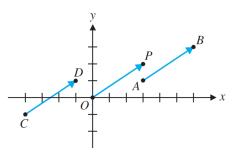
So, [3,2] can be represented as $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$.

We cannot draw the vector $[0,0] = \overrightarrow{OO}$ from the origin to itself. Nevertheless, it is a perfectly good vector and has a special name: the **zero vector**. The zero vector is denoted by $\mathbf{0}$.

What can you say about these three vectors?



What can you say about these three vectors?

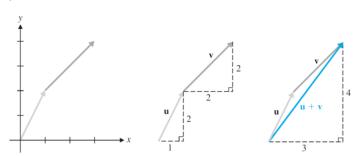


By setting the tail of each vector in the origin, we observe they all coincide.

ONAHCYT INAOE) Linear algebra July 9 2024 11/56

We often want to follow one vector by another. This leads to the notion of **vector** addition.

If we follow u by $\boldsymbol{v},$ we can visualize the total displacement as a third vector, denoted by $\boldsymbol{u}+\boldsymbol{v}.$



In general, if
$$\mathbf{u}=[u_1,u_2]$$
 and $\mathbf{v}=[v_1,v_2]$, the their $\mathbf{sum}\ \mathbf{u}+\mathbf{v}$ is the vector

$$\mathbf{u} + \mathbf{v} = [u_1 + v_1, u_2 + v_2]$$

Our next vector operation is **scalar multiplication**. Given a vector \mathbf{v} and a real number c, the **scalar multiplication** $c\mathbf{v}$ is the vector contained by multiplying each component of \mathbf{v} by c. In general,

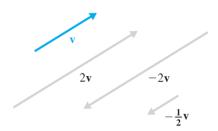
$$c\mathbf{v} = c[v_1, v_2] = [cv_1, cv_2]$$

CONAHCYT INAOE) Linear algebra July 9 2024 14 / 56

Our next vector operation is **scalar multiplication**. Given a vector \mathbf{v} and a real number c, the **scalar multiplication** $c\mathbf{v}$ is the vector contained by multiplying each component of \mathbf{v} by c. In general,

$$c\mathbf{v} = c[v_1, v_2] = [cv_1, cv_2]$$

Geometrically, $c\mathbf{v}$ is a "scaled" version of \mathbf{v} .



ONAHCYT INAOE) Linear algebra July 9 2024 14/56

 \mathbb{R}^n is a shorthand for $\mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R}$, the cartesian product of \mathbb{R} with itself n times. So, it is the set of all ordered n-tuples of real numbers written as row or column vectors. Thus, a vector $\mathbf{v} \in \mathbb{R}^n$ is of the form

$$\begin{bmatrix} v_1, v_2, .., v_n \end{bmatrix}$$
 or $\begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$

The individual entries of \mathbf{v} are its components; v_i is called the *i*-th component.

DNAHCYT INAOE) Linear algebra July 9 2024 15 / 56

We extend the definitions of vector addition and scalar multiplication to \mathbb{R}^n in the obvious way:

If $\mathbf{u} = [u_1, u_2, ..., u_n]$ and $\mathbf{v} = [v_1, v_2, ..., v_n]$, the i-th component of $\mathbf{u} + \mathbf{v}$ is $u_i + v_i$ and the i-th component of $\mathbf{c}\mathbf{v}$ is just cv_i .

16/56

(CONAHCYT INAOE) Linear algebra

Algebraic properties of vectors in \mathbb{R}^n .

Theorem

Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n and let c and d be scalars. Then

(CONAHCYT INAOE) Linear algebra

Algebraic properties of vectors in \mathbb{R}^n .

Theorem

Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n and let c and d be scalars. Then

•
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
 (commutativity)

Algebraic properties of vectors in \mathbb{R}^n .

Theorem

Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n and let c and d be scalars. Then

- $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ (commutativity)
- $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ (additive associativity)

(CONAHCYT INAOE) Linear algebra July 9 2

Algebraic properties of vectors in \mathbb{R}^n .

Theorem

Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n and let c and d be scalars. Then

- $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ (commutativity)
- $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ (additive associativity)
- \bullet $\mathbf{u} + \mathbf{0} = \mathbf{u}$ (zero vector)

Algebraic properties of vectors in \mathbb{R}^n .

Theorem

Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n and let c and d be scalars. Then

- $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ (commutativity)
- ullet $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ (additive associativity)
- \bullet $\mathbf{u} + \mathbf{0} = \mathbf{u}$ (zero vector)
- $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$ (additive inverses)

Algebraic properties of vectors in \mathbb{R}^n .

Theorem

Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n and let c and d be scalars. Then

- $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ (commutativity)
- ullet $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ (additive associativity)
- \bullet $\mathbf{u} + \mathbf{0} = \mathbf{u}$ (zero vector)
- $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$ (additive inverses)
- $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$ (distributivity across vector addition)

17/56

Algebraic properties of vectors in \mathbb{R}^n .

Theorem

Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n and let c and d be scalars. Then

- $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ (commutativity)
- $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ (additive associativity)
- \bullet $\mathbf{u} + \mathbf{0} = \mathbf{u}$ (zero vector)
- $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$ (additive inverses)
- $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$ (distributivity across vector addition)
- $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$ (distributivity across scalar addition)

17 / 56

Algebraic properties of vectors in \mathbb{R}^n .

Theorem

Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n and let c and d be scalars. Then

- $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ (commutativity)
- $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ (additive associativity)
- \bullet $\mathbf{u} + \mathbf{0} = \mathbf{u}$ (zero vector)
- $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$ (additive inverses)
- $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$ (distributivity across vector addition)
- $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$ (distributivity across scalar addition)
- ullet $c(d\mathbf{u}) = (cd)\mathbf{u}$ (scalar multiplication associativity)

17 / 56

Algebraic properties of vectors in \mathbb{R}^n .

Theorem

Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n and let c and d be scalars. Then

- $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ (commutativity)
- $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ (additive associativity)
- \bullet $\mathbf{u} + \mathbf{0} = \mathbf{u}$ (zero vector)
- $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$ (additive inverses)
- $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$ (distributivity across vector addition)
- $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$ (distributivity across scalar addition)
- $c(d\mathbf{u}) = (cd)\mathbf{u}$ (scalar multiplication associativity)
- 1**u** = **u** (one)

17 / 56

Each bullet must be proved. In general, they all inherit the properties of the operations over real numbers. For instance,

$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ \vdots \\ u_n + v_n \end{bmatrix} = \begin{bmatrix} v_1 + u_1 \\ v_2 + u_2 \\ \vdots \\ v_n + u_n \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} + \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} = \mathbf{v} + \mathbf{u}$$

18 / 56

$$5\mathbf{x} - \mathbf{a} = 2(\mathbf{a} + 2\mathbf{x})$$

$$5\mathbf{x} - \mathbf{a} = 2(\mathbf{a} + 2\mathbf{x})$$

$$5\mathbf{x} - \mathbf{a} = 2\mathbf{a} + 2(2\mathbf{x})$$

$$5\mathbf{x} - \mathbf{a} = 2(\mathbf{a} + 2\mathbf{x})$$

$$5\mathbf{x} - \mathbf{a} = 2\mathbf{a} + 2(2\mathbf{x})$$

$$5\mathbf{x} - \mathbf{a} = 2\mathbf{a} + (2 \cdot 2)\mathbf{x}$$

$$5\mathbf{x} - \mathbf{a} = 2(\mathbf{a} + 2\mathbf{x})$$

$$5\mathbf{x} - \mathbf{a} = 2\mathbf{a} + 2(2\mathbf{x})$$

$$5\mathbf{x} - \mathbf{a} = 2\mathbf{a} + (2 \cdot 2)\mathbf{x}$$

$$5\mathbf{x} - \mathbf{a} = 2\mathbf{a} + 4\mathbf{x}$$

$$5x - a = 2(a + 2x)$$

$$5x - a = 2a + 2(2x)$$

$$5x - a = 2a + (2 \cdot 2)x$$

$$5x - a = 2a + 4x$$

$$(5x - a) - 4x = (2a + 4x) - 4x$$

Simplify (x in terms of a)

$$5x - a = 2(a + 2x)$$

$$5x - a = 2a + 2(2x)$$

$$5x - a = 2a + (2 \cdot 2)x$$

$$5x - a = 2a + 4x$$

$$(5x - a) - 4x = (2a + 4x) - 4x$$

$$(-a + 5x) - 4x = 2a + (4x - 4x)$$

Simplify (x in terms of a)

-a + (5x - 4x) = 2a + 0

$$5x - a = 2(a + 2x)$$

$$5x - a = 2a + 2(2x)$$

$$5x - a = 2a + (2 \cdot 2)x$$

$$5x - a = 2a + 4x$$

$$(5x - a) - 4x = (2a + 4x) - 4x$$

$$(-a + 5x) - 4x = 2a + (4x - 4x)$$

19/56

(CONAHCYT INAOE) Linear algebra

$$5x - a = 2(a + 2x)$$

$$5x - a = 2a + 2(2x)$$

$$5x - a = 2a + (2 \cdot 2)x$$

$$5x - a = 2a + 4x$$

$$(5x - a) - 4x = (2a + 4x) - 4x$$

$$(-a + 5x) - 4x = 2a + (4x - 4x)$$

$$- a + (5x - 4x) = 2a + 0$$

$$-a + (5-4)x = 2a$$

$$5x - a = 2(a + 2x)$$

$$5x - a = 2a + 2(2x)$$

$$5x - a = 2a + (2 \cdot 2)x$$

$$5x - a = 2a + 4x$$

$$(5x - a) - 4x = (2a + 4x) - 4x$$

$$(-a + 5x) - 4x = 2a + (4x - 4x)$$

$$- a + (5x - 4x) = 2a + 0$$

$$-\mathbf{a} + (5-4)\mathbf{x} = 2\mathbf{a}$$
$$-\mathbf{a} + (1)\mathbf{x} = 2\mathbf{a}$$

$$5x - a = 2(a + 2x)$$

$$5x - a = 2a + 2(2x)$$

$$5x - a = 2a + (2 \cdot 2)x$$

$$5x - a = 2a + 4x$$

$$(5x - a) - 4x = (2a + 4x) - 4x$$

$$(-a + 5x) - 4x = 2a + (4x - 4x)$$

$$- a + (5x - 4x) = 2a + 0$$

$$-\mathbf{a} + (5-4)\mathbf{x} = 2\mathbf{a}$$
$$-\mathbf{a} + (1)\mathbf{x} = 2\mathbf{a}$$
$$-\mathbf{a} + \mathbf{x} = 2\mathbf{a}$$

Simplify (x in terms of a)

$$5x - a = 2(a + 2x)$$

$$5x - a = 2a + 2(2x)$$

$$5x - a = 2a + (2 \cdot 2)x$$

$$5x - a = 2a + 4x$$

$$(5x - a) - 4x = (2a + 4x) - 4x$$

$$(-a + 5x) - 4x = 2a + (4x - 4x)$$

$$- a + (5x - 4x) = 2a + 0$$

$$-\mathbf{a} + (5-4)\mathbf{x} = 2\mathbf{a}$$
$$-\mathbf{a} + (1)\mathbf{x} = 2\mathbf{a}$$
$$-\mathbf{a} + \mathbf{x} = 2\mathbf{a}$$
$$\mathbf{a} + (-\mathbf{a} + \mathbf{x}) = \mathbf{a} + 2\mathbf{a}$$

Simplify (x in terms of a)

$$5x - a = 2(a + 2x)$$

$$5x - a = 2a + 2(2x)$$

$$5x - a = 2a + (2 \cdot 2)x$$

$$5x - a = 2a + 4x$$

$$(5x - a) - 4x = (2a + 4x) - 4x$$

$$(-a + 5x) - 4x = 2a + (4x - 4x)$$

$$- a + (5x - 4x) = 2a + 0$$

$$-a + (5-4)x = 2a$$

$$-a + (1)x = 2a$$

$$-a + x = 2a$$

$$a + (-a + x) = a + 2a$$

$$(a + (-a)) + x = (1 + 2)a$$

(CONAHCYT INAOE) Linear algebra

Simplify (x in terms of a)

$$5x - a = 2(a + 2x)$$

$$5x - a = 2a + 2(2x)$$

$$5x - a = 2a + (2 \cdot 2)x$$

$$5x - a = 2a + 4x$$

$$(5x - a) - 4x = (2a + 4x) - 4x$$

$$(-a + 5x) - 4x = 2a + (4x - 4x)$$

$$- a + (5x - 4x) = 2a + 0$$

$$-a + (5-4)x = 2a$$

$$-a + (1)x = 2a$$

$$-a + x = 2a$$

$$a + (-a + x) = a + 2a$$

$$(a + (-a)) + x = (1+2)a$$

$$0 + x = 3a$$

Simplify (x in terms of a)

$$5x - a = 2(a + 2x)$$

$$5x - a = 2a + 2(2x)$$

$$5x - a = 2a + (2 \cdot 2)x$$

$$5x - a = 2a + 4x$$

$$(5x - a) - 4x = (2a + 4x) - 4x$$

$$(-a + 5x) - 4x = 2a + (4x - 4x)$$

$$- a + (5x - 4x) = 2a + 0$$

$$-a + (5-4)x = 2a$$

$$-a + (1)x = 2a$$

$$-a + x = 2a$$

$$a + (-a + x) = a + 2a$$

$$(a + (-a)) + x = (1+2)a$$

$$0 + x = 3a$$

$$x = 3a$$

(CONAHCYT INAOE) Linear algebra J

Linear combinations and coordinates

20 / 56

(CONAHCYT INAOE) July 9 2024

Linear combinations and coordinates

Definition

A vector \mathbf{v} is a **linear combination** of vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k$ if there are scalars $c_1, c_2, ..., c_k$ such that

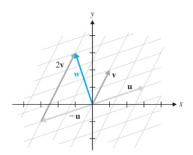
$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k$$

The scalars $c_1, c_2, ..., c_k$ are called the **coefficients** of the linear combination.

Let $\mathbf{u} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. We can use \mathbf{u} and \mathbf{v} to locate a new set of axes (in the same way that $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ locate the standard coordinate axes). We can use these new axes to determine a **coordinate grid** that will let us easily locate linear combinations of \mathbf{u} and \mathbf{v} .

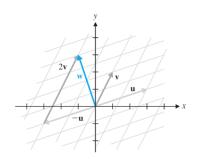
4□ > 4□ > 4 ≥ > 4 ≥ > ≥ 90

Let $\mathbf{u} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. We can use \mathbf{u} and \mathbf{v} to locate a new set of axes (in the same way that $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ locate the standard coordinate axes). We can use these new axes to determine a **coordinate grid** that will let us easily locate linear combinations of \mathbf{u} and \mathbf{v} .



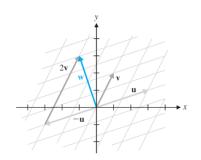
4□ > 4□ > 4□ > 4 = > 4 = > 9 < ○</p>

Let $\mathbf{u} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. We can use \mathbf{u} and \mathbf{v} to locate a new set of axes (in the same way that $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ locate the standard coordinate axes). We can use these new axes to determine a **coordinate grid** that will let us easily locate linear combinations of \mathbf{u} and \mathbf{v} .



$$\mathbf{w} = -\begin{bmatrix} 3 \\ 1 \end{bmatrix} + 2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$

Let $\mathbf{u} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. We can use \mathbf{u} and \mathbf{v} to locate a new set of axes (in the same way that $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ locate the standard coordinate axes). We can use these new axes to determine a **coordinate grid** that will let us easily locate linear combinations of \mathbf{u} and \mathbf{v} .



$$\mathbf{w} = -\begin{bmatrix} 3 \\ 1 \end{bmatrix} + 2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$

(Observe that -1 and 3 are the coordinates of \mathbf{w} with respect to \mathbf{e}_1 and \mathbf{e}_2 .)

4□▶ 4□▶ 4□▶ 4□▶ □ 900

23 / 56

(CONAHCYT INAOE) Linear algebra

The vector versions of length, distance, and angle can all be described using the notion of the dot product of two vectors.

Definition

lf

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} \quad \text{and} \quad \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

then the **dot product** $\mathbf{u} \cdot \mathbf{v}$ of \mathbf{u} and \mathbf{v} is defined by

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n$$

Definition

lf

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} \quad \text{and} \quad \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

then the **dot product** $\mathbf{u} \cdot \mathbf{v}$ of \mathbf{u} and \mathbf{v} is defined by

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n$$

Since $\mathbf{u} \cdot \mathbf{v}$ is a number, it is sometimes called the **scalar product** of \mathbf{u} and \mathbf{v} .

4□ > 4団 > 4 豆 > 4 豆 > 豆 の Q ○

Theorem

Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n and let c be a scalar. Then

- $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$ (commutativity)
- $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{v} \cdot \mathbf{w}$ (distributivity)
- $\bullet (c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v})$
- $\mathbf{u} \cdot \mathbf{u} \ge 0$
- $\mathbf{u} \cdot \mathbf{u} = 0$ if and only if $\mathbf{u} = \mathbf{0}$

26 / 56

(CONAHCYT INAOE) Linear algebra July 9 2024

Each bullet must be proved. For instance,

$$\mathbf{u} \cdot \mathbf{v} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} \cdot \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

$$= v_1 u_1 + v_2 u_2 + \dots + v_n u_n = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} = \mathbf{v} \cdot \mathbf{u}$$

DNAHCYT INAOE) Linear algebra July 9 2024 27 / 56

Show that
$$(\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v}) = \mathbf{u} \cdot \mathbf{u} + 2(\mathbf{u} \cdot \mathbf{v}) + \mathbf{v} \cdot \mathbf{v}$$

28 / 56

(CONAHCYT INAOE) Linear algebra July 9 2024

Show that
$$(\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v}) = \mathbf{u} \cdot \mathbf{u} + 2(\mathbf{u} \cdot \mathbf{v}) + \mathbf{v} \cdot \mathbf{v}$$

$$(\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v}) = (\mathbf{u} + \mathbf{v}) \cdot \mathbf{u} + (\mathbf{u} + \mathbf{v}) \cdot \mathbf{v}$$

$$= \mathbf{u} \cdot \mathbf{u} + \mathbf{v} \cdot \mathbf{u} + \mathbf{u} \cdot \mathbf{v} + \mathbf{v} \cdot \mathbf{v}$$

$$= \mathbf{u} \cdot \mathbf{u} + \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{v} + \mathbf{v} \cdot \mathbf{v}$$

$$= \mathbf{u} \cdot \mathbf{u} + 2(\mathbf{u} \cdot \mathbf{v}) + \mathbf{v} \cdot \mathbf{v}$$

28 / 56

(CONAHCYT INAOE) Linear algebra Ju

The **length** (or **norm**) of a vector $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \in \mathbb{R}^n$ is the nonnegative scalar

defined by

$$||\mathbf{v}|| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

29 / 56

July 9 2024

Theorem

Let \mathbf{v} be a vector in \mathbb{R}^n and let c be a scalar. Then

- $||\mathbf{v}|| = 0$ if and only if $\mathbf{v} = \mathbf{0}$
- $\bullet \ ||c\mathbf{v}|| = |c| \ ||\mathbf{v}||$

Theorem

Let \mathbf{v} be a vector in \mathbb{R}^n and let c be a scalar. Then

- $||\mathbf{v}|| = 0$ if and only if $\mathbf{v} = \mathbf{0}$
- $||c\mathbf{v}|| = |c| ||\mathbf{v}||$

Proof.

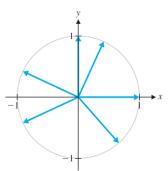
(b)

$$\begin{split} ||c\mathbf{v}||^2 &= c\mathbf{v} \cdot c\mathbf{v} = c^2 v_1^2 + c^2 v_2^2 + \dots + c^2 v_n^2 \\ &= c^2 (v_1^2 + v_2^2 + \dots + v_n^2) \\ &= c^2 (\mathbf{v} \cdot \mathbf{v}) = c^2 ||\mathbf{v}||^2 \end{split}$$

Apply the square root function in both sides

$$||c\mathbf{v}|| = |c| \ ||\mathbf{v}||$$

A vector of length 1 is called a **unit vector**. In \mathbb{R}^2 , the set of all unit vectors can be identified with the unit circle, the circle of radius 1 centered at the origin.



Given any nonzero vector \mathbf{v} , we can always find a unit vector in the same direction as \mathbf{v} by dividing \mathbf{v} by its own length (or, equivalently, multiplying by $1/||\mathbf{v}||$).

Given any nonzero vector \mathbf{v} , we can always find a unit vector in the same direction as \mathbf{v} by dividing \mathbf{v} by its own length (or, equivalently, multiplying by $1/||\mathbf{v}||$).

If $\mathbf{u} = (1/||\mathbf{v}||) \mathbf{v}$, then

32 / 56

(CONAHCYT INAOE) Linear algebra July 9 2024

Given any nonzero vector \mathbf{v} , we can always find a unit vector in the same direction as \mathbf{v} by dividing \mathbf{v} by its own length (or, equivalently, multiplying by $1/||\mathbf{v}||$).

If
$$\mathbf{u} = (1/||\mathbf{v}||) \mathbf{v}$$
, then

$$\begin{aligned} ||\mathbf{u}|| &= ||(1/||\mathbf{v}||)\mathbf{v}|| \\ &= |1/||\mathbf{v}|| ||\mathbf{v}|| \\ &= (1/||\mathbf{v}||)||\mathbf{v}|| \\ &= 1 \end{aligned}$$

Given any nonzero vector \mathbf{v} , we can always find a unit vector in the same direction as \mathbf{v} by dividing \mathbf{v} by its own length (or, equivalently, multiplying by $1/||\mathbf{v}||$).

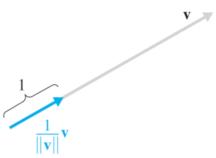
If
$$\mathbf{u} = (1/||\mathbf{v}||) \mathbf{v}$$
, then

$$\begin{aligned} ||\mathbf{u}|| &= ||(1/||\mathbf{v}||)\mathbf{v}|| \\ &= |1/||\mathbf{v}|| ||\mathbf{v}|| \\ &= (1/||\mathbf{v}||)||\mathbf{v}|| \\ &= 1 \end{aligned}$$

and \mathbf{u} is in the same direction as \mathbf{v} , since $1/||\mathbf{v}||$ is a positive scalar.

(CONAHCYT INAOE) Linear algebra July 9 2024

Finding a unit vector in the same direction is often referred to as **normalizing** a vector.



(CONAHCYT INAOE) Linear algebra July 9 2024 33 / 56

In general, in \mathbb{R}^n , we define unit vectors $\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_n$, where \mathbf{e}_i has 1 in its i-th component and zeros elsewhere.

These vectors arise repeatedly in linear algebra and are called the **standard unit vectors**.

34 / 56

(CONAHCYT INAOE) Linear algebra July 9 2024

Normalize the vector
$$\mathbf{v} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$$

(CONAHCYT INAOE) Linear algebra

Normalize the vector
$$\mathbf{v} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$$

$$||\mathbf{v}|| = \sqrt{2^2 + (-1)^2 + 3^2} = \sqrt{14}$$

(CONAHCYT INAOE)

Example

Normalize the vector
$$\mathbf{v} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$$

$$||\mathbf{v}|| = \sqrt{2^2 + (-1)^2 + 3^2} = \sqrt{14}$$

So, the unit vector in the same direction as \mathbf{v} is given by

$$\mathbf{u} = \frac{1}{||\mathbf{v}||} \mathbf{v} = \frac{1}{\sqrt{14}} \begin{bmatrix} 2\\-1\\3 \end{bmatrix} = \begin{bmatrix} 2/\sqrt{14}\\-1/\sqrt{14}\\3/\sqrt{14} \end{bmatrix}$$

Theorem

The Cauchy-Schwarz inequality. For all vectors ${\bf u}$ and ${\bf v}$ in \mathbb{R}^n

$$|\mathbf{u} \cdot \mathbf{v}| \le ||\mathbf{u}|| \ ||\mathbf{v}||$$

Proof.

This inequality is equivalent to

$$(\mathbf{u} \cdot \mathbf{v})^2 \le ||\mathbf{u}||^2 \ ||\mathbf{v}||^2$$

Theorem

The Cauchy-Schwarz inequality. For all vectors ${\bf u}$ and ${\bf v}$ in \mathbb{R}^n

$$|\mathbf{u} \cdot \mathbf{v}| \le ||\mathbf{u}|| \ ||\mathbf{v}||$$

Proof.

This inequality is equivalent to

$$(\mathbf{u} \cdot \mathbf{v})^2 \le ||\mathbf{u}||^2 \ ||\mathbf{v}||^2$$

In
$$\mathbb{R}^2$$
, $\mathbf{u}=\begin{bmatrix}u_1\\u_2\end{bmatrix}$ and $\mathbf{v}=\begin{bmatrix}v_1\\v_2\end{bmatrix}$

Theorem

The Cauchy-Schwarz inequality. For all vectors ${\bf u}$ and ${\bf v}$ in \mathbb{R}^n

$$|\mathbf{u} \cdot \mathbf{v}| \le ||\mathbf{u}|| \ ||\mathbf{v}||$$

Proof.

This inequality is equivalent to

$$(\mathbf{u} \cdot \mathbf{v})^2 \le ||\mathbf{u}||^2 ||\mathbf{v}||^2$$

In
$$\mathbb{R}^2$$
, $\mathbf{u}=\begin{bmatrix}u_1\\u_2\end{bmatrix}$ and $\mathbf{v}=\begin{bmatrix}v_1\\v_2\end{bmatrix}$

$$(u_1v_1 + u_2v_2)^2 \le^? (u_1^2 + u_2^2)(v_1^2 + v_2^2)$$

$$u_1^2v_1^2 + 2u_1v_1u_2v_2 + u_2^2v_2^2 \le^? u_1^2v_1^2 + u_1^2v_2^2 + u_2^2v_1^2 + u_2^2v_2^2$$

$$2u_1v_1u_2v_2 \le^? u_1^2v_2^2 + u_2^2v_1^2$$

Proof (cont.)

$$2u_1v_1u_2v_2 \le^? u_1^2v_2^2 + u_2^2v_1^2$$

$$2(u_1v_2)(u_2v_1) \le^? (u_1v_2)^2 + (u_2v_1)^2$$

37 / 56

Proof (cont.)

$$2u_1v_1u_2v_2 \le^? u_1^2v_2^2 + u_2^2v_1^2$$

$$2(u_1v_2)(u_2v_1) \le^? (u_1v_2)^2 + (u_2v_1)^2$$

Let $a = u_1v_2$ and $b = u_2v_1$

$$2ab \le^? a^2 + b^2$$
$$0 \le^? a^2 + b^2 - 2ab$$

37 / 56

Proof (cont.)

$$2u_1v_1u_2v_2 \le^? u_1^2v_2^2 + u_2^2v_1^2$$

$$2(u_1v_2)(u_2v_1) \le^? (u_1v_2)^2 + (u_2v_1)^2$$

Let $a = u_1v_2$ and $b = u_2v_1$

$$2ab \le^? a^2 + b^2$$
$$0 \le^? a^2 + b^2 - 2ab$$

Since

$$a^2 + b^2 - 2ab = (a - b)^2 \ge 0$$

37 / 56

Proof (cont.)

$$2u_1v_1u_2v_2 \le^? u_1^2v_2^2 + u_2^2v_1^2$$

$$2(u_1v_2)(u_2v_1) \le^? (u_1v_2)^2 + (u_2v_1)^2$$

Let $a = u_1v_2$ and $b = u_2v_1$

$$2ab \le a^2 + b^2$$

 $0 \le a^2 + b^2 - 2ab$

Since

$$a^2 + b^2 - 2ab = (a - b)^2 \ge 0$$

we can remove the "?" sign from all the previous inequalities. (In a conventional style, the proof goes backward).

CONAHCYT INAOE) Linear algebra July 9 2024

Theorem

The triangle inequality. For all vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n

$$||\mathbf{u} + \mathbf{v}|| \le ||\mathbf{u}|| + ||\mathbf{v}||$$

Proof.

$$\begin{aligned} ||\mathbf{u} + \mathbf{v}||^2 &= (u_1 + v_1)^2 + \dots + (u_n + v_n)^2 \\ &= (\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v}) \\ &= \mathbf{u} \cdot \mathbf{u} + 2(\mathbf{u} \cdot \mathbf{v}) + \mathbf{v} \cdot \mathbf{v} \\ &\leq ||\mathbf{u}||^2 + 2|\mathbf{u} \cdot \mathbf{v}| + ||\mathbf{v}||^2 \\ &\leq ||\mathbf{u}||^2 + 2||\mathbf{u}|| \ ||\mathbf{v}|| + ||\mathbf{v}||^2 \\ &= (||\mathbf{u}|| + ||\mathbf{v}||)^2 \end{aligned}$$

38 / 56

Theorem

The triangle inequality. For all vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n

$$||u + v|| \le ||u|| + ||v||$$

Proof.

$$||\mathbf{u} + \mathbf{v}||^2 = (u_1 + v_1)^2 + \dots + (u_n + v_n)^2$$

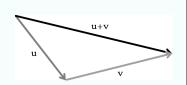
$$= (\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v})$$

$$= \mathbf{u} \cdot \mathbf{u} + 2(\mathbf{u} \cdot \mathbf{v}) + \mathbf{v} \cdot \mathbf{v}$$

$$\leq ||\mathbf{u}||^2 + 2|\mathbf{u} \cdot \mathbf{v}| + ||\mathbf{v}||^2$$

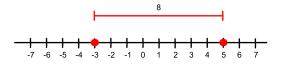
$$\leq ||\mathbf{u}||^2 + 2||\mathbf{u}|| ||\mathbf{v}|| + ||\mathbf{v}||^2$$

$$= (||\mathbf{u}|| + ||\mathbf{v}||)^2$$



39 / 56

(CONAHCYT INAOE) Linear algebra



$$d(5,-3) = |5 - (-3)| = |-3 - 5|$$

(CONAHCYT INAOE)

Definition

The **distance** $d(\mathbf{u}, \mathbf{v})$ between vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n is defined by

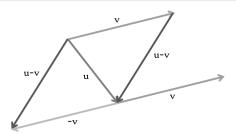
$$d(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} - \mathbf{v}||$$

(CONAHCYT INAOE) Linear algebra

Definition

The **distance** $d(\mathbf{u}, \mathbf{v})$ between vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n is defined by

$$d(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} - \mathbf{v}||$$



Example

Find the distance between
$$\mathbf{u}=\begin{bmatrix} \sqrt{2}\\1\\-1 \end{bmatrix}$$
 and $\mathbf{v}=\begin{bmatrix} 0\\2\\-2 \end{bmatrix}$

Example

Find the distance between
$$\mathbf{u}=\begin{bmatrix}\sqrt{2}\\1\\-1\end{bmatrix}$$
 and $\mathbf{v}=\begin{bmatrix}0\\2\\-2\end{bmatrix}$

$$\mathbf{u} - \mathbf{v} = \begin{bmatrix} \sqrt{2} \\ -1 \\ 1 \end{bmatrix}$$

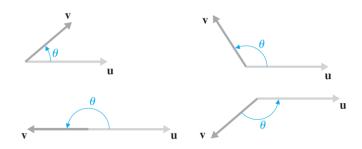
So,

$$d(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} - \mathbf{v}|| = \sqrt{(\sqrt{2})^2 + (-1)^2 + 1^2} = \sqrt{4} = 2$$

43 / 56

(CONAHCYT INAOE) Linear algebra

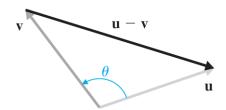
The dot product can also be used to calculate the angle between a pair of vectors. In \mathbb{R}^2 or \mathbb{R}^3 , the angle between the nonzero vector \mathbf{u} and \mathbf{v} will refer to the angle θ determined by these vectors that satisfies $0 \le \theta \le 180$.



(CONAHCYT INAOE) Linear algebra

Consider the triangle with sides \mathbf{u} , \mathbf{v} , and $\mathbf{u} - \mathbf{v}$, where θ is the angle between \mathbf{u} and \mathbf{v} . Applying the law of cosines to this triangle yields

$$||\mathbf{u} - \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2 - 2||\mathbf{u}|| \ ||\mathbf{v}|| \cos \theta$$



DNAHCYT INAOE) Linear algebra July 9 2024 45 / 56

After simplification, we get

$$\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| \ ||\mathbf{v}|| \cos \theta$$

46 / 56

(CONAHCYT INAOE) Linear algebra

After simplification, we get

$$\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| \ ||\mathbf{v}|| \cos \theta$$

Definition

For nonzero vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n ,

$$\cos\theta = \frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}|| \ ||\mathbf{v}||}$$

After simplification, we get

$$\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| \ ||\mathbf{v}|| \cos \theta$$

Definition

For nonzero vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n ,

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}|| \ ||\mathbf{v}||}$$

By Cauchy-Schwarz $\left|\frac{\mathbf{u}\cdot\mathbf{v}}{||\mathbf{u}||\ ||\mathbf{v}||}\right| \leq 1$. So, $\frac{\mathbf{u}\cdot\mathbf{v}}{||\mathbf{u}||\ ||\mathbf{v}||}$ take values between -1 and 1.

We now generalize the idea of perpendicularity to vectors in \mathbb{R}^n , where it is called orthogonality.

In \mathbb{R}^2 or \mathbb{R}^3 , two nonzero vectors ${\bf u}$ and ${\bf v}$ are perpendicular if the angle θ between them is a right angle - that is, if $\theta = \pi/2$ radians, or 90.

Thus,

$$\frac{\mathbf{u}\cdot\mathbf{v}}{||\mathbf{u}||\ ||\mathbf{v}||}=\cos90=0$$

and it follows that $\mathbf{u} \cdot \mathbf{v} = 0$. This motivates the following definition.

Thus,

$$\frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}|| \ ||\mathbf{v}||} = \cos 90 = 0$$

and it follows that $\mathbf{u} \cdot \mathbf{v} = 0$. This motivates the following definition.

Definition

Two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n are **orthogonal** to each other if $\mathbf{u} \cdot \mathbf{v} = 0$.

Thus,

$$\frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}|| \ ||\mathbf{v}||} = \cos 90 = 0$$

and it follows that $\mathbf{u} \cdot \mathbf{v} = 0$. This motivates the following definition.

Definition

Two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n are **orthogonal** to each other if $\mathbf{u} \cdot \mathbf{v} = 0$.

Since $\mathbf{0} \cdot \mathbf{v}$ for every vector in \mathbb{R}^n , the zero vector is orthogonal to every vector.

48 / 56

Thus,

$$\frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}|| \ ||\mathbf{v}||} = \cos 90 = 0$$

and it follows that $\mathbf{u} \cdot \mathbf{v} = 0$. This motivates the following definition.

Definition

Two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n are **orthogonal** to each other if $\mathbf{u} \cdot \mathbf{v} = 0$.

Since $\mathbf{0} \cdot \mathbf{v}$ for every vector in \mathbb{R}^n , the zero vector is orthogonal to every vector.

Is the zero vector orthogonal to itself?

48 / 56

Theorem

Pythagora's theorem. For all vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n

$$||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2$$

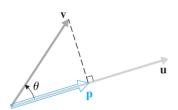
if and only if \mathbf{u} and \mathbf{v} are orthogonal.

Projections

Linear algebra

Projections

Consider two nonzero vectors \mathbf{u} and \mathbf{v} . Let \mathbf{p} be the vector obtained by dropping a perpendicular from the head of \mathbf{v} onto \mathbf{u} and let θ be the angle between \mathbf{u} and \mathbf{v} .



Projections

Definition

If $\bf u$ and $\bf v$ are vectors in \mathbb{R}^n and $\bf u \neq 0$, the **projection of \bf v onto \bf u** is the vector $proj_{\bf u(v)}$ defined by

$$\mathit{proj}_{u}(v) = \left(\frac{u \cdot v}{u \cdot u}\right) u$$

(You can prove it for \mathbb{R}^2)

(CONAHCYT INAOE) Linear algebra

Ending

Homework

- You have three vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} such that $\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot \mathbf{w}$. Is always $\mathbf{v} = \mathbf{w}$?
- Prove that $\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| \ ||\mathbf{v}|| \cos \theta$ (slide 46).
- Prove the Pythagora's theorem for vectors in \mathbb{R}^n (slide 49).
- Prove the definition of projection over \mathbb{R}^2 (slide 52).
- $||proj_{\mathbf{u}}(\mathbf{v})|| \le ||\mathbf{v}||$ in \mathbb{R}^2 and \mathbb{R}^3 (Can you see why?).
 - Show that this inequality is true in \mathbb{R}^n .
 - Show that this inequality is equivalent to the Cauchy-Schwarz inequality.

54 / 56

Next topics

A bit more on vectors

(CONAHCYT INAOE)

Thank you

(CONAHCYT INAOE) Linear algebra July 9 2024 56 / 56