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Vectors
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Vectors in the plane

Definition

A vector is a directed line segment that corresponds to a displacement from one
point A to another point B. The vector from A to B is denoted by ﬁ; the point
A is called its initial point, or tail, and the point B is called its terminal point

or head. Often, a vector is simply denoted by a single boldface, lowercase letters
such as v.
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Vectors in the plane

The set of all points in the plane corresponds to the set of all vector whose tail are
at the origin O.

Definition

Vectors with its tail at the origin are called position vectors.
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Vectors in the plane

—
Point A corresponds to the position vector a = OA = [3,2]. The other vectors in
the figure are b = [—1,3] and ¢ = 2, —1].

4
B i
1 A
b
-4 a
ettt
- ¢ C
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Vectors in the plane

—
Point A corresponds to the position vector a = OA = [3,2]. The other vectors in
the figure are b = [—1,3] and ¢ = 2, —1].

A

of the vector.

The individual coordinates (3 and 2 in the case of a) are called the components
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Vectors in the plane

Two vectors are equal if and only if their corresponding components are equal.
Thus, [z,y] = [1,5] implies that z = 1 and y = 5.

Using column vectors instead of row vectors is frequently convenient.

So, [3,2] can be represented as B}

=] = = =z .
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Vectors in the plane

We cannot draw the vector [0,0] = O@ from the origin to itself. Nevertheless, it
is a perfectly good vector and has a special name: the zero vector. The zero
vector is denoted by 0.
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Vectors in the plane

Vectors

What can you say about these three vectors?
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Vectors in the plane

What can you say about these three vectors?

By setting the tail of each vector in the origin, we observe they all coincide.
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New vectors from old

We often want to follow one vector by another. This leads to the notion of vector

addition.

If we follow u by v, we can visualize the total displacement as a third vector,

denoted by u + v.

-“
4
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New vectors from old

In general, if u = [uy, us] and v = [v1, vs], the their sum u + v is the vector

u+v=[ug + vy, us + v
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New vectors from old

Our next vector operation is scalar multiplication. Given a vector v and a real

number ¢, the scalar multiplication cv is the vector contained by multiplying
each component of v by c¢. In general,

ev = clvy, va] = [cvy, cvg)

m] = = =
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New vectors from old

Our next vector operation is scalar multiplication. Given a vector v and a real
number ¢, the scalar multiplication cv is the vector contained by multiplying
each component of v by c¢. In general,

ev = clvy, va] = [cvy, cvg)

Geometrically, cv is a “scaled” version of v.

P

2v —2v

Wl
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Vectors in R"

R™ is a shorthand for R x R x -+ x R, the cartesian product of R with itself n
times. So, it is the set of all ordered n-tuples of real numbers written as row or
column vectors. Thus, a vector v € R" is of the form

vy
%]
[v1,v2,..,0,] oF

Un

The individual entries of v are its components; v; is called the i-th component.
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Vectors in R"”

We extend the definitions of vector addition and scalar multiplication to R"™ in the
obvious way:

If u=[uy,ug,...,u,] and v = [v1, va, ..., v,], the i-th component of u + v is
u; + v; and the i-th component of cv is just cv;.
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Vectors in R"

Vectors

Algebraic properties of vectors in R™.

Let u, v, and w be vectors in R™ and let ¢ and d be scalars. Then
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Vectors in R"

Vectors

Algebraic properties of vectors in R™.

Let u, v, and w be vectors in R™ and let ¢ and d be scalars. Then
® u+v=v-+u (commutativity)
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Vectors in R"

Vectors

Algebraic properties of vectors in R™.

Let u, v, and w be vectors in R™ and let ¢ and d be scalars. Then
® u+v=v-+u (commutativity)

° (u+v)+w=u+(v+w) (additive associativity)
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Vectors in R"

Vectors

Algebraic properties of vectors in R™.

Let u, v, and w be vectors in R™ and let ¢ and d be scalars. Then
® u+v=v-+u (commutativity)
o u+ 0 =u (zero vector)

° (u+v)+w=u+(v+w) (additive associativity)
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Vectors in R"

Algebraic properties of vectors in R™.

Let u, v, and w be vectors in R™ and let ¢ and d be scalars. Then
® u+v=v-+u (commutativity)
° (u+v)+w=u+(v+w) (additive associativity)
o u+ 0 =u (zero vector)
o u+ (—u) = 0 (additive inverses)
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Vectors in R"

Algebraic properties of vectors in R™.

Let u, v, and w be vectors in R™ and let ¢ and d be scalars. Then
® u+v=v-+u (commutativity)
° (u+v)+w=u+(v+w) (additive associativity)
o u+ 0 =u (zero vector)
o u+ (—u) = 0 (additive inverses)
°

c(u + v) = cu + cv (distributivity across vector addition)
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Vectors in R"

Algebraic properties of vectors in R™.

Let u, v, and w be vectors in R" and let ¢ and d be scalars. Then
® u+v=v-+u (commutativity)

(u+v)+w=u+ (v+w) (additive associativity)

u+ 0 = u (zero vector)

u+ (—u) = 0 (additive inverses)

c(u + v) = cu + cv (distributivity across vector addition)

(¢ + d)u = cu + du (distributivity across scalar addition)
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Vectors in R"”

Algebraic properties of vectors in R™.

Let u, v, and w be vectors in R™ and let ¢ and d be scalars. Then
® u+v=v-+u (commutativity)

(u+v)+w=u+ (v+w) (additive associativity)

u+ 0 = u (zero vector)

u + (—u) = 0 (additive inverses)

c(u + v) = cu + cv (distributivity across vector addition)

(¢ + d)u = cu + du (distributivity across scalar addition)

c(du) = (ed)u (scalar multiplication associativity)
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Vectors in R"”

Algebraic properties of vectors in R™.

Let u, v, and w be vectors in R™ and let ¢ and d be scalars. Then
® u+v=v-+u (commutativity)

(u+v)+w=u+ (v+w) (additive associativity)

u+ 0 = u (zero vector)

u + (—u) = 0 (additive inverses)

c(u + v) = cu + cv (distributivity across vector addition)

(¢ + d)u = cu + du (distributivity across scalar addition)
c(du) = (ed)u (scalar multiplication associativity)

lu = u (one)
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Vectors in R"

Each bullet must be proved. In general, they all inherit the properties of the
operations over real numbers. For instance,

Up V1 uy + 1 V1 + U1 V1 Uy
U2 Vg Uz + v2 Vg + Ug Vg U2
Unp, Un, Up + Up Up + Up Un, Unp
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Example
Simplify (x in terms of a)

5x —a = 2(a + 2x)
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Example

Simplify (x in terms of a)

5x —a = 2(a + 2x)
5x —a = 2a + 2(2x)
bx —a=2a+ (2-2)x
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Example

Simplify (x in terms of a)

5x —a = 2(a + 2x)
5x —a = 2a + 2(2x)
5x —a=2a+ (2-2)x
5x —a = 2a + 4x
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Example

Simplify (x in terms of a)

5x —a = 2(a + 2x)
5x —a = 2a + 2(2x)

bx —a=2a+ (2-2)x
5x —a = 2a + 4x

(5x —a) — 4x = (2a + 4x) — 4x
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Example

Simplify (x in terms of a)

5x —a = 2(a+2x)
5x —a = 2a+2(2x)

bx —a=2a+ (2-2)x
5X_a:2a+4x

(5x_a)_4X:(2a+4x)_4x
(-a+5x) —dx=2a+ (4x - 4x)
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Example

Simplify (x in terms of a)

5x —a =2(a+ 2x)
5x —a = 2a + 2(2x)
5x —a=2a+ (2-2)x
5x —a = 2a + 4x
(5x —a) — 4x = (2a + 4x) — 4x
(—a+5x) — 4x = 2a + (4x — 4x)
—a+ (bx —4x) =2a+0

- = DA
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Example

Simplify (x in terms of a)

5x —a = 2(a+2x)
5x —a = 2a+2(2x)

—a+(5-4)x=2a
Sx—a=2a+(2-2)x

5X_a:2a+4x
(5X—a)_4X:(2a+4x)_4

X
(-a+5x) —dx=2a+ (4x - 4x)
—a+ (5x—4dx) =2a+0
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Example

Simplify (x in terms of a)

5x —a =2(a+2x) —a+(5—4)x=2a
e —at (I
Sx—a=2a+(2-2)x
5% — a = 2a + 4x
(5x —a) — 4x = (2a + 4x) — 4x
(—a + 5x) — 4x = 2a + (4x — 4x)
—at(x—4x)=2a+0
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Example

Simplify (x in terms of a)

5x —a = 2(a + 2x) —a+(5—4)x=2a
5x —a = 2a + 2(2x) —a+(1)x=2a
bx —a=2a+ (2-2)x —a+x=2a
5x —a = 2a + 4x
(5x —a) — 4x = (2a + 4x) — 4x
(—a+5x) — 4x = 2a + (4x — 4x)
—a+ (bx —4x) =2a+0
o <D =, = 9ac
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Example

Simplify (x in terms of a)

5x —a = 2(a + 2x) —a+(b—4)x=2a
5x —a = 2a + 2(2x) —a+(1)x=2a
5x —a=2a+ (2-2)x —a+x=2a

5x —a = 2a + 4x
(5x —a) — 4x = (2a + 4x) — 4x
(—a+5x) — 4x = 2a + (4x — 4x)
—a+ (bx —4x) =2a+0

at+(—a+x)=a+2a
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Example

Simplify (x in terms of a)

5x —a = 2(a + 2x) —a+(5—4)x=2a
5x —a = 2a + 2(2x) —a+(1)x=2a
bx —a=2a+ (2-2)x —a+x=2a
5x —a = 2a + 4x at+(—a+x)=a+2a
(5x —a) — 4x = (2a + 4x) — 4x (@a+(-a))+x=(1+2)a
(—a+5x) — 4x = 2a + (4x — 4x)
—a+ (bx —4x) =2a+0
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Example

Simplify (x in terms of a)

5x —a = 2(a + 2x) —a+(5—4)x=2a
5x —a = 2a + 2(2x) —a+(1)x=2a
bx —a=2a+ (2-2)x —a+x=2a
5x —a = 2a + 4x at+(—a+x)=a+2a
(5x —a) — 4x = (2a + 4x) — 4x (@a+(-a))+x=(1+2)a
(—a+ 5x) — 4x = 2a + (4x — 4x)
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Example

Simplify (x in terms of a)

5x —a = 2(a + 2x) —a+(5—4)x=2a
5x —a = 2a + 2(2x) —a+(1)x=2a
bx —a=2a+ (2-2)x —a+x=2a
5x —a = 2a + 4x at+(—a+x)=a+2a
(5x —a) — 4x = (2a + 4x) — 4x (@a+(-a))+x=(1+2)a
(—a+ 5x) — 4x = 2a + (4x — 4x)
—a+ (bx —4x) =2a+0

0+x=3a

x = 3a
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Linear combinations and coordinates

Linear combinations and coordinates
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Linear combinations and coordinates
Definition

c1,Ca, ..., Ck such that

A vector v is a linear combination of vectors vy, vs, ..., v, if there are scalars

V=C1V] +CcoVvy + -+ 4 Cp Vi

The scalars ¢y, ¢a, ..., ¢ are called the coefficients of the linear combination.

=] F = E DA
(CONAHCYT INAOE) Linear algebra




Linear combinations and coordinates

Example

Let u = E’] and v = B] We can use u and v to locate a new set of axes (in the

same way that e; = é} and e; = [(1)] locate the standard coordinate axes). We

can use these new axes to determine a coordinate grid that will let us easily
locate linear combinations of u and v.
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Linear combinations and coordinates

Example

Let u = E’] and v = B] We can use u and v to locate a new set of axes (in the

1 locate the standard coordinate axes). We

can use these new axes to determine a coordinate grid that will let us easily
locate linear combinations of u and v.

1 0
same way that e; = 0 and e; =
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Linear combinations and coordinates

Example

Letu = E’] and v = B] We can use u and v to locate a new set of axes (in the

same way that e; =

0 .
and e; = [ locate the standard coordinate axes). We

1

0 1
can use these new axes to determine a coordinate grid that will let us easily
locate linear combinations of u and v.

- l)-[3

—+ -+  (Observe that —1 and 3 are the coordinates of

w with respect to e; and e5.)
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The dot product

The dot product
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The dot product

The vector versions of length, distance, and angle can all be described using the
notion of the dot product of two vectors.
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Uy
Uz
u=

U1
V2
and v =

The dot product
If

Un

Unp
then the dot product u - v of u and v is defined by

U- -V =1ujv + UV + - - - UpUp

=] F = E DA
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Uy
Uz
u=

U1
V2
and v =

The dot product
If

Un

Unp
then the dot product u - v of u and v is defined by

U- -V =1ujv + UV + - - - UpUp

Since u - v is a number, it is sometimes called the scalar product of u and v.
=] = - = a




The dot product

Let u, v, and w be vectors in R™ and let ¢ be a scalar. Then
® u-v=v-u (commutativity)

o (cu)-v=c(u-v)

o u-(v+w)=u-v+v-w (distributivity)
ou-u>0

ou-u=0ifandonly ifu=0

=] F = E DA
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The dot product

Each bullet must be proved. For instance,

U1 U1
U2 V2
u-v= = U1V1 + UV + - -+ + Uy Uy
Unp, Un,
U1 Ui
V2 Uz
=v1U1 + VU2 + - - F VU, = =v-u
Un Un,
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Example
Show that (u+v) - (u+v)=u-u+2(u-v)+v-v
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The dot product

Example

Show that (u+v)- (u+v)=u-u+2u-v)+v-v

(u+v) - (u+v)=(u+v) - u+(utv)-v
=u-u+v-ut+u-v+v-v
=u-ut+tu-v+u-v+v-v
=u-u+2u-v)+v-v

=] 5 = E DAy
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Length

01
Vo
The length (or norm) of a vector v =

defined by

€ R"™ is the nonnegative scalar
Un

V[ = Vv = \fo - 0F 0
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o |lev]| = lef |Ivll

Length
Let v be a vector in R™ and let ¢ be a scalar. Then
o ||v||=0 ifand only ifv=0
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Length

Let v be a vector in R™ and let ¢ be a scalar. Then

o ||v||=0 ifand only ifv=0

o |lev]| = |e [Ivll
Proof
(b)

llev]|> = ev - ev = 2v? + 2o + - 4 0
=+ v+ +02)

=c(v-v) =c[v]]?

Apply the square root function in both sides

llevll = fel vl
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Length

A vector of length 1 is called a unit vector. In R2, the set of all unit vectors can
be identified with the unit circle, the circle of radius 1 centered at the origin
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Length

Given any nonzero vector v, we can always find a unit vector in the same direction

as v by dividing v by its own length (or, equivalently, multiplying by 1/||v||).
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Length

Given any nonzero vector v, we can always find a unit vector in the same direction
If u=(1/||v|]|) v, then

as v by dividing v by its own length (or, equivalently, multiplying by 1/||v||).
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Length

Given any nonzero vector v, we can always find a unit vector in the same direction
If u=(1/||v|]|) v, then

as v by dividing v by its own length (or, equivalently, multiplying by 1/||v||).

ull = 11/ {lv[[)vl|

= [ 1/[vI[ [ []vl]
= (1/1vIDIlvl]

=1
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Length

Given any nonzero vector v, we can always find a unit vector in the same direction
as v by dividing v by its own length (or, equivalently, multiplying by 1/||v||).

If u=(1/||v|]|) v, then

ull = 11/ {lv[[)vl|
= [ 1/[vI[ [ []vl]
= (1/1vIDIlvl]
=1

and u is in the same direction as v, since 1/||v|| is a positive scalar.
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Length
vector.

Finding a unit vector in the same direction is often referred to as normalizing a

v
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Length

In general, in R™, we define unit vectors ey, e, ..., e,, where e; has 1 in its i-th
component and zeros elsewhere.

These vectors arise repeatedly in linear algebra and are called the standard unit
vectors.

=] 5 = E §
July 9 2024 34 /56
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Example
2
Normalize the vector v= | —1
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2
-1
3

Example
Normalize the vector v =

[Ivil =

24 (-1)2 432
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__________Thlotpodct
Example

Normalize the vector v =

2
-1
3

Wl = V2 + (17 + 3 = VId
So, the unit vector in the same direction as v is given by

1 BE: 2/+/14
u= WV =—|-1| = —1/\/ﬁ
v 1413 3/V14
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Length

The Cauchy-Schwarz inequality. For all vectors u and v in R™

u-v| < [ul] [|v]]

This inequality is equivalent to

(u-v)? < [ul]* ||v][*

= = = = = TRC
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Length

The Cauchy-Schwarz inequality. For all vectors u and v in R™

u-v| < [ul] [|v]]

This inequality is equivalent to

(u-v)? < [ul]* ||v][*

In R2, u= [ul] and v = [vl]
U2 V2

= = o o - TRC
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The dot product

Length

The Cauchy-Schwarz inequality. For all vectors u and v in R"

u-v| < [ul] [|v]]

This inequality is equivalent to

(u-v)? < [ul]* ||v][*

In R2, u= [ul] and v = [vl]
U2 V2

2 72 2\/,.2 2
(u1v1 + ugv2)” <7 (uy + u3)(vy + v3)

2,2 2.2 7. 22 2 2 2.2 2.2
u U] + 2uv1ugve + uavy < UVl + ujvy + upvy + usv;
?
22UV UV <° u%’u% + ugvf

= o . - = AE
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Length
Proof (cont.)

2.2 2
2uiviuguy < ujvy +u

2V1

2,2
2(u1v2) (uz2v1) <7 (ugv2)? + (ugvr)
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Length
Proof (cont.)

R
2u1v1 UV < u%vg +u
Let a = uqvo and b = ugvy

S0
2(u1va) (ugvy) <* (u1v2)? + (ugv:)

2ab <’ a® + b*

0<"a%+b>—2ab

(CONAHCYT INAOE)
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Length
Proof (cont.)

R
2u1v1 UV < u%v% +u
Let a = uqvo and b = ugvy

2V1

Since

2,2
2(u1v2) (uz2v1) <7 (ugv2)? + (ugvr)

2ab <’ a® + b*

0<"a%+b>—2ab

a® 4 b? —2ab= (a—b)2 >0
=] 5 = E DAy




Length
Proof (cont.)

R
2u1v1 UV < u%v% +u
Let a = uqvo and b = ugvy

2V1

Since

2,2
2(u1v2) (uz2v1) <7 (ugv2)? + (ugvr)

2ab <’ a® + b*

0<"a%+b>—2ab

a® 4 b? —2ab= (a—b)2 >0
we can remove the “?" sign from all the previous inequalities. (In a conventional
style, the proof goes backward). O
=] = = = APRN G4




Length
The triangle inequality. For all vectors u and v in R™
[lu || < [Jul| + [v]|
[lu+v]* = (ur +01)* + - + (n + vn)”
=(u+v) (utv)
=u-ut+2u-v)+v-v

< JJull* + 2Ju- v| + [v]”

< [ull* + 2{ul] [Iv]| + [Jv][*
= (full + [Iv]))?

=] F = = DA
(CONAHCYT INAOE) Linear algebra




Length
The triangle inequality. For all vectors u and v in R™
[lu || < [Jul| + [v]|
[lu+v]* = (ur +01)* + - + (n + vn)”
=(u+v) (utv)
=u-ut+2u-v)+v-v

< JJull* + 2Ju- v| + [v]”

< [ull* + 2{ul] [Iv]| + [Jv][*
= (full + [Iv]))?

A\
o T = = T 9Dae
(CONAHCYT INAOE) Linear algebra
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Distance
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Distance

—————+—+—+—F—+—+—+o+—
7 6 5 432101 2 3 4 56 7
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Distance

! 8 ]

I 1
1
7 6 5 4 -3 -2 101 2 3 4 5 6 7

d(5,=3) =5 = (=3)[ = =3 - 3|

=] =
(CONAHCYT INAOE) Linear algebra
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d(u,v) = [Ju —vl|

Distance
Definition
The distance d(u,v) between vectors u and v in R™ is defined by

(CONAHCYT INAOE)
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Distance
Definition
The distance d(u,v) between vectors u and v in R™ is defined by

d(u,v) = [Ju —vl|

(CONAHCYT INAOE)
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Example

Find the distance between u =

(CONAHCYT INAOE)
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Example

Find the distance between u =

0
2
-2
2
u—v=|-1
So,

du,v) = [Ju—v]| = \/(V2)? + (-1)2 +12 = VI = 2

(CONAHCYT INAOE)
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Angles
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Angles

The dot product can also be used to calculate the angle between a pair of vectors

In R? or R?, the angle between the nonzero vector u and v will refer to the angle
0 determined by these vectors that satisfies 0 < 6 < 180.

(CONAHCYT INAOE)
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Angles

Consider the triangle with sides u, v, and u — v, where 6 is the angle between u
and v. Applying the law of cosines to this triangle yields

[Ju = v[* = [Jul* + []v]* = 2[[u]| [Iv]| cos ®

(CONAHCYT INAOE)
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Angles
After simplification, we get

u-v=/||ul| ||v|]|cosb

(CONAHCYT INAOE)
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Angles
After simplification, we get

Definition

u-v=/||ul| ||v|]|cosb

For nonzero vectors u and v in R",

u-v
cosf =

[lul[ []v]]

(CONAHCYT INAOE)
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Angles
After simplification, we get
Definition

u-v=/||ul| ||v|]|cosb

For nonzero vectors u and v in R",

cosf =

u-v
[lul[ []v]]
u-v
TTall T

< 1. So, IIUIT.‘IIIVII take values between —1 and 1.
=] = - = a

By Cauchy-Schwarz




Orthogonal vectors

orthogonality.

We now generalize the idea of perpendicularity to vectors in R™, where it is called

In R? or R3, two nonzero vectors u and v are perpendicular if the angle §
between them is a right angle - that is, if § = 7/2 radians, or 90.

(CONAHCYT INAOE)
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Orthogonal vectors
Thus,

u-

v
——— =¢0s90 =0
[[ul] [|v]]

and it follows that u-v = 0. This motivates the following definition.
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Orthogonal vectors
Thus,
u-v

——— =¢0s90 =0
[[ul] [|v]]
Definition

and it follows that u-v = 0. This motivates the following definition.

Two vectors u and v in R™ are orthogonal to each other if u-v = 0.

o T = = T 9Dae
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Orthogonal vectors
Thus,
u .

v

—— =¢c0s90 =0
] [lv]]

and it follows that u-v = 0. This motivates the following definition.

Definition

Two vectors u and v in R™ are orthogonal to each other if u-v = 0.

Since 0 - v for every vector in R", the zero vector is orthogonal to every vector.

o T = = T 9Dae
(CONAHCYT INAOE) Linear algebra



Orthogonal vectors

Thus,
u .

=c0s90 =0
[[ul] [|v]]

and it follows that u-v = 0. This motivates the following definition.
Definition

Two vectors u and v in R™ are orthogonal to each other if u-v = 0.

Since 0 - v for every vector in R", the zero vector is orthogonal to every vector.
Is the zero vector orthogonal to itself?

(CONAHCYT INAOE)

Linear algebra
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Orthogonal vectors

Pythagora'’s theorem. For all vectors u and v in R™

if and only if u and v are orthogonal.

[Ju+vl[* = [[ul|* + [jv]]*

(CONAHCYT INAOE)
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PrOjeCtiOns
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Projections

Consider two nonzero vectors u and v. Let p be the vector obtained by dropping a
perpendicular from the head of v onto u and let 8 be the angle between u and v.
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Projections
Definition
Proju(v) defined by

) u-v
proju(v) = (
(You can prove it for R?)

— Ju
u-u

=] F = E DA
(CONAHCYT INAOE) Linear algebra

If u and v are vectors in R™ and u # 0, the projection of v onto u is the vector
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Homework

You have three vectors u, v, and w such that u- v =u-w. Is always v=w?
Prove that u - v = [|u|| ||v|| cos @ (slide 46).

Prove the Pythagora's theorem for vectors in R™ (slide 49).

Prove the definition of projection over R? (slide 52).

[lproju(v)|| < ||v|| in R? and R? (Can you see why?).

o Show that this inequality is true in R™.
o Show that this inequality is equivalent to the Cauchy-Schwarz inequality.
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Next topics

A bit more on vectors
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Thank you
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