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Introduction
Data integration and data cleansing are particularly relevant for military applica-
tions where trustable data can make a difference in life-threatening conditions. 
One of the aims in military data management is to have information  superiority, 
which largely depends on the ability to have the right data at the right time. The right 
data not only means relevant information but also trustable information content 
that is used when the decision-making processes are made. There is a large number 
of military applications that depends on data obtained from different sources that 
need integration and cleansing, such as military surveillance and security domains.

An important and current application of data management is in the fight against 
terrorism. The key idea is to investigate and understand criminal behavior based on 
historical data extracted from pasts events. Large databases are being constructed 
in order to discover behavioral patterns that permit predicting future attacks.

In February 2017, the BBC published an article that relates the use of Facebook 
to detect terrorist activities using machine-learning algorithms. When using Twitter, 
a database can be formed with different attributes like text content, user ID, other 
tagged individuals, timestamps, the language device used, and the user’s location.

Caruso (2016) describes how Facebook and Twitter have special teams that 
detect terrorist activity on their social media and remove individuals or groups 
associated with terrorist activities. In 2016, Twitter suspended 125,000 accounts 
with links to ISIS.

Tutun et  al. (2017) utilize historical data of patterns followed by 150,000 
 terrorist attacks from 1970 to 2015. The authors comment that terrorists have learned 
that using social media risks detection and hence use alternatives. The  analysis of 
 databases includes 140,000 incidents considering approximately 75 features or 
attributes that characterize the criminal behavior.

This chapter proposes a novel and robust mechanism for information validation 
and amendment in databases where certainty in information is critical.

In data-validation problems, missing data requires estimation and, if 
 inaccurate, requires rectification. In both cases, anomaly detection and infor-
mation reconstruction are necessary. Additionally, some contextual information 
may be needed, whether available from the same or a complementary data source. 
Given the critical importance that access to trustable data has to many industries, 
including the  military, it is no surprise that data validation methods have been 
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thoroughly researched across many of the more common issues:  outliers (Abraham 
and Box, 1979; Balke, 1993; Hoo et al., 2002; Muirhead, 1986; Peng et al., 2012; 
Tsay, 1988; Walczak, 1995), sudden changes also referred to as innovation  outliers 
(Abraham and Box, 1979; Balke, 1993; Marr and Hildreth, 1980; Muirhead, 1986; 
Tsay, 1988; Sato et al., 2006), rogue values (Herrera-Vega et al., 2012; Ibargüengoytia 
et al., 2006), and missing data (Dempster et al., 1977; Lamrini et al., 2011; Vagin 
and Fomina, 2011). Any of these deviations from regular data behavior may actu-
ally be due to exceptional circumstances and do not necessarily represent inaccurate 
information. In those cases, amendment is not necessary and the unusual data leads 
to actions such as raising an alert. But following the confirmation of inaccurate 
information, whatever the cause, the failing data has to be reconstructed, and for 
such purpose, it can be treated as missing.

Missing data refers to the problem where a gap in the information exists. Etiology 
is varied; it may be a missing sample, a necessity of out-of-boundaries inference, 
or the demand for a resampling, among others. In situations of missing informa-
tion, interpolation/extrapolation techniques (Lancaster and Salkauskas, 1986) have 
dominated the scene. But interpolation is not the only option. When the available 
information comes from a single source with a certain temporal  structure, then 
classical time-series modelling (Chatfield, 2004) such as Autoregressive Moving 
Average (ARMA) or Integrated Autoregressive Moving Average (ARIMA) has 
also been employed. Both approaches are appropriate for isolated data series and 
 capitalize on within-variable information. When richer contextual information 
from a number of additional variables is available, a range of alternative techniques 
should be considered to exploit the complementary knowledge. These  multivariate 
techniques may afford a reconstruction of the missing datum in terms of the nearest 
neighbor (Vagin and Fomina, 2011), self-organizing maps (Lamrini et al., 2011), or 
probabilistic graphic networks (Ibargüengoytia et al., 2013a), among others. These 
multivariate approaches have in common the exploitation of adjacent variables, 
often at the cost of ignoring any signal own information. In contrast with the rich 
literature available on different validation methods, the decision of when to choose 
one particular reconstruction strategy over another has been scarcely investigated. 
Little is known about when the data-set characteristics will favor the application 
of one technique over another. In such uncertain scenarios, a method that utilizes 
both sources of information, the signal-internal information and the related infor-
mation present in the repository, may represent a compromise of the advantages of 
different approaches while alleviating the process of picking the best-suited data 
estimation approach.

Ideally, both the signal-internal information and the related information pres-
ent in the repository should be taken into account for estimating the missing infor-
mation, but this is an oversimplification. In every case, the weight given to the 
in-variable information, and the information from other variables should be recon-
sidered. In our research work preceding this chapter (Ibargüengoytia et al., 2013b), 
we showed how the performance of different data estimation approaches vary as the 
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scenario of available information exhibits different properties, and more precisely, 
how this is dictated by the variable autoregressive order and its dependency on the 
additional known variables. In that previous work, a concomitant contribution was 
the proposal of a new model, the Autoregressive Bayesian Network (AR-BN), that 
balanced its output, aiming to perform robustly across a wide range of scenarios.1

Methods
In this section, a description of some available methods to complete databases is 
included. Later, a more complete description of the proposal of this chapter, namely 
the Autoregressive Bayesian Network, is included. A mathematical formulation of 
the problem of incomplete data can be found in Dempster et al. (1977).

Interpolation

Interpolation is a large family of models in which the value of a variable at some 
sampling location is estimated from neighbor observations. In general, the seman-
tics of the sampling location is irrelevant for the model itself other than setting, 
which are the neighbor samples and how far they may be from the questioned 
sampled location. When the sampling location is within other observed locations, 
then these models are referred to as interpolation, and when beyond, then they are 
referred to as extrapolation. Traditionally, interpolation has been an easier guess 
than extrapolation.

Linear Interpolation

Perhaps the simplest interpolation approach is linear interpolation, by which, assum-
ing that the function is locally linear, that is, the approximation using only the 
Jacobian system is considered sufficient, the value of the variable at the new location 
is given by the line crossing its two nearest-known neighbor observations. Let st2 be 
the targeted new sampling location and discretely let st−1 and st+1 be the immedi-
ate previous and next neighbor locations on which observations Xt−1 and Xt+1 have 
already been made. The estimated value Xt  is given by Equation 8.1: 

 X X s s X X
s st t t t
t t

t t
= + − −

−
− −

+ −

+ −
1 1

1 1

1 1
( )  (8.1)

1 This chapter is an extension of the work presented by this group at The Eighth International 
Conference on Systems (ICONS) 2013 (Ibargüengoytia et al., 2013b), with emphasis on the 
description of the AR-BN model.

2 Without any temporal semantics associated.
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Spline Interpolation

Spline interpolation is a more sophisticated approach in which a differentiable curve 
is built in a piecewise manner between an arbitrary number of neighbor observa-
tions supporting the curve definition. The curve is expected to be differentiable at 
all supporting points and thus derivatives at those points also ought to be known. 
In the simplest case, when only two supporting points st−1 and st+1 and associated 
observations Xt−1 and Xt+1 are taken (the first derivatives at those points ′−Xt 1 and 
′+Xt 1 can be estimated from using further subsequent neighbors), a third-order poly-

nomial can be written as: 

 X h X hX h h a h bht t t= (1 ) (1 )( (1 ) )1 1− + + − − +− +  (8.2)

where:

h s s
s s

t t

t t
= −

−
−

+ −

1

1 1

a X s s X Xt t t t t= ′ − − −− + − + −1 1 1 1 1( ) ( )
b X s s X Xt t t t t= − ′ − + −+ + − + −1 1 1 1 1( ) ( )

As the earlier system is underdetermined, second derivatives are commonly required 
to match the sampling locations to complete the system. Other polynomials can be 
constructed (de Boor, 1978), but they are beyond the scope of this chapter.

Autoregressive Models

Time-series analysis has traditionally focused on estimating future values of a vari-
able that has (or is assumed to have) a certain dynamic, for example, general trend, 
seasonalities, and so on. Autoregressive models are perhaps the simplest of time-
series models in which the next observation is derived from a linear combination 
of preceding observations. The general autoregressive model of order n—denoted 
AR(n)—is defined in Equation 8.3: 

 X c Xt

i

n

i t i t= + +
=

−∑
1

α   (8.3)

where αi i n| = …1  are the model parameters, c is a constant, and t  is noise. Note the 
assumed temporal semantics in contrast to interpolation, but beware that from an 
abstract point of view, it remains a discrete relation of ordering among the sampling 
locations. Hence, in an offline repository, “future” data may also be available and 
can be easily incorporated as in Equation 8.4: 
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 X c X Xt

i

n

i t i

j

m

j t j t= + + +
=

−

=

+∑ ∑
1 1

α β   (8.4)

where αi i n| 1=  and β j j m| 1=  are the AR(n, m) model parameters.

Probabilistic Modeling

Probabilistic models exploit the laws of probability to estimate the most likely 
 outcome of some event, that is, location, defined over the probability space 
(Sucar, 2015). Like interpolation and autoregressive models, probabilistic models 
are also a large family that traditionally have been well-suited under uncertainty. 
Among them, a Bayesian network is a directed acyclic graph (DAG)  representing 
the joint probability distribution of all variables in a domain (Pearl, 1988). 
Bayesian networks use the Bayes theorem that relates hypotheses and evidence and 
makes relations among variables graphically explicit, as can be seen in Figure 8.1. 
The graphical companion is not superfluous. The topology of the network conveys 
direct information about the dependency between the variables. The structure of 
the graph represents which variables are conditionally independent given another 
variable. The variable at the end of an arc end (variable E ) is probabilistically depen-
dent on the variable at the origin of the arc (variable H ).

Thus, obtaining values of the evidence E , Bayesian networks calculate the prob-
ability of hypothesis H  given the evidence. This corresponds to Bayes’ theorem 
where the computation of P H E( )|  is calculated using P E H( )|  and P H( ) as per 
Equation 8.5. 

 P H E P E H P H
P E

( ) ( ) ( )
( )

| |=  (8.5)

The knowledge in a process using Bayesian networks can be represented with 
two elements: (1) the structure of the network, and (2) the parameters P E H( )| , 
that is, the conditional probability tables, and P H( ). These parameters are 
learned from observations when available. In the application of completing data-
bases, the parameter P( )missingvalues relatedvalues|  can be calculated using 
P( )relatedvalues missingvalues|  if knowledge is available in these databases, that is, 
with complete historical data-set of the process.

Hipothesis Evidence

P(H)
P(E|H)

Figure 8.1 Elemental Bayesian Network: Structure and parameters.
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Knowledge about a system represented as a Bayesian network can be used to 
reason about the consequences of specific input data by what is called probabilistic 
reasoning. This consists of assigning a value to the input variables and propagating 
their effect through the network to update the probability of the hypothesis vari-
ables. The updating of the certainty measures is consistent with probability theory 
based on the application of Bayesian calculus and the dependencies represented in 
the network. Several algorithms have been proposed for this probability propaga-
tion (Pearl, 1988).

Bayesian networks can use historical data to acquire knowledge but may addi-
tionally assimilate domain experts’ input. One of the advantages of using Bayesian 
networks is the three forms to acquire the required knowledge. First, the participation 
of human experts in the domain is quite effective; they can explain the dependen-
cies and independencies between the variables and also may calculate the condi-
tional probabilities. Second, there is a great variety of automatic-learning algorithms 
that utilize historical data to provide the structure and the conditional probabilities 
corresponding to the process where data was obtained. A combination of the previous 
two is the third approach, that is, using an automatic-learning algorithm that allows 
for the participation of human experts in the definition of the structure.

Dynamic Bayesian Networks

Plain Bayesian Networks (BN) consider only static situations of a domain. Time 
is not considered, and the calculation made on the hypothesis nodes consider only 
current values of the evidence nodes. The databases relevant in data validation in 
this chapter are usually time series where values are obtained in discrete intervals 
of time. Dynamic Bayesian Networks (DBN) are an attempt to add the tempo-
ral dimension into the BN model (Dean and Kanazawa, 1989; Mihajlovic and 
Petkovic, 2001). Often a DBN incorporates two models: an initial net B0, learned 
using information at time 0, and the transition net B→, learned with the rest of the 
data as illustrated in Figure 8.2. Together, B0 and B→ constitute the DBN (Koller 
and Friedman, 2009). An important assumption is made for DBNs: The process is 
assumed to be Markovian, that is, the future is conditionally independent of the 
past given the present. This assumption allows the DBN to use only the previous 
time-stage information in order to obtain the next stage.

A DBN can be unfolded over as many stages as necessary, and the horizontal 
structure can change from stage to stage. The resulting network is highly expressive 
but often unnecessarily complicated. Alternatives have been proposed to reduce 
this complexity like the Temporal Nodes Bayesian Networks (Herrera-Vega et al., 
2012). In data-sets arising from physical processes, statistical dependencies among 
variables can be expected to be stable across time. That is, if two variables, X  and Y , 
are statistically dependent at time ti, they will likely also be statistically dependent 
at time ti j+  for any arbitrary samples i and j, and similar reasoning can be made 
for independencies. This implies that the process is time-invariant, which can be 
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exploited to simplify the model representation, as only the initial and transition 
networks are required.

Autoregressive Bayesian Networks (AR-BN)

Autoregressive Bayesian Networks are a simplified variant of DBNs. They incor-
porate the temporal dimension by observing time-shifted versions of the variables, 
whether past or future. Conceptually, they can be regarded as bringing an autore-
gressive model AR(n, m) to the BN domain.

Suppose a data-set with some dynamics of interest. Figure 8.3 illustrates the 
proposed probabilistic model. Variable X  represents the variable to be estimated, 

VelV_3 VelV_4 VelV_5VelV_2VelV_1VelV

Temp_1 Temp_2 Temp_3 Temp_4 Temp_5Temp

DirV_3 DirV_4 DirV_5DirV_2DirV_1DirV

RS_3 RS_4 RS_5RS_2RS_1RS

HR_3 HR_4 HR_5HR_2HR_1HR

PA_3 PA_4 PA_5PA_2PA_1PA

Figure 8.2 Dynamic Bayesian Network.

YY

XX

ZZ

X_antX_ant X_  postX_  post

Figure 8.3 Dynamic probabilistic model proposed for data estimation. The struc-
ture can be enriched with other time-shifted versions of X , Y , and Z  as 
appropriate.
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variables Y  and Z  represent pieces of Bayesian network corresponding to all the 
related variables to X . X post_  represents the value of variable X  at the time t k+ , and 
X ant_  represents the value of variable X  at the time t k− , although for  simplicity in 
this chapter we will take k =1.

This proposed model represents a dynamic model that provides accurate infor-
mation for estimating the variable in two senses: first, by using related information 
identified by automatic-learning algorithms or experts in the domain, or both; and 
second, by using information of the previous and incoming values. This informa-
tion includes the change rate of the variable according to the history of the signal.

In this approach, the horizontal (inter-stage) topology of the network is fixed. 
The persistency arcs among a variable and its shifted versions are enforced, whereas 
those between different variables at different stages are forbidden.

Estimating Missing Data from Incomplete 
Databases Using AR-BN

The proposed procedure for estimating missing data from incomplete databases is 
in Algorithm 8.1. The first 4 steps build the model, and the last 3 propagate knowl-
edge to estimate data holes.

Suppose a time-series of three variables. Following Algorithm 8.1, a structure 
of the static version is obtained in step 3, as shown in Figure 8.4. In step 4, the 
network is extended and completes an AR-BN as shown in Figure 8.5.

Algorithm 8.1 Estimation of Missing Data

1: Obtain a complete data-set that includes information from the widest 
operational conditions of the target process.

2 : Clean the outliers and discretize the data set.

3 : Utilize a learning algorithm that produces the static Bayesian Network 
relating all the variables in the process. During the learning process, a 
complete train set with data from all variables is needed, as indicated in step 1.

4 : Modify the static model to include previous and posterior values of every 
variable.

5 : For all registers in an incomplete database, if one value is missing, 
instantiate the rest of the nodes in the model.

6 : Propagate to obtain a posterior probability distribution of the missing value 
given the available evidence.

7 : Return the estimated value with the value of the highest probability 
interval, or calculate the expected value of the probability distribution.

AQ 4
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Notice that the creation of the structure, as in Figure 8.5, requires the calcu-
lation of parameters. These parameters are calculated, as mentioned in step 1 of 
Algorithm 8.1, using a complete data-set of the operational conditions of the target 
process.

Error Metrics for the Estimation of Missing Values

In order to establish the accuracy of the estimation of the missing values, the 
 following error metrics were computed (Osman et al., 2001). Let Ei be the relative 
deviation of an estimated value xi

est from an experimental value, xi
obs: 

 E x x
x

i ni
i
obs

i
est

i
obs= −







 × =100 1,2, ,  (8.6)

with n being the number of missing data. 

Var1

Var3

Var2

Figure 8.4 Static Bayesian Network version of data-set 2.

Var1_ant

Var3_ant

Var2_ant

Var1

Var3

Var1_post

Var2_post

Var3_post

Var2

Figure 8.5 Autoregressive Bayesian Network proposed for data estimation for 
data-set 2.
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 ◾ Root Mean Square Error:

 E
n

Erms

i

n

i=












∑1

=1

2

1/2

 (8.7)

 ◾ Average Percent Relative Error:

 E
n

Er

i

n

i=
=
∑1

1

 (8.8)

 ◾ Average Absolute Percent Relative Error:

 E
n

Ea

i

n

i=
=
∑1

1

| | (8.9)

 ◾ Minimum and Maximum Absolute Percent Relative Error: 

 E min Emin i
n

i= =1 | | (8.10)

 E max Emax i
n

i= =1 | | (8.11)

These metrics will be used in the experiments conducted and discussed in section 
“Experiments and Results”.

Data Characterization

By analyzing the data, we can gain insight into the difficulty of validating and 
amending the data-sets, as well as which method to complete the missing data 
could be more appropriate. To extract descriptive parameters that help us to know 
more about the behavior of the data-sets, we have characterized them according to 
the methods described as follows: 

 ◾ Principal Component Analysis (PCA): This technique, developed by 
Hotelling (1933), analyzes a data-set composed by intercorrelated variables 
and extracts the relevant information in the data. Then, this is represented 
as a set of orthogonal variables called principal components that correspond 
with the maximum variance. Data dimensionality is reduced by removing the 
components with less variance. The resulting variables represent the intrinsic 
dimensionality of the original data-set.

 ◾ Intrinsic dimensionality: The algorithm of Fukunaga and Olsen (1971) 
aims to look at local characteristics of the data distribution, establishing small 
subregions around each variable and, by the Karhunen-Love expansions for 
these subregions, determine the intrinsic dimensionality of the data.
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 ◾ Pearson correlation: This is a well-known method to measure the linear 
dependence between two variables. Values +1 and −1 represent a linear 
dependence, and 0 indicates a nonlinear relation. The Pearson correlation 
coefficient is defined as follows:

 r
x x y y

x x y y

i

n

i i

i

n

i

i

n

i

=

− −

− −

=

= =

∑

∑ ∑
1

1

2

1

2

( )( )

( ) ( )

 (8.12)

 ◾ Akaike Information Criterion (AIC): The AIC is a model selection method 
(Akaike, 1969) defined as:

 AIC N L m= +2 * 2 *log  (8.13)

where m is the number of estimated parameters, and N Llog  is the log-likelihood. 
This method selects a model that minimizes the distance between the model and 
the truth. In autoregressive models, with Akaike’s method, we select the order for 
which Equation 8.13 attains its minimum as a function of m (Shibata, 1976).

 ◾ Kwiatkowski–Phillips–Schmidt–Shin (KPSS): This method tests the 
null hypothesis that a time-series is trend-stationary against the alterna-
tive hypothesis that it is a nonstationary process (Kwiatkowski et al., 1992). 
Briefly, the KPSS breaks the time-series in three parts to construct a model 
(Equation 8.14) consisting of: a deterministic trend (βt), a random walk (rt), 
and a stationary error (εt): 

 x r tt t= + +β ε (8.14)

A least-squares regression is performed to fit the original data and the model. 
Finally, the data is considered stationary if the term (rt) is constant.

Experiments and Results
This section describes the set of experiments conducted for the comparison of per-
formance between different methods on different data-sets.

Characterization of the Datasets for the Experiments

Simulations were carried out to reconstruct missing data from 2 different industrial 
data-sets of different natures (variables have been enumerated for confidentiality). 
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The first data-set comprises 10 variables. It corresponds to a manufacturing process. 
The second data-set comprises 3 variables. It corresponds to an energy domain. Intrinsic 
dimensionality of the data-sets as found by Principal Component Analysis (PCA) is 7 
and 1 respectively (99% of variance included). For the data-set 2, the scale of one of 
the variables is 5 orders of magnitude larger than the remaining 2 variables. Hence, the 
global intrinsic dimensionality is perceived to be 1 by PCA, but local dimensionality 
of the dataset remains 3, which can be determined by Fukunaga and Olsen’s algorithm 
(Chatfield, 2004). The pairwise Pearson correlations among variables for the data-
sets in Figure 8.5 hint about the dependencies among variables. The variables autore-
gressive order n was estimated using the Akaike Information Criterion (Kwiatkowski 
et al., 1992), providing an indication of the signal-own predictability. The autoregres-
sive orders found with this criterion are summarized in Table 8.1. Stationarity of the 
time-series was estimated using the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test 
for stationarity and is summarized in Table 8.2 (Figure 8.6).

Table 8.1 Autoregressive Orders as Calculated with the Akaike Information 
Criterion

Var.# 1 2 3 4 5 6 7 8 9 10

Dataset 1 2 2 1 2 2 9 7 9 9 9

Dataset 2 25 1 25

Table 8.2 Kwiatkowski–Phillips–
Schmidt–Shin (KPSS) Stationarity Tests

Var.# Dataset 1 Dataset 2

1 p < 0.01a p = 0.01b

2 p < 0.01a p = 0.014b

3 p < 0.01a p = 0.01b

4 p < 0.01a

5 p < 0.01a

6 p < 0.01a

7 p = 0.04061b

8 p = 0.005843

9 p = 0.04314b

10 p = 0.02301b

a a highly significant value (p < 0.01).
b Indicates a significant value (p < 0.05).

AQ 5
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Methodology for Experiments

From the data-sets, specific samples were hidden to simulate missing values in three 
different fashions: 

 ◾ Random Missing Data (RMD): Ghosted samples were chosen at random. 
Ghosted data accounts for 10% of each variable.

 ◾ Random Missing Blocks (RMB): Ghosted samples were chosen in blocks to 
have consecutive subseries of missing data. Ghosted data accounts for 10% of 
each variable. However, the location of the ghosted block and the number of 
blocks is random.

 ◾ All Missing Data (AMD): One full variable was ghosted at a time. 
Reconstruction can only occur from related information.

 ◾ For each fashion, 10 train/test pairs were prepared for a 10-fold cross-validation. 
Note that the AMD has d  test for each train case where d  corresponds to the 
number of variables in the data-set. After preparation of the ghosted test data-
sets, reconstruction was attempted by means of the following techniques:

 ◾ Static Bayesian Network (BN). Discretization was set to 5 equidistant inter-
vals. Structure was learned using the PC algorithm (Spirtes et al., 2000).

 ◾ Autoregressive Bayesian Network (AR-BN). Autoregression order was fixed to 
< , > <1,1>p q = . Vertical (intra-stage) structure was learned using the PC algorithm. 

Var. #1

Var. #1 Var. #2 Var. #3 Var. #4 Var. #5 Var. #6 Var. #7 Var. #8 Var. #9Var. #10

Var. #2

Var. #3

Var. #4

Var. #5

Var. #6

Var. #7

Var. #8

Var. #9

Var. #10 Var. #3

Var. #3

Var. #2

Var. #2

Var. #1

Var. #1

(a) (b)

Figure 8.6 Pairwise Pearson correlationsamong variables for the data-
sets. Circle  size is proportional to correlation coefficient r . Circle color indi-
cates  significance: gray, nonsignificant; blue, p << 0.05; green, p<< 0.001; red, 
p << 0.0001. (a) Data-set 1 and (b) Data-set 2.
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Equidistant intervals were used at all times, with the number of intervals being 
either 4 or 5, as bounded by memory limitations. The exemplary network for the 
data-set 2 is illustrated in Figure 8.5.

 ◾ Linear interpolation (LI).
 ◾ Cubic spline interpolation (CSI).
 ◾ Autoregressive Models (AR(1)).
 ◾ Autoregressive Models (AR(n)). Order n was chosen according to Table 8.1. 

Notwithstanding, during the preparation of the train/test sets, some of the 
test sets did contain a number of samples lower than the autoregressive order, 
i.e. AR order 25 for data-set 1, variables 1 and 3. In those cases, the highest 
possible order was chosen based on the number of available samples.

As indicated earlier, for each reconstruction technique and ghosting fashion, a 10-fold 
validation was made. Since the AMD scenario can only be reconstructed from related 
information, this scenario cannot be resolved by interpolation or autoregressive models.

Therefore, the experiments were applied in two data-sets, in three scenarios, 
using six techniques, and repeated 10 times. In total, 280 simulations were executed 
using MATLAB and Hugin (Andersen et al., 1989). For 3 simulations, mistakes in 
the pipeline from training to test were detected, and their results not included for 
further analysis. Statistical analysis was carried out in R3.

Results and Discussion

An example of the reconstruction with the different techniques is illustrated in 
Figure 8.7. The red line indicates the original time-series with the complete values. 
The rest of the plots correspond to all other techniques: static Bayesian network, 
AR-BN, linear interpolation, spline interpolation, AR(1), and AR(n). The three 
graphs correspond to the reconstruction of the three variables of data-set 2. The 
experiments correspond to the RMD scenario, that is, every element of the three 
time-series of data-set 2 is considered missing and is estimated with all the tech-
niques covered in this chapter. The evaluation is made with respect to the observed 
element (red line). The solid line corresponds to AR-BN technique. Qualitatively, 
AR-BN performs well, especially for variables 1 and 2. Linear interpolation also has 
a nice performance. The difference between linear interpolation and AR-BN is that 
the first performs well when the variable has low correlation between each other, 
while AR-BN takes into account the relation between all variables in a domain.

Figure 8.8 summarizes the errors incurred by each technique, according to the 
error metrics described in the section “Error Metrics for the Estimation of Missing 
Values.” Bars correspond to average values and error lines indicate standard deviation.

3 R is a language and environment for statistical computing and graphics, see http://www. 
r-project.org/.

K30612_C008.indd   141 06/11/18   12:44:02 PM



142 ◾ Military Applications of Data Analytics

50000

(a)

(b)

(c)

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

100000

150000

200000

250000
Var 1 observed
BN
AR-BN
Linear interpolation
Spline interpolation
AR(1)
AR(n)

Va
r 1

Time samples

200

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

400

600

800

1000

1200

Var 2 observed
BN
AR-BN
Linear interpolation
Spline interpolation
AR(1)
AR(n)

Va
r 2

Time samples

50

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

100

200

150

250

300

400

350

Var 3 observed
BN
AR-BN
Linear interpolation
Spline interpolation
AR(1)
AR(n)

Va
r 3

Time samples

Figure 8.7 Example of the missing data estimation using the different techniques. 
The example corresponds to the 3 different variables of data-set 2, respectively, 
for an RMD scenario. For this example, each sample of the time-series is hidden 
one at a time, and the missing sample is estimated using the rest of the series as 
necessary by the different estimation techniques.
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Figure 8.9 provides a more detailed view by data-set and error metric. The left 
column in the figure corresponds to data-set 1, and the right column corresponds 
to data-set 2. The rows in the figure correspond to every error metric described in 
the section “Error Metrics for the Estimation of Missing Values.” First, Erms, next 
Er, Ea, Emin, and Emax. Bars and error lines correspond to average values and stan-
dard deviation, respectively. Inside each graph, the three scenarios of missing values 
are exposed: random missing data (RMD), random missing blocks (RMB) and all 
missing data (AMD), as explained earlier.

From this detailed view, it can be appreciated that the proposed AR-BN achieves 
a good compromise in the reconstruction across different scenarios, data-sets, and 
error metrics. Unexpectedly, linear interpolation achieves better overall reconstruc-
tion than the more advanced spline interpolation. Classical autoregressive mod-
els achieve reasonable performance but are highly unstable in their predictions as 
demonstrated by the large standard deviations coupled with disparate differences 
between Emin and Emax.

In order to clearly understand the meaning of these results, let us revise a por-
tion of the information in Figure 8.9. Consider the left column, corresponding to 
data-set 1 formed by 10 variables. The first three rows show the measured perfor-
mance of all methods with three parameters: root mean square, average percent 
relative, and absolute average percent relative. Literature considers that the absolute 
percent relative error (Er) is an important indicator of the accuracy of the models 
(Osman et al., 2001). In this indicator (second row of Figure 8.9), AR-BN obtains 
low values for missing data and missing blocks compared with other traditional 
methods. However, for comparing the absolute average percent relative error (Ea), 
the values favored other methods.

Considering the parameters (E inm ) and (E axm ), the minimum values are bet-
ter for methods that have no interplay between variables, but the E axm  parameter 
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Figure 8.8 Reconstruction errors incurred by each technique across data-sets, 
scenarios, folds, and variables. Bars and error lines correspond to average values 
and standard deviation, respectively.
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Figure 8.9 Reconstruction errors incurred by each technique across folds and 
variables. Columns correspond to data-set; Left: data-set 1; Right: data-set 2; 
Rows correspond to different error metric: from top to bottom: Erms , Er , Ea, Emin, 
and Emax. Bars and error lines correspond to average values and standard devia-
tion, respectively.
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favored methods that considered relations between the variables in the data-set. 
Notice the bottom-left graph of Figure 8.9; the performance of all these methods 
are similar for both missing data and missing block.

Limits of Missing Data Estimation Approaches

Figure 8.10 relates the variable feature space given by the variable autoregressive 
order and its average relation to all other variables in its data-set (avg_r) against the 
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Figure 8.10 Relation between the variable feature space and the techniques for 
the three different scenarios. Left: Scatterplots of the variable feature space  versus 
the error for each variable reconstructed through different techniques. The tech-
nique that achieves the lowest error is considered to dominate the region of the 
variable feature space. In order to determine the region of the variable feature 
space, the different feature vectors for each of the variables for both data-sets are 
used as seed-vector quantizers for establishing a Voronoi partition. Each region 
of the Voronoi parcellation is then colored according to the dominant technique.
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dominant technique for the three scenarios: (1) for missing data, (2) for missing 
block, and (3) for missing variable. On the left side of each scenario is a scatter plot 
of the variable feature space versus the error for each variable reconstructed through 
different techniques. The technique that achieves the lowest error is considered 
to dominate the region of the variable feature space. The dominant technique is 
that which affords the lowest error in a particular region of the variable feature 
space. On the right side, regions are calculated using the Voronoi partition. In 
order to determine the region of the variable feature space, the different feature 
vectors for each of the variables for both data-sets are used as seed-vector quantizers 
for establishing a Voronoi partition. 10 seed vectors appear from data-set 1 plus 3 
seed vectors for data-set 2. Each region of the Voronoi parcellation is then colored 
according to the dominant technique.

It can be appreciated how the use of one technique over the other is subjected 
to the characteristics of the variable in terms of its autoregressive information, as 
well as the amount of dependency that the variable shares with fellow variables in 
the data-set as hypothesized. In particular, linear interpolation performs particu-
larly well when the estimated autoregressive orders of the variables are low. When 
a full variable needs to be reconstructed from related information (scenario (c)), it 
is obvious that the AR-BN dominance of the variable feature space grows as the 
autoregressive information does.

Conclusions and Future Work
We have explored the relation between a variable feature space represented by its 
autoregressive order and its relation to other variables in its data-set against differ-
ent reconstruction techniques. Our results suggest that the interplay between the 
variable’s characteristics in the data-set dictates the most beneficial reconstruction 
option.

We have shown that the proposed AR-BN achieves a particularly competitive 
reconstruction regardless of the scenario, data-set, and error metric used. Although 
we have reported signals stationarity for reproducibility, it has not further been 
considered for this chapter. We believe signal stationarity will also be a critical 
element in the variable feature space, supporting the decision of which estimation 
technique to use. Consequently, we plan to explore its effect.

The AR-BN model can be trivially extended to any level of autoregression and 
can be easily adapted for nonnumerical data. In this sense, different autoregressive 
stages, whether past or future, must be added “in parallel” rather than “in series” so 
that these observations can be appreciated through the Markov blanket. We believe 
the proposed AR-BN profits from both within-variable information and statistical 
dependencies across variables, thus representing a valuable tool for the estimation 
of missing data in incomplete databases.
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