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a b s t r a c t 
A truly autonomous artificial intelligence agent should be able to drive its own learning process. That is, 
decide what to explore and what to learn, identifying what constitutes potential useful data as exam- 
ples of concepts or what strategy to follow to solve a new task. Different effort s have been developed 
in machine learning towards this aim. Approaches that introduce new concepts, like predicate invention 
in Inductive Logic Programming (ILP) techniques, normally require the selection of examples by the user. 
Techniques that learn behavior policies through exploration like Reinforcement Learning (RL) with intrin- 
sic motivation , to guide the agent into interesting areas to discover new goals, assume that all the states 
and actions are predefined in advance. In this paper, we describe a system, called ADC, that combines 
techniques from ILP with predicate invention and RL with intrinsic motivation to discover new concepts, 
states and actions to learn behavior policies. ADC drives its own learning process, collecting its own ex- 
amples for autonomously learning concepts. These new concepts can be used to describe its environment 
and define new states and actions used to learn behaviors to solve tasks. We show the effectiveness of 
our approach in simulated robotics environments. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 
Designing autonomous artificial intelligent agents requires to 

create representations for the current knowledge of the agent, 
methods to acquire new knowledge and to reason with it, 
and mechanisms to provide incremental and continuous learning 
( Russell & Norvig, 2008 ). Ideally, carrying all these processes with 
low human intervention. Among the Machine Learning (ML) tech- 
niques that can be useful to address these challenges are Induc- 
tive Logic Programming (ILP) ( Muggleton, 1991 ) and Reinforcement 
Learning (RL) ( Sutton & Barto, 1998 ). ILP provides a first-order lan- 
guage and robust inference mechanisms from which knowledge, 
represented as abstract concepts, can be induced. Some ILP tech- 
niques also provide predicate invention to introduce new pred- 
icates to improve the background knowledge of the system. On 
the other hand, RL has been successful for learning (near) opti- 
mal behavior policies from interactions with the environment. Al- 
though, RL normally uses reward functions defined by users, re- 
cently, self-motivation functions ( Merrick & Mahler, 2013; Singh, 
Barto, & Chentanez, 2005 ) have been introduced to automatically 
guide the agent to reach interesting situations that may be useful 
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to solve tasks. These approaches, however, are far from creating 
autonomous agents as they depend on a careful selection of exam- 
ples or predefined descriptions of states and actions. 

In this paper, a system called ADC, for Automatic Discovery of 
Concepts, is described. An agent with ADC automatically drives its 
own learning process to discover relational concepts and learn be- 
haviors. An agent with ADC incrementally builds a graph-based 
representation of its environment while exploring its environment 
using intrinsic motivation. Frequent subgraphs are grouped and 
transformed into logic clauses from which relational concepts are 
learned using an ILP algorithm. While exploring its environment, 
the agent is immersed in an RL framework where policies are 
learned and where new state descriptions can be incorporated dur- 
ing the learning process using the newly discovered relational con- 
cepts. Once a policy is learned for a particular subgoal the se- 
quence of states and actions involved in the policy are stored for 
future use. 

The main contributions of ADC are: (a) a novel concept discov- 
ery algorithm where an agent automatically decides what to learn 
by gathering instances of unknown but potential useful concepts 
and (b) a novel reinforcement learning algorithm for learning be- 
haviors which uses intrinsic motivation and where the state rep- 
resentation can dynamically changed during the learning process. 
This paper is mainly focused in the second contribution taking ad- 
vantage of the first one. In particular, this paper describes how the 
proposed approach can construct new state definitions, with newly 
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discovered concepts, and how new actions can be learned while 
exploring an environment. Also two novel techniques (biased ac- 
tions and intrinsic motivation function based on an asymmetrical 
version of the Wundt’s curve ( Berlyne, 1960 )) are introduced to au- 
tomatically guide the exploration of the environment. 

The paper is organized as follows. Section 2 provides an 
overview of related work in two fields: ILP with demand-driven 
predicate invention and RL with intrinsic motivation. Section 3 de- 
scribes the ADC algorithm. Section 4 describes the experiments 
performed to evaluate ADC and its components in two simulated 
domains using a humanoid robot. Finally, conclusions and future 
research directions are given in Section 5 . 
2. Related work 

Regarding concept discovery, a wide range of successful ap- 
proaches are based on Inductive Logic Programming (ILP) with 
predicate invention. In particular, ADC is closely related to ILP 
systems with demand-driven predicate invention. Demand-driven 
predicate invention is used when the existing vocabulary is not 
enough to form a concept, so it is necessary to add a new predicate 
( Stahl, 1996 ). Some of the most relevant works will be described as 
follows. 

Multiple concept learning with predicate invention in robotics 
domains has been addressed in Hyper ( Kosmerlj, Bratko, & Zabkar, 
2011; Leban, Zabkar, & Bratko, 2008 ). Hyper starts with background 
knowledge and can perform predicate invention adding place- 
holder predicates (predicates which are being invented) to learn 
the target predicates. Positive and negative examples are provided 
to the system, the positive examples are obtained by the robot 
while it explores the environment guided by a human (through 
commands) and the negative examples are synthetically generated. 

Meta-Interpretive Learning (MIL implemented by Metagol D / O ) 
( Muggleton, Lin, Pahlavi, & Tamaddoni-Nezhad, 2014; Muggleton, 
Lin, & Tamaddoni-Nezhad, 2015 ) is based on meta-rules, induction 
and abduction, to produce higher-order datalog programs which 
take advantage of predicate invention and recursivity. MIL is based 
on incremental declarative multi-predicate learning, using meta- 
rules to conduct the search of the hypothesis from a set of ex- 
amples. Meta-rules are like templates where the meta-interpreter 
performs substitutions to introduce new predicates (predicate in- 
vention). Metagol O has shown the advantage of using composite 
objects and actions (formed by other primitive and/or composite 
objects and actions) to produce resource efficient strategies from 
examples. Experiments with composite elements have been per- 
formed with a simulated humanoid robot. 

An alternative approach based on teleo-reactive programs (TRP) 
for learning new concepts and skills of different hierarchies from 
existing knowledge is proposed in Li, Stracuzzi, and Langley (2008) . 
In the manner of a STRIPS planner, each skill consists of a goal, 
an initial state or precondition, an action or method to reach the 
goal, and a final state or post-condition. First a bottom-up infer- 
ence mechanism is performed to identify the current state using 
the perceptions of the agent and background knowledge, then TRP 
searches for the first high-level goal that is not satisfied, and tries 
to form a path in the hierarchy of skills from the current state 
of the agent to that goal. When a sequence of skills to achieve 
the goal cannot be found, the algorithm introduces new skills. The 
new skills form their preconditions and goals using preconditions 
of concepts and skills closest to the goal. SPI and TRP were tested 
on databases and card games, respectively. 

Also, a related work called Statistical Predicate Invention (SPI) 
( Stanley & Domingos, 2007 ) proposes a generalization of predi- 
cate invention, known as statistical learning for hidden variable 
discovery. The algorithm, Multiple Relational Clustering (MRC), is 
presented to cluster objects, attributes and their relations using 

Markov logic (an extension of FOL), where each cluster represents 
a unit predicate. 

ADC introduces new predicates (concepts) automatically, as 
SPI, TRP and Hyper, but also automatically discovers examples of 
those potential concepts from the environment. In this sense, ADC 
does not need databases of examples or using predefined tem- 
plates for the discovery of new predicates. ADC is able to col- 
lect positive examples and create negative examples for the induc- 
tion process. As TRP and Hyper, ADC performs incremental hier- 
archical multi-predicate learning because of its graph-based rep- 
resentation. Although, other approaches have been proposed to 
also learn hierarchical concepts (e.g., Chien, Hu, and Ju (2009) ; 
Davis et al. (2011) ; Fu and Buchanan (1985) ; Holder, Cook, and 
Djoko (1994) ; Rivest and Sloan (1994) ; Rosca (1997) ; Tani and 
Nolfi (1999) ; Zupan, Bohanec, Bratko, and Demšar (1999) ), they 
are usually designed to work on databases or in controlled envi- 
ronments, as in SPI, TRP and Hyper. Metagol has shown the ad- 
vantages of learning composite objects and actions, while ADC has 
been used to discover composite concepts about objects in robotics 
domains. The use of meta-rules in MIL is a powerful tool for pred- 
icate invention, but it depends on the number and design of the 
meta-rules to produce useful predicates. Also, Metagol, like tra- 
ditional ILP systems, uses examples provided by the user. In this 
sense, the main advantage of ADC over other ILP systems, includ- 
ing Metagol, is its ability to automatically discover and collect ex- 
amples of potential concepts directly from the environment, driv- 
ing its own learning process. 

RL with relational representations of states, actions and specific 
goals has been addressed in what is called, relational reinforce- 
ment learning (RRL) ( Driessens & Džeroski, 2004; Džeroski, Raedt, 
& Driessens, 2001; Martínez, Alenya, & Torras, 2015; Morales, 
2004; Nickles & Rettinger, 2014 ), but contrary to ADC, most of 
these works have fixed representations that are not created dur- 
ing the learning process. Our approach has some differences com- 
pared with recent work as Deep reinforcement learning (DRL) (as 
learning to play video games ( Mnih et al., 2013 ) or in robotic tasks 
( Levine, Finn, Darrell, & Abbeel, 2016 )). The representation used in 
ADC is easier to understand than that used in DRL. Unlike DRL, 
ADC is able to discover its own examples to learn incrementally, 
even when the learning process is interrupted. Also, in ADC when 
a piece of knowledge is added to its background knowledge, it can 
be used in other learning tasks. 

Recent research on RL has focused on the definition of a re- 
ward function that is independent of the main goal to guide the 
learning process ( Merrick & Mahler, 2013; Singh et al., 2005 ). RL 
with intrinsic motivation (IM) ( Singh et al., 2005 ) aims to design 
a general method of motivation to help an agent to autonomously 
develop skills, regardless of the traditional extrinsic rewards which 
may or may not simultaneously exist with the intrinsic motivation 
mechanism. Several mechanisms and applications of intrinsic mo- 
tivation (IM) have been addressed from different disciplines, from 
studies in natural systems to artificial intelligence algorithms for 
the design of self-motivated agents, such as robots that can acquire 
knowledge and skills through their own experience ( Baldassarre 
& Mirolli, 2013; Merrick & Mahler, 2013 ). Some approaches have 
worked with IM based on novelty measuring the level of agree- 
ment between the expected and the obtained observations us- 
ing incremental hierarchical discriminant regression trees and ha- 
bituated self-organizing maps ( Saunders & Gero, 2001; Zhang & 
Weng, 2002 ). However, this type of models have problems with 
random events which are recognized as highly novel ( Merrick & 
Mahler, 2013 ). 

Some researchers have proposed motivators to avoid giv- 
ing high rewards to random events ( Kaplan & Oudeyer, 2003; 
Merrick & Mahler, 2013; Schmidhuber, 1990 ). In Kaplan and 
Oudeyer (2003) three motivators are used: predictability, 
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familiarity, and stability. Predictability measures the predic- 
tion error of an observed state in a situation characterized by a 
set of observations and actions. Familiarity measures how often a 
state transition occurs. Stability measures the distance between an 
observation of a state and its average value over a period of time. 
These three components are used to calculate the final intrinsic 
reward, being this larger with maximum stability and with in- 
creasing familiarity and predictability. However, when the goal is 
to perform a task rather than staying in certain states, stability can 
be a problem (stability can lead to stay in similar/equal states). 
Merrick and Maher (2017) ; 2013 ); Schmidhuber (1990) have used 
notions of cognitive concepts as interest, boring and curiosity 
using neural networks (curiosity by predictability), context-free 
grammars and potential tasks (interest based on occurrences 
of events). These mechanisms have been tested on sensing and 
controlling motors of a robot and in computer games. 

IM for measuring competence progress from sensorimotor 
vectors data using learning by imitation and learning inverse 
models has been used in Nguyen and Oudeyer (2014) . In 
Georgeon, Marshall, and Gay (2012) the authors search for sen- 
sorimotor patterns, with self-motivation based on a value func- 
tion, to analyze behaviors instead of states of the environment. 
In Bonarini, Lazaric, Restelli, and Vitalli (2006) , the authors learn 
skills based on three stages: babbling (random exploration), moti- 
vating (based on the probabilities over states and actions prefer- 
ring states difficult to reach and states which lead to infrequent 
states), and skill acquisition (by self-generated reinforcements and 
goals). Also, different kinds of IM based on novelty and habitu- 
ation for cumulative learning have been applied to learn control 
programs applied to robotics ( Baldassarre & Mirolli, 2013 ). 

In reinforcement learning, IM has been used to provide agents 
with a sense of self-motivation to learn tasks. A representation of 
skills based on options with IM based on novelty (prediction of 
outgoing events) is used to learn skills at different levels (hierar- 
chies) in intrinsically motivated RL ( Singh et al., 2005 ). IM based 
on differences over the time between value functions has been 
used to guide the exploration mechanism ( Simsek & Barto, 2006 ). 
A simplified measure for IM in RL is proposed in Bureau and Se- 
bag (2014) , where states are represented as multi-armed bandit 
problems, the IM function considers the number of visits to states 
and an entropy measure. Sufficiently visited states are not longer 
considered as intrinsic goals. 

The IM used in ADC is similar to the measures proposed in 
Bureau and Sebag (2014) ; Merrick and Mahler (2013) but it is de- 
signed to work on a concept discovery framework during the ex- 
ploration of unknown environments, does not require an a priori 
model of the task that is learning, and it does not depend on the 
occurrence of specific events in the environment. 

Besides the aforementioned approaches of RL with intrinsic mo- 
tivation, a vast number of approaches has been developed using 
traditional RL for learning behavior policies. However, there is little 
work on learning other elements, such as representation of states 
and actions which may assist an agent to identify and improve the 
exploration of the environment. ADC is able to create and change 
its own state representation during learning and can learn useful 
sequences of actions to solve particular tasks. ADC mechanisms are 
simple to implement, independent of the RL algorithm, and can 
work in an environment where states may not be characterized 
with its current background knowledge. 
3. ADC: Automatic discovery of concepts 

Our approach ADC for intelligent agents is designed to auto- 
matically discover concepts and learn behaviors, self-driving its 
learning process in unknown environments. The agent has an ini- 
tial background knowledge stored in first-order logic formed by 

definitions of elements of the environment and relations be- 
tween them, as well as primitive actions ( Tenorio-González & 
Morales, 2016 ). The agent explores the environment performing 
its actions, gathers information with its sensors and identifies ele- 
ments and their relations with its background knowledge. For in- 
stance, given information from laser readings, and definitions in 
the background knowledge of how to recognize from that sensor’s 
information, say, a “wall”, with some relations between “walls”, 
like “corner”, a robot traversing its environment will use them to 
identify “walls” and “corners” in the environment. The objects and 
relations that can be recognized from the sensors are incrementally 
represented in a graph while the robot is exploring its environ- 
ment. The agent uses this representation to learn concepts about 
objects and identify situations where behaviors can be learned. 

In ADC, given: 
• An initial background knowledge BK formed by a set of object 

definition clauses O , a set of relation definition clauses R (be- 
tween objects and/or their attributes), and a set of action defi- 
nition clauses A . 
Perform a self-guided exploration process, with intrinsic moti- 

vation and biased actions; and two simultaneous processes: 
• Concept formation by an inductive logic programming process 

to learn concepts Cg . 
• Learning of actions A by a reinforcement learning process based 

on a relational representation of states S defined by concepts 
Cg . 
New knowledge ( Cg, S, A ∈ BK ) is acquired: 

• Extending the initial BK ( O, R, A ∈ BK ) with concept definition 
clauses ( c g ∈ Cg ), state definition clauses ( s ∈ S ) and additional 
actions a representing behavior policies π ( a ∈ A ). 
The pseudocode of ADC is shown in Algorithm 1 and it is de- 

Algorithm 1 ADC algorithm. 
1: Let: BK background knowledge ( O objects, R relationsamong 

objects, A set of actions), r e reward, T set of conditions to iden- 
tify target goals 

2: Start 
3: Set groups C = ∅ , S = ∅ , graph G = null, π = ∅ , Q s,a = ∅ and e s,a = 

∅ 
4: repeat 
5: repeat 
6: Update Action Learning(BK, G, S, Q, e, r e ) % see Algorithm 3 
7: until current state satisfies T or size (G ) < graph _ size 
8: Update Concept Formation (C, G, π , BK) % see Algorithm 2 
9: until a task is learned or goal is reached 

10: AddNewActions (π , BK) % see Algorithm 4 
11: End 
scribed in more detail in the following sections. 
3.1. Concept formation 

The initial background knowledge BK is formed by a set of ba- 
sic objects O (e.g., walls) and relations R between objects (e.g., 
touches, on, near, etc.) as well as some basic actions A (e.g., move- 
forward, turn-right, etc.). During the exploration phase, a graph G , 
representing objects and relations identified with the current BK 
from sensor readings in the environment, is incrementally built, 
where objects and their attributes are represented as vertexes and 
relations as edges. When the arity of a relation is greater than two 
and there is not direct mapping to a simple graph, it is possible 
to use conceptual graphs ( Sowa, 2008 ) to represent objects and 
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their relations as concepts and conceptual relations (both, as ver- 
texes of a graph). The agent incrementally constructs a graph un- 
til it reaches an intrinsic goal (an interesting state) or an extrinsic 
goal (representing a predefined goal of the current task), or a given 
maximum graph size. 

ADC performs four main steps for learning concepts (see 
Algorithm 2 ): 
Algorithm 2 ADC: Update Concept Formation 

1: Let: BK = background knowledge, C = set of groups, 
G = constructed graph. 

2: Start 
3: Find frequent sub-graphs ( SG ) in G 
4: for each sub-graph sg ∈ SG do 
5: if sg is similar to elements of an existing group g ∈ C then 
6: g = g ∪ { sg} 
7: else 
8: Let g ′ = { sg} and C = C ∪ { g ′ } 
9: end if 

10: end for 
11: for all g ∈ C that was created or updated do 
12: Induce a new concept c g 
13: BK = BK ∪ { c g } 
14: end for 
15: End 
1. In the graph-based representation G constructed during the 

exploration, ADC identifies potential concepts by searching 
for frequent sub-graphs sg . ADC assumes that frequent sub- 
graphs represent potentially relevant concepts. The frequent 
sub-graphs are discovered using a sub-graph discovery system, 
Subdue ( Holder et al., 1994 ), that uses inexact matching and the 
minimum description length (MDL) principle. 

2. The frequent substructure discovery process can identify a very 
large number of sub-graphs many of which are redundant or 
could be instances of a more general concept. To overcome this, 
ADC forms groups g of similar sub-graphs with their equivalent 
clausal form definition (each subgraph is represented as a logic 
clause too). Two similarity measures are used to group sub- 
graphs. The first measure clusters instances which share the 
same objects and relations although their structures and sizes 
may be different. The second measure considers the structure 
and size, evaluating the cost of structural changes to make two 
sub-graphs equal. 

3. Each time a sub-graph sg is added to a group g , its clausal 
form and all the clauses associated to that group are used to 
reinduce the concept definition c g of that group using Progol 
( Muggleton, 1995 ). The clauses representing the sub-graphs are 
used as positive examples and negative examples are taken 
from other groups and/or created using variations of the pos- 
itive examples (variations of positive examples refers to exam- 
ples created by removing elements from the definitions of the 
positive examples). The induced concept is a clause definition 
where the head is an n-ary predicate and the body is a con- 
junction of predicates, with n being the number of the distinct 
arguments used in the predicates of the body of each clause. 

4. The new induced definition c g of a concept is used to com- 
press the current graph G by substituting the instances of 
the whole sub-graph (representing c g ) by simple nodes with 
their corresponding arcs. Currently, the compression of G us- 
ing c g is performed through the algorithm provided by Subdue 
( Holder et al., 1994 ). The compressed graph is then used as new 
input to our algorithm to find new common sub-graphs, from 
which new, hierarchical concepts can be induced. 

A detailed description and evaluation of the concept for- 
mation process of ADC can be found in Tenorio-González and 
Morales (2016) . In this paper, we incorporated this concept dis- 
covery algorithm in a reinforcement learning framework to cre- 
ate an autonomous agent that could also discover useful behaviors 
to solve tasks. In this case, the graph, from which the concepts 
are obtained, is incrementally constructed using an ε- greedy ex- 
ploration strategy with intrinsic motivation and biased actions (as 
explained below). Also the learned concepts incorporated into the 
background knowledge are used to describe new states for the re- 
inforcement learning algorithm described in the following section. 
New sequences of actions can also be learned and incorporated as 
primitive actions as described below. 
3.2. Behavior policies learning 

In addition to discovering new concepts, ADC can learn how to 
perform interesting tasks. This is achieved through a reinforcement 
learning algorithm based on SARSA( λ) ( Sutton & Barto, 1998 ) with 
several modifications (see Algorithm 4 ), explained in this section: 
Algorithm 3 ADC: Add new actions 

1: Let s i = initial state in current task, A set of actions in BK, π = 
learned policy 

2: Start 
3: Let sec = sequence of states and actions ( s ∈ S, a ∈ A ) from s i to 

final state s f according π
4: Let new action be a clause na ← s i , sec, s f 
5: Set A = A ∪ { na } 
6: End 

(i) The set of states and its representation can be constructed and 
changed while the agent is learning a new task, (ii) once a pol- 
icy is learned for a particular task, the sequence of state and ac- 
tions contained in the policy, from the initial to the final state, are 
grouped as a new individual action and added into the background 
knowledge for use in future tasks, and (iii) the exploration strategy 
is based on a novel intrinsic motivation function and/or biased ac- 
tions. In this stage the background knowledge BK will be extended 
adding state definitions S describing situations of the environment, 
and a behavior policy π as a new action. The pseudocode for be- 
havior learning in ADC is presented in Algorithm 4 . 
1. State formation. When the agent explores the environment, 

each time the agent performs an action a ∈ BK , it checks which 
learned concepts ( c g ∈ BK ) can be identified (are true ) in that 
particular situation. The conjunction of those concepts is stored 
as a clause defining the new state s which is added to the ex- 
isting set of states S , if and only if this state does not already 
exist in S . The body of the clause is formed by the conjunc- 
tion of { c g | c g ∈ BK, c g = true } and the head by a predicate with 
an identifier argument. These state definitions can be updated 
adding new learned concept definitions during the learning 
process (see lines 5 and 8 of Algorithm 4 ). In contrast to tradi- 
tional RL algorithms, ADC can create, increase and/or update its 
state representation during exploration. In practice, the agent 
may require more episodes to learn, but also more accurate 
descriptions of the state space can be achieved. Algorithm 5 
(lines 4 and 7 of Algorithm 4 ) describes the process when the 
agent senses the environment, updates its representation G and 
tries to recognize its current situation using its BK . Algorithm 6 
(lines 5 and 8 of Algorithm 4 ) describes how a state definition 
can be created or updated with definitions of new discovered 
concepts c g ∈ BK . Also, the number of visits to the state s is up- 
dated, this value is used to calculate the intrinsic motivation as 
it is described in the next steps. 



196 A.C. Tenorio-González, E.F. Morales / Expert Systems With Applications 92 (2018) 192–205 
Algorithm 4 ADC: Update action learning 

1: Let: BK = background knowledge, C = set of groups, S = setof 
states, G = constructed graph, Q and e = Q and trace values, 
r e =reward 

2: Start 
3: Set r e = 0 , r i = 0 , maxNumV isits S = 1 , newKnowl edge = fal se 
4: if Sense( s t , BK, G, newKnowl) then 
5: Update state( s, S, BK) 
6: Let a ← Perform action( s ) observe r e , s t+1 
7: if Sense( s t+1 , S, BK, G, newKnowl) then 
8: Update state( s t+1 , S, BK) 
9: Let r i ← Calculate r_i using Eq. 6 

10: Let r = r e + r i 
11: if s t+1 " = s t then 
12: v alue a += inc 
13: else 
14: if newKnowl = false then v alue a –= dec else v alue a += 

inc end if 
15: end if 
16: Let a ′ ← Perform action( s ′ ) 
17: Update Q(s, a ) and trace values, e (s, a ) , for each s, a pair to 

update π {SARSA −λ Equations 1 - 5} 
18: else 
19: if newKnowl = false then v alue a –= dec else v alue a += inc 

end if 
20: Let a ′ ← Perform action( s ′ ) 
21: end if 
22: else 
23: if newKnowl = false then v alue a –= dec else v alue a += inc 

end if 
24: Let a ← Perform action( s ) 
25: end if 
26: End 
Algorithm 5 ADC: Sense 

1: Let BK = background knowledge, G = graph, s = state ( s ∈ S), 
c g = concept definition ( c g ∈ BK), newKnowl = flag 

2: Sense( s, BK, G, newKnowl) 
3: Start 
4: Add objects O ∈ BK and relations R ∈ BK identified inthe envi- 

ronment to the graph G 
5: if BK has been updated then newKnowl = true else 

newKnowl = false end if 
6: if situation is defined by { s | s ∈ BK, s = true } or itcan be iden- 

tified using { c g | c g ∈ BK, c g = t rue } then Return t rue else Return 
false end if 

7: End 
2. Behavior learning. In ADC, the learning of behaviors is per- 

formed with a SARSA algorithm with eligibility traces ( Sutton & 
Barto, 1998 ), and with intrinsic motivation and biased actions. 
When an extrinsic (traditional) goal is given by a user, a be- 
havior policy π to reach that goal is learned using SARSA( λ). In 
SARSA( λ), Q ( s, a ) refers to a value function that represents the 
expected total reward that an agent can received being in state 
s and performing action a , following a particular policy. e ( s, a ) 
is a function used in reinforcement learning to represent the el- 
igibility trace. π is a policy that given a state returns an action 
( π ( s ) → a ). π ∗ is the optimal policy. In ADC, these values are 
updated, as in SARSA( λ), following Eqs. (1) –( 5 ) (lines 10 and 17 
in Algorithm 4 ). 
r = r i + r e (1) 

Algorithm 6 ADC: Update state 
1: Let A = set of actions, maxNumV isits S = maximum number 

ofvisits, s = state ( s ∈ S), minNumV isits a −s = minimum num- 
berof times to perform an a on each s , c g = concept definition 
( c g ∈ BK), BK = background knowledge 

2: Start 
3: Verify which c g ∈ BK are true in the situation 
4: Let s ← c g 1 , c g 2 , ... . , defining s withthose { c g | c g ∈ BK, c g = true } 
5: Set S = S ∪ { s } or update s in S
6: if numV isits s < (| A | ∗ minNumV isits a −s ) then 
7: numV isits s = numV isits s + 1 
8: if numV isits s > maxNumV isits S then 
9: Let maxNumV isits S = numV isits s 

10: end if 
11: end if 
12: Return numV isits s 
13: End 

δ = r + γ Q(s t+1 , a t+1 ) − Q(s t , a t ) (2) 
e (s t , a t ) = e (s t , a t ) + 1 (3) 
for all s, a 
Q ( s, a ) = Q ( s, a ) + αδe ( s, a ) (4) 
e (s, a ) = γ λe (s, a ) (5) 
Where r i , r e are the rewards, α is the learning rate, γ is the 
discount parameter, and λ is a discounted factor over the length 
of a trace. 
A policy π to reach a goal is considered as learned if the 
changes in the accumulated reward after consecutive trials are 
smaller than a threshold value. Once a policy π is considered as 
learned, a new (macro) action na defined as a clause, represent- 
ing π , is added to the background knowledge A ∈ BK . The body 
of the clause is formed by the conjunction of predicates of the 
starting state s i of the task, the sequence of states and actions 
( s i − a i , s s − a s , s t − a t , . . . , s f ) suggested by the policy from this 
state to the final state, and the final state s f . The head of the 
clause is formed by a predicate with an identifier argument. 
Algorithm 3 describes that the BK ( S, A ∈ BK ) of ADC is updated 
with a new action na , using as input data the behavior policy π
learned by the modified SARSA( λ) algorithm ( Algorithm 4 ), and 
the current background knowledge BK of ADC. 

3. Intrinsic motivation. The intrinsic reward is represented by r i 
and it is added as an additional reward to the traditional 
RL reward function ( r e ) as r = r i + r e (see lines 9 an 10 in 
Algorithm 4 ). The intrinsic reward is used to promote the ex- 
ploration of interesting states. In our approach, it is used to 
guide the agent to situations from which new concepts may be 
learned or which are required to learn new tasks. ADC increases 
gradually the interest for new states that become frequent and 
decreases rapidly the interest for known states. The agent gets 
bored fast in known states to accelerate the learning process 
and the intrinsic motivation function also prevents the agent to 
be dazzled with random events. This function is computed by a 
modified Wundt’s curve ( Berlyne, 1960 ) which is based on psy- 
chological concepts. In our case we use an asymmetric Gaussian 
function to obtain the desired behavior illustrated in Fig. 1 . 
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Fig. 1. Sigmoid curves modeling rewards (positive curve) and punishments (nega- 
tive curve) are added to create an asymmetrical Wundt’s curve modeling interest. 
The asymmetric Gaussian function models the interest describing how an agent is 
attracted to novel situations cautiously, losing interest in them slightly faster when 
the situation has been enough seen. 

The curve model of r i in ADC is calculated using Eq. (6) (see 
line 9 in Algorithm 4 ). 
r i = maxReward 

(1 + exp (C 1 ∗ (−nov elty + minNov elty R ))) + 
maxP unish 

(1 + exp (−C 2 ∗ (nov elty − minNov elty P ))) 
(6) 

The first term in Eq. (6) corresponds to the Reward _ Curv e F + and 
the second term represents the P unishment _ Curv e F − (see Fig. 1 ). 
The model requires the definition of the following parameters: 
maxReward and maxPunish (upper limits of reward and penalty 
functions), minNovelty R and minNovelty P (lower limits of novelty 
to reward and punish a state), and C 1 and C 2 , where C 1 < C 2 
defines the asymmetry of the curve. Given a situated agent in 
the environment, the novelty value is updated as follows: 
If { s | s ∈ BK , s = true } , the situation is known , then , 
If numA ction s s = | A | or numV isit s s ≥ ( | A | ∗ minN umVi sit s a −s ) 
nove lty = 0 
Otherwise , 
nove lty = numV isit s s ∗ nove ltyM ostV isite d s 

maxN umVi sit s S 
If the situation is unknown , 
nove lty = maxV alue Nove lty 

(7) 
Here, numActions s keeps track of the number of actions per- 
formed in a state s . minNumV isits a −s is the minimum number 
of actions that should be performed in a state s. numVisits s is 
the number of visits of the current state during exploration, 
each state has its own value set to 0 at the beginning of the 
experiments. maxNumVisits S is the number of visits of the most 
viewed state (among all the states) until then, initially, this 
value is 0 for all the states, and it is equal to the numVisits s 
value of the most visited state. noveltyMostVisited s is the nov- 
elty value of the most visited state in the past. In the proposed 
algorithm, a state stops receiving intrinsic rewards when all its 
possible actions have been performed in this state, or when the 
number of visits ( numVisits s ) is larger than the number of the 
current actions multiplied by a threshold value. 

4. Biased actions. Another option to change the exploration pro- 
cess of the agent is to bias the preference for some actions. 

In this research this is implemented in the exploratory (ran- 
dom) actions of an ε- greedy strategy. The RL algorithm follows 
a modified ε- greedy strategy. Taking completely random actions 
with probability ε, within a concept discovery algorithm like 
ADC, can frequently guide the system to states which can not 
be characterized with the current background knowledge or 
where it is not possible to learn concepts or tasks. In these 
cases the exploration process can be largely extended. In ADC, 
instead of selecting a random action, the action with the high- 
est value a is chosen. In the proposed approach, each action a 
in the BK has associated a value ( value a ) which indicates its 
performance (and preference). When an action a is taken; it is 
rewarded or punished with a small value ranked from 0 to 1 
( inc and dec , see lines 14, 19 and 23 in Algorithm 4 ). If the ac- 
tion a guided the agent to a state where new knowledge (con- 
cepts) was discovered or to a known state, then, its value a is 
increased with a small positive value inc (without exceeding 
1). When the resulting state after performing an action a can- 
not be described or identified by the learned concepts or it is 
the same as the previous state, its value a is decreased with a 
small positive value dec (without decreasing below 0). The ob- 
jective of this method is to accelerate the learning process spe- 
cially in situations where the knowledge of the agent cannot be 
used to characterize the environment, where only random ac- 
tions would have been taken. It is assumed that actions which 
were useful in the past (with greatest value a ) may be useful 
in unexplored states to reach situations where tasks can be 
learned, or in states that are not possible to characterize with 
the current background knowledge. The biased actions strategy 
can be applied during the selection of an exploratory action us- 
ing value a as it is shown in Algorithm 7 (lines 16, 20 and 24 of 

Algorithm 7 ADC: Perform action 
1: Let s = state ( s ∈ S), a = action ( a ∈ A ), Q valuefunction struc- 

ture (with indexes s, a ), v alue a = reward value of anaction a 
2: Start 
3: if ε − greedy _ selection = ε or situation cannot beidentified by 

{ s | s ∈ S} then 
4: if situation cannot be identified by { s | s ∈ S} and an action a 

with a highest v alue a exists then 
5: Choose action a 
6: else 
7: Choose action a ∈ A randomly 
8: end if 
9: else 

10: Select action a with the best Q − V alue for state s 
11: end if 
12: Perform action a 
13: Return a 
14: End 

Algorithm 4 ). 
The ADC algorithm ends when a set of conditions, defining the goal 
state, are satisfied (are true in the current state, T ← condition 1 ∧ 
condition 2 ∧ condition 3 . . . . ). These conditions depends on the task 
that is being learned. For example, a goal could be considered as 
reached (satisfied) if the agent can perceive a green wall. 

The most expensive process in ADC is the discovery of con- 
cepts, because a frequent subgraph algorithm is used. Although 
finding sub-graphs is equivalent to sub-graph isomorphism, which 
is NP-complete ( Cook, 1971 ) (planar subgraph isomorphism can 
be solved in linear time Eppstein (1999) ), we use Subdue, which 
is designed to find a large number of substructures under com- 
putational constraints (in polynomial time). The inexact match- 
ing process for a graph 1 with n vertices and a graph 2 with 
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Fig. 2. Environment of Mobility of objects : initial state and example of goal state. A 
simulated humanoid in a room with walls of boxes and movable balls. (For inter- 
pretation of the references to colour in this figure, the reader is referred to the web 
version of this article.) 
m vertices, where m ≥ n , has a complexity of O(n m +1 ) , although 
its performance can be improved by the use of a branch-and- 
bound search algorithm ( Cook & Holder, 1994 ). A more complete 
analysis of Subdue’s run time can be found in Cook, Holder, and 
Djoko (1996) . The website for the ADC system can be found in: 
https://sites.google.com/site/automaticdiscoveryconcepts/ . 
4. Experiments 

We tested ADC in two robotics domains where the concepts of 
stability and mobility of objects were discovered (as in related work 
Leban et al. (2008) ). The concept of stability refers to discovering 
when placing one object over another object is stable or not. The 
concept of mobility refers to discovering when an object is mov- 
able or not when pushing it. We performed several experiments to 
validate the proposed methodology: 
1. Compare the proposed asymmetric Wundt’s curve against the 

original Wundt’s curve and a measure based on entropy for in- 
trinsic motivation. 

2. Compare the performance of the different components pro- 
posed in ADC (IM and biased actions) in a RL algorithm with 
predefined states. 

3. Perform the previous experiment but now with ADC at full ca- 
pacity where new concepts and states can be created during 
the learning process. 
In the environment for mobility of objects, the agent was placed 

inside a room (3 m 2 ) formed by four walls, see Fig. 2 . The agent 
explored the environment performing four basic actions (move for- 
ward, go left, go right, and push) and states were identified by only 
four colors (green, blue, yellow and red) and by the relative posi- 
tions between the objects and the agent (in front of). The agent 
should learn to go to the red balls and discover the hidden green 
wall by pushing the balls . Four states were defined and provided 
for the experiments with predefined states ( agent in front of a blue 
wall, agent in front of a yellow wall, agent in front of a green wall, 
agent in front of red balls ). The initial background knowledge for 
ADC is shown in Table 1 . In this experiment for learning actions, 
one extrinsic reward was given and graphs of small size were cho- 
sen because of the size of the environment, see Table 3 . 

In the environment for stability of objects, the agent was sur- 
rounded by four objects, see Fig. 3 . The agent explored the envi- 
ronment performing three basic actions (grab, put and turn right) 
and states were described by only 3 colors (yellow balls, a blue 
square box and a red square box) and by the relative positions be- 
tween objects and the agent (in front of, grabbing and on). When 
an object is dropped from its base, it is returned to its original sta- 
ble base position, in this way, the agent could experiment with the 
four objects continuously. In this domain the agent should learn to 
put an object on the top of other object, discovering that this task 
can only be accomplish when the square object is in the base . Four 

Fig. 3. Environment of the experiments. Examples of initial and goal states. A sim- 
ulated humanoid surrounded by two yellow balls, one red box and one blue box. 
Each object is on a fixed green base, all objects could be grabbed by the robot. (For 
interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
states were given by a user for predefined states ( agent in front of 
an object on its base, agent grabbing an object in front of a square ob- 
ject, agent grabbing an object in front of a round object (or an empty 
space), and agent with its empty hands in front of an object on top of 
another one ). The initial background knowledge for ADC is shown 
in Table 2 . Two rewards were used to accelerate the learning of 
behaviors, a large extrinsic reward for the goal and a small ex- 
trinsic reward for an intermediate achievement (in this case when 
the agent grabs an object), and a small graph size was chosen be- 
cause of the small environment, which could be completely ex- 
plored with a small number of actions, see Table 3 . 

In the first experiment we simulated our own agent and envi- 
ronment, in the rest of experiments our agent was a Nao robot 
( Aldebaran-Robotics, 2012 ) in simulated environments through 
Webots for Nao ( Michel, 2004 ). The robot was equipped with a 
camera in its head (to perceive colors) and its four main sonar sen- 
sors in its chest (to perceive distances). 

In the experiments with a relational representation, the situa- 
tions of the robot and the objects in the environment (positions of 
objects and robot, presence and color of objects) were determined 
by the sensor readings of the robot satisfying certain predicates of 
its BK . 

For all the experiments, the general parameters of ADC are in 
Table 3 . The values of the parameters for SARSA( λ) were taken 
from Singh and Sutton (1996) . The values used for intrinsic mo- 
tivation were selected according to Wundt’s curve principles. The 
parameters used for subgraph discovery were experimentally se- 
lected guided by Holder et al. (1994) and Cook and Holder (1994) . 
All the experiments were repeated 10 times, and conducted on De- 
bian Linux 7.1 (OS) on an Intel Core i7-3610QM 2.3 GHz (CPU) with 
6 Gb of RAM at 1600 MHz. 
4.1. Comparison of IM functions in a concept discovery framework 

We compared our proposed IM function against other simi- 
lar IM functions when learning concepts related with the stabil- 
ity of objects. We tested two variations of the Wundt’s curve and 
a similar IM strategy but based on entropy: (i) the original curve 
( Berlyne, 1960; Merrick & Mahler, 2013 ), (ii) the measure of en- 
tropy described in ( Simsek & Barto, 2006 ) and (iii) our asymmetric 
curve. Table 4 shows the learning time, number of episodes, num- 
ber of new created states, and number of discovered concepts for 
each IM function. This experiment was performed with a simulated 
agent, so times reported are shorter than those presented in the 
experiments of the next section, where real learning times using a 
robot in the same task are shown. 

From this experiment, it can be appreciated that the proposed 
asymmetric Wundt’s curve achieved the best times, with a smaller 
number of episodes and a larger set of concepts, all with the lower 
standard deviations. In the rest of the experiments we used our 
proposed IM function. 
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Table 1 
Background knowledge provided for Mobility of objects . 

Background knowledge: Objects, relations and actions 
Objects: 
object/4 : Instance of an object of the world with its arguments: identifier, previous position, current position and color. 
robot/3 : Agent exploring the environment with its arguments: identifier, previous position and current position. 
Relations: 
in_front_of_me/2 : Relative position (in front of) between an object of the world and the agent. 
equal/2 : Approximate equality of two positions. 
different/2 : Approximate inequality of two positions. 
Arguments: identifiers of two instances (object or robot). 
Actions: 
go_right/0, go_right/2 : Turn right 90 ° and move forward while obstacles are not perceived. 
go_lef t/0, go_lef t/2 : Turn left 90 ° and move forward while obstacles are not perceived. 
go_forward/0, go_forward/2 : Go forward while obstacles are not perceived. 
push/0, push/2 : Move the arms to push an object. 
Arguments: identifiers of two instances (robot) in two different time stamps. 

Table 2 
Background knowledge provided for Stability of objects . 

Background knowledge: Objects, relations and actions. 
Objects: 
object/3 : Instance of an object of the world with its arguments: identifier, shape and color. 
robot/1 : Agent exploring the environment with its argument: identifier of the robot. 
Relations: 
in_front_of/2 : Relative position (in front of) among an object on its base and the agent 
grabbing/2 : The agent is grabbing an object 
on/2 : An object is on top of other object 
Arguments: identifiers of two instances (objects or robot). 
Actions: 
grab/0, grab/2 : The agent moves its arms to grab an object 
turn_right/0, turn_right/2 : The agent turns right 90 °
put/0, put/2 : The agent moves its arms to place an object 
Arguments: identifiers of two instances (robot) in two different time stamps. 

Table 3 
Values of parameters used for experiments. 

Parameter Value Parameter Value 
In all experiments 
γ 0.9 λ 0.9 
α 0.1 ε 0.2 
r e 10 
In experiments with r i 
maxReward 1 minNovelty R 0.3 
maxPunish −1 minNovelty P 1.2 
noveltyMostVisited s 1.7 minNumV isits a −s 1.5 
C 1 8 C 2 12 
In experiments with biased actions 
inc 0.1 dec 0.2 
In experiments with ADC in mobility of objects 
graph _ size 50 
In experiments in stability of objects 
graph _ size (ADC) 20 r e 0.1 

Table 4 
Average convergence time, number of episodes and number of concepts for each experiment of 
Stability with different intrinsic motivation functions in ADC. 

Experiment Time (h:min:s) Episodes States Concepts 
AVG (SD) AVG (SD) AVG (SD) AVG (SD) 

ADC with entropy 0 0:24:09 (0 0:12:15) 32 (2) 10 (1) 51 (7) 
ADC with Wundt 0 0:18:03 (0 0:07:51) 33 (3) 11 (5) 45 (10) 
ADC with asymmetric Wundt 0 0:17:30 (0 0:04:46) 28 (1) 11 (1) 53 (6) 

4.2. Evaluation of ADC and its components 
We divided these experiments in two parts: (i) Compare the 

functionality of the different components proposed in ADC against 
RL but with predefined states (i.e., without concept learning and 
with a state representation provided by a user). and (ii) Compare 
ADC and the functionality of the different components proposed 

in ADC against RL with concept formation (i.e., with concept and 
state formation). 

We labeled those variations of the experiments as: 
1. Extrinsic: Traditional RL (Sarsa- λ with eligibility traces and tra- 

ditional extrinsic reward function). 
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Fig. 4. Learning curves with the different components of the ADC algorithm and traditional RL in Mobility of objects with predefined states. 

Fig. 5. Learning curves with the different components of the ADC algorithm and traditional RL in Stability of objects with predefined states. 
2. Extrinsic + I ntrinsic: Traditional RL as above but now with the 

proposed IM function based on the asymmetric Wundt’s curve. 
3. Extrinsic + B iased actions: Traditional RL but now with the pro- 

posed mechanism of biased actions. 
4. Extrinsic + I ntrinsic + B iased actions: Traditional RL with the 

proposed IM function and with the proposed mechanism of bi- 
ased actions. 
Learning curves, learning times and number of episodes ob- 

tained in both domains with predefined states are shown in Figs. 4 
and 5 and Tables 5 and 6 . 

When the states are predefined in advance, and do not change 
during the learning process, the best results in both domains 
are obtained when only the proposed intrinsic reward function 
is added to the traditional RL algorithm. The intrinsic motiva- 

Table 5 
Average convergence time and number of episodes for each experiment of Mo- 
bility of objects with the components of ADC and traditional RL with predefined 
states. 

Experiment with Time (h:min:s) No. episode 
predefined states AVG (SD) AVG (SD) 
Extrinsic (traditional RL) 03:34:09 (00:47:11) 17 (6) 
Extrinsic + I ntrinsic 01:21:14 (00:18:01) 10 (2) 
Extrinsic + B iased actions 01:29:19 (00:35:03) 14 (4) 
Extrinsic + I ntrinsic + B iased actions 01:37:48 (0 0:25:0 0) 11 (3) 

tion helps to focus on constant exploration of few known states 
avoiding to revisit well known states and reducing the learning 
time up to 2 hours for mobility (see Table 5 ) and half an hour for 
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Table 6 
Average convergence time and number of episodes for each experiment of 
Stability of objects with the different components of ADC and traditional RL 
with predefined states. 

Experiment with Time (h:min:s) Episodes 
predefined states AVG (SD) AVG (SD) 
Extrinsic (traditional RL) 03:00:01 (01:06:28) 20 (3) 
Extrinsic + I ntrinsic 02:27:09 (00:33:39) 20 (1) 
Extrinsic + B iased actions 02:53:57 (00:44:53) 22 (2) 
Extrinsic + I ntrinsic + B iased actions 03:54:34 (00:10:54) 20 (1) 

stability (see Table 6 ). Adding only the biased actions to a tradi- 
tional RL algorithm also helps to reduce the time of convergence, 
reducing the number of actions to explore on each state as the 
learning process advances, however it learns in more episodes. 
Combining both strategies, intrinsic motivation and biased actions, 
reduces the learning time compared with a traditional RL algo- 
rithm, however, the learning time is greater than using the guid- 
ing strategies separately. It seems that when the intrinsic motiva- 
tion tries to guide the robot away from often visited states, the 
biased actions produce additional pressure for using a subset of ac- 
tions which hinders the convergence of the learning algorithm. In 
stability of objects, the combination of intrinsic motivation and bi- 
ased actions is more consistent than the other strategies (a lower 
standard deviation in the number of episodes and time of learn- 
ing). But, in this case the combination of intrinsic motivation and 
biased actions has an average learning time almost equal to the 
worst time when the exploration is guided by the traditional RL 
algorithm (see Table 6 ). This could be due to the characteristics 
of the environment with less unknown situations (in contrast to 
the mobility of objects domain, where it was more likely for the 
agent to find situations that could not be characterized by its cur- 
rent states). In this first set of experiments in both domains, it is 
shown that the proposed intrinsic motivation function is working 
as a good strategy in guiding the learning process. 

The second part of the experiments was done using ADC. It in- 
corporates new concepts, new states and new actions during the 
learning process. The learning curves, learning times, number of 
episodes, number of states and number of concepts obtained us- 
ing ADC (incremental representation based on concepts and learn- 
ing of behaviors) are shown in Table 7 and Fig. 6 for mobility of 
objects, and Table 8 and Fig. 7 for stability of objects. The total 
number of concepts learned with each configuration is shown, as 
well as the number of general, singleton and hierarchical concepts. 
General concepts refer to discovered concepts using several in- 
stances in each group, singleton concepts refer to discovered con- 
cepts involving only one instance, and hierarchical concepts refer 
to discovered concepts that have in their definitions previously dis- 
covered concepts. 

Similar behavior policies, states and concepts could be learned 
by the two exploration strategies (IM and biased actions). The best 
results were obtained when ADC incorporated the intrinsic moti- 
vation function to guide the exploration process (according to the 
learning time, and consistency in number of concepts, states and 
episodes). The intrinsic motivation function keeps the agent fo- 
cused in learning both, concepts and the behavior policy. The in- 
trinsic motivation allows a more stable learning process (a lower 
standard deviation in number of concepts and learning time) than 
the traditional strategy of exploration. In this experiment with au- 
tomatic state formation, the biased actions do not favor the learn- 
ing process. This fact could be explained since more exploratory 
actions (biased actions reduce the number of exploratory actions) 
are needed to discover concepts and create states than when the 
states are given at the beginning of the learning process (with pre- 
defined states). Also, this effect of the biased actions remains even 

when combined with intrinsic motivation influencing the learning 
process. This explanation is supported by the good results obtained 
with the traditional RL algorithm (where only ε- greedy is used to 
select the exploratory actions). The final accumulated rewards from 
all the strategies are similar. The learning times in these exper- 
iments were, as expected, larger than those obtained with pre- 
defined states. However, here, new concepts were discovered and 
new states were automatically characterized using those concepts, 
with an accumulated reward and number of episodes similar to 
those obtained with predefined states. 

From the experiments and results with predefined and rela- 
tional representations for the mobility of objects and initial re- 
sults with the stability of objects it was clear that the best re- 
sults were going to be obtained with the intrinsic motivation op- 
tion. In the experiments with relational representations in the first 
domain, we illustrated how ADC was able to construct and up- 
date its own state representation with a background knowledge 
enough to describe the environment. Also, we showed how ADC 
can self-guide its exploration, having best results using intrinsic 
motivation. The strategy with intrinsic motivation provided con- 
sistency in the learning process despite the inclusion of new con- 
cepts, states and actions. In this point of the experiments, we were 
more interested in the new concepts and actions discovered by 
the proposed system and in its ability to solve the task. So, we 
included only results with intrinsic motivation in the stability do- 
main; as we were expecting similar results in terms of number of 
concepts, states and actions with the rest of strategies. In the sec- 
ond set of experiments in both domains, ADC showed its abilities 
to guide its exploration to discover new concepts (predicate inven- 
tion) and learn a task with them. The concepts learned by ADC 
were concepts necessary for learning the task, and concepts de- 
scribing characteristic features and relations of the elements in the 
environment. 

As it was shown in Figs. 4 –6 learning curves are very simi- 
lar. Similar learning curves are expected since all algorithms are 
learning the same task with similar rewards. However, differences 
in total accumulated reward can be obtained depending on the 
exploration, construction of states and influence of the intrinsic 
motivation mechanism. What should be highlighted in the results 
is: the mechanisms to self-guide the exploration (intrinsic motiva- 
tion and biased actions) are consistently guiding the learning pro- 
cess (with smaller standard deviations in most of the measured 
parameters than those obtained with other strategies) and reduc- 
ing the learning times, also ADC is learning the same task than 
a traditional RL algorithm, but constructing and adapting its own 
state representation on the environment self-guiding its explo- 
ration. 95% Confidence intervals for all experiments can be found 
in Tenorio (2017) . 

Examples of a behavior policy (a sequence of three actions and 
four states to reach the goal), states (sets of concepts involving the 
colored walls and balls, and the robot) and concepts (different rel- 
ative positions between the robot and the colored objects) auto- 
matically learned by ADC using only intrinsic motivation (ADC: Ex- 
trinsic + Intrinsic) in mobility of objects are shown in Table 9 . The 
robot learned to go to the balls and move them to find the green 
wall. For reaching this task, four states were identified by the robot 
using ADC: (i) the robot has reached a blue object that is in front of 
it ( state(1) using the discovered concept blue_wall , (ii) the robot is 
in front of a yellow object ( state(3) using the concept yellow_wall ), 
(iii) the robot has reached a red object, it is in front of it ( state(8) us- 
ing the concept red_object ), and (iv) the robot is in front of a green 
object ( state(9) using the concept green_wall ). 

ADC was able to learn additional useful concepts related with 
mobility in addition to the learned concepts that are used to solve 
the task, see Table 10 . ADC could describe which objects were fixed 
and which were movable. The blue objects could not be pushed 
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Table 7 
Average convergence time and number of episodes for each experiment of Mobility of objects with variations of ADC and traditional RL (with 
concept learning, state construction and behavior learning) ( G = General, S = Singleton, H = Hierarchical concepts). 

Experiment Time (h:min:s) No. episode No. states No. concepts {G, S, H} 
AVG (SD) AVG (SD) AVG (SD) AVG (SD) {AVG (SD), AVG (SD), AVG (SD)} 

Extrinsic (traditional RL) 06:44:54 (03:16:00) 21 (3) 12 (3) 168 (13) {27 (6), 142 (16), 145 (5)} 
ADC: Extrinsic + I ntrinsic 06:23:27 (01:41:00) 20 (6) 16 (5) 153 (1) {33 (10) 122 (11) 136 (2)} 
ADC: Extrinsic + B iased actions 18:29:43 (12:10:00) 18 (8) 20 (4) 140 (52) {34 (15), 107 (22), 113 (39)} 
ADC: Extrinsic + I ntrinsic + B iased actions 18:33:44 (04:03:00) 18 (4) 24 (3) 129 (16) {27 (6), 110 (25), 110 (24)} 

Fig. 6. Learning curves with variations of the ADC algorithm compared with traditional RL in Mobility of objects (with concept learning, state construction and behavior 
learning). 

Table 8 
Average convergence time and number of episodes for each experiment of Stability of objects with ADC (with concept learning, 
state construction and behavior learning) ( G = General, S = Singleton, H = Hierarchical concepts). 

Experiment Time (h:min:s) No. episode No. states No. concepts {G, S, H} 
AVG (SD) AVG (SD) AVG (SD) AVG (SD) {AVG (SD), AVG (SD), AVG (SD)} 

ADC: Extrinsic + I ntrinsic 04:07:42 (01:30:53) 13 (3) 11 (2) 82 (8) {34 (13), 41 (5), 51 (6)} 
by the robot ( fixed, fix_aux ), so these objects could be labeled as 
fixed. The red objects could be pushed by the robot, so these ob- 
jects could be labeled as movable ( movable, move_aux ). 

Examples of a behavior, concepts and states descriptions 
formed with those concepts learned by ADC in stability of objects 
are presented in Table 11 . The robot learned to put objects (yel- 
low spheres and red square objects) on top of square blue ob- 
jects, discovering that the most stable base to put an object is 
one with a square shape. The states describe the robot in front of 
the different objects (yellow sphere, red square and blue square; 
state(10), state(8), state(4), state(1), state(5) using the discovered 
concepts yellow_sphere, blue_square, red_square, the robot grabbing 
different objects (states state(6), state(3), state(4), state(1), state(5) 
using concepts grabbing_yellow, grabbing_red , and an object on the 
top of another object (states state(11), state(12) using concepts yel- 
low_ontop_blue, red_ontop_blue . 

As in the mobility domain, ADC learned additional useful 
concepts and states, in this case related with stability. ADC 

could describe two types of stable structures ( yellow_ontop_blue, 
red_ontop_blue ), and a set of concepts and states describing the sit- 
uations in which an object can be put on the top of another object. 
In this experiment, not all the possibilities were discovered, e.g., 
placing objects on top of the red square, as they were not frequent 
in the graphs constructed during this experiment. 

ADC was able to learn concepts about movable and fixed 
objects, and stable structures, as other ILP systems as Hyper 
( Leban et al., 2008 ), but also learned behavior policies during the 
exploration of an environment. However, some expected concepts 
were not possible to be learned because of the initial background 
knowledge of the agent. The experimental results indicate that the 
learning process is more consistent and faster with intrinsic moti- 
vation (in learning time and number of concepts). But as expected, 
learning concepts and constructing the relational representation 
of states during exploration can increase the learning process 
time. 
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Fig. 7. Learning curves with the ADC algorithm (extrinsic and intrinsic rewards) in Stability of objects (with concept learning, state construction and behavior learning). 
Table 9 
Mobility of objects (Extrinsic + I ntrinsic). Learned action, state descriptions where 
actions were learned and concept definitions which are used to describe the states. 
Concepts were named manually. 

Macro actions: 
% The robot learned to go to the right, then go left and push to discover the green 

wall. The actions go_right and go_left means that the robot makes a 90 degrees 
turn and then moves forward. 

do_Action(4):- state(1), go_right(), state(3), go_left(), state(8), push(), state(9). 
New states: 
state(1):- blue_wall(A,B,C,blue,D,E,F). 
state(3):- yellow_wall(A,B,C,yellow,D,E,F). 
state(8):- red_object(A,B,C,red,D,E,F). 
state(9):- green_wall(A,B,C,green,D,E,F). 
Discovered concepts: 
% Objects in front of the robot: 
blue_wall(A,B,C,blue,D,E,F):- 

object(A,B,C,blue), robot(D,E,F), in_front_of_me(A,D). 
yellow_wall(A,B,C,yellow,D,E,F):- 

object(A,B,C,yellow), robot(D,E,F), in_front_of_me(A,D). 
red_object(A,B,C,red,D,E,F):- 

object(A,B,C,red), robot(D,E,F), in_front_of_me(A,D),equal(B,C),different(E,F). 
green_wall(A,B,C,green,D,E,F):- 

object(A,B,C,green), robot(D,E,F), in_front_of_me(A,D). 
5. Conclusions 

In this paper the system ADC for concept discovery and learn- 
ing behaviors was described. Unlike other approaches, ADC is able 
to learn concepts and behaviors simultaneously, perform predicate 
invention discovering examples of concepts directly from the en- 
vironment, and drive its own learning process. In particular, ADC 
decides what constitutes an example of a potential relevant con- 
cept, by identifying frequent structures in an incremental graph- 
based representation. It decides how to explore its environment 
using a modified Wundt’s curve and biased actions. It discovers in- 
teresting concepts using an ILP algorithm over repeated similar de- 
scriptions, can incorporate new state descriptions during the learn- 
ing process, and it learns sequences of actions that solve particular 
tasks. The algorithm was evaluated in a simulated robotic environ- 
ment. It was shown that the IM function used in ADC is useful to 
guide and speed up the learning process. ADC was able to discover 

Table 10 
Mobility of objects (Extrinsic + I ntrinsic). Examples of definitions of concepts 
learned by ADC during the exploration process. For presentation purposes, the 
number of arguments of previously learned concepts used in the definition of new 
concepts is reduced to one. Concepts were named manually. 

Concepts Description 
movable(St0,St1):- The robot pushes a red object, 

move_aux(St0), the robot does not change its position, 
push(St0,St1), the object changes its position, 
move_aux(St1). the object is movable 

move_aux(A,B,C,red,D,E,F):- A robot is in front of a red object, the red 
object(A,B,C,red), robot(D,E,F), object changes its position 
in_front_of_me(A,D), 
equal(E,F), different(B,C). 

fixed(St0,St1):- The robot tries to push a blue object, 
fix_aux(St0), the robot and the object do not change 
push(St0,St1), its position, the object is fixed 
fix_aux(St1). 

fix_aux(A,B,B,blue,C,D,D):- A robot is standing in front of a blue object 
object(A,B,B,blue), robot(C,D,D), 
in_front_of_me(A,C), 
equal(B,B), equal(D,D). 

useful concepts and characterize with them states to solve tasks 
given by the user. However, the learning of concepts and intrinsic 
motivation can also, however, delay the learning process and pro- 
duce superfluous discoveries. 

There are several important differences between traditional Ma- 
chine Learning approaches and the approach proposed in this pa- 
per: 
• Efficiency: Although the total learning time of our experiments 

may seem long, the agent was able to learn how to perform 
tasks in between 10 and 20 episodes, which makes it an effi- 
cient learning framework. 

• Discovery: Our approach incrementally discovers new concepts 
and actions while exploring its environment. This is a different 
approach to more standard machine learning techniques where 
the examples and goals are given to the system. 

• Incrementality: The concepts are incrementally discovered 
while exploring the environment. This means that even if we 
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Table 11 
Stability of objects (Extrinsic + I ntrinsic). Learned actions, state descriptions where 
actions were learned and concept definitions which are used to describe the states. 
Concepts were named manually. 

Macro actions: 
% The robot learned to grab round/square yellow/red objects, turn to the right and 

when it was in front of a blue square object, put the object on the top of the blue 
object. 

do_Action(3):- state(10), grab, state(6), turn_right, state(4), put, state(11). 
do_Action(4):- state(8), grab, state(3), turn_right, state(1), turn_right, 
state(5), put, state(12). 
New states: 
state(10):- yellow_sphere(A,round,yellow,B). 
state(6):- grabbing_yellow(A,round,yellow,B). 
state(4):- grabbing_yellow(A,round,yellow,B), blue_square(A,square,blue,B). 
state(11):- yellow_ontop_blue(A,round,yellow,B,square,blue). 
state(8):- red_square(A,square,red,B). 
state(3):- grabbing_red(A,square,red,B). 
state(1):- yellow_sphere(A,round,yellow,B), grabbing_red(A,square,red,B). 
state(5):- blue_square(A,square,blue,B), grabbing_red(A,square,red,B). 
state(12):- red_ontop_blue(A,square,red,B,square,blue). 
Discovered concepts: 
% Objects in front of the robot: 
yellow_sphere(A,round,yellow,B):- 
robot(B), object(A,round,yellow), in_front_of(B,A). 

blue_square(A,square,blue,B):- 
robot(B), object(A,square,blue), in_front_of(B,A). 

red_square(A,square,red,B):- 
robot(B), object(A,square,red), in_front_of(B,A). 

% Robot is grabbing one object: 
grabbing_yellow(A,round,yellow,B):- 
robot(B), object(A,round,yellow), grabbing(B,A). 

grabbing_red(A,square,red,B):- 
object(A,square,red), robot(B), grabbing(B,A). 

% Object on top of another object: 
yellow_ontop_blue(A,round,yellow,B,square,blue):- 
object(A,round,yellow), object(B,square,blue), on(A,B). 

red_ontop_blue(A,square,red,B,square,blue):- 
object(A,square,red), object(B,square,blue), on(A,B). 

interrupt the learning process, we can still obtain useful inter- 
mediate concepts related to the learning task. 

• Re-usability: The incremental approach also allows the system 
to re-use previously learned knowledge, so once a concept has 
been learned it can be used in new tasks if necessary. 

• Interpretability: The knowledge learned by our system is ex- 
pressed as clausal definitions, which are easy to understand. 
As future work we need to design efficient methods to filter out 

irrelevant learned concepts. We can provide the system with more 
robust action descriptions to improve the exploration of the envi- 
ronment (reducing errors and speeding up the learning process). 
Also, we would like to perform more tests and evaluate the pro- 
posed algorithm in other more challenging environments and pro- 
vide mechanisms to continue learning over longer periods of time. 
Acknowledgments 

This work was done under partial support from CONACYT , Mex- 
ico (Ph.D. scholarship 224491 ). 
Supplementary material 

Supplementary material associated with this article can be 
found, in the online version, at 10.1016/j.eswa.2017.09.023 
References 
Aldebaran-Robotics (2012). Who is NAO? . https://www.ald.softbankrobotics.com/en/ 

cool-robots/nao . 
Baldassarre, G., & Mirolli, M. (2013). Intrinsically motivated learning in natural and ar- 

tificial systems . Berlin Heidelberg: Springer-Verlag . SpringerLink : Bücher https: 
//link.springer.com/book/10.1007%2F978- 3- 642- 32375- 1#about 

Berlyne, D. (1960). Conflict, arousal and curiosity . New York: McGraw-Hill . 
Bonarini, A. , Lazaric, A. , Restelli, M. , & Vitalli, P. (2006). Self-development frame- 

work for reinforcement learning agents. In Proceedings of the fifth international 
conference on development and learning (ICDL), Indiana, USA . 

Bureau, A. , & Sebag, M. (2014). Bellmanian bandit network. In Proceedings of the 
workshop in autonomously learning robots at nips, Montreal, Canada . 

Chien, B. , Hu, C. , & Ju, M. (2009). Learning fuzzy concept hierarchy and measure- 
ment with node labeling. Information Systems Frontiers, 11 , 551–559 . 

Cook, D. , & Holder, L. (1994). Substructure discovery using minimum description 
length and background knowledge. Journal of Artificial Intelligence Research, 1 (1), 
231–255 . 

Cook, D. , Holder, L. , & Djoko, S. (1996). Scalable discovery of informative structural 
concepts using domain knowledge. IEEE Expert, 11 , 59–68 . 

Cook, S. (1971). The complexity of theorem-proving procedures. In Proceedings of the 
third ACM symposium on theory of computing (pp. 151–158). New York, NY, USA: 
ACM . 

Davis, J. , Berg, E. , Page, D. , Costa, V. S. , Peissig, P. , & Caldwell, M. (2011). Discovering 
latent structure in clinical databases. In Proceedings from NIPS 2011 workshop: 
From statistical genetics to predictive models in personalized medicine, Granada, 
Spain . 

Driessens, K. , & Džeroski, S. (2004). Integrating guidance into relational reinforce- 
ment learning. Machine Learning, 57 (3), 271–304 . 

Džeroski, S. , Raedt, L. D. , & Driessens, K. (2001). Relational reinforcement learning. 
Machine Learning, 43 (1), 7–52 . 

Eppstein, D. (1999). Subgraph isomorphism in planar graphs and related problems. 
Journal of Graph Algorithms and Applications, 3 (3), 1–27 . 

Fu, L. , & Buchanan, B. (1985). Learning intermediate concepts in constructing a hier- 
archical knowledge base. In Proceedings of the ninth international joint conference 
on artificial intelligence: 1 (pp. 659–666). San Francisco, CA, USA: Morgan Kauf- 
mann Publishers Inc . 

Georgeon, O. L. , Marshall, J. , & Gay, S. (2012). Interactional motivation in artificial 
systems: Between extrinsic and intrinsic motivation. In Proceedings of the in- 
ternational conference on development and learning (ICDL) and the international 
conference on epigenetic robotics (EPIROB) (pp. 1–2). San Diego, USA: IEEE . 

Holder, L. , Cook, D. , & Djoko, S. (1994). Substructure discovery in the subdue sys- 
tem. In Proceedings of the AAAI workshop on knowledge discovery in databases 
(pp. 169–180). Seattle, USA: AAAI Press . 

Kaplan, F. , & Oudeyer, P. (2003). Motivational principles for visual know-how devel- 
opment. In Proceedings of the third international workshop on epigenetic robotics 
: Modeling cognitive development in robotic systems, Boston, USA (pp. 73–80) . 

Kosmerlj, A. , Bratko, I. , & Zabkar, J. (2011). Embodied concept discovery through 
qualitative action models. International journal of uncertainty, fuzziness and 
knowledge-based systems, 19 (3), 453–475 . 

Leban, G. , Zabkar, J. , & Bratko, I. (2008). An experiment in robot discovery with ILP. 
In F. Zelezný, & N. Lavrac (Eds.), Inductive logic programming . In Lecture Notes in 
Computer Science: 5194 (pp. 77–90). Berlin, Heidelberg: Springer . 

Levine, S. , Finn, C. , Darrell, T. , & Abbeel, P. (2016). End-to-end training of deep vi- 
suomotor policies. Journal of Machine Learning Research, 17 (39), 1–40 . 

Li, N. , Stracuzzi, D. , & Langley, P. (2008). Learning conceptual predicates for tele- 
oreactive logic programs. In Proceedings of the late-breaking papers track at the 
eighteenth international conference on inductive logic programming, Prague, Czech 
Republic (pp. 75–80) . 

Martínez, D. , Alenya, G. , & Torras, C. (2015). Relational reinforcement learning with 
guided demonstrations: 247 (pp. 295–312) . Special issue on AI and Robotics, El- 
sevier Science Publishers Ltd. 

Merrick, K., & Maher, M. (2017). Modelling motivation as an intrin- 
sic reward signal for reinforcement learning agents. Available in: 
www.researchgate.net/publication/265040096 _ Modelling _ Motivation _ as _ an _ 
Intrinsic _ Reward _ Signal _ for _ Reinforcement _ Learning _ Agents . 

Merrick, K. , & Mahler, M. (2013). Novelty and beyond: Towards combined mo- 
tivation models and integrated learning architectures. In Intrinsically moti- 
vated learning in natural and artificial systems (pp. 235–259). Berlin Heidelberg: 
Springer-Verlag . 

Michel, O. (2004). Webots: Professional mobile robot simulation. Journal of Advanced 
Robotics Systems, 1 (1), 39–42 . 

Mnih, V. , Kavukcuoglu, K. , Silver, D. , Graves, A. , Antonoglou, I. , Wierstra, D. , & Ried- 
miller, M. (2013). Playing atari with deep reinforcement learning. In Proceedings 
of the NIPS deep learning workshop . 

Morales, E. F. (2004). Relational state abstractions for reinforcement learning. In 
Proceedings of the workshop on relational reinforcement learning, Alberta, Canada 
(pp. 27–32) . 

Muggleton, S. (1991). Inductive logic programming. New Generation Computing, 8 (4), 
295–318 . 

Muggleton, S. (1995). Inverse entailment and progol. New Generation Computing, 
13 (3-4), 245–286 . 

Muggleton, S. , Lin, D. , Pahlavi, N. , & Tamaddoni-Nezhad, A. (2014). Meta-interpretive 
learning: application to grammatical inference. Machine Learning, 94 (1), 25–49 . 

Muggleton, S. , Lin, D. , & Tamaddoni-Nezhad, A. (2015). Meta-interpretive learning 
of higher-order dyadic datalog: Predicate invention revisited. Machine Learning, 
100 (1), 49–73 . 

Nguyen, S. , & Oudeyer, P. (2014). Socially guided intrinsic motivation for robot learn- 
ing of motor skills. Autonomous Robots, 36 (3), 273–294 . 

Nickles, M. , & Rettinger, A. (2014). Interactive relational reinforcement learning of 
concept semantics. Machine Learning, 94 (2), 169–204 . 

Rivest, R. , & Sloan, R. (1994). A formal model of hierarchical concept learning. Infor- 
mation and Computation, 114 , 88–114 . 



A.C. Tenorio-González, E.F. Morales / Expert Systems With Applications 92 (2018) 192–205 205 
Rosca, J. (1997). Hierarchical learning with procedural abstraction mechanisms . 

Rochester, NY, USA: Department of Computer Science, The College of Arts and 
Sciences, University of Rochester Ph.D. thesis) . 

Russell, S. , & Norvig, P. (2008). Inteligencia artificial. Un enfoque moderno . Pearson. 
Prentice Hall . 

Saunders, R. , & Gero, J. (2001). Designing for interest and novelty - motivating de- 
sign agents. In Proceedings of the ninth international conference on computer aided 
architectural design futures (pp. 725–738). Dordrecht, Netherlands: Kluwer . 

Schmidhuber, J. (1990). A possibility for implementing curiosity and boredom 
in model-building neural controllers. In Proceedings of the first international 
conference on simulation of adaptive behavior on from animals to animats 
(pp. 222–227). MA, USA: MIT Press . 

Simsek, O. , & Barto, A. G. (2006). An intrinsic reward mechanism for efficient ex- 
ploration. In Proceedings of the twenty-third international conference on machine 
learning (pp. 833–840). NY, USA: ACM . 

Singh, S. , Barto, A. , & Chentanez, N. (2005). Intrinsically motivated reinforcement 
learning. In Proceedings of advances in neural information processing systems 17 
(NIPS) (pp. 1281–1288). MA, USA: MIT Press . 

Singh, S. , & Sutton, R. (1996). Reinforcement learning with replacing eligibility 
traces. Machine Learning, 22 (1), 123–158 . 

Sowa, J. (2008). Conceptual graphs. In L. Harmelen, & Porter (Eds.), Handbook of 
knowledge representation (pp. 213–237)). Elsevier B. V . 

Stahl, I. (1996). Predicate invention in inductive logic programming. In L. D. Raedt 
(Ed.), Advances in inductive logic programming (pp. 34–47). Ohmsha, Amsterdam: 
IOS Press . 

Stanley, K. , & Domingos, P. (2007). Statistical predicate invention. In Proceedings of 
the twenty-fourth annual international conference on machine learning, New York, 
NY, USA (pp. 433–440) . 

Sutton, R. , & Barto, A. (1998). Introduction to Reinforcement Learning (1st). Cam- 
bridge, MA, USA: MIT Press . 

Tani, J. , & Nolfi, S. (1999). Learning to perceive the world as articulated: An ap- 
proach for hierarchical learning in sensory-motor systems. Neural Networks, 12 , 
1131–1141 . 

Tenorio, A. (2017). Automatic discovery of concepts. https://sites.google.com/site/ 
automaticdiscoveryconcepts/ . 

Tenorio-González, A. , & Morales, E. (2016). Automatic discovery of relational con- 
cepts by an incremental graph-based representation. Robotics and Autonomous 
Systems, 83 (C), 1–14 . 

Zhang, Y. , & Weng, J. (2002). Novelty and reinforcement learning in the value sys- 
tem of developmental robots. In Proceedings of the international workshop on 
epigenetic robotics: Modeling cognitive development in robotic systems, Edinburgh, 
Scotland (pp. 47–55) . 

Zupan, B. , Bohanec, M. , Bratko, I. , & Demšar, J. (1999). Learning by discovering con- 
cept hierarchies. Artificial Intelligence, 109 , 211–242 . 


