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Abstract. We consider the problem of exploring a known structured
environment to find an object with a mobile robot. We proposed a novel
heuristic-based strategy for reducing the traveled distance by first ob-
taining an exploration order of the rooms in the environment and then,
searching for the object in each room by positioning the robot through
a set of viewpoints. For the exploration order we proposed a heuristic
based on the distance from the robot to the room, the probability of
finding the object therein and the room area; integrated in a O(n?) com-
plexity greedy algorithm that selects the next room. The experimental
results show an advantage of the proposed heuristic over other methods
in terms of expected traveled distance, except for full search which has a
complexity of O(n!). For the exploration within each room, we integrate
the localization of horizontal flat surfaces with the generation of poses.
With the set of poses, a similar heuristic establishes the exploration or-
der that guides the robot path inside the room. The evaluation of the
set of poses shows an average coverage of the flat surfaces of more than
90% when it is configured with an overlap of 40%. Experiments were per-
formed with a real robot using three objects in a six-room environment.
The success rate for the robot finding the object is 86.6%.
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1 Introduction

A desirable skill of a service robots is to assist people by fetching and carrying
objects that they require, even if they do not have precise information about
the place where to find the object. The robot must then make decisions about
the strategy to explore the environment and find the object as quick as possible.
To find an object, given a map of the environment, the robot has to decide in
which order to traverse the map and how to search for objects in each place, as
depicted in Figure 1.
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(a) Define a searching order (b) Look inside the room

Fig.1: To find an object the robot must first decide (a) an order to explore the
rooms, and then (b) choose and visit a set of viewpoints inside the room.

We present a two-step object search strategy that uses a novel heuristic
to determine the exploration order of a set of rooms and information about
horizontal flat surfaces existing in the environment to complete an exploration
route inside each room. The first step is based on the probability that the object
is in the room, the room area, and the distance from the robot current position
to each room. For the exploration in each room, it is proposed the integration
of horizontal flat surfaces in the robot map for pose generation. With the set
of poses, heuristics based on distances and visible areas guide the robot path
inside the room. Experiments were performed with a real robot to search three
different objects in a six-room environment, achieving a success rate of 86.6%.

2 Related Work

Searching objects in known environments requires, among others aspects, to de-
fine an exploration strategy, to plan and execute the routes according to the
exploration strategy, and to recognize the object. Previous work addresses some
of these aspects. Robot localization and object search are considered in [12],
where a robot moves to unexplored 2D areas creating new nodes in a naviga-
tion graph representing the environment. The search path is calculated with
a nearest-room-first strategy. With the same goal of finding the shortest path,
a 3D exploration strategy is described in [11], where harmonic functions lead
the robot to exploration boundaries. An alternative approach is presented in [1]
where a robot explores and gathers information about the scene to determine
the room in which it is located.

In [10] the authors assume that the robot has a map of the environment
represented as 2D polygonal maps. To find routes that minimize the search
time, the environment is decomposed into convex sections. A two-level heuristic
looks, in the first level, for an order of exploration along sections based on a
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uniform probability density function which characterizes the object location. In
the second level, individual segments are refined using the calculus of variations.
This approach is extended in [5] to 3D environments, where the search is made
with a mobile robot equipped with a robotic arm of seven degrees of freedom
having a limited scope camera placed at the top of its hand. A decomposition of
the 3D environment is proposed in convex regions and a function to determine
whether to move the robot or the arm. An alternative exploration strategy based
on three steps is proposed in [4]: represent the workspace using Minkowsky sums,
find a set of locations to cover as much as possible the environment, and find a
route that passes through the points and minimizes the traveled distance. In [2],
the authors base their strategy on finding a set of relations between objects that
minimizes the expected search cost considering probability and distance. The
work in [8] selects a group of locations where the object is supposed to be, based
on probabilities obtained from the Open Mind Indoor Common Sense (OMICS)
database. An exploration order of all rooms in the group is obtained based on
Euclidean distances. A planner-independent formulation is presented in [13], in
which the object search problem knowing the probability of the object being
in a determined place is defined formally as a Stochastic Shortest Path. Three
different algorithms to find the shortest route are proposed.

This work focuses on finding an exploration order in a known domestic en-
vironment given a probability distribution for the position of the object over
the rooms, and the subsequent problem of finding a set of poses inside each
room and a route for visiting them. In contrast to previous work, we propose
a very efficient and simple heuristic to determine the room exploration order,
which gives results close to the optimal solution. Additionally, we integrated the
room exploration technique and the object search approach inside each room,
and implemented the complete method in a real mobile robot.

3 Determining the Exploration Order

When exploring a set of rooms for searching an object several elements can be
considered. If we want to minimize time, we could go to the closest places first.
If we have information that the object has a good chance of being in a certain
room, we could visit that room first as it gives us a higher chance of success. An
additional element to take into account is the area of the room, since exploring a
large room takes longer than a small one. Our proposed heuristic function seeks
to balance the search criteria leveraging the strengths of simple strategies.

3.1 Heuristic Approach

Given a map of the environment with rooms on the map, R, Rs, ..., R,, pre-
viously tagged by a user, our problem consists in finding an order to visit the
n rooms, to minimize the expected time to find the object. Assuming that the
robot moves at a constant velocity, this is equivalent to minimizing the expected
traveled distance. We assume the robot can obtain Py, P, ..., P, probabilities of
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finding the object in the locations; has information of the area of each room,
Ay, As, ..., A,; and can compute dy,ds, ..., d,, the respective distances from the
current position of the robot to each of the rooms. We define the proposed
heuristic function as:
P;
(1)
di\/ Al

Since the value of the heuristic is only used to select which room will be explored
next, the area and distance values do not need to be normalized. Finally, to
obtain the full order we use the greedy BestLocal Ratio algorithm based on the
previous heuristic (see Algorithm 1), where the best room to search is selected
using Eq. 1, and from that room the next best room is selected. The process
continue until all the rooms have been selected.

H(R;) =

Algorithm 1 Best Local Ratio

Require: RoomList
Ensure: ExploringOrderList
1: EzploringOrderList < empty
2: repeat
3:  for all Room in RoomList and not in ExploringOrderList do
Compute heuristic in formula (1)

end for
Select Room; with the maximum heuristic value
Add ExploringOrderList < Room;

until RoomList = ExploringOrder List

return FEzxploringOrderList

3.2 Alternative Strategies

Determining the exploration order with the minimum expected time (distance)
is NP-Hard [10], so several authors have proposed finding a solution through
heuristics. In this work we have selected four alternative approaches, illustrated
in Figure 2. Five strategies are compared against the proposed heuristics in our
experiments. Two use simple heuristics: nearest room and most probable room,
and the other three try to minimize the expected distance traveled by the robot:

n
E(d) =" (Di+V4) P, (2)
i=1
where n is the number of rooms or nodes, P; is the probability of finding the
object in room ¢ and D; is the accumulated distance from the starting point of
the robot to room 4 following the route through all rooms j(j < 7). ¢ and j are
room indexes according to the exploration order being evaluated. This equation
is based on [10], adding the term \/A; as an estimate to take into account the
distance that the robot has to travel inside each room.
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(c) (d)

Fig.2: A qualitative illustration of the exploration trees for the different strate-
gies: (a) exhaustive search, (b) dominant strategies heuristic, (¢) Monte-Carlo
based methods, (d) greedy algorithms.

Exhaustive Search. A complete search in all possible orders is performed
using the algorithm described in [6]. The route with the smallest expected value
of distance of all possible paths that go through all rooms is selected. This
method has a computational complexity O (n!). Even using linear programming
methods, the best existing algorithm has a complexity O (n22") [3].

Dominating Strategies Heuristic. For constructing the full path the room
with the highest value using P;/d; is selected, where P; is the probability of
finding the object in room i, and d; is the distance. After selecting the room
with the highest value, a breath-first exploration is performed from that node
until it reaches a depth of logn nodes, avoiding expanding those nodes that
are not strictly dominant. The partial route with the shortest expected value of
distance according to Eq. 2 is selected. This procedure is repeated until a full
path is completed [10]. It has a computational complexity of O (n3logn).

Monte-Carlo based Search. An exploration of the search tree is made
until it reaches a predefined depth. In the experiments a depth of 10 nodes
was used. From the leaf nodes in the expanded subtree, complete routes are
constructed by randomly choosing nodes. These routes are used to evaluate the
expected distance normalizing its value to [0, 1] with the formula 1/(1 + E(d)).
Generating several random routes for each leaf node gives an estimation of the
quality of the sub-route from the starting node to that leaf node. For determining
the end node of the subtree to complete the random route it is used the Upper
Confidence Bound for Trees (UCT) [7], that consists of evaluating from the root
node in the exploration tree, which one is the best child.

Nearest and Most Probable Room. These two strategies use the greedy
algorithm so they keep a computational complexity of O (n2) The nearest room
strategy selects the closest room, while the most probable room strategy selects
the most likely place. The results show that despite being extremely simple
strategies, they get excellent results in special conditions.

4 Exploration inside the Room

Getting the minimum set of poses to cover a polygon when the robot has limited
visibility is a complex problem [9]. In order to reduce complexity, we have used
a method based on randomly generating a set of N poses. Once we have the
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random set, each pose is evaluated to select those ones which observe the largest
portion of the flat surfaces in the room (see Algorithm 2).

Algorithm 2 Pose Generator

Require: N = Number of randomly poses to generate
Ensure: PosesList
Randomly generate N poses
Delete unreachable poses
for all pose in PosesList do
Compute Visible Area
end for
Delete pose with no Visible Area
for all pair of poses in PosesList do
if pair is nearby then
Delete pose in pair with less Visible Area
end if
: end for
: for all pair of poses in PosesList do
if pair is redundant then
Delete pose in pair with less Visible Area
end if
: end for
: return PosesList

e e el el e o e

Unlike related work, our algorithm observes a surface from different view-
points but not looking for complete reconstruction. For object search it is only
important to see if the object can be recognized. We have a configurable control
to re-observe flat surfaces as much as it is required depending on the condi-
tions of the environment. The clutter condition can be determined based on the
number and spatial distribution of objects on flat surfaces.

Once the robot is inside a room, the pose generation algorithm determines a
set of poses for the robot for looking for the object (assumed to be over a flat
surface), as well as a route to visit all the selected poses, or until the object is
found. We use: (i) the field of view (FOV), the maximum angle at which the
sensor is capable of perceiving the observable world and (ii) the depth of field
(DOF), the space in front of the focus plane, between the first and last points
acceptably sharp. When we intersect FOV with DOF we obtain what is known
as sensor visibility cone. Since in this work the object search is supposed to be in
a two-dimensional space, the visibility cone will be framed by a circular trapeze,
but to facilitate geometric calculations we use a simple trapeze.

The pose generator algorithm randomly generates poses and then eliminates
those that can not be reached by the robot. The next step eliminates poses that
do have a visible area in flat surfaces. The next filter compares each pair of poses
and removes one of each pair considered as nearby poses. The pose of the pair
that is kept is that one with the largest visible area. If the angle and the distance
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differences between two pairs of poses are lower than the given thresholds U,
and Uy, then they are considered nearby. A third filter eliminates redundant
poses. Two poses are considered redundant if the intersection of their observed
areas is larger than a proportion of the visibility cone of the object recognizer.
This ratio, which we call overlap threshold, is a given value Uy, 0 < Uy < 1.
Finally, the algorithm delivers a set of poses that are reachable by the robot and
observe the largest proportion of flat surfaces existing in the environment while
the amount of overlap over the visibility area of different poses is controlled.

Once we have a set of poses to explore the environment, we must now decide
how to go through them in order to find the object as fast as possible. The
problem is similar to the traveling salesman problem, so we propose and compare
three heuristic strategies to visit the set of poses:

Nearest Pose (NP). Assuming that the robot moves at a constant speed,
the entire route is planned iteratively selecting the pose that has the shortest
distance from the current one.

Largest Visible Surface Pose (LVSP). The idea behind this strategy is
that a flat surface with the largest area is more likely to contain the searched
object. The set of poses is grouped according to the flat surface they observe
and each group is then sorted according the nearest pose. The group of poses
with observations to the largest flat surface are visited first.

In Room Best Local Ratio (IRBLR). We use a similar strategy to
BestLocal Ratio that considers distances and visible areas. Since we assume
equal probabilities to find the object in each flat surface, our heuristic takes
the form: H(R;) = —L—, being d; the distance from the last pose to the new

d; \/Ai ’
one, and A; the visible area of pose 1.

5 Experiments

We performed experiments to evaluate the performance of the proposed algo-
rithms and show experimental tests with a real robot.

5.1 Room Order

To evaluate the strategies for the exploration order of rooms, a database of maps
was created from real home plans divided in categories according to the number
of rooms in each map. The selection includes small homes with three rooms to
big residences with thirteen rooms. For each category, five different maps are
considered. In total 55 home plans were tested (Figure 3). Each map is labeled
manually by the user, selecting a point within each room, and then automatically
creating a complete graph with distances between each of the rooms.

Objects in real world have almost as many probability distributions as the
number of them. Instead of selecting specific objects for testing, we chose sev-
eral probability distributions to evaluate the exploration strategies and see how
these differences affect the results. The distributions considered are: a uniform
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Average Distance
Strategy wrt Optimum Std. Dev.
Exhaustive Search 1.0000 0.0000
Best Local Ratio 1.0281 0.0222
Monte-Carlo 1.0621 0.0900
Dominant Strategies 1.0845 0.0678
Most Probable 1.1523 0.1030
Nearest 1.2506 0.1188

Table 1: Comparison of evaluated methods to generate a room exploration se-
quence. Distances are shown as the proportion of the optimal distance. Averages
are calculated considering 3-13 rooms with four probability distributions.

distribution; a normal distribution (u = 0.5, 02 = 1.0); a gamma probability
distribution (k = 2.0, # = 0.2),; and an exponential distribution (A = 6.5).

Although the objective is to minimize the expected time to find the object, we
use instead the expected distance, assuming a constant speed for the robot. We
decided to use as measure of distance the ratio over the optimal expected distance
(Eq. 2) obtained with the exhaustive search strategy. This measure allows us to
compare between maps with different distances between their rooms and even
between maps with different numbers of rooms. Our simulation experiments were
evaluated computing values of the expected distance as described in Eq. (2). All
evaluated strategies compute only orders, and paths are computed by the same
planning algorithm for all strategies.

Figure 4 illustrates the average expected distance for maps containing from 3
to 13 rooms, five maps for each size, for each one of the probability distributions
used for object locations. The nearest room strategy produces values of expected
distance close to the optimal values when the probabilities are equal between
rooms (uniform distribution) but it has the worst results when the difference
between probabilities is large (exponential distribution). The opposite case is
presented with the most probable strategy. However, the proposed strategy being
a combination of these two simple heuristics, produces expected distances close
to the optimal values for all the distributions.

Table 1 shows average expected distances for all the map sizes and probability
distributions. The proposed algorithm produces the smallest average distances
after exhaustive search with the lowest variability. Also, it is among the most
efficient algorithms.

Tl TR iy e IR ISEN
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Fig. 3: Some of the maps tested in the experiments.
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Fig.4: Comparison of exploration strategies for real maps between 3 and 13
rooms using as reference the optimal expected distance. The probability of find-
ing the object follows different distributions over the rooms.

5.2 Pose Generation and Exploration

We evaluated the quality of the set of generated poses considering the percentage
of coverage of existing flat surfaces in the map and the percentage of the total
visible area observed from more than one pose. We use a fixed number of poses
(1000) because the rooms have similar areas, but it is possible to take into
account the area of each room. We varied the overlap threshold from 0 to 1
in 0.2 increments and tested pose generation in seven different rooms. Results
are summarized in Table 2. As expected, there is a relation between coverage
and overlap. With a robust object recognizer and/or an almost-free-occlusion
environment, it is desirable to have low overlap, with a threshold between 0.2
and 0.4, and a larger value in scenarios with more occlusions.

We compare the three strategies (NP, LVSP and IRBLR) to visit the set of
poses. The evaluation metric used is the expected distance to be traveled by the
robot. We assume an uniform distribution about the object location over every
flat surface. Then the likelihood of a pose is given by the amount of visible area
from that pose. The metric that evaluates the path over n poses is defined as:

E(d) = Z (DiF;), (3)

K2
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Fig. 5: Comparison of expected distances produced by the strategies to visit a
set of poses that search for an object within a room.

where D; is the accumulated distance from the starting position of the robot to
the pose ¢ and P; is the value of the visible area of the pose ¢ normalized by the
total area of all existing flat surfaces in the room.

Finding distances for all pairs of the complete set of poses has a high com-
putational cost, so we use the Euclidean distance to speed up the process of
generating paths. We generate five sets of different poses for each of the seven
rooms in the environment. Some rooms contain one or two flat surfaces while the
large room, which is the union of the other six, contains nine. For each strategy
a path for each of the sets of poses is created and evaluated with the expected
distance, Eq. 3. The results are shown in Figure 5. In the rooms bathroom, bed-
room and study there is just one flat surface, so that strategies do not differ
in their traveled distances, while in the rest of the rooms with at least two flat
surfaces, a slight advantage for the IRBLR method can be observed.

Coverage (%) Overlap (%)
Average|Std. Dev.|Average|Std. Dev.
0.0/ 61.44 30.57 0.00 0.00
0.2| 86.49 15.47 1.64 3.05
0.4/ 91.99 8.68 9.88 11.52

0.6] 91.29 12.45 55.81 25.87
0.8] 93.27 11.51 96.32 43.21
1.0] 96.59 4.07 101.25 39.70
Table 2: Evaluation of the set of poses generated with Algorithm 2 in terms of
percentages of coverage and overlap of the total flat surfaces when we change
the overlap threshold.
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5.3 Real mobile robot

We conducted experiments with a real robot searching for three different objects:
coke can, remote control and mug in an environment similar to an apartment
with 6 rooms. The room in which the objects were located was randomly gen-
erated following certain probability distribution for each object, and the flat
surface for the object was selected according to each surface area. We located
the object in the flat surface with a random pose using a uniform distribution.
The robot started from a fixed initial position. We used a differential two wheeled
Peoplebot platform equipped with a laser for navigation and a Kinect sensor for
object recognition. As recognition algorithm we used Tabletop [14] configured
with default parameters due to its good recognition performance, but specially
for its capacity to recognize flat surfaces.

Table 3 summarizes the results. The robot has a success rate for the three
objects of 86.6%. Although the average search times may seem high for the size
of the environment, it should be noted that in the case of the coke can and
remote control it includes the cases where the objects were not found and the
whole path was traveled. In general, the locations of objects are concentrated in
the first two most probable rooms according to the probability distribution.

Coke Can Mug Remote Ctrl| No Object
Success/Trials 4/5 5/5 4/5 5
avg| stdev avg| stdev avg| stdev avg| stdev
Time (min) 6.69 5.03 2.41 1.73 5.31 4.20| 11.696| 0.652
Distance (m) 22.59| 16.03 7.85 5.61| 20.85| 14.91| 39.549| 3.023

Turns (degrees)|5251.00/3688.16]1809.00{1198.94|3722.40{3006.01(9155.222|757.460
Planned poses 16.40 9.81 8.40 4.62] 12.00| 10.07| 27.333| 1.581
Reached poses 13.00| 10.65 4.20 3.42 9.20 7.36| 23.889| 2.421
Visited rooms 3.40 2.41 1.60 0.55 2.40 1.52 6.00 0.00
Table 3: Results from five searches with three objects located at different po-
sitions in each repetition. No Object corresponds to the whole path of the six
rooms and is presented for comparison.

6 Conclusions

We proposed a novel heuristic-based strategy for a mobile robot to search for
an object in a known environment based on a two-step approach. Firstly, ob-
taining an exploration order of the rooms in the environment based on a novel
heuristic which takes into account the probability, the distance and the area of
the rooms. And secondly, searching for the object in each room by randomly
generating poses that are filtered and that observe flat surfaces in the environ-
ment. Additionally, we propose a heuristic method for visiting the set of poses
based on distance and visible area. We implemented the proposed methods in
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a real robot and evaluated the integrated approach in a realistic environment.
The experimental results with the real robot give evidence that the proposed ap-
proach can be used in object search applications with service robots. As future
work we will develop strategies to determine the probabilities of different objects
being in certain room in a home environment based on the Web and incorporate
information of where objects were previously found using a Bayesian approach.
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