
Class-specific feature generation for 1NN

through genetic programming

Mauricio Garcı́a Limón, Hugo Jair Escalante, Eduardo Morales and Luis Villaseñor Pineda

Computer Science Department

National Institute for Astrophysics, Optics and Electronics (INAOE)

Sta. Ma. Tonantzintla, Puebla, México

Email: {mauricio.garcia, hugojair, emorales, villasen}@inaoep.com

Abstract—This paper introduces a genetic program for class-
specific feature extraction for 1NN. Under the proposed method
a new feature space is generated for each class in the problem
under analysis. Where feature spaces are build by merging the
initial features with a genetic program that aims at maximizing
classification accuracy of a 1NN classifier. We compare the perfor-
mance of our method to both, classical-standard techniques (e.g.,
PCA, LDA) and to solutions based on evolutionary algorithms.
Experimental results reveal our method outperforms alternative
solutions in a wide variety of data sets.

I. INTRODUCTION

Pattern classification is concerned with the construction of
predictive models that can map instances to a predefined set
of classes or labels. In a typical pattern recognition system,
feature extraction is a pre-processing stage, where the original
feature space is transformed into a new space of features to
facilitate the modeling problem for learning algorithms [16].
Sometimes finding a good representation requires the expertise
of a human, however, this task can be replaced by an automatic
feature generator without losing information [11].

The aim of automatic feature extraction methods is to
find/learn the most effective features for discrimination among
samples of different classes. In addition, feature extraction
seeks to construct a much lower-dimensional feature space
than the original input space, ignoring redundant and irrelevant
information [6]. Therefore, a tradeoff between performance
and reduction is desired. Because of its difficulty, it remains a
popular problem within pattern recognition [5].

This paper introduces CSFG (Class-Specific Feature Gen-
eration), an approach to feature generation, based on genetic
programming, for the Nearest Neighbor (NN) classifier. The
main idea is to build feature spaces for each class separately,
where each feature space discriminates very well instances of
one class vs. the rest. New features are created by combining
the features of the original input space, where the genetic pro-
gram determines what features to combine and how to combine
them. Although our work focuses on the NN classifier, one
of the most popular predictive models so far [15], nothing
constrains our method to be applied with alternative models
(e.g., neural nets or support vector machines). The method is
evaluated in low and high dimensional data sets, and compared
against other evolutionary techniques from the state of art. The
experimental results show that CSFG is robust and competitive
in high dimensional data sets with respect to other methods,
this is a very positive result because it is a promising solution
to address large scale classification problems.

The rest of this paper is organized as follows. Section II re-
views related work on feature extraction. Section III describes
in detail the proposed CSFG approach. Section IV presents
the experimental framework and the results obtained by the
proposed method. Finally, Section V presents conclusions and
discusses future work directions.

II. RELATED WORK

Classical feature extraction methods include PCA and
LDA [7], yet alternative methodologies are available as well.
Mostly notably, solutions based on evolutionary algorithms
have reported acceptable performance. For instance, M. C.
Bot in [4] presents a method for feature generation through
genetic programming for NN classification. The method uses
a greedy strategy, which generates features one by one until
the prediction accuracy in the training set is not better than
a numeric constant; each new feature is generated with a
standard genetic program [13]. The method constructs a unique
(common for all classes) feature space where the training
and testing instances are projected. In general, the method
generates between 2 and 3 new features, which has a close-to-
optimal reduction performance for most data sets (the optimum
being 1 feature), also the authors provide a detailed analysis of
the features obtained. Although being competitive, this method
was evaluated on data sets with a small number of features,
and is compared with methods such as PCA.

The problem of feature extraction has been also approached
with multi-objective optimization. Zhang et al. in [17] pro-
posed a standard genetic program for feature extraction based
on the multi-objective algorithm SPEA-II (Strength-Pareto
Evolutionary Algorithm) [3]. The proposed method uses evolu-
tionary operators [12] that favor smaller trees. Three objectives
are considered: the complexity of the trees, the classification
error and a Bayesian error estimate. The first objective is
to avoid the problem of bloating [8]; whereas the second
objective ensures obtaining discriminative features. On the
other hand, the third objective aims to reduce the overlap
between classes under the generated input space, also it is used
for fast convergence. The main feature of this method is that
it always generates a single feature, that is, optimal reduction
performance. The method is compared to different feature
extraction methods, including that from M.C. Bot [4], and
compared favorably. One problem with this approach is that it
only addresses binary classification problems (a threshold over
the 1D feature space is learned).

Zhang et al. in [16] present another a multi-objective

978-1-4673-7121-6/15/$31.00 c©2015 IEEE

genetic program. Unlike the method in [17], the new method
faces multi-class classification problems as well. The authors
use the vectorizing multi-tree representation and evolutionary
operators proposed in [12]. The only objective that changes
from the method in [17] is the Bayes error estimate, which
is replaced in this paper by the Fisher Linear Discriminant
(FLD). Again, this methodology is only evaluated on data sets
with a small number of features, and is compared with other
classifiers.

Recently, Garcı́a et al. in [10] presented a genetic program
for the simultaneous generation of prototypes and features
with genetic programming. It uses a multi-tree representation,
with ad-hoc operators and optimizes the training-set accuracy
obtained by a 1NN classifier. This method constructs a feature
space for each class in the classification problem addressed.
Such method, however, is not compared to other feature
generation methods, besides, it is not clear the importance that
the feature generation process has by itself. The reduction rate
reported in such work was of about 40%, while in our work
we are close to 90% or feature space reduction.

This paper presents a method for the generation of class-
specific features through genetic programming. Opposed to
previous work, our method can be applied to high-dimensional
data sets without any problem. Besides, it can deal with any
number of classes and it is not tied to a specific classifier
(although we implemented it with NN to compare our method
with previous work [4], [10]). Most importantly, we show that
our proposed method outperforms state of the art techniques.
The next section details the proposed method.

III. FEATURE GENERATION THROUGH GENETIC

PROGRAMMING

Genetic programming (GP) is an evolutionary algorithm
which has been extensively used in data mining and pattern
recognition problems [9], its main feature is the evolution
of programs, where each program is usually associated to a
modeling problem [13]. The proposed method is capable of
obtaining a distinct set of features for each class where the
number of features could be different for different categories.
The aim is to improve the classification performance of the NN
rule. In our proposal, each new feature is the result of combin-
ing distinct features from the original data set, by considering a
tree structure (one tree per feature), where the leaves represent
features and the internal nodes denote arithmetic operators.
Genetic programming is used to evolve a population of trees-
features trying to maximize the classification performance of
the 1NN classifier. The remainder of this section describes the
proposed method in detail.

A. Preliminaries

Let T = {(x1, y1), . . . , (xn, yn)} be a training set of
labeled instances, with xi ∈ ℜ

d and yi ∈ C = {1, . . . ,K},
where d is the dimensionality of the data and K is the number
of classes in the considered problem. It is desired to generate
a set of sets of features F = {F1, . . . , FK} (one set of
features Fi per class) where each set of features Fi generates
a new input space (by the projection of instances) defined
as follows: Ii = {(wi

1, y
i
1), . . . , (w

i
n, y

i
n)}, for i = 1, . . . ,K

where wi
j ∈ ℜ

di with di << d, here, di is the dimensionality

of the feature space for instances in the set Ii (the instances
projected in learned features of class i). This means that all of
the instances have the same dimensionality in the feature space
di, which is not necessarily the same for different classes. Our
goal is to learn F such that the performance of a 1NN classifier
is maximized.

B. Representation

A genetic program is proposed to learn F where each
individual codifies a solution to this problem, see Figure 1.
Each individual contains the information of the distinct sets of
features; formally, a individual is represented by a set of sets
of tree-features: {F1, . . . , FK}, where Fi = {f i

1, . . . , f
i
dk
} is

the set of trees that generates the new set of features of the
class i. Each f i

j is a tree associated with a single feature. Thus,
the leaf nodes of the tree are the features of the training set,
and the internal nodes are arithmetic operators.

Individual

Class 1 Class 2 Class N...

Features Features Features

Trees Trees Trees

Fig. 1: Representation of an individual: class-specific feature
trees.

*

F1

Mean3

F5 F2 F4

-

C3

*

F3-

Fig. 2: A feature representation (tree-feature). Fy = (−F1 ∗
F5+F2+F4

3
)− (C3 ∗ F3)

The terminal set (from which leaf nodes can be taken)
is the set of the original feature vectors of instances in T
that belong to class i, and the following set of constants
{0.1, 0.2, . . . , 0.9, 1, 2, . . . , 9}. The function set is shown in
Table I; other operators were evaluated for inclusion in the
function set (e.g. sqrt and log2), but better results were
obtained with the operators in Table I

C. Genetic Operators

Evolutionary operators are essential in any evolutionary
algorithm for generating new promising solution (trees in our
case). We considered the following operators:

• Crossover: given two individuals, a feature tree from
each parent is randomly selected, then a subtree of

TABLE I: Function set

Function Type Operation

pow2 Unary Returns the power of 2 of one input

− Unary Returns the negative value of one input

log2 Unary Returns the logarithm base 2 of one input

− Binary Substract 1st value by 2nd value

+ Binary Adds 1st value by 2nd value

× Binary Multiplies 1st value by 2nd value

÷ Binary Protected division of the 1st value by 2nd value

max Binary Returns the maximum value of two inputs

min Binary Returns the minimum value of two inputs

mean2 Binary Returns the mean value of two inputs

mean3 Ternary Returns the mean value of three inputs

if − then − else Ternary Returns the 2nd value if 1st value = 0;

otherwise return the 3rd value

each selected tree is chosen and exchanged. The out-
puts of this operator are two offspring. This process is
repeated for each class associated to the classification
problem. The operator is applied to all classes because
affecting a class at a time would not have a significant
effect in the overall population. The best crossover
rate was of 100%, namely, always, for each class two
trees were selected randomly, and two subtrees are
exchanged. One possible reason for this parameter
value is that the representation is highly complex.

• Mutation: given an individual, for each class, a ran-
domly selected tree is eliminated and a new one is
generated (using the same process as in the initializa-
tion). In the experimental evaluation, the best mutation
rate was of 50%.

• Multi-Crossover: This crossover operator is used due
to the representation complexity. Given two individu-
als, a new offspring is generated by combining trees
from the parents. For each class, the offspring tree set
is selected from the corresponding trees of the parents
with uniform probability. This operator is similar to
uniform crossover in a genetic algorithm [8]. Finally,
the best multi-crossover rate was 100%, as in the
crossover operator, this is due to the representation.

D. Fitness Function

The fitness function for the genetic program is the classi-
fication performance as obtained by a 1NN classifier over a
validation set (a subset of T). The goal is to maximize the
classification rate of a 1NN classifier with the learned set of
features. For classifying instances (either in training or test
sets), they are projected in the feature spaces induced by the
K−classes, next, an instance is associated with the label of
the nearest instance (across classes).

E. Genetic Program

Algorithm 1 presents the pseudo code of the proposed
method. The inputs are standard parameters and a validation
data set V ⊆ T . The population is initialized with the ramped-
half-and-half strategy, considering a maximum tree deep of
D max, this is to provide population diversity. Therefore, in
each class, half of the trees are initialized with the full method,
and the other half with the grow technique. For initialization,
the proposed method takes as input PF parameters, which
specify the number of initial feature-trees. This is just an

initialization parameter, once the search is completed, the ge-
netic program (implicitly) adjusts the final number of features
for each class. The genetic program uses binary tournament
for parent selection; half elitism is used to select the next
population [13]: half of individuals are selected from the union
of parents and offspring to remain in the new population, and
the remaining individuals are selected from the offspring. The
algorithm stops when a maximum number of generations is
reached. The output of the method is the best individual, which
consists of a set of feature-generation functions (i.e., a set of
trees, each tree encoding a way to combine original features).

Algorithm 1 Class-Specific Feature Extraction via Genetic
Programming.

Require: : T : Training Set; V : Validation Set;
Generations : No. Generations; Population : No. Indi-
viduals; PF : Proportion of initial features

Ensure: Bestx : The best individual, the solution that obtains
the highest accuracy in V .
P ⇐ Ramped-half-and-half (PF, T) %% Initializaiton of
solutions
Bestx ⇐ ∅ ; FBest ⇐ −Inf ; i = 0 %% Intialization of
variables
while i <= Generations do

for j = 1→ Population do
f(j)← fitness(Pj ,V)
if f(j) > FBest then
FBest ← f(j); Bestx ⇐ Pj %% Update best
solution

end if
end for
Pool⇐ Sampling(P)
Offspring ⇐ MultiCrossover(Pool)
Offspring ⇐ Crossover(Offspring)
Offspring ⇐ Mutation(Offspring)
P ⇐ Selection(P,Offspring)
i← i+ 1

end while
return Bestx

IV. EXPERIMENTS AND RESULTS

The experimental evaluation of the proposed method was
performed on two groups of data sets associated taken from
the UCI Machine Learning Repository [1]. The first group
comprises low-dimensional data sets (<= 20 features), and
the second one consists of data sets with a large number of
features. Table II shows a description of the considered data
sets. The evaluation methodology consisted on applying 10-
fold cross validation to each data set. A Wilcoxon signed-ranks
test [14] was performed to compare the results obtained by the
proposed and reference methods, with a confidence level of
95%. The performance of CSFG is compared against four state
of the art methods for feature generation, including Bot’s [4],
Zhang’s [17] PCA and LDA [7] techniques.

The optimization of evolutionary-based methods (i.e., Bot’s
and Zhang’s techniques) is driven by the classification accu-
racy, at the end of the search process, accuracy and Cohen’s
Kappa Coefficient [2] are reported to objectively assess the

TABLE III: Performance on low and high dimensional datasets

Dataset Bot [4] Y. Zhang et al. [17] CSFG 1NN PCA LDA

Accuracy

Small 0.7203 ± 0.1237 ⋆ 0.7214 ± 0.0833 0.7533 ± 0.1048 0.7009 ± 0.1061 ⋆ 0.6502 ± 0.1032 ⋆ 0.7277 ± 0.0921

Large 0.7475 ± 0.187 ⋆ 0.6704 ± 0.1228 0.8018 ± 0.1847 0.838 ± 0.1498 0.829 ± 0.1791 0.8379 ± 0.1542

Multi-class 0.8565 ± 0.1253 NI 0.8727 ± 0.1371 0.9033 ± 0.1261 0.6809 ± 0.1461 0.7495 ± 0.1794

Kappa

Small 0.3376 ± 0.2835 0.2794 ± 0.2096 ⋆ 0.3889 ± 0.2484 0.316 ± 0.2418 0.1952 ± 0.2261 ⋆ 0.3755 ± 0.2160

Large 0.3344 ± 0.269 0.2003 ± 0.1696 0.44 ± 0.3285 0.5768 ± 0.3599⋆ 0.5182 ± 0.3656 0.5470 ± 0.3168 ⋆

Multi-class 0.7875 ± 0.1119 NI 0.7953 ± 0.1441 0.8478 ± 0.1809 0.5716 ± 0.1828 0.6601 ± 0.1960

⋆ statistically significant difference.

TABLE II: Description of low and high dimensional data sets.

Small Datasets

Dataset Features Instances Classes Dataset Features Instances Classes

Appendicitis 7 106 2 Hepatitis 19 155 2

Australian 14 690 2 Housevotes 16 435 2

Bands 19 539 2 Movement-libras 90 360 15

Bre 9 286 2 Mammographic 5 961 2

Bupa 6 345 2 Monks 6 432 2

Crx 15 690 2 Pendigits 16 10992 10

Dermatology 34 366 6 Pima 8 768 2

Flare-solar 9 1066 2 Saheart 9 462 2

German 20 1000 2 Shuttle 9 58000 7

Haberman 3 306 2 Splice 60 3190 3

Heart 13 270 2 Texture 40 5500 11

Large Datasets

Dataset Features Instances Classes Dataset Features Instances Classes

Ads 1558 3279 2 Gisette 5000 7000 2

Basehock 4862 1993 2 Hiva 1617 4229 2

Gina 970 3468 2 Pcmac 3289 1943 2

performance of the 1NN classifier in the induced feature
spaces. The following settings were defined to assess the
proposed approach: CSFG was run for 50 generations, with a
population size of 100, and maximum tree-depth of 3, and the
value of PF is 1% for binary problems, and 40% for multiclass
problems.; the above parameters were the best performance
obtained in a previous experimental study. In the remainder of
this section we evaluate the classification performance of the
different methods, their reduction performance and show the
decision surfaces generated with each technique.

A. Results

Table III shows the accuracy and Cohen’s Kappa rate in
low and high dimensional data sets. Regarding small data sets,
the method obtains greater accuracy than both all reference
methods and the 1NN classifier. Whereas in the case of large
data sets, the proposed method outperforms evolutionary-based
techniques, but it obtains lower performance than classical
methods and 1NN. The previous result suggest our evolution-
ary program deals better than Bot’s and Zhang’s methods with
the implicit huge search space associated to high-dimensional
feature spaces. Although, it is clear that for high-dimensional
binary classification tasks, classical methods perform better,
again, this can be due to the size of the search space, for which
CSFG may require of larger populations and more generations
to obtain better solutions. Nevertheless, if we analyze the
results for the multiclass problems in Table III, CSFG obtains
the best performance among all feature extractors. In such
problems, classical approaches fail to obtain a suitable feature
space.

Results in terms of Cohen’s Kappa are consistent with
those obtained in terms of accuracy (remember, this measure
express the portion of successes that can be attributed to the

classifier itself, i.e., not to mere chance), in small data sets,
so with regard to the other approaches (evolutionary methods,
PCA, LDA and 1NN classifier) the results obtained by the
proposed method is no mere chance in terms of accuracy,
i.e. the method proposed is more accurate than the others.
However, in large data, it is superior against the evolutionary
methods and, it remains competitive compared LDA, PCA
and 1NN classifier. Results reported in this section show
CSFG is a very competitive method across varied types of
data sets (low/high dimensional, binary/multiclass) in terms
of classification performance. CSFG obtains similar perfor-
mance as when using all of the features, but using a lower-
dimensional space (see below). Also, CSFG outperforms other
evolutionary-based methods and obtains comparable perfor-
mance to classical techniques. As other evolutionary-based
method it has problems with high-dimensional data sets. We
can amend this by performing a more intensive search with
the genetic program.

B. Reduction performance

The reduction rate allows us estimating the size of the
new feature set, a high reduction (i.e., less features) allows the
classifier to perform more efficiently. Remember, the proposed
method in [17] always generates one feature, so that the reduc-
tion rate obtained by this method is the maximum possible. The
proposed method in [4] mentions that this method reduces in
average between 2 and 3 features, so that the reduction is close
to optimal. For the proposed method, initially, the proportion
of features for each class is fixed, and after the evolutionary
process is able to set the number of features per class. Table IV
shows reduction rates for the considered methods (recall 1NN
has a reduction rate of 0). It can be seen that the reduction
obtained by the proposed method is close to the optimum. In
fact, there is no statistically significant difference among the
methods. Therefore, we can say that our method offers a good
tradeoff between accuracy (compares favorably with the most
state of the art and with 1NN using the full input space) and
reduction (no difference among the considered methods), i.e.
the method obtains a high reduction rate without great differ-
ence between CSFG and others approaches on the classifier
performance (accuracy). Furthermore, if it is considered as a
multi-objective optimization problem, the CSFG would be on
the Pareto front.

C. Analysis of the new feature space

In order to give insight into the type of feature spaces gen-
erated by each of the considered methods we show in Figure V
the feature spaces generated by each method in the CRX data

TABLE IV: Reduction rate

Dataset Bot [4] Y. Zhang et al. [17] CSFG PCA LDA

Small 0.8515 ± 0.084 ⋆ 0.8812 ± 0.0737 0.8812 ± 0.0737 0.8812 ± 0.0737 0.8812 ± 0.0737

Large 0.9987 ± 0.0009 0.9995 ± 0.0003 0.9944 ± 0.0025 0.9945 ± 0.0024 0.9945 ± 0.0024

Multi-class 0.9070 ± 0.0515 ⋆ NI 0.7615 ± 0.0314 0.7292 ± 0.0601 0.7292 ± 0.0601
⋆ statistically significant difference.

set (a binary problem for which all methods obtained similar
performance). For CSFG we combined both feature spaces
and generated a single decision surface. Interestingly, methods
based on evolutionary algorithms (rows 1,2 and 5) generate
decision surfaces and feature spaces that attempt to linearly
separate the data. Whereas classical methods generate highly
nonlinear decision surfaces (rows 3-4). Thus, the it seems the
outputs of evolutionary-based methods could be very useful for
training linear classifiers as well. Among evolutionary based
method, it can be seen that Bot’s and Zhang’s methods make
too many mistakes in the test set (in row 2 all instances are
assigned the same label). Our method on the other hand (last
column) correctly separates most instances. When compared to
classical methods (rows 3,4), nonlinear decision surfaces seem
to correctly classify most test instances. In this case 1NN could
obtain acceptable performance, nevertheless it is clear from the
plots that the separation among samples of different classes is
better for CSFG. So other data-analysis tasks could benefit
from feature spaces generated with CSFG.

V. CONCLUSIONS

This paper introduced an automatic method capable of gen-
erating class specific features for classification problems (not
necessarily binary tasks) for the NN classifier. The proposed
method was extensively evaluated in low and high dimensional
data sets and its performance was compared to state of the art
techniques. Our experimental study revealed that the proposed
method, CSFG, compares favorably in classification perfor-
mance and similarly in reduction performance when compared
to state of the art alterative.

The main conclusions of this work can be summarized as
follows:

• CSFG is able to reduce data dimensionality without
compromising the classification performance.

• The proposed method obtains a feature reduction rate
close to optimum.

• In small data sets the method outperforms the refer-
ence methods in terms of accuracy.

• In data sets with a large number of features CSFG
obtained results equivalent performance in terms of
accuracy to the classifier, making it an alternative to
tackle large-scale problems

• The performance of the classification obtained by
CSFG gives evidence that the method constructs more
accurate and informative new features with regard to
methods in state of the art.

Current and future work includes: addressing the problem
of feature extraction with a multi-objective genetic program

(minimizing the number of features and maximizing clas-
sification performance); also we would like to apply/adapt
our method for specific tasks where high dimensionality is
a serious issue (e.g. computer vision tasks such as image
classification).

REFERENCES

[1] D.J. Newman A. Asuncion. UCI machine learning repository, 2007.

[2] A. Ben-David. A lot of randomness is hiding in accuracy. Engineering

Applications of Artificial Intelligence, 20(7):875 – 885, 2007.

[3] S. Bleuler, M. Brack, L. Thiele, and E. Zitzler. Multiobjective genetic
programming: Reducing bloat using spea2. In CEC, pages 536–543,
2001.

[4] M. Bot. Feature extraction for the k-nn classifier with genetic pro-
gramming. In EuroGP’2001, volume 2038 of LNCS, pages 256–267,
2001.

[5] S. Ding, W. Jia, W. Su, F. Jin, and Z. Shi. A survey on statistical pattern
feature extraction. In ICIC, volume 5227, pages 701–708. Springer,
2008.

[6] S. Ding, H. Zhu, W. Jia, and C. Su. A survey on feature extraction
for pattern recognition. Artificial Intelligence Review, pages 169–180,
2012.

[7] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley,
2001.

[8] A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing.
2003.

[9] Pedro G. Espejo, Sebastián Ventura, and Francisco Herrera. A survey
on the application of genetic programming to classification. Trans. Sys.

Man Cyber Part C, 40(2):121–144, March 2010.

[10] M. Garcia-Limon, H. J. Escalante, E. F. Morales, and A. Morales.
Simultaneous generation of prototypes and features through genetic
programming. In GECCO ’14, pages 517–524, 2014.

[11] I. Guyon, M. Gunn, S.and Nikravesh, and L. A. Zadeh. Feature

Extraction: Foundations and Applications (Studies in Fuzziness and

Soft Computing). Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2006.

[12] T. Ito, H. Iba, and S. Sato. Non-destructive depth-dependent crossover
for genetic programming. In EuroGP ’98, volume 1391 of LNCS, pages
71–82, 1998.

[13] R. Poli, W. B. Langdon, and N. Freitag McPhee. A

field guide to genetic programming. available at
http://www.gp-field-guide.org.uk, 2008.

[14] Frank Wilcoxon. Individual comparisons by ranking methods. Biomet-

rics Bulletin, 1(6):80–83, 12 1945.

[15] X. et al. Wu. Top 10 algorithms in data mining. Knowl. Inf. Syst.,
14(1):1–37, December 2007.

[16] Y. Zhang and P. I. Rockett. A generic multi-dimensional feature
extraction method using multiobjective genetic programming. Evol.

Comput., 17:89–115, March 2009.

[17] Y. Zhang and P. I. Rockett. A generic optimising feature extraction
method using multiobjective genetic programming. Applied Soft Comp.,
11:1087 – 1097, 2011.

Training Test

Bot

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8
0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

x
1

x 2

class 1

class 2

y = 1

y = 0

y = −1

2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5

0.98

0.99

1

1.01

1.02

1.03

1.04

x
1

x 2

class 1

class 2

y = 1

y = 0

y = −1

Zhang

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

x
1

x 2

class 1

class 2

y = 1

y = 0

y = −1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
1

x 2

class 1

class 2

y = 1

y = 0

y = −1

LDA

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x
1

x 2

class 1

class 2

y = 1

y = 0

y = −1

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

x
1

x 2

class 1

class 2

y = 1

y = 0

y = −1

PCA

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x
1

x 2

class 1

class 2

y = 1

y = 0

y = −1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x
1

x 2

class 1

class 2

y = 1

y = 0

y = −1

CSFG

−1 −0.5 0 0.5 1 1.5 2
−1

0

1

2

3

4

5

6

7

8

9

x
1

x 2

class 1

class 2

y = 1

y = 0

y = −1

−0.5 0 0.5 1 1.5
−1

0

1

2

3

4

5

6

7

8

9

x
1

x 2

class 1

class 2

y = 1

y = 0

y = −1

TABLE V: Decision surfaces with feat. spaces obtained by (top to bottom): Bot’s, Zhang’s, LDA, PCA and CSFG methods;
training (left) and test (right) instances are shown.

