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Transfer learning focuses on developing methods to reuse information gathered from
a source task in order to improve the learning performance in a related task. In this

work, we present a novel approach to transfer knowledge between tasks in a reinforce-

ment learning framework with continuous states and actions, where the transition and
policy functions are approximated by Gaussian processes. The novelty in the proposed

approach lies in the idea of transferring qualitative knowledge between tasks. Our ap-

proach transfers information about the hyper-parameters of the state transition function
from the source task, which represents qualitative knowledge about the type of transition

function that the target task might have, constraining the search space and accelerat-

ing the learning process. We performed experiments on relevant tasks for reinforcement
learning, which show a clear improvement in the overall performance of the system when

compared to a state of the art reinforcement learning and transfer learning algorithms

for continuous state and action spaces.
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1. Introduction

The objective in reinforcement learning (RL) is to find a sequence of actions that

maximizes a long-term cumulative reward. A RL algorithm achieves such an objec-

tive by exploring the world and collecting information about it in order to find the

optimal sequence of actions.1

However, when a RL algorithm is applied to real world tasks, like the one just

described, two major problems arise: (i) a large number of samples or interactions

with the environment are needed to learn an optimal solution, and (ii) after an

agent has learned to solve a task, if it is required to solve a different (although

similar) task, the learning process needs to start from scratch.

A common approach to lessen the problem of learning a new, although similar

task is to use transfer learning (TL).2 This is an emerging area of study where

several methods (see Section 2) are used to learn a task faster by taking advantage

of the knowledge acquired by solving a related task. Lets say an agent has learned

to control a multicopter, which like a helicopter, is also a vertical-take-off vehicle

1
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but with several propellers instead of a rotor. The policy learned to control the

multicopter cannot simply be used to control a helicopter because the dynamics

are different and the actions would lead to undesirable results in the helicopter.

However, as both vehicles have the same state variables and actions, and their

dynamics are somehow related, both share a general behavior. For instance, in both

cases an increase in throttle will lift the aircraft, which is the sort of information

that can be transferred, so the new task might be learned faster.

The type of information that we harness in this work is qualitative, gathered

from the transition function, which is the function that describes the way the states

of the world change according to the actions taken. We take advantage of the Gaus-

sian processes to represent distributions of transition functions, and the qualitative

properties of the transition function (like smoothness, noise, etc.) are transferred to

the target task, so the new task starts with more information about the transition

function. In particular, we propose a transfer for batch learning methods which

transfers qualitative information from the state transition function in the form of a

prior about the type of function behind the transition of the target task. In order to

jumpstart the learning process, we also investigate how an initial transfer of policy

fares: This with the idea of gaining tuples around the solution trace in the first

episode. We will show that by providing a family of functions as prior informa-

tion about the underlying state transition function, significant reductions can be

obtained in the convergence of the algorithm. Our proposal gradually incorporates

the information from the target task producing a more stable process and faster

convergence times. The main contribution of this paper is a very effective approach

for transfer learning in continuous state and action spaces that is based on some

intuitive ideas: (i) Within similar domains, you can expect similar properties on the

type of state transition functions. (ii) Without any prior knowledge, it is probably

better if one start exploring states using the previously learned policy from the

source task. We performed experiments on relevant tasks in the context of RL and

control, including cart-pole, mountain car and quadcopter to helicopter transfer,

and show a significant improvement in the learning process.

The structure of this article is as follows. In Section 2 we give an overview of the

work in transfer learning. Section 3 briefly introduces RL, GPs and how GPs can

be used to represent state transition functions. In Section 4, the proposed transfer

method is described in detail. Section 5 presents experimental results in several

relevant problems for RL, under different conditions and comparisons. Section 6

summarizes the article and proposes future research directions.

2. Related work

Transfer learning for reinforcement learning already provides several approaches for

many scenarios where previously acquired knowledge is used to learn a new task.2

Nevertheless, not all of the methods can be applied to any given task, because it

depends on the conditions between the tasks. A simple case, for instance, is when
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only the reward function changes between the source and target task. In Ref. 3

an approach based on regression can infer the new reward function and improve

learning in the target task. There are other methods that are only useful when the

source task can be decomposed in a sort of subtasks that might be also found in the

target task.4 Some other methods focus in tasks where the source and target have

different variables in their state vector, but can still be related through an inter-

task mapping.5,6 Unfortunately the mentioned approaches have been developed to

face discrete problems or at most to deal with continuous states, but not actions.

In this work, we focus in a challenging scenario related to real world tasks, where

the variables that describe the state and actions are continuous and we assume

the problem can not be discretized. In this scenario all other transfer learning

approaches are unfeasible, at least without significant adaptations.

Even when several approaches in RL have been proposed to learn tasks in con-

tinuous domains, (e.g., Ref. 7, 8, 9, 10, 11, 12), they do not accomplish any transfer.

On the other hand, most of the published methods in TL highly depend on the dis-

crete algorithms, thus are not suitable to transfer information among continuous

tasks. In Ref. 13 the source task action’s Q-values are used to generate recom-

mended actions for the target task. In the target task, the actions are constrained,

with preference for different actions in different states so there is a bias for some

actions according to the state of the agent. This schema is useful for tasks where

the actions are discrete, however in tasks like the considered in this work, this sort

of methods are unfeasible, because discretizing the actions would lead to unman-

ageable amounts of information. In Ref. 14 relationships between state-action pairs

of both, the source and target tasks are found, a set of subroutines or skills that the

agent performs (called options) are discovered, by grouping sequential transitions,

so they can be used as preferred traces within specific states on the target task.

That sort of subroutines are discovered only within a specific type of tasks, where

sequences actions can be identified, but in the tasks where the actions are contin-

uous, each action probably only occur once during the whole learning process, so

sequences of actions would hardly be recognized. In Ref. 15, 16 and 5, it is pro-

posed a transfer of samples or instances composed by 〈state, action, reward, next

state〉 from the source task to the target task following similarity measures based

on distance. In their proposed approaches, the actions are discrete and are used as

indexes to cluster the tuples, which is the main reason those approaches could not

be used directly with continuous actions.

When working directly with continuous spaces, most of the published work

is related to the use of function approximators. In particular, Gaussian processes

(GPs) have been used to represent value functions, 17,18,19,20 and more recently, to

represent transition function models with very promising results. 21,22,23,24,11

In Ref. 25 we introduced an approach to transfer qualitative information from

a source task to a target task, focusing on transition function represented with a

GP. In the present work, we extend the previous idea by using new Bayesian rule

for combination that takes into account the uncertainty in the new task data. We
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compare the performance of the two proposed methods. Two new relevant tasks in

RL (mountain car and helicopter control) are implemented as benchmarks and the

result are analyzed using more metrics than in previous work. In the present work,

we also show a case in which the proposed approach reaches its limits. As a way to

detect the cases in which the source and target tasks are different enough that the

transfer is not useful, in this work a distance measurement called task compliance

is calculated and analyzed.

3. Background

This section briefly covers Markov decision processes (MDPs) and Gaussian pro-

cesses and how they can be used to represent the transition function.

3.1. Markov decision processes (MDPs)

RL problems are typically formalized as MDPs, defined by 〈S,A, P,R〉, where S

is the set of states, A is the set of possible actions that the agent may execute,

P : S × A × S → [0, 1] is the state transition probability function, describing the

task dynamics, R : S × A → R is the reward function that defines the goal and

measures the desirability of each state. A policy π : S → A maps states to actions.

In the case of continuous domains S = RD and A = RF , where D and F are the

dimensions of the state and action vector respectively. Functions approximators can

be used to represent the state transition function P and the policy function π. In

this work, we use GPs to represent these functions, as described in the following

sections.

3.2. Gaussian processes

A GP denoted by GP(m, k), is specified by a mean function m(·) and a covariance

function k(·, ·), also called a kernel. Given a set of input vectors xi arranged as

a matrix X = [x1, . . . ,xn] and a vector of samples or training observations y =

[y1, . . . , yn]>, Gaussian process methods for regression problems assume that the

observations are generated as yi = h(xi) + ε, where ε is additive noise that follows

an independent and indentically distributed Gaussian distribution with zero mean

and variance σ2
ε (ε ∼ N (0, σ2

ε )).

Given a Gaussian process model of the latent function h ∼ GP(m, k), it is possi-

ble to predict function values for an arbitrary input x∗. The predictive distribution

of the function value h∗ = h(x∗) for a test input x∗ is Gaussian distributed with

mean and variance given by:

Eh[h∗] = k(x∗,X)(K + σ2
ε I)−1y (1)

varh[h∗] = k(x∗,x∗)− k(x∗,X)(K + σ2
ε I)−1k(X,x∗) (2)

where K ∈ Rn×n is the kernel matrix with Kij = k(xi,xj) and σ2
ε is a noise term.
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The covariance function k commonly used is the squared exponential kernel:

k(x,x′) = α2 exp(−1

2
(x− x′)>Λ−1(x− x′)) + δxx′σ2

ε (3)

with Λ = diag([`21, . . . , `
2
n]) and `k for k = 1, . . . , n, being the characteristic length-

scales, σ2
ε the noise term and δxx′ denotes the Kronecker delta. The parameter α2

describes the variability of the latent function h. The parameters of the covariance

function or hyper-parameters of the GP (α2, `, σ2
ε ) are collected within the vector

θ. The hyper-parameters define the shape of the functions in the prior distribution.

The kernel hyper-parameters are often optimized to adjust prior Gaussian dis-

tribution to data, using evidence maximization. See Ref. 26 for more details on

Gaussian processes and evidence maximization.

3.3. RL for continuous state and action spaces

The unknown transition function P can be described as xt = f (xt−1,ut−1) , f ∼
GP(m, k), where xt ∈ S is the state of the agent at time t, and is estimated

by function f with the previous state and action (xt−1, ut−1) as arguments. The

transition model f is distributed as a Gaussian process with mean function m and

covariance function k. The sample tuples of the form (xt−1,ut−1) ∈ RD+F are

taken as inputs and the corresponding ∆t = xt − xt−1 + ε ∈ RD, ε ∼ N (0,Σε), as

training targets of the latent function. As the differences vary less than the original

function, learning the differences is better than learning the function values directly.

The objective in RL is to find a policy π: S 7→ A that maximizes the expected

accumulative reward given as:

V π(x0) =

T∑
t=0

E [r(xt)],x0 ∼ N (µ0,Σ0) (4)

which is the sum of the expected rewards r(xt) obtained from a trace (x0, . . . ,xT ),

T steps ahead, where π is a continuous function approximated by π̃, using a set of

parameters ψ. For most continuous tasks, it is sometimes useful to use a saturating

reward function r(xt) = exp(−d2/σ2
r) that rewards when the Euclidean distance d

of the current state xt to the target state xtarget is short, where σ2
r controls the

width of r.

The preliminary policy π̃ can be approximated by a radial basis function network

with Gaussian basis functions, given by:

π̃(x∗) =

N∑
s=1

βskπ(xs,x∗) = β>π kπ(Xπ,x∗) (5)

where x∗ is a test input, kπ is the squared exponential kernel and βπ = (Kπ +

σ2
πI)−1yπ is a weight vector. Kπ is formed as (Kπ)ij = kπ(xi,xj), where yπ =

π̃(Xπ) + επ, (επ ∼ N (0, σ2
πI)) represents the training targets for the policy, with

επ measurement noise. Xπ = [x1, . . . ,xN ], xs ∈ RD, s = 1, . . . , N , are the train-

ing inputs. The support points Xπ and the corresponding training targets yπ are
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pseudo-training set for the preliminary policy, that means that are adjusted by the

algorithm that learns the policy. In this paper we use PILCO11 to learn the policy.

The state transition function is learned as a GP, using available data, going

from a prior distribution of transition functions to a posterior one. The learned

transition model is then used to simulate the system and speculate about the long-

term behavior without the need of interaction (batch learning). The policy can be

represented with any approximator, but in this work we decided to use the approach

proposed in Ref. 11, so it is learned using estimates of the gradient of the value

function according to the simulations and after optimizing the policy, it is used to

get more tuples (state, action, successor state) interacting with the environment

again. This iteration cycle can be repeated as long as the desired behavior is not

reached.

4. Qualitative transfer learning

The problem that we study is one where the source and target tasks have the same

state and action spaces. For instance, the source task could be to learn how to drive

a car while the target task could be to learn how to drive a small truck. In this

sort of problems the general properties of the transition functions in both task are

similar.

We transfer information from the hyper-parameters of the transition function

of the source task to the target task, to qualitatively describe the expected shape

of the transition function in the target task. In our case, we use a GP with a mean

function defined as m(x) = 0 and a squared exponential kernel k with covariance

function as defined in Eq. 3. The inputs to the kernel function k are of the form

x̃ = [x>u>]>, where all the variables from the state vector and the action are

coupled into a single vector. The hyper-parameters that describe the shape of the

transition function (e.g., smoothness, periodicity, variability, noise tolerance) in the

prior distribution are α2, `, and σ2
ε . However, when no expert knowledge is available

about the function properties, the kernel hyper-parameters are often adjusted by

an optimization process taking data into account and optimizing the log marginal

likelihood (Equation ??) by evidence maximization (see Ref. 26 for more detail).

In our RL setting, a policy is used to gather new data and with this data a new

transition function is estimated, thus the hyper-parameters are adjusted on every

cycle.

4.1. Initialization

In this work, we use the information acquired in the source task to model a transition

function prior distribution for the target task. We start the target task with the same

distribution of transition function as the source task, by transferring the hyper-

parameters and gradually updating them with information from the target task.

We propose two updating approaches: (i) a forgetting geometric updating, which

allows to use expert knowledge to control the ratio in which the new information
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from the target task is incorporated into the model and (ii) a bayesian updating

approach, which takes into account the confidence in the new information gathered

in the target task. We will later show in Section 5 that these approaches create more

stable values for the hyper-parameters at the beginning of the learning process and

significantly reduce the convergence times of the algorithm.

Our algorithm starts with an initial policy to explore the environment. Once the

algorithm gathers some data with its current policy it updates its transition function

and recomputes a policy that considers the newly acquired information. The sooner

the system obtains meaningful tuples of the task at hand, the faster it will learn

an adequate policy. Furthermore, we also use the final policy of the source task

as initial policy of the target task, which empirically provides, in our experiments,

better initial traces than an initial random policy. We transfer the policy parameters

denoted as ψs, consisting in βπ, and the corresponding free parameters for the policy

kernel.

Transferring the hyper-parameters and the initial policy is not enough to solve

the target task because the policy (action learned for each of the states) does not

lead to the desired state as in the source task, but provides a clear advantage

over an initial random policy. One advantage is to have some tuples (hopefully)

in the neighborhood of the solution trace in the target task, which is better than

exploring without any prior knowledge. In order to have a better approximation

of the transition function distribution, we must use information obtained from the

target task. So, after the initial episode, tuples and hyper-parameters values from

the target task are updated and eventually will replace the source task information.

To search the policy, we used the approach followed in PILCO24 because it is

reported as one of the fastest in the literature, but any other method for batch

learning might be easily adapted as long as it could handle continuous states and

actions.

Once a policy has been learned, it is tested in the environment and new tuples are

collected. From the new tuples, new hyper-parameters are learned and combined to

the transferred ones, following the approaches as will be explained in the following

sections.

4.2. Forgetting factor updating

Qualitative properties from the source task are used as a departure point for the

target task, but gradually, as information becomes more reliable in the target task,

the information from the source task is dismissed. Now, these could be learnt from

scratch directly in the target task but having transferred the source task’s hyper-

parameters gives the learning process useful information about the type of transition

function to expect. Furthermore, as we show in the experimental section, it is not

good enough to just transfer the hyper-parameters and let the process re-learn the

correct hyper-parameters of the target task. The reason for this is that if left free,

the process will override the transferred information almost immediately. Instead,
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Algorithm 1 Qualitative Transfer learning

Require: θs, ψs
1: π̃ ← π(ψs)

2: θ ← θs
3: Interact with environment, apply π̃ to obtain tuples.

4: repeat

5: Infer transition function distribution f from tuples and hyper-parameters θ.

6: repeat

7: Evaluate policy π̃ over f . Get V π̃

8: Improve π̃ . Updating parameters ψ

9: until convergence

10: π̃ ← π(ψ)

11: Interact with environment, apply π̃ to obtain more tuples.

12: Learn θpi from all tuples.

13: Apply updating rule (Forgetting/Bayesian)

14: until task learned

we propose to adjust the hyper-parameters is using a forgetting factor.

Let θ = [α2, `, σ2
ε ]> denote a vector of hyper-parameters. Let θs denote the

hyper-parameters transferred from the source task, θi the hyper-parameters used

in the kernel for the target task at episode i, θpi the hyper-parameters learned by

evidence maximization in the target task at episode i. We calculate the values of

the hyper-parameters in the target task as follows:

θ0 = θs (6)

θi = γθi−1 + (1− γ)θpi , i > 0 (7)

where γ ∈ [0, 1] is the ratio at which previous episode hyper-parameters are incor-

porated into the kernel function. The value of γ specifies how much information

about the general properties of the state transition function from the source task

to use during the learning process of the target task.

4.3. Bayesian updating

Another way to update the hyper-parameters is using a Bayesian approach. At

each episode k, we combine successive approximations of the value of the hyper-

parameters learned by evidence maximization θpk . We treat the learned value as

a noisy approximation of the true value of the hyper-parameters. During the first

episodes there is a small number of tuples of the target task, so the parameters

learned by evidence maximization are less reliable than those learned from a large

set of samples.

We model this by assuming that the learned value of each of the hyper-

parameters in the target task is noisy with a distribution

p(θpk) ∼ N (µp, σ
2
p) (8)
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while the posterior distribution is:

p(θ|θpk) ∼ N (µk, σ
2
k) (9)

where

σ2
k =

σ2
pσ

2
k−1

σ2
p + σ2

k−1
(10)

µk = σ2
k

(
µk−1
σ2
k−1

+
µp
σ2
p

)
(11)

where σ2
k−1 is the prior variance and σ2

k is the posterior variance.

The Bayesian approach allows us to take into account the initial uncertainty on

the source task’s hyper-parameters and adjust the confidence on the new learned

hyper-parameters value, according to the data. The uncertainty is considered as

inversely proportional to the amount of data:

σ2
k−1 ∝

1

n
(12)

where n is the number of tuples collected in the target task.

5. Experiments

Most TL approaches to RL transfer tuples and depend on discrete action spaces,

so it is difficult to make a fair comparison. Moreover, algorithms of TL for RL that

might work in batch mode (Ref. 16 and 5) were reported to learn in hundreds of

episodes while in our work our results are in the order of tens of episodes at most.

In our experiments we contrast the performance of our proposed transfer approach,

qualitative transfer learning (QTL), with PILCO tabula rasa. PILCO is a state of

the art technique used for learning in continuous spaces11 that is reported to learn

several orders of magnitude faster than other algorithms, we use it as part of our

approach to search the policy.

In this section we show experimental results in three different tasks commonly

used as benchmarks to compare reinforcement learning and control algorithms.

The inverted pendulum task is a well known problem used in TL and control as

benchmark. In this experiment we tested the behavior of the proposed algorithm

under different conditions and compare it to other approaches. The mountain car

scenario, is to show a a case where the conditions may lead to negative transfer.

The transfer from the quadcopter to the helicopter task is a problem, where many

variables are involved. In this task we test our approach in a challenging problem

with many state and action variables with a very sensitive transition function, in the

sense that small changes in actions lead big changes in state. In the mountain car

and in the helicopter tasks, we compare only our Bayesian and PILCO approaches.

In all of the above tests we repeated the procedure five times, randomly se-

lecting the initial state, the learning curves were averaged and plotted with their

corresponding standard deviation.
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For PILCO, the Kernel hyper-parameters in the source task were initialized with

heuristic values, as proposed in Ref. 11. The initial training set for the transition

function was generated by applying actions drawn uniformly from [−umax,umax].

5.1. Inverted pendulum on a cart

In this task, an inverted pendulum has to be balanced by swinging it. The pendulum

is attached to a cart that moves along one axis when an external force is applied.

This problem involves applying actions that temporarily move the pendulum away

from the target state, and the agent has to apply two different control criteria, one

to swing the pendulum up and the other to balance it, thus it is non trivial to solve.

For our experiments, we tested the inverted pendulum problem with continuous

action and state spaces, as described in Ref. 11. In this formulation not only the

pendulum has to be balanced, but it has to be maintained at a specific point as well,

which is more challenging. In the continuous scenario, a state x is formed by the

position x of the cart, its velocity ẋ, the angle θ of the pendulum, and its angular

velocity θ̇. The reward function is expressed as:

r(x) = exp(−1

2
ad2) (13)

where a is a scale constant of the reward function (set to 0.25 in the experiments)

and d is the Euclidean distance between the current and desired states, expressed

as d (x,xtarget)
2

= x2+2xl sin θ+2l2+2l2 cos θ. The reward remains close to zero if

the distance of the pendulum tip to the target is greater than l = 0.6m. The source

task consists of swinging a pendulum of mass 0.5 Kg. while in the target tasks the

pendulums weights are changed to 0.8, 1.0, 1.5, and 2.0 Kg., respectively.

In our proposed methodology, 8 hyper-parameters for each of the kernels Ki,

are taken from the source task. The hyper-parameters are length scales `21, . . . , `
2
D

for each of the D state variables (where angles are represented by their sin and

cos values in order to deal with the pendulum spinning beyond one turn). The

last two hyper-parameters are signal variance α2 and noise variance σ2
ε . Therefore

32 free variables are considered (considering one kernel for each of the four state

variables for this domain). We performed experiments with different values for γ,

from γ = 0, which is equivalent to learning with PILCO, to γ = 1.0 which uses the

hyper-parameters found in the source task. For the Bayesian updating, after the

first episode, the hyper-parameters are fused with the hyper-parameters learned by

evidence maximization from the samples, as stated in Equations 8 to 11.

A comparison of the learning curves for target tasks is shown in Figure 1, where

we plot PILCO and QTL with different values of γ and with the Bayesian updating.

The learning curves for only policy transfer and for only hyper-parameters transfer

without updating are plotted too. The horizontal axis shows the number of episodes

(interactions with the environment) while the vertical axis shows the total reward,

which is computed as the cumulative count of r(x) at every step.
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Fig. 1. Learning curves for target tasks of 1.5Kg and 2.0Kg learned from a 0.5Kg source
task. Error bars represent the standard deviation.

The proposed transfer learning approach can significantly reduce the learning

process. When the target task is quite similar to the source task (in this case, with

a similar mass), QTL-PILCO shows a clear improvement over learning without

transfer. When the target task is less similar (larger mass) the improvement is

much more noticeable, the transfer learning has more area under the curve (see

Table 2), which means our approach obtains more overall reward during the learning

process. The performance of the policy learned is measured as the cumulative reward

averaged in the latest three episodes of the learning process. Our proposed transfer

method had the best performance in three of the four tasks, the 1.5Kg. task was

the only where the PILCO approach learned a slightly better policy at the end of

the test as shown in Table 1.

Both, QTL-PILCO with γ = 0.9 and the Bayesian approaches converge faster

to a good policy than PILCO. The more drastic transfer is when the mass of

the pendulum is 2.0Kg. In that case, the transfer of QTL-PILCO converges 13

episodes before the learning without transfer, as can be seen in Table 3. The time to
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Table 1. Final performance measured in total accumulated reward, averaged from the latest 3

episodes (NC means No convergence).

Approach 0.8Kg. 1.0Kg. 1.5Kg. 2.0Kg.

PILCO (γ = 0) 36.95 35.53 33.32 29.71

Hyper-parameters transfer 37.08 33.04 32.98 29.66

QTL-PILCO γ = 0.9 37.55 34.97 32.84 29.79

QTL-PILCO γ = 0.5 37.20 34.50 32.78 29.90

QTL-PILCO γ = 1 37.06 34.59 NC NC

QTL-PILCO Bayesian 37.57 35.66 32.68 29.97

Policy Transfer 35.77 32.81 NC NC

Table 2. Area under the learning curve.

Approach 0.8Kg. 1.0Kg. 1.5Kg. 2.0Kg.

PILCO (γ = 0) 228.47 206.09 218.63 204.41

Hyper-parameters transfer 236.59 185.99 260.33 240.98

QTL-PILCO γ = 0.9 287.44 236.20 589.57 527.65

QTL-PILCO γ = 0.5 240.86 217.40 415.95 366.68

QTL-PILCO γ = 1 246.41 212.92 146.44 117.63

QTL-PILCO Bayesian 272.91 236.43 602.55 539.79

Policy Transfer 214.35 156.76 173.90 150.64

Table 3. Time to convergence, measured in number of episodes to reach 95% of performance.

Approach 0.8Kg. 1.0Kg. 1.5Kg. 2.0Kg.

PILCO (γ = 0) 9 10 22 25

Hyper-parameters transfer 9 11 22 25

QTL-PILCO γ = 0.9 7 9 9 12

QTL-PILCO γ = 0.5 9 10 20 21

QTL-PILCO γ = 1 9 10 Unknown Unknown

QTL-PILCO Bayesian 8 9 10 12

Policy Transfer 10 11 Unknown Unknown

convergence is calculated as the number of episodes to reach 95% of the performance

value.

One advantage of our method is the stabilization of the hyper-parameters, so

the learning process focuses more on learning the policy than trying to guess the

hyper-parameters without having enough information. The values of the hyper-
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parameters learned by evidence maximization can change drastically during the

first iterations of the learning process due to poor samples.

5.2. Mountain car

This problem is a common test bed in a RL context, it consists of a car in a valley

between two hills, the agent must learn a strategy to take the car up to the right

side hill. The car cannot drive up at full throttle, so a strategy to gain inertial

energy must be learned. The strategy consist of driving up the opposite hill to gain

speed, which implies going away from the objective before reaching it.

In RL literature, the problem is described using discrete variables for actions

(left, zero, right).1 In our tests, we address the problem using continuous spaces for

states and actions. An agent’s state is a vector x = (x, ẋ), where x is the position

on the horizontal axis and ẋ is the velocity of the car on the horizontal plane too.

The action a is a single variable corresponding to the force applied to the car. The

initial state is x0 = (−5, 0), and the goal state is whenever x > 0.5, however, here

we consider a bit more challenging task of stopping the car as soon as it reaches

the right hill, so the goal state is xtarget = (1, 0). The reward function is expressed

as Eq. 13 where a is a scale constant of the reward function (set to 0.25 in the

experiments) and d = x. The agent receives a zero reward at every time step when

the goal is not reached.

For this experiment, we consider as source task the one specified in Ref. 1. For

target tasks, we tested the same problem with a modified engine power of 50%,

150% and 300% the power of the source task.

The results in Figure 2 show an improvement in the first two tasks, which are

similar to the source task. In this two tasks the agent has to learn to swing the car,

because there is not enough power to climb the hill. The third task however is a

special case where the car has enough power to climb the hill without swinging. For

this task there is negative transfer (transferring hyper-parameters leads to worst

results than tabula rasa). This is because the transition function is not similar

between the source and the target task. In order to try to avoid this scenario, some

model distance measurement might be used to decide whether or not to transfer if

enough data is available in both source and target tasks. We show in Table 4 the

task compliance measure on the three target tasks, we used the metric described

by Equation 14 (for more detail see Ref. 16). It is noticeable that task compliance

is low for the 300% engine power task. A naive approach could be to set a fixed

threshold value for Λcompl. The compliance metric, measures the probability that

source task S is the model from where the tuples T̂〈s,a〉 might have been generated,

briefly described by the equation

Λcompl =
1

|Û |

∑
〈s,a〉∈Û

P (S|T̂〈s,a〉) (14)

where Û contains all the state-action pairs in the tuples from the target task T̂
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Fig. 2. Mountain car. Learning curves for target tasks of 50%, 150% and 300% car engine
power, learned from a car with 100% power available. Error bars represent the standard
deviation.

Table 4. Task compliance measurement on the three target tasks for the mountain car problem.

Engine power Task compliance

50% 0.64

150% 0.76

300% 0.34

5.3. Quadcopter to helicopter

This task is the most complex and interesting experiment for the proposed ap-

proach. The task consists of finding a policy to get from an initial (on land) position

to a desired position, specified by (xtarget, ytarget, ztarget) coordinates. So the agent

must learn to take off, deal momentarily with the ground effecta, reach an specific

three-dimensional position, and finally keep the vehicle stabilized at that spot. This

task is learned in a quadcopter and then transfer to a helicopter which is a related

vehicle, but with different dynamics.

This is the most challenging task for our proposed framework because an aircraft

autonomous control is a precision task, and from the point of view of RL, the

aGround effect is an aerodynamic effect derived from air hitting the ground when an aircraft is

close to a surface that makes harder to lift and control the aircraft.
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Table 5. Area under the learning curve for the helicopter task.

Approach Area under curve

PILCO (γ = 0) 2225.4

QTL-PILCO Bayesian 3803.7

difficulty comes also from the number of variables of state and control, and the

number of episodes required to learn. We must note that there has been work

on apprenticeship learning where the agent is able to do aerobatic flight27, but it

requires of an expert to have previously repeated the manoeuvre several times. On

the contrary, we focus on the transfer process where no expert or human knowledge

is required.

Although both aircraft have the same state variables and same action variables,

they behave different due to different aerodynamics. The quadcopter has four pro-

pellers which generate lift, the change in the speed of the propellers induces a change

in the attitude of the quadcopter and a change in position. In the quadcopter, the

difference between the torque generated by the motors is used to change the yaw

angle. On the other hand, the helicopter has a main rotor which generates lift and

changes position by changing the blades’ angle as they rotate around the main axis.

The helicopter also has a tail rotor to compensate the torque generated by main

rotor. So, in order to control the yaw angle the helicopter changes the pitch in the

tail rotor’s blades.

Both, quadcopter and helicopter, have a state vector with 12 variables, compris-

ing its position (x, y, z), orientation (roll φ, pitch θ, yaw ω), velocity (ẋ, ẏ, ż) and

angular velocity (φ̇, θ̇, ω̇). We define the goal position as [x, y, z] = [−1,−1, 1.5],

starting from [x, y, z] = [0, 0, 0]. The reward function obeys Eq. 13, with a set to

0.25 and d evaluated as d (x,xtarget)
2

= x2 + y2 + z2.

For simulation purposes we use V-REP28, which is a robotics simulator, where

the quadcopter and helicopter dynamics models run. Figure 3 shows the learning

curves for the helicopter task. We plot the PILCO (tabula rasa) learning curve,

the QTL-PILCO approach and the total reward obtained by using the autopilot

implemented in the simulator. The reward obtained by the control algorithm pro-

vided by the simulator is shown as a reference in the figure. Both, PILCO and

our approach learn a better policy than the autopilot, as in both cases the agent

learns to compensate the inertia of the helicopter by tilting pitch and roll angles

before the helicopter reaches the target position in contrast to V-REP’s autopilot

which tends to overshoot. The transfer reaches a correct policy about seven episodes

before PILCO.

The transfer in this challenging scenario shows empirically that the proposed

approach is useful in real problems with high dimensionality where the transition

function represents sensitive information (the behavior of the autonomous heli-
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Table 6. Time to convergence is measured in number of episodes to reach 95% of performance.

Performance is total reward averaged from the last three episodes (showed in parenthesis).

Approach Time to convergence and performance

PILCO (γ = 0) 24 (132.5)

QTL-PILCO Bayesian 19 (131.99)
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Fig. 3. Learning curves for the helicopter task, learned PILCO and with transfer from the
quadcopter task. Reward acquired with V-REP autopilot is shown as reference.

copter is very sensitive to the variations in the actions). These results lead to think

this approach could be useful to accelerate learning in real applications by trans-

ferring qualitative knowledge from simulated environments.

In a succinct way, the results drawn from these experiments are:

• Transferring information of the general properties of the state transition

function (in the form of hyper-parameters) can significantly reduce the

convergence times of the algorithm.

• A gradual incorporation of the hyper-parameters found for the target task

provides more stable values for the hyper-parameters.

• This approach is suitable for several tasks, including those with many vari-

ables in state and action spaces.

6. Conclusions

In this paper we have presented a transfer learning approach for reinforcement

learning with continuous state and action spaces. The proposed approach is sim-

ple, yet very effective for transferring knowledge between related tasks. It works by
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refining the transition function model in the target task (modeled as a Gaussian

process) using qualitative knowledge from the source task, like smoothnes, variance

and noise properties of the transition function distribution. Two variants are pro-

posed to transfer qualitative knowledge to the target task. The first one gradually

incorporates the value of the hiper-parameters learned in the source task. The sec-

ond one uses uncertainty in the value of the learned hyper-parameters in the target

task to fuse with the transferred knowledge accordingly.

We performed experiments in three relevant tasks for reinforcement learning

under different conditions and showed that our transfer learning approach signifi-

cantly improves over a state-of-the-art algorithm that learns without transfer or by

transferring directly the policy or hyper-parameters.

Because of its relationship to real tasks, continuous states and actions problems

are a relevant part of reinforcement learning research, however, to the best of our

knowledge, no other known approach transfers information for tasks with continu-

ous states and actions. The idea of transferring qualitative behaviors between tasks

is a novel idea that can be extended along several directions. So far only prior tran-

sition function distribution is being refined. We would like to develop methods to

synthesize tuples in the target task in order to also adjust posterior distribution of

the transition function.
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