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a  b  s  t  r  a  c  t

Objective:  The  human  immunodeficiency  virus  (HIV)  is one  of  the  fastest  evolving  organisms  in  the  planet.
Its  remarkable  variation  capability  makes  HIV able  to  escape  from  multiple  evolutionary  forces  naturally
or  artificially  acting  on it,  through  the  development  and  selection  of  adaptive  mutations.  Although  most
drug resistance  mutations  have  been  well  identified,  the  dynamics  and  temporal  patterns  of  appearance
of these  mutations  can  still  be further  explored.  The  use  of  models  to predict  mutational  pathways  as  well
as temporal  patterns  of  appearance  of  adaptive  mutations  could  greatly  benefit  clinical  management  of
individuals  under  antiretroviral  therapy.
Methods  and material:  We  apply  a  temporal  nodes  Bayesian  network  (TNBN)  model  to  data  extracted  from
the  Stanford  HIV drug  resistance  database  in order  to  explore  the  probabilistic  relationships  between  drug
resistance  mutations  and  antiretroviral  drugs  unveiling  possible  mutational  pathways  and  establishing
their  probabilistic-temporal  sequence  of  appearance.
Results: In  a  first experiment,  we compared  the  TNBN  approach  with  other  models  such  as  static  Bayesian
networks,  dynamic  Bayesian  networks  and  association  rules.  TNBN  achieved  a  64.2%  sparser  structure
over  the  static  network.  In a second  experiment,  the  TNBN  model  was  applied  to  a  dataset  associating
antiretroviral  drugs  with  mutations  developed  under  different  antiretroviral  regimes.  The  learned  models
captured  previously  described  mutational  pathways  and  associations  between  antiretroviral  drugs  and

drug resistance  mutations.  Predictive  accuracy  reached  90.5%.
Conclusion:  Our  results  suggest  possible  applications  of  TNBN  for  studying  drug-mutation  and
mutation–mutation  networks  in the  context  of  antiretroviral  therapy,  with  direct  impact  on  the clinical
management  of  patients  under  antiretroviral  therapy.  This  opens  new  horizons  for  predicting  HIV muta-
tional  pathways  in  immune  selection  with  relevance  for antiretroviral  drug  development  and  therapy
plan.
. Introduction

Viral evolution is an important aspect of the epidemiology of
iral diseases such as influenza, hepatitis and the acquired immu-
odeficiency syndrome (AIDS). This evolution greatly impacts the
evelopment of successful vaccines and antiviral drugs, as muta-
Please cite this article in press as: Hernandez-Leal P, et al. Discovering hu
Bayesian networks. Artif Intell Med (2013), http://dx.doi.org/10.1016/j.artm

ions conferring immune escape or drug resistance often develop
arly after the virus is placed under selective pressure. This is par-
icularly relevant for human immunodeficiency virus (HIV), a virus
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ranking among the fastest evolving organisms in the planet [1].
The remarkable viral replication capability of HIV is coupled with a
high mutation rate and a high probability of recombination in the
viral genome during its replication cycle. These features allow HIV
to boast a wide genetic variability even considering only the viral
population within a given host. This variation capability gives the
virus a remarkable ability to adapt to multiple selective pressures,
including the immune response and antiretroviral therapy. Several
questions remain open regarding HIV intra-host genetic variability,
for example: To what extent do selective pressures such as immune
responses and antiretroviral treatment shape viral evolution com-
man immunodeficiency virus mutational pathways using temporal
ed.2013.01.005

pared to genetic drift? What is the relationship between genetic
diversity and clinical outcome? Is it feasible to anticipate HIV evo-
lution in order to reduce drug resistance and viral adaptation to
immune responses? In the case of this last question, being able
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o predict mutational pathways in HIV and their timely patterns
f appearance could help to anticipate viral adaptation and plan
imely interventions with the proper monitoring of infected indi-
iduals. In the present study, we addressed the problem of finding
utation–mutation and drug–mutation associations in individuals

eceiving antiretroviral therapy, using temporal nodes Bayesian
etworks (TNBNs). We  have focused on protease inhibitors (PIs), a

amily of antiretroviral drugs widely used in modern antiretroviral
herapy. PIs block the activity of the viral protease, an enzyme that
rocesses viral precursor polyproteins in order to promote viral
aturation and infectivity. It is well described that resistance to PIs

esults from the accumulation of mutations that together modify
he conformation of the enzyme.

Our goal was to test whether the model could predict pre-
iously described mutational pathways for specific drugs. Our
robabilistic graphical model correctly identified antiretroviral
rug-associated mutational patterns in the protease gene, revea-

ing the co-occurrence of mutations and its temporal relationships.
his work1 is organized as follows. Section 2 highlights some basic
otions regarding HIV and how it develops drug resistance. Sec-
ion 3 justifies the use of TNBNs over other existing graphical
robabilistic approaches. Section 4 describes the TNBN model. Sec-
ion 5 presents the first experiments and compares TNBNs with
ther three approaches. Section 6 presents the results of a learned
NBN with specific drugs and important mutations; this section
ighlights the clinical relevance of the results. Finally, Section 7
ummarizes the findings and indicates future lines of research.

. HIV and its defense against antiretroviral therapy

.1. Motivation

HIV is the causing agent of AIDS, a condition in which
rogressive failure of the immune system allows opportunistic life-
hreatening infections to occur. HIV is a virus with relatively recent
ntroduction to human populations [2] representing a huge global
urden to human health [3].

The HIV replication cycle is characterized by a reverse-
ranscription step of the viral ribonucleic acid genome to a
ouble-stranded deoxyribonucleic acid molecule, which is then

nserted into the host cell genome. To combat HIV infection sev-
ral antiretroviral (ARV) drugs belonging to different drug classes
hat affect specific steps in the viral replication cycle have been
eveloped. Antiretroviral therapy (ART) generally consists of well-
efined combinations of three or four ARV drugs. Due to its
emarkable variation capabilities, HIV can rapidly adapt to the
elective pressure imposed by ART through the development of
rug resistance mutations, that are fixed in the viral population
ithin the host in known mutational pathways. The develop-
ent of drug resistant viruses compromises HIV control, with

 consequent further deterioration of the patient’s immune sys-
em. Hence, there is interest in having a profound understanding
f the dynamics of appearance of drug resistance mutations. We
ocus our analyses on one of the most common target proteins
f antiretroviral drugs: the viral protease, an enzyme that cleaves
iral polyprotein precursors into mature proteins. The protease acts
ate in HIV replication cycle and is essential for viral infectivity.
Please cite this article in press as: Hernandez-Leal P, et al. Discovering hu
Bayesian networks. Artif Intell Med (2013), http://dx.doi.org/10.1016/j.artm

rugs designed to interfere with protease are known as protease
nhibitors. Resistance to PIs occurs via the accumulation of primary
nd secondary mutations that are located within and outside of

1 This paper is an expanded version of “Unveiling HIV mutational networks
ssociated to pharmacological selective pressure: a temporal Bayesian approach”
resented in: A. Hommersom and P. Lucas, editors. Probabilistic Problem Solving in
iomedicine Workshop (ProBioMed-11), Bled Slovenia.
 PRESS
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the enzyme active site, respectively [4].  The patterns of mutations
selected by currently available PIs have been characterized [5,6].
More than 20% of the 99 amino acids comprising the HIV protease
have been shown to mutate in response to drug pressure. Conse-
quently, the genotypic patterns in patients with PI-resistant HIV
are complex. The primary mutations selected by different PIs may
be drug-specific, but secondary mutations tend to be common to
several drugs in the PI class, potentially limiting the success of sub-
sequent PI therapy following failure on any PI-containing regimen
[7]. Moreover, the appearance of some drug resistance mutations
implies high costs for viral replication capacity. These costs in viral
replication capacity are often compensated by the appearance of
additional mutations known as compensatory mutations. Due to
their polymorphic nature the frequency of compensatory muta-
tions can vary between viruses circulating in different geographic
areas, making it relevant to study HIV mutational pathways in the
context of different infected populations.

2.2. Related work

Abundant literature exists describing computational models
aimed to better understand HIV evolution and immunopathogene-
sis. A good part of these models is devoted to predicting phenotypic
HIV resistance to antiretroviral drugs using different approaches
such as decision trees [8] or neural networks [9].  Other models
have tried to identify relevant associations between clinical vari-
ables and the HIV disease [10]. Surprisingly, among this wealth
of literature, works aimed towards the identification of temporal
relationships among mutations and drugs in HIV are scarce.

In [11] association rules between clinical variables and ART fail-
ure were assessed. The authors used 15 clinical variables from 8000
patients from data collected since 1981. The results obtained were
temporal rules that have as antecedent the increase of a subset of
clinical variables and as consequent ART failure. None of the clinical
variables considered were HIV mutations. Some other works using
probabilistic models have studied the development of resistance
to PIs, mainly Nelfinavir, Indinavir and Saquinavir, through learned
Bayesian networks [12,13]. However, none of these learned models
yielded any temporal information.

Finally, in [14], the order of appearance of resistance mutations
in reverse transcriptase was  assessed. In order to overcome the
scarce amount of longitudinal data available for patients under the
same antiretroviral regimen, the authors used large sets of cross-
sectional data. By using a variant of the expectation-maximization
algorithm they learned a mixture model of directed trees that accu-
rately captured the order in which mutations of the HIV-1 reverse
transcriptase accumulate.

In this work, we  proposed a novel approach to study antiretrovi-
ral drug resistance mutation dependencies and temporal relations.
We use temporal nodes Bayesian networks because of their capac-
ity to obtain a global representation of the temporal dynamics of
HIV mutations.

3. Bayesian networks

Information in clinical databases is often imprecise, incom-
plete, and with errors (noisy). Bayesian Networks (BNs) [15] are
probabilistic graphical models particularly well suited to deal
with uncertainty. BNs represent probabilistic dependencies among
domain entities. BNs have a visual representation, a graph consist-
ing of nodes and edges facilitating their analysis and interpretation.
man immunodeficiency virus mutational pathways using temporal
ed.2013.01.005

Nodes represent random variables and edges represent a set of
conditional independence assumptions [16]. This kind of graphical
representation can be easily understood. An additional advantage
is the availability of several methods to learn BNs from data [17].

dx.doi.org/10.1016/j.artmed.2013.01.005


 IN PRESSG Model

A

telligence in Medicine xxx (2013) xxx– xxx 3

m
B
D
c
t
s
c
t
a
D
a

4

a
t
b
r
s
i
v
m
l

r
a
d
t
t
o
∅
o
f
c
o
n
a
v

E

D
a
t
w

s
t
i
s
a

E
l
a
d
i
o
w
p
a
r
[
F

Fig. 1. An example of a TNBN. Each oval represents a random variable. All the
nodes have prior probabilities associated with each state. The three upper nodes
(collision, head injury and internal bleeding) are instantaneous nodes, so
ARTICLERTMED-1270; No. of Pages 11
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BNs have proven to be successful in various domains such as
edicine [18,19] and bioinformatics [20–23].  However, classical

Ns are not well equipped to deal with temporal information.
ynamic Bayesian networks (DBNs) evolved to tackle this short-
oming [24]. A DBN can be seen as multiple slices of a static BN over
ime, with temporal relations captured as links between adjacent
lices. In a DBN, a base model is cloned for each time stage. These
opies are linked via the so-called transition network. In this transi-
ion network is common that only links between consecutive stages
re allowed. Whenever temporal changes occur infrequently, the
BN representation becomes unnecessarily over expressive. One
lternative are temporal nodes Bayesian networks [25].

. Temporal nodes Bayesian networks

In a TNBN, each node, known as temporal node (TN), represents
 random variable that may  be in a given state, i.e. value interval,
hroughout the different temporal intervals associated to it. An arc
etween two temporal nodes describes a temporal-probabilistic
elation. In TNBNs, each variable (node) represents an event or
tate change. So, only one (or a few) instance(s) of each variable
s (are) required, assuming there is one (or a few) change(s) of a
ariable state in the temporal range of interest. No copies of the
odel are needed, thus compacting the representation without

osing expressiveness.
A TNBN [25,26] is composed by a set of TNs connected by arcs

epresenting a probabilistic relationship between TNs. A TN, vi, is
 random variable characterized by a set of states S. Each state is
efined by an ordered pair S = (�, �), where � is the particular value
aken by vi during its associated interval � = [a, b], corresponding
o the time interval in which the state changes, i.e. change in value
ccurs. In addition, each TN contains an extra default state s = (‘Not’,
) with no associated interval. Time is discretized in a finite number
f intervals, allowing a different number and duration of intervals
or each node (multiple granularity). Each interval, defined for a
hild node, represents the possible delays between the occurrence
f one of its parent events and the corresponding child event. If a
ode lacks defined intervals for all its states then it is referred to
s instantaneous node. There is at most one state change for each
ariable (TN) in the temporal range of interest.

Formally, let V be a set of temporal and instantaneous nodes and
 a set of arcs between nodes, a TNBN is defined as:

efinition 1. A TNBN is a pair B = (G, �)  where G is a directed
cyclic graph, G = (V, E), and � is a set of parameters quantifying
he network. � contains the values �vi

= P(vi|Pa(vi)) for each vi ∈ V;
here Pa(vi) represents the set of parents of vi in G.

The following is an example of a TNBN based on [25], its corre-
ponding graphical representation is shown in Fig. 1. Each node in
he TNBN has a conditional probability table. For the sake of visual-
zation, we decided to present only the prior probabilities for each
tate of the node. They are calculated with the learned parameters
nd then propagating probabilities over the network.

xample 1. Assume that at time t = 0 an accident occurs, a col-
ision. This kind of accident can be classified as severe, moderate
nd mild. For the sake of simplicity let us consider only two  imme-
iate consequences for the person involved in the collision, head

njury and internal bleeding. Head Injury can take two  values true
r false, internal bleeding can be gross, slight or false. These events
ill generate subsequent changes that are not immediate: dilated

upils and unstable vital signs, that depend on the severity of the
Please cite this article in press as: Hernandez-Leal P, et al. Discovering hu
Bayesian networks. Artif Intell Med (2013), http://dx.doi.org/10.1016/j.artm

ccident. These events (dilated pupils and vital signs) have tempo-
al intervals associated. Dilated pupils has three intervals {[0–15]
15–30] [30–60]}  and vital signs has two intervals {[0–10], [10–45]}.
or this example, the intervals represent minutes and a physician
they do not have temporal intervals. The dilated pupils and vital signs are
temporal nodes with intervals associated with them.

would appreciate not only the information of the occurrence of the
events but also the time at which they appear, in order to obtain
a better evaluation/diagnosis of the person. For instance, if a colli-
sion is severe, the person involved has high probability of having a
head injury and therefore to have dilated pupils in the first 15 min
after the accident. On the other side, if a collision is mild, then the
probability of having a head injury is low, thus the probability of
having dilated pupils is extremely low.

As mentioned, there are several methods to learn BNs from
data [17]. Unfortunately, none of the algorithms used to learn BNs
deal with learning temporal intervals. Therefore, these cannot be
applied directly to learn TNBNs. The learning algorithm for TNBN
used in this work has been presented in [27]. Briefly, the learning
algorithm proceeds as follows:

1. First, it performs an initial discretization of the temporal vari-
ables, for example using an equal-width discretization. With this
process it obtains an initial approximation of the intervals for all
the temporal nodes.

2. Then it performs a standard BN structural learning, the K2 learn-
ing algorithm [28] is used to obtain an initial structure.

3. The interval learning algorithm refines the intervals for each
TN by means of clustering. For this, it uses the information of
the configurations of the parent nodes. To obtain the intervals
a Gaussian mixture model is used as a clustering algorithm for
the temporal data. Each cluster corresponds, in principle, to a
temporal interval. The intervals are defined in terms of the mean
and the standard deviation of the clusters. The algorithm obtains
different sets of intervals that are merged and combined, this
process generates different interval sets that will be evaluated in
terms of the predictive accuracy (relative Brier score). The algo-
rithm applies two  pruning techniques in order to remove some
sets of intervals that may  not be useful and also to keep a low
complexity of the TNBN. The best set of intervals (that may  not
be those obtained in the first step) for each TN is selected based
on predictive accuracy. When a TN has as parents other tempo-
ral nodes (an example of this situation is illustrated in Fig. 4),
the configurations of the parent nodes are not initially known.
In order to solve this problem, the intervals are sequentially
selected in a top-down fashion according to the TNBN structure.
man immunodeficiency virus mutational pathways using temporal
ed.2013.01.005

The algorithm then iterates between structure learning and interval
learning. However, for the experiments presented in this work, we
show the results of only one iteration.

dx.doi.org/10.1016/j.artmed.2013.01.005
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Table 1
An example of the data. Patient Pat1 with 3 temporal studies, and patient Pat2 with
two temporal studies.

Patient Initial treatment List of mutations Time (weeks)

Pat1

LPV, FPV, RTV
L63P, L10I 15
V77I 25
I62V 50

Pat2
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NFV, RTV, SQV
L10I 25
V77I 45

. Finding pathways – a simple approach

This section presents a first experiment in which the objective is
o compare the TNBN model with different approaches. Therefore,
e used a simple approach for selecting the mutations and drugs

o be included in the models. We  present the learned TNBN and
ompare it to static Bayesian networks, dynamic Bayesian networks
nd association rules.

.1. Data and preprocessing

Clinical data from 2373 patients with HIV subtype B was
etrieved from the HIV Stanford database (HIVDB) [5,6]. We chose
o work with this subtype because it is the most common in the
mericas [29], our geographical region of interest. The isolates

n the HIVDB were obtained from longitudinal treatment profiles
eporting the evolution of mutations in individual sequences.

For each patient, data consisted of an initial treatment (a combi-
ation of drugs) administered to the patient and a list of laboratory
esistance tests at different times (in weeks). Each test included a
ist of the most frequent mutations in the viral population within
he host at a specific time after the initiation of treatment. An
xample of the data is presented in Table 1. The number of stud-
es available varied from 1 to 10 studies per patient history. Since

e are interested in the temporal evolution of the mutational
etworks, we filtered out those patients having only one study.

In order to apply the TNBN learning algorithm, the data exem-
lified in Table 1 was transformed into another table similar to the
ne presented in Table 2, where each column represents a drug or
utation, and each row represents a patient case. For the drugs, the

alues were: used or not used, and for the mutations the values
ere: appear, with the number of weeks elapsed before the muta-

ion appeared for the first time; or not, when the mutation did not
ppear in that case.

Antiretrovirals are usually classified according to the enzyme
hat they target. We  focused on the viral protease, as this is the
mallest of the viral enzymes in terms of number of amino acids.
ine protease inhibitors are currently available, namely: Ampre-
avir (APV), Atazanavir (ATV), Darunavir (DRV), Lopinavir (LPV),

ndinavir (IDV), Nelfinavir (NFV), Ritonavir (RTV), Tripanavir (TPV)
nd Saquinavir (SQV). All 9 PIs were considered during this experi-
ent. Fig. 2 presents a histogram of the frequency of administration
Please cite this article in press as: Hernandez-Leal P, et al. Discovering hu
Bayesian networks. Artif Intell Med (2013), http://dx.doi.org/10.1016/j.artm

f each PI in the individuals included in the dataset. Data retrieved
elong to a period of 10 years, from 1995 to 2005. Since data from
IVDB originates from different studies, it was not rare to find

ome fields with missing data. Fig. 2 evidences a small portion of

able 2
n example of the data used to learn the TNBN model. Each row represents a patient.
ach column represents whether a drug is used or not, or whether a mutation
ppeared or not.

Drug-1 Drug-2 Drug-3 . . . Mutation-1 Mutation-2 . . .

LPV FPV NFV . . . L63P M36I . . .
Used Used Not used . . . (Appear) 15 Not
 PRESS
nce in Medicine xxx (2013) xxx– xxx

cases reporting the administration of a PI, without describing the
specific drug. Also, there was  a small proportion of cases repor-
ting an unknown drug. To handle this missing data, if the patient
case only contained unknown or none in the drug fields that case
was removed. However, if the case contained other drug (apart
from unknown), that information was  included in the model. After
removing the incomplete cases and the cases without temporal
information we ended up with a final set of 973 patients.

In order to define a target set of relevant mutations, we used a
simple frequency approach. Fig. 3 shows a frequency histogram of
mutations appearing in the original dataset. A total of 733 differ-
ent mutations appeared at least once in the data; however, most
of the mutations were rare. Thus, we  only considered mutations
appearing more than 1500 times in the dataset: L63P, I93L, V77I,
I62V, L10I, E35D, L90M, M36I, A71V and R41K (shown in black
columns in Fig. 3).

The order of variables provided to the K2 algorithm was also
determined by frequency: first the antiretrovirals sorted by fre-
quency, then the selected mutations sorted by frequency.

5.2. Model evaluation and results

Since a gold standard or a reference TNBN does not exist, three
indirect measurements were used for the evaluation of the model:
the relative Brier score (RBS), the relative time error and the total
number of intervals in the model. For learning, 80% of the total 973
patients was  used. The remaining 20% was used for evaluation.

The Brier score is a measure of the predictive accuracy of the
network, and it is defined as:

BS = 1
n

n∑
i=1

(1 − Pi)
2

where Pi is the marginal posterior probability of the correct value
of each node given the evidence, this applies for all the selected
nodes, n, of the TNBN. The RBS is defined as:

RBS(in%) = (1 − BS) × 100

For each case of the data (a row in Table 1), the RBS is obtained by
instantiating a random subset of variables in the model, predicting
the unseen variables, and obtaining the RBS for these predictions.

The relative temporal error (RTE) evaluates the temporal part of
the model. First, we define the expected time as:

te = tend + tini

2

where tini and tend are the initial and final values of the interval, so
the expected time is the average of them. The range of a temporal
node T is the difference between the maximum and the minimum
value of all the intervals in the node. The relative temporal error for
a Temporal node T with respect to the original value torig is defined
as:

RTE = |te − torig |
range(T)

this is the difference between the real event (original data) and the
expected mean of the interval, normalized by the range of T.

Finally, the number of intervals is defined as the total number
of intervals learned across all variables. This is a rough estimate of
the complexity of the network and a low number of intervals is a
desirable property for simplicity of the model.

The best model would afford a high RBS, a low time error and
man immunodeficiency virus mutational pathways using temporal
ed.2013.01.005

a low complexity (low number of intervals). The technical perfor-
mance of the model reflects its predictive accuracy and complexity,
but it should not be confused with the biological/physiological
plausibility of the model.

dx.doi.org/10.1016/j.artmed.2013.01.005
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Table 3
Evaluation of the models in terms of RBS, RTE (in percentage), and number of inter-
vals. The best results are shown in boldface type.

Initial intervals RBS RTE Number of total intervals

2 87.3 15.0 30

F
e

Fig. 2. Histogram of the protease inhibitors admin

The learning algorithm finds a local maximum, and thus is influ-
nced by initial parametrization. Thus, for our experiments we
xplored different initializations; the number of initial intervals
as allowed to vary from 2 to 4 and equal-width discretization

30] was used to initialize those intervals.
Table 3 summarizes the results of the experiments and Fig. 4

llustrates the best TNBN model instantiation in terms of higher RBS
or the experiment. The figure represents the network, the intervals
nd the prior probabilities obtained for each TN.

Results show that for different initial intervals there is a small
Please cite this article in press as: Hernandez-Leal P, et al. Discovering hu
Bayesian networks. Artif Intell Med (2013), http://dx.doi.org/10.1016/j.artm

ariation in the three measures used. Note that all models obtained
ompetitive predictive scores of nearly 90%.

Statistical significance of edge strengths can be evaluated using
ootstrapping [23]. In non-parametric bootstrapping, a re-shuffled

ig. 3. A group of mutations and their frequency in the full dataset including all 2373 pati
xperiment are shown in black.
3  88.5 14.7 31
4 87.5 15.9 35

dataset is generated from the original (re-sampling with replace-
ment), the graph is built from this new dataset and the procedure
man immunodeficiency virus mutational pathways using temporal
ed.2013.01.005

is repeated a number of times. Confidence in a particular edge is
measured as a percentage of the number of times that edge actually
appears in the set of reconstructed graphs. We performed 20-fold

ents. The higher frequency end of the histogram is zoomed. Mutations used for the

dx.doi.org/10.1016/j.artmed.2013.01.005


ARTICLE IN PRESSG Model

ARTMED-1270; No. of Pages 11

6 P. Hernandez-Leal et al. / Artificial Intelligence in Medicine xxx (2013) xxx– xxx

F s. Dru
f ed mu

b
c
t
w
9

R
b
c
A
t
f

5

t
m
T
t
t
o

ig. 4. A learned TNBN with 9 protease inhibitors and 10 high frequency mutation
or  the TNs are indicated beside the ovals. Thicker arrows represent highly correlat

ootstrapping and used two thresholds for classifying the signifi-
ance of the observed relations. A strong relation was defined as
hat appearing at least in 90% of the graphs, a suggestive relation
as defined as that observed between bootstrap values of 75% and

0%.
Fig. 5 presents the identified relations using bootstrapping.

emarkably, in the set of the suggestive and strong relationships
etween mutations, we observe five previously described highly
orrelated mutation pairs [31]: (E35D, M36I), (L10I, L90M), (L10I,
71V), (V77I, I93L), and (L63P, L90M). This is an important result

hat shows that our model is able to capture important relations
rom data.

.3. Clinical analysis of the model

Some clinical interpretations can be drawn from the associa-
ions obtained by the model depicted in Fig. 4. For example, the

odel revealed the linking of RTV with IDV, NFV, ATV, APV and LPV.
Please cite this article in press as: Hernandez-Leal P, et al. Discovering hu
Bayesian networks. Artif Intell Med (2013), http://dx.doi.org/10.1016/j.artm

his relationship of RTV with other drugs can be explained due to
he fact that RTV is widely used to boost the effect of other PIs, and
herefore most of the times it is administered in combination with
ther drugs.
gs are indicated in white ovals and mutations in gray ovals. Learned time intervals
tations [31].

Another noteworthy observation is that the DRV node in the
model is isolated because, in the data, this drug was  never given as
part of a first treatment regimen for any of the patients. This can
be expected as DRV is a relatively new drug and its use is mostly
restricted to salvage regimens.

Interestingly, the local neighborhoods in the graph clearly
revealed two clusters of covarying mutations:

* L63P, I62V, L10I, L90M and A71V
* I93L, V77L, M36I, E35D and R41K

Highly significant associations between these groups of muta-
tions have been previously observed using different models [31].
This observation suggests that our model can predict highly signif-
icant patterns of amino acid covariation.

L63P, a polymorphic mutation also selected by PIs, is a highly
frequent mutation in the viruses included in the dataset (Fig. 3).
Our model suggests that in most cases this mutation tends to
man immunodeficiency virus mutational pathways using temporal
ed.2013.01.005

appear early in time, and that its probability to appear decreases
over time. Alternatively, L63P could represent a common polymor-
phism in the circulating viruses appearing in a large proportion of
viruses even before being exposed to PIs. Interestingly, however,

dx.doi.org/10.1016/j.artmed.2013.01.005
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he model was able to predict previously described covariation of
63P with other PI-selected mutations such as L90M, L10I, A71V
nd I62V [31], suggesting the existence of drug-selected mutational
athways. This property of the model could make it a power-
ul tool to detect not only drug-associated codon covariation, but
lso immune-associated codon covariation. The detection of muta-
ional pathways associated with adaptation to frequent immune
esponses in a given population would be relevant for vaccine
esearch and immunogen design.

.4. Comparison with other methods

This section, compares and contrasts the results obtained using
he proposed TNBN model with three other approaches, namely:
tatic Bayesian networks, dynamic Bayesian networks and associ-
tion rules.

.4.1. Static Bayesian network
To establish whether the temporal model is providing additional

nformation we develop a comparison between a TNBN and a static
ayesian network. In order to apply a static learning algorithm,
e remove the temporal information of the mutations. Hence, the

tates for both the drugs and the mutations were: appear or not
ppear. We  used the same ordering as in the previous experiments
nd applied the K2 learning algorithm. The static BN learned is
resented in Fig. 6.

From the model we  can see that the number of arcs increased
pproximately in 66%. However, in this model the nodes are binary,
n contrast in the TNBN model the nodes have more states that
orrespond to the intervals. We  performed a comparison in terms of
Please cite this article in press as: Hernandez-Leal P, et al. Discovering human immunodeficiency virus mutational pathways using temporal
Bayesian networks. Artif Intell Med (2013), http://dx.doi.org/10.1016/j.artmed.2013.01.005

he number of values that contain the conditional probability tables
or these models. For the TNBN there are 432 values whereas in the
tatic BN there are 276 values. Despite the TNBN is not simpler in
erms of parameters, the model can be intuitively understood.

Fig. 6. A learned static BN with 9 protease inhibitors and 10 mutations that appear
frequently. Drugs are indicated in white ovals, their states are used or not used.
Mutations are shown in gray ovals, their states are appear or not appear. States
and  probabilities are hidden for readability.

dx.doi.org/10.1016/j.artmed.2013.01.005
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irected to the dotted rectangle represent arrows from V77I and L63P to each one o

We  computed the RBS for this static BN obtaining a value of 91.3
ompared to 87.3, 88.5 and 87.5 for the learned TNBNs. According
o the Brier score the static BN is slightly superior (about 3 points) to
he TNBN. However, we consider that this comparison is not strictly
air as the static BN only predicts the state (appear/not appear)
hereas the TNBN provides additional information, not only the

tate but also the temporal interval when it changes.
We also performed a structural comparison. In this sense, a com-

on  measure of complexity in graph theory is density [32] defined
s

 = |E|
(2)|V ||V − 1|

here |V| corresponds to the number of vertices and |E| to the num-
er of edges of the graph. The maximal density is 1 for complete
raphs, when the graph is fully connected, and the minimal is 0
hen all nodes are isolated. This measure was computed for the

NBN in Fig. 4 and the static BN. The TNBN obtained D = 0.1578 and
he BN obtained D = 0.2456. This measure quantitatively summa-
izes that the TNBN model is sparser than the respective BN, which
n general implies that is easier to understand.

.4.2. Dynamic Bayesian network
A dynamic Bayesian network extends the concept of a Bayesian

etwork to incorporate temporal information. Just as with static
Please cite this article in press as: Hernandez-Leal P, et al. Discovering hu
Bayesian networks. Artif Intell Med (2013), http://dx.doi.org/10.1016/j.artm

Ns, a probabilistic model is created to represent a process at a sin-
le point in time. Multiple copies of this model are then generated
or each time point or slice belonging to a temporal range of interest.
inks between copies are inserted to capture temporal relations.
 in different time slices) are not shown. Thicker arrows from nodes V77I and L63P
nodes inside the rectangle.

The learning of a DBN can be seen as a two stage process. The
first stage refers to the learning of the static model and is done in an
identical manner as with classic BNs. The second stage learns the
transition network, that is, the temporal relations between random
variables of different time slices.

For this experiment we learned a simple DBN using the
Chow–Liu algorithm [33] to generate the static network, and the
Rebane and Pearl algorithm [34] to learn the directions of the arcs.
The transition network was  learned using Kevin Murphy’s Bayesian
network toolbox [35] using the Bayesian information criterion to
select the best parents from the previous time slice. Fig. 7 shows
the learned DBN as a 2-TBN. The learned DBN shows some common
relations with the TNBN; it also discovered the same well known
mutational correlations that the TNBN discovered (although not
always in the same direction). While the DBN successfully cap-
tured most of the relations shown in the TNBN, the DBN notoriously
becomes more cluttered than the TNBN, impairing its visual inter-
pretation. We  also note that the DBN lacks the intuitive visual
information to provide temporal orderings between mutations.

5.4.3. Association rules
Finally, a different approach that is not related to BNs is pre-

sented. The comparison uses association rules as the method to
analyze the clinical information. In particular we used the a priori
algorithm [36] with the same data used in the previous experiment.
man immunodeficiency virus mutational pathways using temporal
ed.2013.01.005

Different measures have been introduced to evaluate the qual-
ity of the rules obtained by the algorithm, we  used three common
measures: confidence [36], lift [37], and conviction [37]. In order
to define these measures, first we define the support of an itemset

dx.doi.org/10.1016/j.artmed.2013.01.005
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upp(X) as the proportion of instances which contains that itemset,
hen:

Confidence is defined as conf(X → Y) = supp(X ∪ Y)/supp(Y) and can
be interpreted as the probability of P(Y|X).
Lift is defined as lift(X → Y) = supp(X ∪ Y)/supp(Y) × supp(X), it can
be interpreted as the ratio of the observed support of both X and
Y (X ∪ Y) divided by X and Y independently.
Conviction is defined as conv(X → Y) = 1 − supp(Y)/1 − conf(X − > Y)
and can be interpreted as the ratio of the expected frequency
that X occurs without Y (the frequency of making an incorrect
prediction).

In the upper part of Table 4 we present rules that obtained con-
Please cite this article in press as: Hernandez-Leal P, et al. Discovering hu
Bayesian networks. Artif Intell Med (2013), http://dx.doi.org/10.1016/j.artm

dence over 0.9, in the lower part of the table, we  present some
ules that are consistent with the findings of our TNBN model with
heir respective results.

able 4
ome association rules obtained with the a priori algorithm. On the upper part the
ules that obtained confidence over 0.9 are presented. On the lower part, several
ules that are consistent with the results of our TNBN model.

Rule Confidence Lift Conviction

L10I = yes L90M = yes → L63P = yes 0.93 1.11 2.2
IDV  = yes L90M = yes → L63P = yes 0.92 1.1 2
L90M = yes → L63P = yes 0.91 1.1 1.91
NFV = yes L90M = yes → L63P = yes 0.91 1.09 1.81
RTV  = yes L90M = yes → L63P = yes 0.91 1.09 1.72
SQV  = yes L90M = yes → L63P = yes 0.9 1.08 1.63
I62V  = yes → L63P = yes 0.87 1.04 1.23
L63P = yes I93L = yes → IDV = yes 0.79 1.1 1.33
L63P = yes L10I = yes → L90M = yes 0.74 1.35 1.72
SQV  = yes L63P = yes → L90M = yes 0.73 1.35 1.7
I93L = yes → IDV = yes L63P = yes 0.69 1.13 1.24
A71V = yes → L10I = yes 0.68 1.3 1.47
SQV  = yes L63P = yes → L10I = yes 0.65 1.25 1.36
IDV  = yes L63P = yes → L90M = yes 0.62 1.14 1.19
IDV  = yes L63P = yes → L10I = yes 0.61 1.17 1.22
A71V = yes → L90M = yes 0.60 1.25 1.41
L10I  = yes → A71V = yes 0.59 1.3 1.32
L90M = yes → A71V = yes 0.56 1.25 1.25
IDV  = yes L63P = yes → I93L = yes 0.56 1.13 1.14
L63P = yes → L10I = yes 0.54 1.03 1.03
a * represents a strong relation. An arc without a * represents a suggestive relation.

While association rules could obtain similar results to the TNBN
model, they have several drawbacks. The first one is the difficulty
of incorporating temporal information. One could think to separate
each interval of the temporal nodes into a different variable and
apply the same a priori algorithm. A limitation of this approach
is that the number of variables will increases and their frequency
decreases by means of the partition process.

Another issue with this approach is that it produces a large
number of small rules. The number of rules could increment expo-
nentially. Therefore analyzing the complete set of rules becomes
extremely difficult. Finally, if we  could select a manageable sub-
set of rules it will not provide a global analysis of the results, they
will be scattered pieces of information. In contrast, the TNBN model
presents a global and easy to understand model that can provide
useful temporal information.

6. Finding mutational pathways with clinical relevance

In order to asses the practical relevance of the TNBN model, a
second experiment was  designed using a specific set of drugs and
drug resistance mutations that were selected according to the real
use of PIs in the clinical setting.

6.1. Data

To test the ability of the model to predict clinically relevant
data, a subset of patients from the original dataset was selected,
including individuals that received ART regimes with LPV, IDV, and
SQV. Relevant major drug resistance mutations associated with the
selected drugs were included [36]. The mutations selected were:
V32I, M46I, M46L, I47V, G48V, I54V, V82A, I84V, and L90M. Since
we used a subset of drugs, the number of patients in the final dataset
was reduced from the previous experiments to 300 patients.

6.2. Evaluation of the model and results

In order to evaluate the models and to measure the statistical
significance of edge strengths we used non-parametric bootstrap-
man immunodeficiency virus mutational pathways using temporal
ed.2013.01.005

ping. Two thresholds were defined for considering a relation as
important. A strong relation was  defined as one that appeared at
least in 90% of the graphs, and a suggestive relation was defined
as one that occurred with values between 70% and 90%. In Fig. 8 a

dx.doi.org/10.1016/j.artmed.2013.01.005
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uggestive relation is shown as an arrow, and a strong relation is
resented as an arrow labeled with an asterisk (*).

Since the approach for selecting the drugs and mutations is
ased on experts opinion, we used a more elaborate way  to obtain
he order for the K2 algorithm. For this experiment we  evaluated
ifferent orderings for the K2 algorithm. Specifically, we evaluated

ll the

(
9
2

)
different combinations for the first two mutations,

ince they are important and the order of the rest was  chosen ran-
omly. We  evaluated the models with respect to their predictive
ccuracy and in Fig. 8 the model with highest predictive accuracy
90.5%) is presented.

.3. Clinical relevance

The model was able to predict clinically relevant associations
etween the chosen drugs and mutations. Indeed, a strong associ-
tion between SQV, G48V, and I84V was readily predicted in the
odel, although no temporal associations were observed between

he two mutations. All three drugs showed direct associations with
90M reflecting the fact that this mutation causes cross-resistance
o many members of the PI family. Remarkably, the two possible

utational pathways for LPV resistance [38–40] were predicted:

I54V → V32I → I47V
L90M → M46IL → I84V

Whether the temporal order of mutations is clinically relevant,
till needs to be further evaluated. Also, the shared mutational
athway between IDV and LPV was observed, involving mutations
90M, M46IL, I54V, V82A and I84V.

. Conclusions

Mutational pathways provide important information for deci-
ion making in multi-drug therapy. By using temporal nodes
ayesian networks we have been able to unveil common
utational pathways present in HIV evolution as response to

harmacological selective pressure. Our model was  successful in
apturing relationships between mutations and protease inhibitors
ritically incorporating temporal information. These results are
ncouraging, presenting the model as an interesting tool to explain
ow mutations interact with each other, providing information
ot only in association patterns, but also in the temporal order of
ppearance of mutations selected by antiretroviral drugs. With a
arefully selected dataset, the model could be also useful to pre-
ict timeframes between the appearance of different mutations.
his could lead to recommendations in the timing of resistance
esting and therapy changes in order to avoid the further loss of
ossible treatment options for patients with exposure to multiple
ntiretroviral regimens.

The main contribution of this paper is to use a temporal prob-
bilistic approach to understand HIV mutations. The models were
eveloped using only data, however, some important known cor-
elated mutations were discovered, as well as other temporal
elations. We  also compared the TNBN approach with other mod-
ls such as Bayesian networks and association rules. Despite the
ompared models obtained important information they were not
apable of providing a global and complete model showing the
emporal process of the problem.

It would be interesting to test TNBN with data involving com-
Please cite this article in press as: Hernandez-Leal P, et al. Discovering hu
Bayesian networks. Artif Intell Med (2013), http://dx.doi.org/10.1016/j.artm

lete antiretroviral regimens. This could be useful in retrospectively
omparing the effectiveness of different regimes, predicting the
atterns of mutations most frequently selected by similar regimens
nd the timing of appearance of these mutations in specific settings.

[
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Resistance patterns in specific target populations under differ-
ent scenarios could be further assessed. If sufficient data becomes
available, social factors including adherence to treatment and drug
availability, as well as genetic factors modulating the pharmacody-
namics could be incorporated to the model.

The relevance of TNBNs could be further extended to the vac-
cine field. It is well known that there is remarkable coevolution of
positions in the viral genome, which depends on host genetic fac-
tors defining specific immune responses against the virus. These
genetic factors, namely the human leukocyte antigen genes are
highly polymorphic, with highly variable allelic frequency distribu-
tions in different populations. The possibility of discovering these
coevolution patterns in the context of different populations, as well
as the timing of appearance of different variants in the coevolv-
ing codons, could be a very useful tool in predicting immunogen
responses and designing putative vaccines.

Future work plans are to compare two different cocktail treat-
ments along with the temporal occurrence of drug resistant
mutations, in order to predict the most effective treatment. We
believe this could aid the experts in the selection of the best treat-
ment for the patient.
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