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ABSTRACT

This chapter introduces an approach for reinforcement learning based on a relational representation
that: (i) can be applied over large search spaces, (ii) can incorporate domain knowledge, and (iii) can
use previously learned policies on different, but similar, problems. The underlying idea is to represent
states as sets of first order relations, actions in terms of those relations, and to learn policies over such
generalized representation. It is shown how this representation can produce powerful abstractions and
that policies learned over this generalized representation can be directly applied, without any further
learning, to other problems that can be characterized by the same set of relations. To accelerate the
learning process, we present an extension where traces of the tasks to be learned are provided by the
user. These traces are used to select only a small subset of possible actions increasing the convergence
of the learning algorithms. The effectiveness of the approach is tested on a flight simulator and on a
mobile robot.

INTRODUCTION

action to perform, given uncertainty on the out-
comes ofthe actions and trying to obtain the maxi-
mum benefit in the long run. Optimal sequence
decision making can be formalized as a Markov

Sequential decision making underuncertainty has
been studied in fields such as decision-theoretic

planning (Puterman, 1994), reinforcement learn-
ing (Sutton & Barto, 1989) and economics. The
idea is to decide on each state, which is the best
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decision process or MDP, where several dynamic
programming techniques have been developed
(Puterman, 1994). These techniques, obtain
optimal policies, i.e., the best action to perform
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on each state, however, they require knowing a
transition model. Reinforcement learning (RL),
on the other hand, can learn optimal or near op-
timal policies while interacting with an external
environment, without a transition model (Sutton
& Barto, 1989). In either case, the representation
used in traditional models for MDPs require all
the possible states to be explicitly represented.
This restricts its applicability to only very simple
domains as the number of possible states grows ex-
ponentially with the number of relevant variables.
In order to cope with this curse of dimensionality
several approaches have been suggested in recent
years. Some of these methods include, function
approximation (e.g., (Chapman & Kaelbling,
1991)), hierarchical (e.g., (Dietterich, 2000))
and temporal abstraction (e.g., (Sutton, Precup,
& Singh, 1999a)), and factored representations
(e.g., (Kaelbling, Littman, & Cassandra, 1998)).
Despite recent advances, there is still on-going
research into trying to deal more effectively with
large search spaces, to incorporate domain knowl-
edge, and to transfer previously learned policies to
otherrelated problems. Most work, however, uses
a propositional framework and still do not scale
well as many domains are more clearly defined
in terms of objects and relations.

Suppose we wantto learn apolicy toplay asim-
ple chess endgame from a particular side. Even for
learning how to win in a simple and deterministic
endgame like king-rook vs. king (KRK), there are
more than 175,000 not-in-check legal positions.
The number of possible actions for the king-rook
side is in general 22 (8 for the king and 14 for the
rook), which sum up to nearly 4 million possible
state-action pairs. Even with modern computers,
learning directly in this representation is just too
slow. In this domain, however, there are many
states that are essentially the same, in the sense
that they all share the same set of relations. For
a chess player, the exact location of each piece is
notas important as the relations that hold between
the pieces to decide which movement to perform
(see also (Charness, 1977, Groot, 1965)). For
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instance, in the KRK domain, whenever the two
kings are in_opposition (in the same rank or file
with one square in between), the rook is in the
file/rank that divides both kings, and the rook is
at least two squares apart from the opposite king
(i.e., it is safe to check), a good move is to check
the opposite king to force it to move towards a
border (see Figure 1). This action is applicable to
all the chess board positions where the previously
mentioned relations hold between the pieces, and
already captures more than 1,000 chess positions
with a white rook. In fact, it is applicable to chess
boards of different sizes.

In this chapter, a relational representation for
reinforcement learning is used to represent a small
set of abstract states with a set of properties (e.g.,
in_opposition, rook_divides, etc.), represent ac-
tions in terms of such properties (e.g., If in_op-
position And rook_divides Then check) and learn
which action to apply on each state.

There has been a growing interest in us-
ing first-order logic for modeling MDPs (e.g.,
(Driessens & Ramon, 2003, Dzeroski, Raedt,
& Driessens, 2001, Fern, Yoon, & Givan, 2003,
Morales, 2003, Otterlo, 2009)). The use of a
relational representation has many advantages.
In particular, logical expressions may contain
variables and consequently make abstractions of
many specific grounded states or transitions. This
considerably reduces the number of states and ac-
tions and simplifies the learning process that can
be carried out at the abstract level. Furthermore,
itis possible to transfer policies to other instances
and to other, although similar, domains.

Since the seminal work by Dzeroski et al.
(Dzeroski et al., 2001, Driessens, Ramon, &
Blockeel, 2001, Driessens & Dzeroski, 2002) an
increasing number of systems have been proposed
inthe literature. In particular, at the same time and
independently, three related approaches defined
abstract states and actions in terms of relations
(Kersting & Raedt, 2003, Morales, 2003, Otterlo,
2003). In this chapter, an extended and more
formal description of the approach described in
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Figure 1. Forcing the opponent king to move towards a border

(Morales, 2003) is given including other tests and
results. A more complete description of recent
relational reinforcement learning algorithms is
given in (Otterlo, 2009).

This chapter also shows that we can signifi-
cantly reduce the convergence time of the learning
process by using traces, provided by the user, of
the task we want the agent to learn. Finally, it is
shown how to transform a discrete actions policy
into a continuous actions policy using Locally
Weighted Regression.

The objectives of this chapter are to formalize
the use of relational representations in reinforce-
ment learning, show their benefits, describe an
approach to produce faster convergence times and
show the capabilities on two challenging domains;
a flight simulator and a mobile robot.

This chapter is organized as follows. It first
introduces the basic setting and standard nota-

tion. An overview of the most relevant related
work is given next. It then describes in detail the
proposed relational representation and how to
apply a reinforcement learning algorithm over
this representation. It then shows how to learn a
subset of relational actions from traces provided
by the user to speed-up the learning process.
This chapter provides experimental evidence of
the proposed approach in a flight simulator and
a robotics domain. Conclusions and suggests
future research directions are given at the end of
the chapter.

Preliminaries
Logic

A first-order alphabet X is a set of predicate
symbols p with arity m > 0 and a set of function
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symbols fwith arity #n>0. If m =0 then p is called
a proposition and if n = 0, f'is called a constant.
An atom p(,...,t ) is a predicate symbol p fol-
lowed by a bracketed m-tuple of terms 7. A term
is a variable or a constant. A conjunction is a set
of (possibly negated) atoms. A substitution tis a
set of assignments of terms 7, to variables V,
©={V, /t,...,V, / t,} .Aterm,atomorconjunc-
tion is called ground if it contains no variables.
For more information, on Logic and Logic Pro-
gramming see, for instance, (Lloyd, 1987).

Markov Decision Processes

A Markov Decision Process (MDP) is a tuple M
=<S,4,T,R>, where S is a set of states, 4 is a set
of actions, A(s) € A4 is a set of actions for each
state s € S, T is the transition function
T:5xAxS —[0,1] and R is the reward func-
tion R: S x AxS — R.Atransition from state
s € S to state s” € S caused by some action a €
A(s) occurs with probability P(s’|a,s) and receives
a reward R(s,a,s’). A policy m:5 — A for M
specifies which action a € A(s) to execute when
an agent is in some state s € S, i.e., n(s) = a.

A solution for a given MDP M = <S.4,T.R>
consists of finding a policy that maximizes the
long-time reward sequence. A deterministic
policy 7 : § — A specifies whichactiona € A(s)
to perform on each state s € S. The policy is as-
sociated with a value function V" : S — R . For
each state s € S, V*(s) denotes the expected ac-
cumulated reward that will be obtained from state
s and following the actions suggested by n. This
can be expressed in a discounted infinite
horizon by:

Vi(s) = E, [i V' R(s) s, = 5]

t=0

Similarly, the action-value function for policy
7w, denoted by Q™(a,s) is defined as:

194

Q”(s,a) - Em' Z’YtR(Sr) | § =80, =a

t=0

The expression for /'canbe recursively defined
in terms of the Bellman Equation:

V(s) =Y P(s | n(s),s") (R(s) + 7V7(s)).

s'es

For more information on Markov Decision
Process and Reinforcement Learning see (Puter-
man, 1994, Sutton & Barto, 1989).

Several approaches have been suggested in
the literature to learn optimal policies and value
functions in RL. In this chapter we used a modi-
fied Q-learning approach over an abstracted space
based on a relational representation.

Related Work

Other researchers have also turned their attention
towards abstracting the search space in different
ways in order to tackle larger problems. State
aggregation clusters “similar” states together and
assigns them the same value, effectively reducing
the state space. Work on tile-coding (e.g., (Lim
& Kim, 1991)), coarse coding (e.g., (Hinton,
1984)), radial basis functions (e.g., (Poggio &
Girosi, 1990)), Kanerva coding (e.g., (Kanerva,
1993)), and soft-state aggregation (e.g., (Singh,
Jaakkola, & Jordan, 1996)) are some of the rep-
resentatives of this approach. In this paper, we
also do state aggregation, but we use a relational
representation, grouping together states that share
the same set of relations. This has several advan-
tages over previous approaches: (i) it is easy to
define useful and powerful abstractions, (ii) it is
easy to incorporate domain knowledge, and (iii)
the learned policies can be directly used to other
similar domains without any further learning,
which is not possible with previous approaches.
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Relational Reinforcement Learning (RRL)
(Dzeroski et al., 2001, Driessens et al., 2001,
Driessens & Dzeroski, 2002) uses a relational
representation for states and actions; however
their main focus has been on approximating value
functions with a relational representation. This
extends previous work on incremental regres-
sion trees (e.g., (Chapman & Kaelbling, 1991))
to a relational representation. One disadvantage
with an incremental tree approach is that once a
split in the tree is decided it cannot be undone,
which makes the approach highly dependent on
the initial sequence of experiments. Recently,
Croonenborghs et al. (Croonenborghs, Driessens,
& Bruynooghe, 2007) extended this work and
introduced a method to learn relational options
for transfer learning in RL. They first learn a re-
lational policy with the RRL approach presented
in (Sutton, Precup, & Singh, 1999b) where the
goal is to decompose and learn tasks as a set of
options. An option can be viewed as a subroutine,
consisting of an option policy that specifies which
action to execute for a subset of the environment
states. Besides learning these sets of options for
the tasks they also generate examples or traces
guided from the learned sets of options. They do
this in order to provide some help or guidance to
the person or method that generates the examples.
These examples and the sets of options are given
to TILDE (Blockeel & Raedt, 1998) to learn re-
lational decision trees that allow the knowledge
from the learned policies to be transferred between
similar domains. Unfortunately the method was
only applied to the blocks world and the actions
from the sets of options are discrete.

The closest research work to the relational
reinforcement learning approach described in
this chapter, which is a clearer formalization of
what was introduced in (Morales, 2003), was
independently proposed by Kersting and De
Raedt (Kersting & Raedt, 2003, 2004) and by
van Otterlo (Otterlo, 2003, 2004). The three ap-
proaches introduced similar abstractions based
on predicates. In fact, all three transform the

underlying relational MDP into a much smaller
abstract MDP that is solved using modifications
of traditional reinforcement learning algorithms.

Kersting and De Raedt (Kersting & Raedt,
2003, 2004) introduced a first-order probabilistic
STRIPS-like language to specify an MDP on a
relational domain. An abstract policy is an ordered
set of rules that can be seen as an abstraction
of a Q-value table. Van Otterlo (Otterlo, 2003,
2004) abstraction is also a conjunction of first-
order literals (with negation). Our approach and
van Otterlo’s use a slightly more powerful state
abstraction, than Kersting and De Raedt, as they
caninclude negation and arbitrary state predicates.

Kerstingand Driessens (Kersting & Driessens,
2008) proposed a method to learn Parametric
Policy Gradients for learning tasks. This model-
free policy gradientapproach deals withrelational
and propositional domains. They represent policies
as weighted sums of regression models grown in
astage-wise optimization. Eachregression model
can be viewed as defining several new feature
combinations. The idea is to start with an initial
policy fora given task. Then calculate the gradient
(through Friedmanns gradient boosting (Friedman,
2001)) values of'this policy and move or adapt the
parameters of the initial policy into the direction
ofthe gradient. This method is recursively applied
until no improvement on the policy is achieved.
The method can developed control policies with
continuous actions and deals with continuous
states. It was applied to the blocks world and
for teaching a robot how to traverse through a
one-dimensional corridor. However the method
is complex as it needs to compute the gradient of
initially as many regression models as possible
feature combinations (which for real robots with
several sensors each of them providing readings at
very high sample rates might become infeasible)
and the method can lead to local maxima.

In (Raedt, Kimmig, & Toivonen, 2007) the
authors developed ProbLog which is a probabi-
listic extension of Prolog. All clauses (facts) are
labeled with the probability that they are true and
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these probabilities are mutually independent. Once
a clause is tested as true, its probability value is
calculated (given its parents from the derivation
tree or previous clause’s probability values) and
then propagated to the subsequent clauses. Besides
allowing relational representations the method is
useful when we need to know the probability of a
given predicate (which can be an action or state
predicate) in order to make choices when having
incomplete or uncertain information, however,
there is no straightforward way to make ProbLog
learn tasks that require the execution of continu-
ous actions.

Another approach for tasks planning using a
relational representation is the Planning Domain
Definition Language (PDDL) (McDermott, 1998)
which is an attempt to standardize planning do-
main and problem description languages. It was
first developed by Drew McDermott mainly to
make the 1998/2000 International Planning Com-
petitions possible'. The learning task is defined
by objects, predicates, the initial state, the goal
specification, and actions/operators to change
the state of the world. The language also allows
the use of temporal logic where predicates are
evaluated until some condition is achieved. The
inference mechanisms of PDDL allow users to
generate the sets of actions that make the goal
specifications true. These goal specifications are
evaluated true when their previous predicates
are also evaluated true. By using this relational
domain (through first order predicate logic) the
learned tasks can be transferred between similar
domains. PDDL was recently extended to specify
MDPs (Younes & Littman, 2004), however, the
user is responsible for specifying the transition
and reward functions, as well as the actions. In
this chapter the transition and reward function
are not given in advance and the agent is able to
learn the action from human traces.

Other languages have been defined to combine
probability with first-order logic, such as Markov
Logic Networks (Richardson & Domingos,2006),
Probabilistic Relational Models (Getoor, Koller,
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Taskar, & Friedman, 2000), FOCIL (Natarajan et
al.,2005) and Bayesian Logic Programs (Kersting,
Raedt, & Kramer, 2000) among others (see also
(Getoor & Taskar, 2007)). This chapter provides
an extended and more formal description of the
approach given in (Morales, 2003), with other
tests and results. A key issue in all these rela-
tional MDPs is the representation of states and
actions which is normally provided by the user.
A clear distinction of this chapter with previous
approaches is the incorporation of Behavioral
Cloning, to learn relational actions and produce
faster convergence times. It also introduces two
extensions, one is an exploration strategy to com-
plete the information provided by human traces
(illustrated with a flight simulator) and the other
one is an on-line process to transform a discrete
actions policy into a continuous actions policy
(illustrated with a mobile robot).

Relational Representation for
Reinforcement Learning

The key idea underlying relational reinforcement
learning is to use relations instead of flat symbols.
Inthis work, states are represented as sets of predi-
cates that can be used to characterize a particular
state and which may be common to other states.
This representation allows us to:

. Create powerful abstractions, as states are
characterized by a set of predicates. This
makes it useful for large search spaces and
applicable to relational domains.

. Learn policies which are, in general, inde-
pendent of the exact position of the agent
and the goal. This allows us to transfer pol-
icies to different problems where the same
relations apply without any further learn-
ing, which is not possible with a proposi-
tional representation.
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Exhibit 1.

r action(2,S,rook,sq(D,E),sq(I,J),Statel,State2) :-
rook divs (S, king,sq(B,C),S, rook,sq(D,E),0S, king,sq(G,H),Statel),
opposition (S, king,sq(B,C),0S, king,sqg(G,H),Statel),
make move (S, rook,sqg(D,E),sq(I,J),Statel,State2),
not threatkR(0S, king, sq(G,H), S, rook,sq(I,J),State2),
1 patt(0s,king,sq(G,H),S,king,sq(B,C),S,rook,sq(I,J),State2).

Definition 1: A4 relational state or r-state, s v IS
a conjunction of logical atoms.

The extension of an r-state is the set of states
that are covered by its description. That is, an »-
state represents a set of states, where each state
is represented by a conjunction of ground facts.
More formally an r-state, s,, represents all the
states s € S for which there is a substitution ©
such that 5,0 C s. In our framework, each state
s € S'is an instance of one and only one r-state,
which creates a partition over the state space S.
In the chess domain, individual predicates could
be rook_threatened, kings_in_opposition, rook_
divides_kings, etc., which involve, in this case,
the relative position of one, two or three pieces.
A conjunction of these predicates represent an
r-state,one of which couldbe kings_in_opposition
and rook_divides_kings, that covers all the chess
positions where these two relations hold (more
than 3,000 positions). Once a set of relations has
been defined, the search space in the relational
space is completely defined.

The set of actions also use a first-order rela-
tional representation, similar to STRIPS operators
or PDDL actions (McDermott, 1998).

Definition 2. Arelational action or r-action, a,(s,),
is a set of pre-conditions, a generalized action,
and possibly a set of post-conditions. The pre-
conditions are conjunctions of relations that need
to hold for the r-action to be applicable, and the
post-conditions are conjunctions of relations that
need to hold after a particular primitive action is

performed. The generalized action represents all
the instantiations of primitive actions that satisfy
the conditions.

For example, the following r-action (Exhibit
1), using Prolog notation, with id number 2 (first
argument), says to move the rook of side S, from
square (D,E) to square (IJ) if the rook divides
the two kings and both kings are in opposition
(pre—conditions), provided the rook is not threat-
ened after the move and the three pieces form an
L-shaped pattern (post—conditions) (see Figure 1).

For an r-action to be properly defined, the
following condition must be satisfied: If an r-
action is applicable to a particular instance of an
r-state, then it should be applicable to all the
instances of that r-state. This is not a problem for
r-actions without post-conditions, as the pre-
conditions are subsets of relations used to repre-
sent r-states, and consequently applicable to all
the instances. This assures that r-actions associ-
ated with a particular r-state are always appli-
cable in that r-state.

Similarly to the representation of states, the
actions can be provided by the user. In this chapter,
however, it is shown that once a set of relations
has been defined, it is possible to induce the -
actions using a Behavioral Cloning approach, as
described below. Each r-action can have different
instantiations, resulting in different instantiations
of'the resulting r-state. When several possible in-
stantiations of actions are possible, one is chosen
randomly (uniform distribution). As can be seen,
evenassumingadeterministic policy inarelational
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Figure 2. A non deterministic r-action, where two possible actions are possible satisfying all the condi-

tions of the r-action

|

Wy
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representation, the policy is stillnon deterministic
atthe ground level since different action instances
can be selected. For example, an r-action could
be to move the rook to divide both kings either
horizontally or vertically. Figure 2 shows this
case where there are two equally possible rook
moves to divide both kings, both possible states
are instances of the same r-state.

Once r-states and r-actions are defined, a re-
lational transition function can be defined giving
the probability of being at state s,. given that an
action a,(s,) is applied in r-state s .

Definition 3: Arelational transition or r-transition
P(s,|a,s ) is defined by anr-state, an r-action and
theresulting r-state, where eachresulting instance
in s, has a uniform probability of occurring.

A reward function is defined as in traditional
MDP, giving a real number for each state
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R, : S — R .The same reward is given to all the
instances of an r-state s,,.

Definition 4: A relational MDP, or r-MDP, is a
tuple M, = <S,, A, T,, R,> where S, is a set of r-
states, A,(S,) is aset of r-actions (one per r-state),
T, is anr-transition and R , is the reward function.

To summarize, abstract states are created witha
setof properties expressed in arelational represen-
tation and a set of actions, using such properties,
are defined for each abstract state. Reinforcement
learning is then used to decide which action to
perform on each state. The main advantages
of the approach are that it is relatively easy to
express and incorporate background knowledge,
powerful abstractions can be achieved, and it is
possible to re-use a previously learned policy on
other instances of the problem and even on simi-
lar, although different, problems. The following
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Algorithm 1. The rQ-learning algorithm

Initialize Q(sR, a,
r—-action)

for each episode do

) arbitrarily (where S, is an r-state and a, is an

Initialize s {a ground state}

sRe—rel(s) {set of relations on state s}

Repeat

for each step of episode do

Choose from using a persistently exciting policy

(e.g., greedy)

Randomly choose action a applicanle in

. /
Take action a, observe r, 8§

Q <'5R’ aR) —Q <SR7aR)+a(TR +ymaz, Q(Séﬂ;) —Qsy,a5))

/
Sp < Sp

R
end for
untils is terminal

end for

section describes how to learn (near) optimal
policies for r-MDPs.

Reinforcement Learning on R-Space

For any Markov decision process, the objective is
to find the optimal policy, i.e., one which achieves
the highest cumulative reward among all policies.
The main purpose to learn in an r-space is to re-
duce the size of the search space, and take all the
advantages of a richer representation language.
However, in the r-space there is no guarantee
that the defined r-actions are adequate to find an
optimal sequence of primitive actions and sub-
optimal policies can be produced. We can however,
defined optimality in terms of an r-space.

A policy consistent with our representation,
which we will refer to as an r-space policy (r,),
is a scheme for deciding which r-action to select
when entering an r-state. An r-space optimal
policy (W; ) is a policy that achieves the highest
cumulative reward among all -space policies.

Definition 5: A deterministic policy for anr-MDP,
called r-space policy, m, :S, — A, specifies
which r-action,a,(s,), to perform on each r-state,
S

The expected reward, in this case, is the ex-
pected average reward over all the instances of
the r-state. When several r-actions are applicable
in a particular r-state, the best policy will prefer
the r-actions which lead to an r-state with the best
expected average reward.

The rQ-Learning Algorithm

This paper focuses on applying Q-learning
(Watkins, 1989) in r-space, although a similar
argument can be applied to other reinforcement
learning algorithms, such as TD(A) or SARSA
(Sutton & Barto, 1989). Algorithm 1 gives the
pseudo-code for the rQ-learning algorithm. This
is very similar to the Q-learning algorithm, but the
states and actions are characterized by relations.
The algorithm still takes primitive actions (a’s)
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and moves over primitive states (s’s), but learns
over r-state-r-action pairs.

It will be shown, empirically, that obtaining
anr-spacepolicy is good enough to solve complex
problems and that in many cases, it also corre-
sponds to the optimal policy at the ground level,
although this depends on the description of the
r-space. Also, since we are learning over general-
ized actions and states, the same policy is appli-
cable to different instances of the problem and
sometimes to other problems where the same set
of relations hold. Even with an abstract represen-
tation, reinforcement learning can take a consid-
erable time to converge to a suitable policy. In
the following section, it is shown how to acceler-
ate the learning process using traces provided
by users.

Accelerating the Learning Process

So far, we have assumed that the r-actions are
defined by the user. One way to learn r-actions
is from log traces of humans, or other computer
systems, solving a task. Behavioural Cloning (BC)
induces control rules from traces of skilled opera-
tors, e.g., (Sammut, Hurst, Kedzier, & Michie,
1992, Michie, Bain, & Hayes-Michie, 1990,
Bratko, Urban¢i¢, & Sammut, 1998). The general
idea is that if the human is capable of perform-
ing a task, rather than asking him/her to explain
how it is performed, he/she is asked to perform
it. Machine Learning is then used to produce a
symbolic description of the skill.

In this chapter we use logs of human traces
to learn and identify only a subset of potentially
relevantactions and then use reinforcement learn-
ing over this abstracted and reduced search space
to learn a policy. Our approach can use traces
from several experts, which may choose differ-
ent actions. The traces provided by the user(s)
are transformed into a relational representation.
From these relational traces a set of r-actions is
learned for each r-state. The BC approach can
learn good and bad r-actions but then relational
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reinforcement learning is used to decide which
are the best r-actions to use on each r-state. In
this sense, it is an incremental approach, as new
traces can be given at any time.

Contrary to other related approaches, like
Programming by Demonstration, we are not
limited by the quality of the traces provided by
the user, as we accept traces from several users
and of different quality and our reinforcement
learning algorithm finds which is the best action
to perform on each state. Also we are focusing
the search space to a limited number of actions
whichsignificantly reduces the convergence times
of reinforcement learning.

In order to learn a new r-action each frame in
the human trace is transformed, if necessary, to a
set of predefined predicates, and the action per-
formed by the user is observed. The action may
also need to be transformed into a predicate. A
new r-action is constructed with the conjunction
of the above predicates, unless the control action
is an instance of an already defined r-action (see
also (Morales, 1997) for a similar approach used
in chess end-games). The predicates that are true
in the current frame are used as conditions that
need to be satisfied in order to consider such ac-
tion. In general, an r-action has the following
format (Exhibit 2):where predicate
i,s1(Args ,Statel) is a predicate that needs to be
true for the action to be executed (a precondition)
and may have some particular arguments (A4rgs)
and predicate_action(Action,Statel), is the
predicate that performs the action. In some do-
mains, like chess, it is possible to predict the next
state after the action is executed and extract
predicates that can then be used as post-conditions.
In that case, an r-action has the following format
(Exhibit 3):where State2 contains information of
the next state after the action has been executed
and predicate j,s2 is a post-condition.

In general, a trace will contain low level in-
formation of the domain. For example, a trace in
chess will consist of board positions (e.g., white
in rook in position g3, black king in b6, etc.) with
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Exhibit 2.

r action(Action,Statel) :-

predicatel, sl (Argsl,Statel),
predicate2, sl (Args2,Statel),

predicate action(Action,Statel).

Exhibit 3.

r action(Action,Statel,State2) :-

predicate 1,sl (Argsl,Statel),

predicate 2,sl (Args2,Statel),

predicate action(Action, Statel,State2),
predicate 1,s2 (Args3,State2),

predicate 2,s2 (Argsé4,State2),

plies (e.g., white rook moves from g3 to g6). A
trace in robotics will consist of sensors’ informa-
tion (e.g., laserreading 1 is 0.32, laser reading 2 is
0.31, ..., sonarl reading is 2.78, sonar2 reading is
3.18, etc.) and movement information (e.g., speed
is5.1 cm/sec). This information is transformed into
predicates such as, rook_threatened, in_opposi-
tion and make_move for chess or door_detected,
obstacle_detected and go_forward or turn_right
for robotics, from which the r-actions are build.

The approach only learns the r-actions used in
the traces. This substantially reduces the learning
process, as only a subset of actions are considered
per state, but can also generate sub-optimal policies
asnotall the applicable actions are considered per
state. Itisalso possible that some r-states are never
visited. These issues are later discussed in this
chapter. Algorithm 2 summarizes the behavioral
cloning approachused forreinforcement learning.

Experiments

We illustrate the approach in two challenging
domains and illustrate two possible improvements

to the proposed approach. The first domain is a
flight simulator, where the goal is to learn how
to fly an aircraft. In this experiment we illustrate
how to incorporate an exploration strategy to
produce more robust policies. The second do-
main is a mobile robot, where the goal is to learn
navigation tasks. In this experiment we show
how to transform a discrete action policy into a
continuous action policy.

Learning to Fly

Trying to learn how to control an aircraft is a
challenging task for reinforcement learning as it
may typically involve 20 to 30 variables, most of
them continuous, describing an aircraft moving in
a potentially “infinite” three dimensional space.

A flight simulator based on a high fidelity
model of a high performance aircraft (a Pilatus
PC-9 acrobatic air plane) was used in our ex-
periments.? The PC-9 is an extremely fast and
maneuverable aircraft used for pilot training.
The model, provided by the Australian Defense
Science and Technology Organization (DSTO), is
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Algorithm 2. Behavioral cloning approach for reinforcement learning

Given a set a trace-logs (Each composed of a set of frames) of the task we

want to learn for each frame doTransform the information of the frame into a

relational representation (r-state) using a pre-defined set of

Predicates

Transform the information from the action performed by the user into a re-

lational representation (predicate-

action)

Construct, if new, an r-action with the conjunction of the r-state and the

predicate-action
end for

based on wind tunnel and in-flight performance
data. Since the flight simulator is of an acrobatic
aircraft, small changes in control can result in
large deviations in the aircraft position and ori-
entation. This chapter only deals with controlling
the ailerons and elevators, which are the two most
difficult tasks to learn. In all the experiments, it
was assumed that the aircraft was already in the
air with a constant throttle, flat flaps and retracted
gear. Turbulence was added during the learning
process (both behavioral cloning and reinforce-
ment learning) as a random offset to the velocity
components of the aircraft, with a maximum
displacement of 10f#s in the vertical direction
and 5/i/s in the horizontal direction.?

The goal is to learn how to fly through a
sequence of ways points, each way point with
a tolerance of 100f# vertically and horizontally.
Thus the aircraft must fly through a “window”
centered at the way point.

We decided to divide the task into two indepen-
dentreinforcement learning problems: (i) forward-
backward movements to control the elevation of
the aircraftand (ii) left-right movements to control
the roll and heading of the aircraft. We assume
that in normal flight, the aircraft is approximately
level so that the elevators have their greatest effect
on elevation and the ailerons on roll.
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To characterize the states for elevation control
the following predicates and discretized values
were defined:

. distance_goal: relative distance between
the plane and the current goal. Possible
values: close (less than 100 ft), near (be-
tween 100 and 1,000 ft), and far (more
than 1,000 ft).

. elevation_goal: difference between current
elevation of the aircraft and the goal eleva-
tion, considering the plane’s current incli-
nation. Possible values: far up (more than
30°), up (between 5° and 30°), in_front
(between 5° and -5°), down (between -5°
and -10°), and far _down (less than -30°).

For aileron control, in addition to distance
goal, the following predicates and discretized
values were also defined:

. orientation_goal: relative difference be-
tween current yaw of the aircraft and goal
yaw, considering the current orientation of
the plane. Possible values: far left (less
than -30°), left (between -5° and -30°), in_
front (between -5° and 5°), right (between
5° and 30°), and far_right (more than 30°).

*  plane_rol: current inclination of the plane.
Possible values: far left (less than -30°),
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Exhibit 4.

r action(Num,el,State,move stick(StickMove)) <—
distance goal (State,DistGoal) | A
elevation goal (State,ElevGoal) A
move stick(StickMove) .

Exhibit 5.

r action(Num,al,State,move stick(StickMove)) <—

distance goal (State,DistGoal) A

orientation goal (State,Orient Goal) A

plane rol(State,PlaneRol)

plane rol trend(State,RolTrend) A

move stick(StickMove) .

left (between -5° and -30°), horizontal (be-
tween -5° and 5°), right (between 5° and
30°), and far right (more than 30°).

*  plane rol trend: current trend in the in-
clination of the plane. Possible values: inc
(more than +1), std (between +1 and —1),
dec (less than —1).

The ranges of the discretized values were cho-
sen arbitrarily at the beginning of the experiments
and defined consistently across different variables
with no further tuning. The exact values appear
not to be too relevant, but further tests are needed.

The actions were discretized as follows. The
X component of the stick can have the following
values: farleft (if stick X component value is less
than -0.1), left (if it is between -0.1 and -0.03),
nil (between -0.03 and 0.03), right (between 0.03
and 0.1), and farright (greater than 0.1). For the
Y component of the stick movements the follow-
ing discretization was used: fardown (above 0.4),
down (between 0.3 and 0.4), ni/ (between 0.2 and
0.3), up (between 0.1 and 0.2), and farup (below
0.1). These discretizations were based on the ac-
tions performed by human pilots. These predicates
were used to construct, from human traces, a set
of aileron and elevation r-actions. Elevation r-

actions have the following format (Exhibit 4):
where Num is anidentification number, StickMove
is one of the possible values for stick on the Y
coordinate, DistGoal is one of the possible values
for distance goal, and ElevGoal is one of the
possible values for elevation_goal. For elevation
there can be 75 possible r-actions (3 possible
values for DistGoal, 5 for ElevGoal, and 5 for
StickMovement).

Similarly, the format for the aileron r-actions
is as follows (Exhibit 5):where there can be 1,125
possible aileron r-actions.

A total of 222 r-actions (180 for aileron and
42 for elevation) were learned after 5 consecutive
mission logs over the flight plan shown in Figure 3.

Exploration Mode

As we are learning only from seen cases, there
may be some states descriptions not covered by
the r-actions but which may occur in other flight
maneuvers. To compensate for this, the learned
r-actions were used to fly the aircraft to try to
reach previously unseen situations. In cases where
there were several applicable r-actions, one was
chosen randomly. Whenever the aircraft reached
a new state description (where there was no
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Figure 3. Human trace and the trace using the learned policy with reinforcement learning and behavioral
cloning on the 8-goal mission with the maximum level of turbulence

applicable r-action), the system prompted the user
for a suitable action, from which a new r-action
was induced. Also the user was able to perform a
differentactioninany state ifhe/she wished, evenif
there were some applicable r-actions. Exploration
mode continued until almostno new r-actions were
learned, which was after 20 consecutive explor-
atory flights. In total, 407 r-actions were learned,
359 for aileron (out of 1,125 which is =32%) and
48 for elevation (out of 75, which is ~64%). So
although, we are still learning a substantial number
of r-actions behavioral cloning helps us to learn
only a subset of the possible r-actions (only one
third) focusing the search space and simplifying
the subsequent reinforcement learning task (an
average of 1.6 r-actions per aileron state and 3.2
per elevation state).

When performing an r-action, the actual value
of the stick position was assigned as the mid point
of the intervals, except for the extreme ranges, as
follows. For the X coordinate: farleft =—0.15, left
=—0.05, nil=-0.01, right = 0.05, and farright =
0.15. For the Y coordinate: fardown = 0.45, down
=0.35, nil = 0.25, up = 0.15, and farup = 0.05.
This discrete actions policy was adequate to learn
a reasonable flying strategy as it will be shown
in the experimental results. We will describe, in

204

the robotics domain, how to transform this type
of policies into policies with continuous actions.

Once the state has been abstracted and the
r-actions induced, rQ-learning is used to learn a
suitable policy to fly the aircraft.

Results

In all the experiments, the Q values were initial-
ized to -1, € = 0.1,y = 09,0 = 0.1, and A = 0.9.
The experiments were performed on the 8 goals
mission shown in Figure 3. Ifthe aircraftincreases
its distance to the current goal, after 20 time steps
have elapsed from the previous goal, it is assumed
that it has passed the goal and it changes to the
next goal.

The following experiments were performed:

1. Positive reinforcement (+20) was given
only when crossing a goal within 100 ft.
with negative rewards otherwise (-1). In
case the aircraft crashed or got into a state
with no applicable r-action, a negative
reward was given (-10). The experiments
were performed with the maximum level
of turbulence.

2. Same as (1) without turbulence.



Relational Representations and Traces for Efficient Reinforcement Learning

Figure 4. Learning curve for aileron for the different experimental set-ups while training
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Same as (1) but only with the r-actions
learned from the original traces, i.e., without
the exploration stage (222 r-actions in total).
Same as (1) but we automatically generate
all the possible r-actions per state (5 with our
discretization scheme) with 1200 r-actions
in total.

Same as (4) but we use the original traces to
“seed” Q-values, providing initial guidance.

Figures 4 and 5 show the learning curves of
the above experiments for aileron and elevation
respectively. In particular, how many times the
aircraft crosses successfully the eight goals with
maximum turbulence (every 500 flights) for
aileron and elevation control. We continued the
experiments for 20,000 episodes without any clear
improvements in any of the experiments after the
first 3,000 episodes.

Ascanbeseen from the figures, without focus-
ing the search with behavioral cloning, reinforce-
ment learning is unable to learn an adequate

strategy inareasonable time. Incomplex environ-
ments, spurious actions can very easily lead an
agent to miss the goal. In this particular domain,
going away from the current goal at some inter-
mediate state can lead the agent into a situation
where it is impossible to recover and reach the
goal without first going away from the goal. The
exploratory phase, where new r-actions were
learned using random exploration, also proved to
be useful as the initial traces substantially biased
the learning process and limited its applicability.
The policy learned in experiment 1 after 1,500
flights was able to fly the whole mission success-
fully. Its robustness was tested under different
turbulence conditions. Figure 3 shows a human
trace of the mission and the trace followed by the
learned policy. Table 1 shows the results, averaged
over 100 trials, of flying the learned policy on the
mission with different levels of turbulence. Two
columns are shown per turbulence level, one with
percentages passing the way point within 100 ft.
(which was used in the reward scheme) and one
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Figure 5. Learning curve for elevation for the different experimental set-ups while training
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with 200 ft. The important point to note is that
the aircraft can recover even if it misses one or
more goals, and although it occasionally misses
some of the goals, it gets quite close to them, as
can be seen from Figure 3.

The learned policies were then tested on a
completely different mission, consisting of four
way points. The intention was to try maneuvers
not previously seen before. The new mission
included: a right turn®, a sharper left climb turn
of what it has previously seen before, another
quick right turn, and a sharp descending right turn.

Figure 6 shows a human trace and the trace
using the previously learned policy (experiment
1) on the new mission with the maximum level
of turbulence. The learned policy of the previ-
ous mission is clearly able to fly the aircraft on
a completely new mission. Table 2 shows the
performance of the policy on this new mission
with different turbulence levels averaged over
100 trials.
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An Application in Mobile Robots

Our second experiment consists of teaching a
mobile robot how to perform navigation tasks in
office—like environments with continuous actions.

To define arepresentation in terms of common
objects found in office-like environments, like
rooms, corridors, walls, doors, and obstacles, we
first transform the low-level information from sen-
sors into high-level predicates representing such
objects. This transformation process is based on
the work developed in (Hernandez & Morales,
2006), where they defined natural landmarks,
such as: (1) discontinuities, defined as an abrupt
variation in the measured distance of two con-
secutive laser readings, (2) corners, defined as the
location where two walls intersect and form and
angle, and (3) walls, identified from laser sensor
readings using the Hough transform. We also add
obstacles identified through sonars and defined
as any detected object between certain range. We
also used the work described in (Herrera-Vega,
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Table 1. Performance of the learned policy of experiment 1 after 1,500 episodes with different levels of

turbulence on the eight goals mission

Turbulence (m/s)/Tolerance

Stage 0/ 0/ 5/ 5/ 10/ 10/

100 200 100 200 100 200
Goall 0 100 31 75 49 89
Goal2 100 100 16 41 26 46
Goal3 0 100 53 62 51 70
Goal4 0 0 23 35 27 46
Goal5 0 100 57 91 59 95
Goal6 0 0 16 33 24 47
Goal7 100 100 47 74 33 66
Goal8 0 100 35 58 45 61
Aver. 25 75.0 34.75 58.625 39.25 65.0

Figure 6. Flight path trace for a human and for the learned policy on a new mission with 4 goals

2009) to identify the robot’s current location
such as room, corridor and/or intersection. These
natural landmarks, along with the robot’s actual
location, are used to automatically characterize
the relational states that describe the environment
in real-time.

4000
3000
2000
1000

5000 6000

The predicates used for developing the robot’s
r-states are:

*  place: This predicate returns the robot’s

location, which can be in-room, in-door,
in-corridor and in-intersection.
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Table 2. Performance of the learned policy on a different mission with different levels of turbulence

Turbulence (m/s)/Tolerance

Stage 0/ 0/ 5/ 5/ 10/ 10/

100 200 100 200 100 200
Goall 0 100 66 99 74 100
Goal2 100 100 17 39 29 44
Goal3 100 100 38 70 46 70
Goal4 0 100 51 77 39 58
Aver. 50 100 43 71.25 47 68
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doors_detected: This predicate returns the
orientation and distance to doors. A door
is characterized by identifying a right dis-
continuity () followed by a left disconti-
nuity (/) from the natural landmarks. The
door’s orientation angle and distance val-
ues are calculated by averaging the values
of the right and left discontinuities angles
and distances. The discretized values used
for door orientation are: right (door’s an-
gle between -67.5° and -112.5°), left (67.5
to 112.5°), front (22.5° to -22.5°), back
(157.5° to -157.5°), right-back (-112.5°
to -157.5°), right-front (-22.5° to -67.5°),
left-back (112.5° to 157.5°) and lefi-front
(22.5° to 67.5°). The discretized values
used fro distance are: Ahit (door’s distance
between Om. and 0.3m.), close (0.3m. to
1.5m.), near (1.5m. to 4.0m.) and far (>
4.0m). For example, if a right (number 1
in Figure 7) and left (number 3 in Figure
7) discontinuities are obtained from the
robot’s sensors, then the following predi-
cate is produced doors_detected([front,
close, -12.57, 1.27]), which corresponds
to the orientation (first and third argument
in symbolic and numeric representation)
and distance (second and fourth argument)
descriptions of a detected door (see Figure
7). For every pair of right and left discon-
tinuities a list with these orientation and
distance descriptions is generated.

walls_detected: This predicate returns the
length, orientation and distance to walls
(type w landmarks).’

The possible values for the wall’s size are:

small (lengthbetween 0.15m. and 1.5m.), medium
(1.5m. to 4.0m.) and large (> 4.0m.).

corners detected.: This predicate returns the
orientation and distance to corners (type ¢
landmarks).®

obstacles_detected: This predicate returns
the orientation and distance to obstacles
(type o landmarks).’

goal position: This predicate returns the
relative orientation and distance between
the robot and the current goal. It receives
the parameter the robot’s current position
and the goal’s current position, though as
a trigonometry process, the orientation and
distance values are calculated and then
discretized.®

goal reached: This predicate indicates if
the robot is in its goal position. Possible
values are true or false.

The previous predicates tell the robot if it is in

aroom, a corridor or an intersection, detect walls,
corners, doors, obstacles and corridors and give a
rough estimate of the direction and distance to the
goal. The action predicates receive as parameters
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Figure 7. Robot sensing its environment through laser and sonar sensors and corresponding

natural landmarks

the odometer’s speed and angle readings, and are
defined as follows:

. go: This predicate returns the robot’s ac-
tual moving action. Its possible values are
forward and back.

. turn: This predicate returns the robot’s ac-
tual turning action. Its possible values are
right and left.

Similarly to the flight simulator domain, ini-
tial traces are given to the system which uses the
previously defined predicates to induce a set of
r-actions and used them to learn a discrete actions
policy. Inthe following section we describe areal-
time post-processing stage that can be applied to
the previous approach to produce policies with
continuous actions.

Relational Policies with
Continuous Actions

This stage refines the coarse actions from the
discrete actions policy previously generated. This
is achieved using Locally Weighted Regression

(LWR). The idea is to combine discrete actions’
values give by that policy with the action’s val-
ues previously observed in traces and stored in
a database DB. This way the robot follows the
policy learned with rQ-learning, but the actions
are tuned through the LWR process.

What we do is to detect the robot’s actual -
state. For this r-state the discrete actions policy
determines the action to be executed (Figure 8(a)).
Before performing the action, the robot searches
in the DB for all the registers that share this same
r-state description (Figure 8(b)). Once found,
the robot gets all of the numeric orientation and
distance values from these registers. These ori-
entation and distance values are used to perform
a triangulation process. This process allows us to
estimate the relative position of the robot from
previous traces with respect to the robot’s actual
position. Once this position has been estimated, a
weight is assigned to the previous traces action’s
values. This weight depends on the distance of the
robot from the traces with respect to the actual
robot’s position (Figure 8(c)). These weights are
used to perform the LWR that produces continuous
r-actions (Figure 8(d)).
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Figure 8. Continuous actions developing process. (a) r-state and corresponding r-action. (b) A trace
segment. (c) Distances and weights. (d) Resulting continuous action.

(b)

Once all the distance values (d) are calculated
forall the registers in the DB with the same r-state,
we apply a Gaussian kernel w,(d,) = exp(—d’))
to obtain a new weight w, for each relevant
register.

Then, every weightw, is multiplied by the corre-
sponding speed and angle values (w, * speed, . and
w,xangle, ) ofthe r-state-r-action pairsretrieved
from the DB. The resulting values are added to the
r-action (rA, = {disc_speed, disc_angle}) values
of the policy obtained by rQ-learning in order to
transform this discrete r-action into a continuous
action that is executed by the robot. This process
is applied to every register read from the DB with
the same r-state description and is repeated every
time the robot reaches a new r-state.

The main advantage of our approach is the
simple and fast strategy to produce continuous
actions policies that are able to produce smoother
and shorter paths in different environments.
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(d)

Results. Experiments were carried out in
simulation (Player/Stage (Vaughan, Gerkey &
Howard, 2003)) and with a real robot’. Both
robots (simulated and real) are equipped with a
180° front SICK laser sensor and an array of 4
back sonars at -170°, -150°, 150° and 170°. The
laser range is 8.0m and the sonar range is 6.0m.
The tasks to perform in these experiments were:
(1) navigating through the environment and (ii)
following a moving object.

The policy learning process was carried out in
the Map 1 shown in Figure 9. For each of the two
tasks a set of 15 traces was generated in this map.
For the navigation tasks, the robot and the goal’s
global position (for the goal position predicate)
were calculated using the work developed in
(Hernandez & Morales, 2006). For the following
tasks we used a second robot which orientation
and angle was calculated through laser sensor.
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Figure 9. Tasks examples from Maps 1 (size 15.0m.*x8.0m.) and 2 (size 20.0m. x14.0m.). (a) Navigation
task with discrete actions. (b) Navigation task with continuous actions. (c) Following task with discrete
actions. (d) Following task with continuous actions.
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We applied our Behavioral Cloning approach
to all the traces, to define r-states and induce
relevantr-actions. Then, rQ-learning was applied
to learn the policies. For generating the policies,
Q-values were initialized to -1, € = 0.1, y =0.9
and a = 0.1. Positive reinforcement, r, (+100)
was given when reaching a goal (within 0.5 m.),
negative reinforcement (-20) was given when the
robot hit an element and no reward value was
given otherwise (0). To generate the continuous
actions policy, Locally Weighted Regression was
applied on-line using a Gaussian kernel. Once the
policies were learned, experiments were execut-
edinthe training map with different goal positions
and in two new and unknown environments for
the robot (Map 2 shown in Figure 9(c) and Map
3 shown in Figure 10). A total of 120 experiments
were performed: 10 different navigation and 10
following tasks in each map, executed first with
the discrete actions policy from the first stage and
then with the continuous actions policy from the
second stage. Each experiment has a different
distanceto cover and requires the robot to traverse
through different places. The minimum distance
to cover was 2m. (Manhattan distance), and it was
gradually increased up to 18m.

Figure 9 shows a navigation (Map 1) and a
following task (Map 2) performed with discrete
(left figures) and continuous (right figures) ac-
tions, respectively.

Figure 10 shows a navigation and a follow-
ing task performed with the real robot, with the
discrete and with the continuous actions policy.

We cannot guarantee that the user visited all the
possible r-states. If the robot reaches an unseen
r-state, it asks for guidance to the user. Through a
joystick, the user indicates the robot which action
to execute and the robot stores this new r-state-r-
action pair in DB. The number of unseen r-states
decreases with the number of experiments.

We evaluated the performance of the discrete
and continuous actions policies in three aspects:
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1.  How close the paths of the tasks are to the
paths performed by a user

2. How close the paths o the tasks are from
obstacles in the environment

3. Whatare the execution times of the policies

Figure 11(a)'° shows results in terms of quality
of the performed tasks with the real robot. This
comparison is made against tasks performed by
humans. All of the tasks performed in the experi-
ments with the real robot, were also performed by
a human using a joystick (Figures 10(c), 10(f)),
and logs of the paths were saved. The graph shows
the normalized squared error between these logs
and the trajectories followed by the robot.

Figure 11(b) shows results in terms of how
much the robot gets closer to obstacles. This
comparison is made using the work developed in
(Romero, Morales, & Sucar, 2001). In that work,
values were given to the robot according to its
proximity to objects or walls. The closer the robot
is to an object or wall the higher the cost it is
given. Values were given as follows: if the robot
is very close to an object (Om. to 0.3m).a value of
-100 was given, if the robot is close to an object
(0.3m. to 1.0m) a value of -3 was given, if the
robot is near an object (1.0m. to 2.0m) a value of
-1, otherwise a value of 0 is given. As can be seen
in the figure, quadratic error and penalty values
for continuous actions policies are lower than
those with discrete actions.

Execution times, shown in Figure 12, with the
real robot were also registered. Continuous actions
policies execute faster paths than the discrete ac-
tions policy despite our triangulation and Locally
Weighted Regression processes.

In summary, the continuous actions policies
are more similar to human traces, are smoother,
safer and faster than the discrete actions policies.
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Figure 10. Navigation and following tasks examples from Map 3 (size 8.0m.*x8.0m.). (a) Navigation task with
discrete actions. (b) Navigation task with continuous actions. (c) Navigation task performed by user. (d) Follow-
ing task with discrete actions. (e) Following task with continuous actions. (f) Following task performed by user.
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Figure 11. Navigation and following results of the tasks performed by the real robot. (a) Squared error
value. (b) Penalty values
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Figure 12. Execution times results
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CONCLUSION AND FUTURE WORK

This work introduces an abstraction based on are-
lational representation for reinforcement learning.
The user defines a set of properties to characterize
a domain and to abstract the state space. The idea
is to capture some relevant properties of the do-
main that can be used in different instances of the
domain and sometimes to solve different, although
closely related, problems. It is also shown how to
incorporate traces from the user to automatically
learn areduced set of relational actions to achieve
faster convergence times.

Under the proposed framework it is easy to
incorporate domain knowledge, to use it in large
application domains, and to re-use the learned
policies on other instances of the problem or on
related problems that can be described by the
same set of relations.

We also showed two improvements in two
challenging domains: (i) an exploration strategy
to learn how to behave in unexplored states and

(i1) an on-line strategy to produce a continuous
actions policy.

There are several future research directions
that we are considering. In particular, we would
like to improve our current exploration strategy
to identify in advance non-visited states to com-
plete the traces provided by the user. We are also
considering how to include partial observability
in our current framework. Finally, we are plan-
ning to incorporate the user in a more active way
during the learning process.
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ENDNOTES

: www.ida.liu.se/~TDDA 13/labbar/plan-

ning/2003/writing.html

The flight simulator application was done

while the first author was on sabbatical

leave at the University of New South Wales,

Australia.

Althoughthisisnotastrictly accurate model

of turbulence, it is a reasonable approxima-

tion for these experiments.

Thetraining mission involved only left turns.

5 The values used for orientation and distance
are the same as with doors.

6 The values used for orientation and distance
are the same as with doors.

7 The values used for orientation and distance
are the same as with doors.

8 The values used for orientation and distance
are the same as with doors.

0 AnActivMedia GuiaBot, www.activrobots.
com

10 NPDA: Navigation Policy with Discrete
Actions, NPCA: Navigation Policy with
Continuous Actions, FPDA: Following
Policy with Discrete Actions, FPCA: Fol-
lowing Policy with Continuous Actions.



