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Abstract. The development of service robots has recently received con-
siderable attention. Their deployment, however, normally involves a sub-
stantial programming effort to develop a particular application. With
the incorporation of service robots to daily activities, it is expected that
they will require to perform different tasks. Fortunately, many of such
applications share common modules such as navigation, localization and
human interaction, among others. In this paper, a general framework
to easily develop different applications for service robots is presented.
In particular, we have developed a set of general purpose modules for
common tasks that can be easily integrated into a distributed, layered
architecture, and coordinated by a decision–theoretic planner to perform
different tasks. The coordinator is based on a Markov decision process
(MDP) whose reward is set according to the task’s goal, the states are
represented by a set of variables affected by the general modules, and
the actions correspond to the execution of the different modules. In or-
der to create a new application the user only needs to define a new MDP
whose solution provides an optimal policy that coordinates the different
behaviors for performing the task. The effectiveness of our approach is
experimentally demonstrated in four different service robot tasks with
very promising results. Additionally, several aspects include some novel
ideas; in particular in navigation, localization and gesture recognition.

1 Introduction

Service robots are mobile robots that help people in different activities, such as
helping elderly people in their home, serving as hosts and guides in museums
or shopping malls, aiding in hospitals, etc. This idea of service robots to assist
humans in every-day life has been around for many years. Although there is much
work in developing different abilities for this kind of robots, little attention has
been paid to the integration of these behaviors into a complete functional system.
Such robots need different capabilities to perform their tasks, such as navigation,
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mapping, localization and obstacle avoidance to move around in an uncertain
and changing environment. They also need clear, simple and natural interactive
interfaces to communicate with humans. In general, service robots are developed
for executing a particular application, such as guides in a museum, however, it is
desirable that a service robot could be capable of performing different tasks; or at
least it should be easy to program it for other, similar, applications. Developing
applications for service robots requires a considerable effort, however, most of
them share a core of basic capabilities. It is then natural to develop different
modules that can perform such common capabilities and combine them into a
general architecture to produce different applications relatively easily.

In this paper we present a service mobile robot called Markovito. Markovito
has the following main characteristics:

– Generality: it is based on different general–purpose modules for performing
common tasks such as planning, navigation, localization, human tracking,
object localization, voice interaction, etc. These modules are designed so
they can be easily adapted and combined for different tasks.

– Flexibility: it is coordinated by a decision–theoretic controller that serves
as an orchestra director of different general–purpose modules. New service
robot applications can be easily constructed by defining a goal for the task,
represented as a Markov decision process (MDP), and solving the MDP that
coordinates different modules to perform this task.

Using this framework, Markovito has successfully performed different ap-
plications in a home environment. In particular, it has solved the tasks of: (i)
following a human under user commands, (ii) navigating to several places in the
environment designated semantically, (iii) finding one of a set of different objects
in a house, and (iv) delivering messages and/or objects between different people.
The first three tasks are part of the RoboCup@Home challenge [1]. Experiments
have shown that Markovito is reliable in the execution of these tasks, while keep-
ing a simple and intuitive robot software architecture able to incorporate new
abilities.

This chapter is organized as follows. Section 2 describes the software archi-
tecture used in Markovito. Section 3 describes different general software modules
that can be used for different service robot’s applications, namely map building
and localization, navigation and planning, speech synthesis and recognition, and
visual perception. In Section 4, the coordinator based on MDPs is presented.
Section 5 describes the main implementation issues. Section 6 describes the dif-
ferent applications where Markovito has been tested. Finally, conclusions and
future research directions are given in Section 7.

2 Software Architecture

Our software architecture is based on a Behavior-based architecture [2]. A be-
havior is an independent software module that solves a particular problem, such
as navigation or face detection. In this paper, behaviors are also referred to as
modules. Behaviors exist at three different levels:
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Functional level: The lowest level behaviors interact with the robot’s sensors
and actuators, relaying commands to the motors or retrieving information
from the sensors.

Execution level: Middle level modules perform the main functions, such as
navigation, localization, speech recognition, etc. These interact with the low-
est level through a shared memory mechanism. Each middle level module
computes some aspect of the state of the environment. The outputs of these
modules are typically reported to the highest level modules.

Decision level: The highest level coordinates the middle level modules based
on a global planner. The planner consists of a Markov decision process that
controls each module based on the goal (defined as a utility function) to
perform a task.

The software architecture is depicted in Figure 1.
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Fig. 1. Software architecture.

This architecture can be implemented in a distributed platform, such that
each level and each module within a level could be on a different processor.
A transparent communication mechanism via TCP/IP sockets permits different
configurations without need to modify the modules. Thus, some processing could
be done on board the robot (lower level modules) and other off board (high level
modules). Also a module can be changed without affecting the rest of the system.

The intermediate or execution level compromises the general–purpose mod-
ules that perform the main tasks for Markovito. Each module can receive dif-
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ferent commands from the coordinator, which correspond to the actions of the
MDP. Also, each module affects certain state variables, which are part of the
state vector, used by the MDP to decide the best action according to its pol-
icy. The following section describe these modules, while Section 4 describes the
coordinator.

3 Modules

We have implemented different general-purpose modules that are common to
several service robot’s applications, which are described in the following sections.

3.1 Map Building and Localization

Fig. 2. An example of a discontinuity extracted from laser scanner data. D represents
the difference between the measured distance of the two consecutive laser rays.

A mobile robot requires a model or map of its environment to perform tasks.
Our map building module combines information from a laser scanner, the odome-
ter and three rings of sonar sensors (8 in each one) [3] to construct an occupancy
map based on particle filters. In this approach each particle represents a trajec-
tory followed by the robot and a map associated with that path. The main idea
is to represent the required posterior density function by a set of random sam-
ples with associated weights, and to compute estimates using those samples and
weights. Increasing the number of samples increases the precision and approaches
to the optimal Bayesian estimate [4]. To increase efficiency a Rao-Blackwellised
particle filter approach [5] is normally used, that essentially marginalizes some
variables. The algorithm we have implemented is based on PMAP [6] which we
extended: (i) to work on line, (ii) to combine information from the laser and
sonar sensors, and (iii) to have some parallel processing to increase efficiency.

The ability for mobile robots to locate themselves in an environment is not
only a fundamental problem in robotics but also a pre-requisite to many tasks
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such as navigation. There are two types of localization problems: local and global.
Local localization techniques aim to compensate for odometric errors during
navigation and require information about the initial position of the robot. Global
localization aims to locate the robot’s position without prior knowledge of its
current location. These problems are particularly hard in dynamic environments
where new obstacles can corrupt the robot’s sensor measurements [7].

In order to locate itself either during navigation or globally, this module
uses natural landmarks such as discontinuities, corners and walls as described
in [8]. The landmark extraction algorithm proceeds in three stages as follows: i)
first, from a discretized laser reading of 180◦, a set of discontinuities –identified
by abrupt variations of at least 20cm between the measured distance of two
consecutive rays are obtained (see Fig. 2), and these discontinuities are used to
divide the whole laser range into segments; ii) secondly, corners are identified
–following the approach proposed in [9]– by dividing these segments into sub-
segments; iii) and finally, the third step takes the remaining sub-segments and
performs a fast local Hough transform to detect walls of at least 1m length. The
result of this process is a tree-like structure of natural landmarks as depicted in
Figure 3.

Fig. 3. Tree of natural landmarks after the extraction of discontinuities, corners and
walls.
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One advantage of this approach is that the combination of these three types
of landmarks gives the robot the capacity to identify enough information from
any position in a wide variety of environments. Another advantage is that these
landmarks can be easily extracted from laser scanner data with high accuracy.
Moreover, by identifying from the simplest to the more complex features simpli-
fies the segmentation process. Finally, each landmark is associated with a set of
distinctive attributes such as its type, distance to the robot, its angle with respect
to the robot’s orientation, and in case of discontinuities, depth or the difference
in continuous readings that originated the landmark. Given a set of landmarks, a
triangulation process is performed between all the visible landmarks to estimate
the robot’s position. The information from all the visible landmarks is combined
considering the angle between landmarks, the distance between the robot and
its farthest landmark, and if there are landmarks at both sides of the robot or
only one, to give more accurate estimates (see [10] for more details).

For the global localization problem, a ray tracing approach is used to simulate
laser readings on the map. Each cell is associated with all its visible landmarks
and their values using a field of view of 360◦. This process is performed off-line
once a map is constructed. To match a cell with the current readings of the
robot –e.g., Figure 4a–, an initial stage filters out a large number of candidate
positions by taking into account only the number and type of landmarks visible
for a given map’s cell. This filter counts the number of landmarks obtained from
the laser data that matches the distance, depth, and orientation of the previously
stored discontinuities associated with each cell. An example of the result of this
process can be seen in Figure 4b. In this example dense clusters of points can
be interpreted as the most probable positions of the robot. A modified discrete
relaxation algorithm is used in a second stage to determine the similarity of each
cell with the observations of the robot, considering the distances between the
discontinuities in this stage. Our global localization algorithm is able to locate
the robot even with new obstacles as can be seen in Figure 4, where five new
obstacles are added to the environment [8].

3.2 Navigation

There are different strategies that can be applied for navigation. For instance,
we have implemented a navigation module that uses a dynamic programming
algorithm to assign costs to each cell of the map; in this approach an exponen-
tial cost function is used to value every cell near an obstacle below a distance
threshold –i.e., the shorter the distance, the higher the cost assigned to the cell
[11]. Following this criterion, the least expensive path is obtained by selecting
cells with a lower cost. In order to avoid new obstacles, the robot is sensing its
environment while moving. In case a new obstacle is placed in front of the robot
the module finds an alternative path, as shown in Figure 5 [10].
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Fig. 4. Global localization a) a simulated environment showing the robot –depicted in
green– and some discontinuities, b) results of the initial stage, and c) the estimated
position of the robot after the second stage.

Fig. 5. Re-planning with obstructed paths: 1) map of the environment with the original
position of the robot and its desired goal, 2) initial least expensive path following our
dynamic programming algorithm, 3) obstructed path with new obstacles depicted in
blue, and 4) an alternative path to the goal position.

In this paper, a novel navigation strategy using machine learning techniques
is presented. To illustrate more clearly the motivation behind this work, imag-
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ing going to a new place, e.g., a conference site. You would normally ask for
directions of places of interest, like the registration desk or a toilet, and you will
get general directions, like “at the end of the aisle to your right” or possibly “in
room 203”. You will have then to navigate without collisions in an unknown and
dynamic environment to a particular destination point through well known nat-
ural marks like walls and doors and expected dynamic conditions, like walking
people. Imagine you want your robot to learn how to perform a similar skill. You
place your robot in an unknown environment and you want it to navigate to a
particular point, like a charging station, but the robot is only given the general
direction of its destination point. The robot has to learn how to perform simple
skills, like obstacle avoidance and orientation towards a goal, and use them to
safely go to a particular goal in a dynamic and unknown environment. This is
the approach followed in this paper for the navigation module.

The application of machine learning techniques with expressive representa-
tion languages to domains like robotics have received little attention due to the
huge amount of low level and noisy data produced by the sensors. The use of
relational representations in this area is novel, and their advantages have just
recently being addressed (e.g., [12]). In this paper, first-order logic relations are
learned to build the navigation module. This module consist of a set of reactive
rules that sense the environment continuously and apply actions whose contin-
uous execution eventually satisfy a goal condition. These rules are known as
TOPs (Teleo-Reactive Programs) [13], an effective framework to achieve goals
when unexpected events occur.

The objective of our learning process is to provide a mobile robot with abil-
ities to move through indoor environments and to accomplish goals. In order
to learn TOPs, we combine three machine learning techniques: (i) behavioural
cloning, (ii) inductive logic programming (ILP), and (iii) a simple grammar
learning algorithm. Behavioural cloning is a technique to learn skills from exam-
ples [14]. The key idea of this method is to show the robot what to do instead
of how to do a task. For instance, in order to learn how to navigate without
collisions, the robot is presented with human traces steering the robot avoiding
obstacles, simplifying the programming effort.

We introduced a two phase learning process to learn TOPs for mobile robots
in indoor environments: (i) learning of basic TOPs, and (ii) learning of complex
TOPs. In the first phase, a system called TOPSY uses human-guided traces and
the natural landmark identification process, described in the previous section,
to reduce the information from the sensors into a small set of ground predicates
(landmarks) suitable for an ILP system called ALEPH [15]. A small set of back-
ground knowledge is given to the system from which other predicates are learned
and used in the induction of simple TOPs.

TOPSY was able to learn the following TOPs from human traces:

– avoid(State,Action): to wander around without collisions. Action can take
the following values: go forward, turn left, and turn right.
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– orient(State,Action): Given a target point, the robot has to turn until it is
oriented towards the goal, only if it is located in a safe turn zone. Action
can take the following values: turn right, turn left and nothing.

In order to learn how to combine TOPs to perform more complex tasks
(e.g., the goto TOP), previously learned TOPs that apply to states in traces are
identified, returning high-level traces of applicable TOPs. The goal is to learn a
grammar with TOPs able to reproduce a set of traces. With this purpose, FOSeq
(First Order learning from Sequences), an algorithm to learn grammars from se-
quences based on association rule learning is introduced and applied to induce
the goto TOP. This algorithm is in its initial stage, however, the learned TOPs
were used for navigation tasks on different environments with dynamic obsta-
cles. Figure 6 shows some examples of the Goto TOP under different scenarios.
Although the trajectories are not optimal in terms of the distance traveled, the
approach is quite robust even in partially unknown and changing environments.
See [16] for more details of this work.

(a) Round obsta-
cle

(b) Several obstacles (c) Goto in a corridor

Fig. 6. Goto in different scenarios.

3.3 Planning

The previous TOPs are used with a probabilistic roadmap module that returns
collision free paths. A probabilistic roadmap (PRM) [17, 18] is built using a ran-
dom generation of points in the configuration space. These points are joined if
there is a free path between them and the information is stored in a graph G.
Given an initial configuration s and a goal configuration g, the idea for path
planning is to connect s and g to nodes s′ and g′ in G. Given the random nature
of the algorithm, some paths in G may be too long and irregular, so a smoothing
algorithm, trying to find shortcuts, is applied. This process is illustrated in Fig-
ure 7. A combination of the roadmap points with the TOPs produces a robust
navigation module.
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Fig. 7. Probabilistic road maps (PRMs). The top figure shows a simplified diagram of
the algorithm with the two main phases: learning and consulting. The bottom figure
depicts the 3 stages in the construction of the path from the origin to the goal.

3.4 Speech Synthesis and Recognition

One of our main initial goals was to provide Markovito with the ability to speak
and understand Spanish language. Among the advantages of this approach we
emphasize the possibility to test our robot with a greater number of people
with different backgrounds. Markovito is able to synthesize many pre-defined
phrases in Spanish. We identified that the robot needs to talk with its user in
order to: i) notify when it is ready to initiate an interaction with a user (e.g.,
receive an instruction), ii) request some aid or information in order to effectively
complete the task at hand (e.g., to ask for the name of the current user), and iii)
inform when the task has been completed. In this way, many of these phrases are
reused for the different tasks performed by Markovito. For some tasks, several
sentences with the same meaning were defined and one of them was randomly
selected during interaction to produce a more realistic conversation with the
user.

Speech recognition is based on the Dimex project [19]. This work is aimed
to develop general acoustic-phonetic models and pronouncing dictionaries for
Mexican Spanish language inside the Sphinx2 framework for continuous and
multi-speaker recognition. The speech recognition system works with male and
female speakers. Unfortunately, during the initial development cycle, this ap-
proach obtained poor results due to several factors: i) people had to talk very
close to the Peoplebot robot’s original twin-microphones in order to be heard by
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the robot and ii) the recognition step was highly affected by other environmental
sounds (e.g., other conversations) and the robot itself (e.g., robot’s sonars). To
cope with these problems it was decided to incorporate a directional microphone
SHURE model SM81 to the robot. With this microphone a person can talk to
the robot at a distance that ranges from 30 cm to 1 m. In order to eliminate some
noise frequencies from the sound signal before the recognition process, we filter
this signal with a noise removal filter (adapted from the Audacity’s open source
code [20]). In order to enhance the signal, this was amplified using an adaptive
approach. These simple modifications resulted in a significant improvement in
the usability and accuracy of the speech recognition system.

3.5 Visual Perception

Service robots must integrate visual abilities such as people detection, recogni-
tion of their activities and object recognition in order to interact effectively with
people and its environment. In this section, we discuss the visual capabilities
implemented in our service robot. These features include face detection, object
detection and gesture recognition.

Face detection. Face detection is based on the AdaBoost algorithm proposed
by [21]. The main idea of this algorithm is the linear combination of classifiers
for face features such as eyes, mouth, and nose. Under this scheme, instead of
using a single classifier for the whole face, they propose the use of a combination
or cascade of simple classifiers. The detection performance of AdaBoost is com-
petitive in comparison to similar approaches [22] while decreasing the required
processing time.

Object recognition. Object recognition is carried out using the SIFT or Scale-
Invariant Feature Transform algorithm [23]. This algorithm aims to detect and
describe distinctive features of objects. As its name says, features are invariant
to scale, translation, and rotation. This is due to the extraction process that
searches stable features in the image at different scales. The algorithm proceeds
as follows. First, the original image is convolved with various Gaussian filters
(by varying σ) at different scales to obtain a set of blurred images grouped by
scale. Then, the difference (difference of Gaussians, DofG) from adjacent blurred
images of the same scale is computed. From this new set of DofG images a set
of features are extracted. These features can be stored for a future match with
features extracted from incoming images to recognize an object or a scene.

In Markovito, a data base of objects is created by showing to the robot a
particular object, whose distinctive features are obtained and stored associated
to the name of the object, which is given by the user (using speech). Later, the
robot can be asked to look for any of the objects that were previously shown.

Gesture recognition Gesture recognition is a key element for natural human–
robot communication. In our work, we propose to approach this problem by
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integrating posture and motion information to characterize a set of 9 gestures
(Figure 8). This scheme allows us to increase recognition rates significantly, even
when considering gestures with similar motions.

Fig. 8. Gestures considered by our system: a) come, b) attention, c) stop, d) go-right,
e) go-left, f) turn-left, g) turn-right, h) waving-hand and i) pointing; j) shows the initial
and final position for each gesture.

To recognize gestures we propose an alternative model for hidden Markov
models (HMMs), that we call dynamic naive Bayesian classifiers (DNBCs) [24].
A DNBC is composed by: i) a set C = {Ct|t = 1, . . . , T}, where each Ct is a
random variable that can take one of N possible classes at each time t, and ii)
a set A = {At|t = 1, . . . , T}, where each At = {A1

t , . . . , A
M
t }, is a set of M

instantiated random variables generated by the process at time t.
The main difference between the DNBCs and HMMs probability functions

is that the attributes are assumed independent given the class or state variable.
This factorization: i) enables us to consider techniques to explore statistical
relationships among attributes, ii) reduces the number of parameters, so it could
also reduce the number of training samples required, and iii) augments the clarity
of the graphical representation of the model. Figure 9 shows a DNBC unrolled
three times with three attributes.

Training equations for DNBCs can be derived in a similar manner as it is for
HMMs [25]. For recognition, maximum-likelihood (ML) criterion can be used to
select the model that maximizes P (A|·). In comparison to HMMs, DNBCs re-
quires less iterations of the EM algorithm for training, while keeping competitive
classification rates.

To capture gestures we implemented a monocular visual system using the
OpenCV libraries for Linux [26]. The system starts with a person standing in
a rest position, at a distance of about 3 m. in front of the video camera. Face
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Fig. 9. Graphical representation of a dynamic naive Bayesian classifier.

detection is carried out by using the Adaboost algorithm proposed in [27]. The
position of the right-hand and torso regions are estimated using anthropometric
measures based on face dimensions. To segment the hand by skin color different
lighting conditions of various users, we developed an adaptive scheme by com-
bining a general, Pg(rgb|·), probability distribution constructed off-line, with a
personal one, Pp(rgb|·), created on-line by sampling randomly the face and torso
of the user. Those functions are combined by means of the next rule:

P (rgb|·) = Pg(rgb|·) × Pp(rgb|·).

In this way, one pixel is classified as skin (s) if P (rgb|s) > P (rgb|¬s). This
strategy allows the visual system to track the hand accurately in several en-
vironmental conditions. Once the initial position of the hand is estimated, the
CAMSHIFT algorithm [28] is used to track the hand motion over the rest of the
image sequence. Our visual system is able to process up to 30 f.p.s. (using an
IBM PC Intel Pentium 1.6Ghz, 512Mb RAM), although we sampled attributes
at a lower rate. The image resolution is 640×480 pixels. See [24] for more details
of this work (see [29] for a video of a robot controlled with gestures).

Next the top–level coordinator, that directs the different software modules,
is described.

4 Coordinator

4.1 Markov Decision Processes

Markov decision processes (MDPs) have become the semantic model of choice for
decision theoretic planning (DTP) in the artificial intelligence community [30].
They are simple for domain experts to specify, or can be learned from data. They
have many well studied properties including approximate solution and learning
techniques. An MDP is a tuple {S,A, Pr, R}, where S is a finite set of states
and A is a finite set of actions. Actions induce stochastic state transitions, with
Pr(s, a, s′) denoting the probability with which state s′ is reached when action a

is executed at state s. R(s, a) is a real-valued reward function, associating with
each state s and action a. Solving an MDP is finding a mapping from states
to actions. Solutions are evaluated based on an optimality criterion such as the
expected total reward. An optimal solution is one that achieves the maximum
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over the optimality measure, while an approximate solution comes to within
some bound of the maximum.

A solution to an MDP is a policy that maximizes its expected value. For the
discounted infinite–horizon case with any given discount factor γ ∈ [0, 1), there
is a policy V ∗ that is optimal regardless of the starting state that satisfies the
Bellman equation [31]:

V ∗(s) = maxa{R(s, a) + γΣs′∈SPr(a, s, s′)V ∗(s′)} (1)

Two popular methods for solving this equation and finding an optimal policy
for an MDP are: (a) value iteration and (b) policy iteration [30].

The space and time complexity of MDPs increases with the number of states.
This problem can be reduced by using factored representations [32], in which the
state is decomposed in a set of variables or factors, and the transition functions
is represented using a factored representation (dynamic Bayesian nets). In this
paper, we use a factored representation to specify the MDPs and SPUDD [33] to
solve them. SPUDD uses the value iteration algorithm to compute an optimal
infinite-horizon policy of action for each state, with expected total discounted
reward as the optimality criterion. It uses a representation of MDPs as decision
diagrams, and is able to take advantage of structure in the underlying process
to make computation more efficient and scalable towards larger environments.
The modularity of our system facilitates the representation as a factored MDP,
and typically results in a sparsely connected Markov network. Such sparseness
leads to very efficient calculations when using a structured solution approach as
in SPUDD.

4.2 Task Coordination based on MDPs

To apply MDPs for coordinating a task for Markovito, we have to define the
model and then solve it using SPUDD. The model compromises the following
elements:

– The global state of the system described by a vector S. This is the set of high
level variables that are relevant for the task. The coordinator synthesizes this
state vector by collecting information from each module.

– The set of high level actions, A, required to complete the task. These actions
are implemented by calling the different modules with the corresponding
parameters.

– The goal of the task defined as a reward function, R, that specifies high
positive values for the desired states and negative values for the states that
should be avoided.

– The transition function Pr(s, a, s′).

This model is currently specified manually by the programmer according to
the task. In general, it is relatively easy to specify this model, in particular
the state variables, actions and rewards. It is more complicated to specify the
transitions function; however, once it has been specified for given a task, it is in
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general similar in other tasks in the same or similar environments. We use an
iterative approach to define the model. An initial model is defined and solved
with SPUDD. Then we use a simulator to verify the obtained policy, and if
there are inconsistent or strange actions, the model is modified and the process
is repeated. For the tasks developed so far, it took less than one week to develop
each model. Based on the final model, the optimal policy is obtained, and this
is used to coordinate all the software modules to perform the task. The model
is specified and solved off-line, and just the final policy is used on-line. A simple
program, that we call manager, implements the optimal policy (stored in a table),
by reading the state vector and selecting the optimal action, which is directed
to the corresponding module.

We are assuming that Markovito knows with certainty its state, but in re-
ality there is uncertainty, so we might consider instead the belief state. We are
currently compressing the probabilistic belief states reported by the modules by
choosing the value with maximum likelihood. In the general case, the planners
would take advantage of the information contained in the belief state, by using
partially observable MDPs (POMDPs). However, it is P-SPACE hard to find
policies for POMDPs, calling for approximate techniques for robotics applica-
tions [34]. Hierarchical methods are another way to combat the complexity of
POMDPs [35–37]. Markovito considers the state vector to be fully observable,
which is a good approximation when the uncertainty in not too high. That is,
when the probability of the most probable state is significantly higher than other
states (the entropy is low). As future work we propose to extend our approach
to POMDPs.

The combination of a coordinator based on MDPs with a 3-level architecture
can reduce the development costs of different service robots applications. By
simply re-arranging the modules, changing the goal (reward), and solving a new
MDP, different applications can be developed. Different software modules of
common tasks can be incorporated in a transparent way. In the following section,
we describe Markovito’s hardware and implementation issues.

5 Implementation Issues

In this section, we describe the hardware and software platform used for Markovito
and the general structure followed for its implementation. We believe this kind
of explanation is important because in the literature it is common to present the
architectural design of the system only, ignoring almost completely the imple-
mentation details, which are very useful to developers.

5.1 Hardware and Software Platforms

Markovito is based on a PeopleBot robot platform (ActivMedia). It has two
rings of sonars, a Laser SICK LMS200, one video camera Canon VCC5, two
infrared sensors, a directional microphone SHURE SM81, a gripper, the robot’s
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Fig. 10. Markovito.

internal computer, a Laptop, bumpers and a frame grabber WinTV USB 2 (see
Figure 10).

Table 1 summarizes the software libraries and source code considered to
develop each module. As it is shown in Figure 1 each module was independently
implemented. This gave us the facility to: i) test each module separately (even
on different computers), ii) in some cases to use simulation (e.g., navigation,
localization, map construction and object grasping behaviors), and iii) speed up
the development and testing processes.

Table 1. Modules and libraries used in Markovito.

Module Source code/Libraries

NAVIGATION Player/Stage server, pmap utility, sw-prolog
VISION Player/Stage server, OpenCV, SIFT algorithm
DEVICES Player/Stage server
SPEECH Sphinx2, Audacity, Listener, Festival Player/Stage server
COORDINATION SPUDD (MDP)

5.2 General Structure and Operation

In our design, each module has assigned a set of state variables and actions
that it can modify and execute, respectively. The system starts by running each
module first, and lastly the MDP module. Once this has been done, the MDP
immediately tries to send the corresponding variables and their values to each
module. This operation serves as an initialization step for the variables stored in
the modules. When the MDP has received in response an acknowledgment from
the modules, then it knows that everything is working fine and it is time to send
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the first action – from the policy obtained off-line with SPUDD.When a module
receives an action, it proceeds to execute it. In all cases our implementation
design considers that the action is performed on its own thread, enabling the
module to receive a new command if it is necessary. In this case, the module
can: i) abort the current action and start the new one, ii) queue the second one
or, iii) ignore it, if it is desired. This could be useful when considering parallel
actions – the same action executed at the same time for two or more modules.

The information exchange between modules is carried out only through the
MDP. The communication between each module and the MDP is done via client-
server tcp/ip sockets. The MDP considers 2 threads per module, one to write to
and another to read from each module. The later one selects and sends actions
once the value of a new variable has been received from a given module. This
enable the MDP to send and receive actions and variables asynchronously. Cur-
rently Markovito has two computers, the internal one and a laptop mounted on
top the robot. The communication between these two machines is done through
an 100Mb/s Ethernet cable that connects the laptop and the robot; in this way
we: i) avoid possible problems with wireless networks that are common in prac-
tice, and ii) decrease the delay in the communication that is usually slower when
using wireless networks. This is important in some contexts and to enhance
autonomy for the robot. Moreover, by simply changing the line-command pa-
rameters of each module we can run the system on the laptop computer or in
the robot’s computer.

The complete system was developed using C/C++ language mainly (except
for the TOPs rules that were programmed in Prolog). A video that shows the
system running can be found at [38].

6 Applications

This section presents the different tasks Markovito is able to perform. These
tasks are based on those proposed for the RoboCup@Home 2007 competition
[1]. As mentioned in Section 4, the different modules are coordinated with an
MDP.

6.1 Navigate Through Three Places and Return to the Starting

Position

In this task, Markovito has to navigate safely through three places, that are
given by a user at the beginning of the interaction, and then return to its starting
position. As soon as the robot reaches a destination point it has to announce it.
All the interaction is made in natural language.

Six variables were defined for this MDP: localize, indicates when the robot’s
position is known; get goals, it is true when the robot has obtained the three
places to visit; arrived at destination point, is set when the robot arrives to each
place; has trajectory, indicates when it has a plan for navigation; end position,
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Table 2. The six actions used to coordinate the modules for the navigation task.

Action Module Description

Localize Navigation Global localization

Wait for a goals Speech Obtain the places to visit

Generate trajectory Navigation Give a path to a destination place

Go next goal Navigation Navigate to reach the next place

Announce arrival at ith. goal Speech Announce that the robot has

reached a new place

Announce finish Speech Announce that the robot has

returned to the initial position

indicates when it returns to the starting position. The MDP has six actions to
coordinate the modules which are described in Table 2.

Figure 11 shows a sequence of Markovito navigating through the environment
reaching different destination points.

Fig. 11. Markovito navigating through the environment reaching different destination
points at the Mexican RoboCup@Home 2007 competition.

6.2 Lost & Found

In this task, Markovito is shown an object which it later has to search for in the
environment. The user places several objects, one by one, in front of the robot’s
camera. Afterward, the user tells the robot which object to search for and a
destination area. Markovito has to navigate to the indicated area and search for
the object. It tells using speech synthesis when the object is recognized.
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Markovito’s first action is to find its global position in the environment. Once
this has been done, the robot notifies that it is ready to accept a user instruction.
We considered three different commands: i) learn an object, ii) search an object
and iii) forget an object. If the robot receives a command to search or forget
an object before knowing it, a notification is given to the user. We included the
forget instruction just in case of any mistake when positioning the object in front
of the robot’s camera. Once at least one object has been presented to the robot,
the user can instruct the robot to search for the object. This instruction can be
complemented with the name of a place in the environment (e.g., kitchen, table,
etc.) where the robot can go to search the object. When the robot has reached
the given place, it starts to pan and tilt its camera to capture images of the
environment. These images are processed using the SIFT algorithm to detect
the object.

This MDP has 11 variables: localize, has order, forget object, confirm forget-
ting, learn object, confirm learning, object in data base, found, reached destiny,
is near, and confirm object. The actions consider in this MDP are: global local-
ization, wait for order, forget object, learn object, confirm learn object, confirm
forget object, go to search area, look for object, get close to object, and confirm
found object. All the interactions in this task are in natural language. This task
uses the localization, navigation, planning, speech and perception modules. Fig-
ure 12 shows Markovito learning an object, in this case a Teddy bear (left) and
then searching for it (right).

Fig. 12. Markovito learning to recognize an object (left) and later searching for it
(right).

6.3 Follow a Person Under User Request

For this task, Markovito has to follow a human through an unknown track in a
home-like environment. After reaching the end position, the robot has to return
to its starting position. The task consisted of two stages. In the first stage, the
human stands in front of the robot at a distance of one meter for about one
minute for calibration. At this state, the torso detection module learns a color
model of the persons cloths, which is later used for tracking. In a second stage,



20 H.H. Avilés et al.

the human starts walking towards the end position, passing through a number of
places. This task used the navigation module based on TOPs to go dynamically
to changing places given by the torso tracking module.

This MDP has 13 variables: localize, person, calibrate order, follow order,
stop order, calibrate, follow, searching, announce following, announce searching,
announce finish, has trajectory, and get destination. All the interaction is also
in natural language. Table 3 shows the actions that are used to coordinate the
different modules.

Table 3. The actions used in the task to follow a person and the different modules
used in this task.

Action Module Description

Localize Navigation Global localization

Wait order to calibrate Speech Wait for a calibration order

Calibrate Vision Get information about

the person

Wait order to follow Speech Wait for a follow order

Follow Navigation Follow a person

Announce searching person Speech Announce that the robot

lost the person

Search the person Vision Search for a person

Announce found person Speech Announce that the robot

found the person

Wait order to stop Speech Wait for a stop order

Generate trajectory Navigation Give a path to

destination place

Return Navigation Navigate to the starting position

Announce arrive Speech Announce arriving to

the starting position

6.4 Deliver Messages and Objects Between People

Markovito is able to act as a messenger robot to deliver spoken messages, objects,
or both under a user’s request. Markovito first obtains its global position and
orientation (x, y, θ) relative to its environment –it is assumed that a map was
previously built as described in Section 3.1 and uses natural landmarks for its
global localization. Once it has found its global position, Markovito waits for the
spoken salute of a user and when it arrives, the interaction starts. At this stage
the robot asks the name of the sender and receiver, and requests the message or
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object, or both. Then, the robot proceeds to navigate to the receiver’s position –
assumed known in advance by the robot. At this place Markovito tries to detect
the face of a user. If a face is detected, Markovito delivers the message or the
object and resets the state variables to their default values waiting for a new
request; if not, it continues searching for the receiver until certain time limit is
reached.

An MDP with 12 binary variables was used for this task: localized, greetings,
sender, receiver, message, object, trajectory, reached destiny, found receiver, ob-
ject/message delivered, message, and object. Two multi-valued variables were
also used for the battery level and for the type of delivery. Thirteen actions were
defined for this task: localize globally, generate path to destination place, execute
trajectory, as part of the navigation module. Wait for greeting, request type of
delivery, request sender’s name, request receiver’s name, record message, deliver
message, confirm delivery, as part of the speech module. Grasp object, release
object as part of the delivery module. Detecting a person is part of the vision
module. Figure 13 shows Markovito delivering a beer to a person watching T.V.

Fig. 13. Markovito delivering a beer.

7 Conclusions and Future Work

There is an increasing interest for the development of service robots. Having
a service robot to perform even a simple task, normally involves a substantial
programming effort as different capabilities, such as navigation, localization and
human interaction, need to be developed. Fortunately many of these capabilities
are common to different tasks so they can be reused for new applications. This
chapter described a general framework for creating service robots applications
based on the reuse of general purpose modules. We have implemented different
modules, some of which include novel ideas, like natural landmarks based on
discontinuities for localization, machine learning techniques for inducing TOPs
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for navigation, and dynamic näıve Bayesian classifiers for gesture recognition.
The architecture uses an MDP framework to coordinate in a simple and effective
way these modules. It is common in robotics to create new algorithms for a
particular module or to describe a single application involving several modules.
Although there are previous works on robot coordination based on MDPs, these
consider an specific task. Contrary to previous approaches, this chapter shows
how different service robot applications can be easily constructed using a set of
modules and defining a new MDP to obtain an optimal policy for each task. We
have illustrated the capabilities of this framework with different applications.

There are several research directions to follow. In particular, we plan to incor-
porate a module that can be used to teach the robot by example, to incorporate
a face recognition module, and to combine gesture recognition with the natural
language module to enhance our human-robot interface. We are also improving
the coordinator to deal with conflicting situations. Finally, we plan to use this
framework for developing other applications, such as a tour guide in a museum
or university, enhance our messenger robot with new capabilities, and develop
an assistant in a social event.
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tigación, (Instituto Nacional de Astrof́ısica, Óptica y Electrónica (INAOE). To-
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