MOAQ a Distributed Reinforcement Learning Algorithm for the
Solution of Multiple Objectives Optimization Problems.

C. E. Mariano

Instituto Mexicano de Tecnologia del Agua

Paseo Cuauhnahuac 8532
Jiutepec, Morelos, 62550, MEXICO

cmariano@tlaloc.imta.mx

Abstract

In this paper we study the application of Re-
inforcement Learning to the solution of Multi-
ple Objectives Optimization Problems design-
ing a new algorithm called MOAQ. MOAQ
considers a family of agents for each objective
function in the problem description. MOAQ
generates compromise solutions using a nego-
tiation mechanism between agents from differ-
ent families. Non-dominated solutions receive
a reward and reinforcement is performed to
all the components of the non-dominated so-
lutions. MOAQ was applied to the solution
of two problems whose Pareto front was pre-
viously known. We compare and contrast the
solutions obtained by MOAQ with the solutions
obtained with two recently developed genetic
algorithms, demostrating the ability of MOAQ
to find and maintain the Pareto frontier.

1 Introduction

After about a decade since the pioneering work by Schaf-
fer [10; 11], a number of studies on multiple objective
genetic algorithms (GAs) have been generated (e.g., [5;
7; 8; 12; 14]). Although GAs have shown good behaviors
in the solution of multiple objective optimizations prob-
lems, encoding is often a difficult procedure which may
involve the simplification of some problem constraints.
On the other hand, reinforcement learning, especially
Ant-Q, has shown good results in combinatorial opti-
mization problems [3; 4; 6]. In reinforcement learning
[13], an agent learns values trying to obtain the maxi-
mum reward based on proven actions that gave high re-
wards, while not forgetting to explore new states where
reward values are unknown. In order to increase the ex-
ploration capabilities and to reduce convergence times,
more than one agent can be used in the solution of a sin-
gle problem, transforming the basic algorithm to a dis-
tributed reinforcement learning algorithm (Ant-Q). In
this approach many agents try to satisfy a common ob-
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jective; each agent proposes a solution which is evaluated
and rewarded depending on its goodness.

In this work a new algorithm for multiple objective op-
timization problems called MOAQ is presented. MOAQ
was tested in the solution of two two-objective problems
whose Pareto frontier was known, proving the algorith-
m’s capability to find and maintain the Pareto frontier
during simulation.

Section 2 describes in detail the Multiple Objective
Ant-Q Algorithm. Section 3 shows the results on the
problems solved by MOAQ and compares them with
other approaches. Section 4 discusses the algorithm and
its performance, and finally conclusions and future re-
search directions are given in section 5.

2 Multiple Objective Ant-Q

In reinforcement learning, an autonomous agent learns
an optimal policy 7 : S — A, that outputs an appropri-
ate action a € A, given the current state s € S, where A
is the set of all possible actions in a state and S is the set
of states. The available information to the agent is the
sequence of immediate rewards r(s;, a;) for all the possi-
ble actions and states ¢ = 0,1,2,.... Given this kind of
training information it is possible to learn a numerical
evaluation function defined over states and actions, and
then implement the optimal policy in terms of this eval-
uation function. The value of the evaluation function
Q(s,a) is the maximum discounted cumulative reward
that can be achieved starting from state s and applying
action a as the first action. In other words, the value
of @) is the reward received immediately upon executing
action a from state s, plus the value (discounted by )
of following the optimal policy. Therefore the optimal
policy for a given state s must select the action whose @)
function value is maximum 7*(s) =arg max Q(s,a). The
a

idea is to learn @ values that approach ). The update
of the @) values is made according to the following rule:

Q(s,a) < r(s,a) + vy max Q(s',a’)

where @(s,a) is the updated Q value for state s and
action a, r(s,a) is the reward the agent receives when



Table 1: MOAQ Algorithm.

Given: (i) a list of n families (objectives)
and (ii) m agents for each family
Let N be the maximum number of iterations
Let IN := 0 (initialize iteration number)
Initialize all the ) values for all the families
Until only non-dominant solutions or IN > N
Let IN:=IN+1
Initialize parameters of family 1
for j=1tom
find a solution for objective 1
fori=2ton
Initialize parameters of family ¢
for j=1tom
Use the solution found with ant j
in objective ¢ — 1 to constraint the
solution for ant j (of objective 7)
Find a solution for objective i
Evaluate the found solutions
for j=1tom
if solution j violates any constraint,
Apply punishment to all its
components (corresponding agents)
else if solution j is non dominated
Apply reward to all its components
Introduce solution j into the
Pareto set
Remove all dominated solution from
the Pareto set
else if solution j is dominated
Neither apply reward nor punishment

it executes an action a in state s, and @(s’ ,a') is the
maximum @ value for the next algorithm step.

Ant-Q was proposed in [6]. The algorithm is in essence
a reinforcement learning algorithm with few changes
improving its exploratory capabilities and convergence
time. The basic changes, which are also used in MOAQ
for single objectives, are:

o Ant-Q considers m agents, rather than a single one,
trying to find a solution.

o Ant-Q considers a domain-dependent heuristic value
indicating how good is to go from a particular state
(s) to another state ('), HE(s,s).

o Ant-Q considers an action choice rule or state tran-
sition rule to select the next state for each agent us-
ing a combination of the heuristic value HE(s,s’)
and the Q(s,a) value associated with state s and
the action a that takes the agent to state s’. Let
us call it COM B(s, s"). The transition rule has the

following form:

. { argmax COMB(s,s’) ifq¢<qo (1)

P otherwise
where ¢ is a value chosen randomly with uniform
probability over [0,1], g¢o (0 < go < 1) is a parame-
ter such that the higher gy the smaller the proba-
bility to make a random choice, and P is a random
state selected according to a probability distribu-
tion given as a function of the heuristic and the @
values.

e The delayed reinforcement is computed using the
Q-learning rule [16]:

Q(87a> — (1 - a) . Q(87a>+

a |r(s,a) + v max @(s’,a’)

(2)

where @(s, a) is the new @ value for the s,a pair,
a is the learning step, s’ and a’ are the state and
action in the next algorithm step, and v is a dis-
count factor. The learned action-value function, @,
directly approximates (), the optimal action-value
function, independent of the policy being followed.
All that is required for correct convergence is that
all pairs are visited and updated. The computation
of the delayed reward depends on the problem, so
details of its computation will be given later in the

paper.

In one iteration of the algorithm every agent proposes
a solution, all the solutions are evaluated and the best
solution receives a reward. The new () values are then
reinforced using equation 2.

The basic idea behind MOAQ is to perform a similar
optimization algorithm but with a family of agents for
each objective. Each family tries to optimize an objec-
tive considering the solutions found for the other objec-
tives. So that all the agents from the different families
act in the same environment proposing actions and ex-
pecting a reward value which depends on how their ac-
tions helped to find trade-off solutions between the rest
of the agents.

In our algorithm, all the families must have the same
number of agents, say m. The order given to the objec-
tives (families) is arbitrary, although some problems may
need a particular order in which the objectives should be
tried. As in Ant-Q, all the agents in one family try to
find a solution at the same time. The m solutions found
for one objective in one cycle influence the m succes-
sive starting points of the following family (objective).
This process continues with all the families (objectives).
Once all the families have been tried, a reward is given
to the non-dominated solutions (to all the agents in each
family responsible for that solution) that satisfy all the
constraints. Solutions violating constraints are punished



while the rest of the solutions are neither rewarded nor
punished. The whole process is repeated several times
until only non dominated solutions (Pareto set) satis-
fying all the constraints are found or a predetermined
number of iterations is satisfied (see table 1).

3 Application to two problems

MOAQ has been applied to other multiple objective op-
timization problems [9], however, in this paper we com-
pare MOAQ against two artificial problems involving two
objectives previously solved with genetic algorithms [7;
8; 14].

In these problems, MOAQ needs to find a binary
string, where each agent has to decide whether to place
a one or a zero in each bit position. The application
of MOAQ to binary strings suggests that many prob-
lems that have previously been treated with genetic al-
gorithms are susceptible to be solved with MOAQ.

3.1 Problem 1. A simple test function

We begin by testing MOAQ to a simple artificial prob-
lem proposed in [7] whose Pareto optimal front can be
eagily evaluated. The problem involves two objectives
which are simple functions of finite bit string length [.
Unitation, Unit[s|, is the number of ones in the string
s. Pairs, Prs[s], is the number of pairs of adjacent com-
plementary bits, either 01 or 10. The objective is to
maximize both functions.

For the solution of this problem each agent in both
families has an associated string named Tour of length
[ where it stores its solution and two variables named
one! and pair!, where agent a of family f stores the
number of ones and pairs, respectively, in its solution.

A solution is constructed by placing every agent from
familyl on the left-most position of the string. At this
point their corresponding one! and pair! for all the
agents are initialized to zero. Each agent decides, ac-
cording to the transition rule in equation 3 (see below)
whether a 0 or a 1 should be placed in its current string
position, while the agent moves to the next string posi-
tion.

) argmax [HE(b,a) - Q(b,a)] if ¢ < g
a
bit otherwise

where HE(b,a) is the heuristic value for agent k in
familyl used to evaluate how good is to select, in string
position b, any of the two options (0 or 1) taking the
agent to the next string position. HE(b,a) = one},
which means that it is incremented if the action chooses
a 1 and remains the same otherwise.

if selection is 1
if selection is 0

HE(b,a) + 1
HE(b,a) _{ HEEM;

Table 2: String problems parameter setting.

Problem | qo «@ ~v | Agents | Time®
12bit [ 0.7]0.1]0.3 100 288 s
28 bit | 0.7 (0.1] 0.3 250 358 s

“MOAQ is written in Borland C++ V4.5
running on a 75 Mhz Pentium PC.

The (Q values are initialized to 1, ¢ and gg are explained
in section 2 (equation 1), bit is a random selection ac-
cording to a uniform probability distribution:

HE(b,a) - Q(b,a) (4)
S [HE(b,action) - Q(b, action)]

action

Once all agents in familyl have completed their
strings, solutions are given to the corresponding agent
in family2. Every agent in family2 maximizes prs[s]
following a process similar to that described for agents
in familyl. In this case, their heuristic is equal to the
number of pairs, i.e., HE(b,a) = pair?. The heuristic
value increases if the number of pairs for agent? increases
and does not produce more ones than those produced by
agent,.. The intention is to relocate the ones proposed
by agent; to positions where they contribute to maxi-
mize prs[s]. The heuristic value for agents in family2
is:

if pair? grows A
2 1
one;, < oney,

otherwise

HE(b,a) + 1
HE(b,a)

HE(b,a) =

When all the agents from family2 have completed
their strings an iteration has been performed and the
solutions are evaluated. Non-Dominated solutions are
rewarded with 7(b,a);, = 1, and their @ values are up-
dated.

Figure 1 shows the results obtained after 20 algorithm
iterations, where the numbers indicate how many oc-
currences of that solution were found. We can see that
MOAQ succeeds in finding all but one member of the
Pareto set, maintaining the Pareto set while searching
the solutions’ space. We have plotted the solutions over
many iterations noting that the algorithm maintains sim-
ilar number of solutions for each Pareto point, as shown
for 100 iterations in Figure 2.

We have observed similar behavior on larger problems,
with corresponding larger families. Figure 3 and 4 show
the agents behavior after 20 and 100 iterations for the
28 bit string case. It can be seen that the algorithm is
also capable in this case to find and maintain the Pareto
front. The values of the parameters used for both cases
are showed in Table 2.

MOAQ solutions for this problem solution are better
than the Niched Pareto Genetic Algorithm results re-
ported in [7; 8], since the spread and number of solutions
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Figure 1: Solutions found after 20 iterations with a 12
bit string.

Ones

8 - 3 2 21

74 1.2 4 11

6 1 2 11

— T
01 2 3 4 5 6 7 8 9 1011
Pairs

Figure 2: Solutions found after 100 iterations with a 12
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Figure 3: Solutions found after 20 iterations with 28 bit
string.
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Figure 4: Solutions found after 100 iterations with 28
bit string.
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Figure 5: Horn’s solutions for 12 bit at generation 100.

across the Pareto set are better, furthermore, MOAQ is
able to find all the solutions in the Pareto front while
the Niched Genetic Algorithm fails finding solutions in
the left side of the front, [11,6] and [27,14] for 12 and 28
bit respectively (see figures 5 and 6).

3.2 Problem 2: Schaffer’s F2

Next we tested our algorithm on Schaffer’s function F2,
with a single decision variable, the real valued z, and
two objectives, fo; and foo to be minimized.

for(x) = 2* faa(w) = (x—2)°

The solution to this problem has been reported in [7;
8; 11; 14] among others, where genetic algorithms need
to perform Niches or use Non generational behavior to
maintain solutions distributed over the Pareto front. We
used the same representation used in these works where
the decision variable is mapped to a 14 bit string as a
binary-coded integer.

The string position value is decided considering only
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Figure 6: Horn’s solutions for 28 bits at generation 200.
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Figure 7: Expanded view of MOAQ’s performance.

the @ values associated to every state-action pair Q(b, a)
using equation 5. The ) values are initialized to 1.
Y { argmax [Q(b,0)] if 4 < ao

otherwise

a )
bit ©)

In this case the stochastic selection (bit) is performed
considering the following uniform probability distribu-
tion:

Q(b,a)
> [Q(b, action)]

action

(6)

Table 3 shows the parameter values used in the prob-
lem solution. In this case, a greedier selection was used
to avoid a disperse Pareto set. More exploration (and
diversity) can be obtained when gq is closer to 0.

Figure 8 shows the Pareto set obtained with MOAQ
for Schaffer F2 problem after 100 iterations. Notice that
almost all solutions lie on the Pareto front and some
of them are very close to it. Figure 7 shows MOAQ’s
performance, and as can be seen, the solutions cover all

Table 3: Parameter setting for Shaffer F2.
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Figure 8: Pareto front for Schaffer’s function F2.

the Pareto set. There are very few dominated solutions
due to the exploration mechanism of the algorithm. The
algorithm maintains the Pareto front over time and does
not converge to a single solution, as often happens with
genetic algorithm approaches, unless niching, crowding
or some other similar technique is used.

Results reported by [7; 8] show disperse solutions in
the Pareto front, in contrast with the results reported in
[14] with a Non Generational Genetic Algorithm, which
are similar to the solutions obtained with MOAQ.

4 Discussion

From the results obtained in the previous section, we can
conclude that MOAQ is adequate to solve some multi-
ple objective optimization problems. In particular, the
encoding used suggests than many problems that have
been treated with genetic algorithms can be solved with
MOAQ. Furthermore, at least in these two problems,
MOAQ showed comparatively better results than those
obtained with genetic algorithms, although a more thor-
ough comparison is needed.

MOAQ has been applied to the design of water distri-
bution irrigation networks[9]. In this case the encoding
of the problem is made in terms of the mathematical
constraints involved in the problem, without having to
transform the problem into an adequate binary code. In
this aspect MOAQ presents a clear advantage over ge-
netic algorithms approaches because MOAQ does not
strictly need to codify the problem into a particular rep-
resentation (i.e., binary), being MOAQ’s encoding much
more transparent and expressive because it is made in
terms of the mathematical constraints of the problem;
avoiding the large proportion of the time often devoted,



when working with genetic algorithms, to find an ade-
quate encoding of the problem.

Theoretical analysis of the algorithm is still required
in terms of stability, but as can be seen from the results,
MOAQ looks as a promising alternative for the solution
of multiple objective optimization problems.

A careful sensibility analysis is required for the para-
meters involved in the algorithm («, 7). In this work
some variations of these parameters were tested and the
values reported are those that gave us better results.

5 Conclusions and Future Work

In this paper, a new algorithm called MOAQ for the so-
lution of multiple objective optimization problems has
been presented. MOAQ uses a family of agents for each
objective and by sharing partial results between agents,
global compromise solutions can be found. In particu-
lar, MOAQ was used to solve successfully some simple
multiple objective optimization problems that have been
solved with genetic algorithms with comparatively bet-
ter results.

We would also like to test MOAQ on other real mul-
tiple objective optimization problems, especially those
presented in engineering design and problems which are
considered difficult for genetic algorithms (e.g., [1; 2;
15]).
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