First-Order Induction of Patterns in Chess

Eduardo Morales
Computer Science
The Turing Institute - University of Strathclyde
Submited 1992

Abstract

It has been argued that much of human intelligence can be viewed as the
process of matching stored patterns. Cognitive studies of the play of Chess
suggest that the analysis of positions by people is guided by the recollection of
patterns. Several Chess playing systems have implemented a pattern-based
approach to play. The research focus has been on how to play Chess with
existing patterns rather than on the acquisition of patterns.

This thesis investigates the use of inductive logic programming (ILP) to
acquire Chess patterns that can be used for play. Patterns are expressed in
a subset of Horn clause logic.

A learning mechanism (PAL) based on relative least general generalisation
(rlgg) is described. This mechanism permits background Chess knowledge
to be used during learning. The learning process is driven by an automatic
example generator which minimises the user’s guidance of the learning pro-
cess.

It is shown that PAL can learn Chess concepts such as fork, discovered
check, skewer and pin, which are beyond the current state of the art for ma-
chine learning systems. The utility of the acquired patterns is demonstrated
by learning patterns sufficient for correct play in the King and Rook vs. King
endgame. It is demonstrated that the approach is not restricted to Chess, by
showing how PAL can be used to learn qualitative models of simple dynamic
systems.

A comparison with previous work in ILP is made. The limitations of this
approach are discussed, and future research directions outlined.

Acknowledgements

I am greatly indebted to my supervisor, Tim Niblett, for his encouragement
and continual support during the development of this research. His percep-
tive suggestions, advice, and “be precise” comments helped me to clarify the
ideas presented in the thesis. This thesis also benefit from useful comments
and suggestions of Robin Boswell, Steve Muggleton and Ashwin Srinivasan.
Peter Clark and all the members of the Machine Learning Group at the Tur-
ing Institute contributed with additional feedback during the development
of this work. I am thankful to lTan Watson and to Lisa Mac Mannus who
helped to correct the English mistakes of the thesis.

My special gratitude goes to Fernanda for her continual caring and un-
derstanding and to my parents for their moral (as well as financial) support
during our stay in Glasgow.

This research was funded with a grant from CONACYT (México) and
a supplement from Banco de México obtained through the Instituto de In-
vestigaciones FEléctricas. Finally, this research would not have been possible
without the excellent facilities provided by the Turing Institute.

i

Chapter 1

Introduction

1.1 Motivation

Artificial Intelligence (Al) is devoted to designing and programming machines
to accomplish tasks that people use their intelligence for. Perhaps the most
distinctive feature of intelligent behaviour is learning. From the introduction
of computers, researchers have tried to program computers with different
learning capabilities [Tur63]. The development of successful machine learning
methods is one of the long term goals of Al. Instructing a computer to perform
a task is a time-consuming process which requires hand-coding a complete
and correct algorithm. From a practical point of view, machine learning tries
to ease this burden.

Al attempts to understand how human beings think, by studying the
behaviour of machine designs and programs that model some aspects of the
human cognitive process. From this point of view, few domains offer such
substantial psychological evidence of human reasoning as does Chess. Despite
considerable attention from researchers in Al, little progress has been made
in applying machine learning to Chess.

The idea of a Chess playing machine capable of beating the best human
player has been one of the most seductive challenges since the introduction
of computers. In trying to fulfill this, most computer Chess programs have
deviated from studies in cognition, and followed an “engineering” approach,
where emphasis has been made on playing by searching a huge number of
Chess positions.

Studies in cognitive science suggest that human players remember posi-

CHAPTER 1. INTRODUCTION 2

tional patterns to analyse Chess positions and derive their playing strategies
with little search involved [CS88, dG65]. Pattern-based reasoning is not ex-
clusive to Chess and it has been argued that a large part of human intelligence
can be viewed as the process of matching stored patterns [Cam66, Lor73].
For example, a doctor recognises symptoms in patients to suggest a diagnosis,
a mechanic identifies some machine behaviour to suggest a failed component,
etc. In a similar way, a Chess player analyses a position by recognising some
positional relations in the game to suggest a move.

In the context of Chess a pattern refers to a relation between pieces and
places in the board. More generally patterns arise in any domain which can
be represented by states which have an internal structure, with well defined
components, and relations between the components that define the pattern.
For example given the position of Figure 1.1 (left), a Chess player recognises
(illustrated to the right) that:

e The white Rook threatens the black Queen.
e The black Bishop is pinned.
e The white Queen is threatened by the black Pawn.

e The white Knight can fork the black King, the black Rook and the
black Knight.

e Moving the foremost white Pawn can discover a threat, create a pin,
and possibly a skewer.

This analysis involves the recognition of concepts like, threat, pin, discov-
ered threat, fork, skewer, ..., etc., which can then be used to choose a move
(e.g., move the white Knight and check the black King).

1.2 The aim of the thesis

This thesis investigates whether Chess patterns (such as those de-
scribed above) which are powerful enough for play can be acquired
by machine learning techniques from simple example descriptions.

CHAPTER 1. INTRODUCTION 3

Figure 1.1: An example position and patterns in it

Previous work has shown how playing strategies can be constructed fol-
lowing a pattern-based approach [Ber77, Bra77, Bra82, Hub68, Pit77, Wil79).
However, a substantial programming effort needs to be devoted to the defini-
tion and implementation of the right patterns for the task. There have been
also some attempts to learn Chess concepts from examples described with a
set of attributes [Qui83, Sha87]. In this case too, most of the work is dedi-
cated to the definition of attributes adequate to describe the examples and
from which the target concept can be constructed. We want to investigate
whether Chess patterns can be learned effectively from simple descriptions of
Chess positions together with the rules of the game, rather than investigating
the means by which patterns can be used for play.

Broadly speaking, concept learning in AI depends on the representation
language and on the examples provided to the system. In choosing a rep-
resentation language we must consider not only its representational power
(e.g., the language must be adequate to represent patterns in Chess), but
also its practical effectiveness — the language must be learnable. One of the
obstacles to effective use of previous machine learning techniques in learning
concepts in Chess has been an inadequate hypothesis language. A compara-
tive study between different machine learning formalisms has concluded that
the ability to produce high performance in a domain like Chess is almost en-
tirely dependent on the ability to express first order predicate relationships
[MBHMMS9]|. Such relationships are not expressible in many of the systems

CHAPTER 1. INTRODUCTION 4

used to learn Chess concepts.

Inductive logic programming (ILP) is an area of Al which combines logic
programming with machine learning [Mug91al. It provides a mechanism and
language which should be able to represent and learn patterns in Chess.
The characteristics of the background knowledge that an inductive system
is provided with, have a strong influence on the effectiveness of the learning
process, and most ILP systems have used a limited background knowledge to
achieve practical results. The use of background knowledge is important as
it allows us to represent examples in a simpler way and reduces the inductive
steps require to learn particular concepts. Concepts in Chess can be ex-
pressed in terms of relations between pieces (e.g., threats, checks), relations
between pieces and places (e.g., legal moves, distance to a particular place),
relations between places (e.g., adjacent squares), etc. This makes Chess a
particularly good domain where the power of ILP can be tested as a varied
set of concepts can be induced over a more realistic background knowledge.

The minimum Chess knowledge required to start playing consists of the
rules of the game. Chess players are able to increase their pattern vocabulary
after seeing a large number of positions. Similarly, we would like to learn pat-
terns in Chess, from descriptions of Chess positions together with the rules
of the game. Rather than trying to learn concepts in the way humans repre-
sent them, our interest lies on inducing symbolic representations of concepts
which could be used to design playing strategies following a pattern-based
approach. To simplify the task, our approach is to learn single concepts
from descriptions of Chess positions, rather than learning, perhaps several
concepts, from traces of games.

The aim of this thesis is to demonstrate that Chess patterns, capable
of play, can be expressed compactly and economically in first order logic
and that such patterns can be learned efficiently from examples and general
purpose background knowledge about Chess.

1.3 Chess and Inductive Logic Programming

Learning the Chess concepts we are interested in is a non-trivial task and
beyond the capability of existing ILP systems. This thesis identifies the
characteristics of simple Chess concepts that make them difficult to learn
and demonstrates a learning mechanism (PAL) that substantially overcomes
these problems. We show, by applying PAL to a different domain that, from

CHAPTER 1. INTRODUCTION >

the ILP viewpoint, our results can be generalised.
In section 1.2 above we discuss the usefulness of a first order representa-
tion. There are several technical issues:

1. Chess requires a relatively large amount of background knowledge. This
creates severe search problems when the background knowledge is used
in learning.

2. Chess concepts are inherently non-determinate. This is a problem for
first order learning mechanisms.

3. Chess concepts are learned incrementally. This leads to a requirement
that the learned knowledge can be “recycled”. The most effective way
to do this is to have the background knowledge in the same form as the
induced knowledge.

4. In many practical domains where the trainer does not understand the
details of the learning mechanism it is important that the learning
mechanism is robust with respect to the examples presented, and the
order in which the examples are presented. This is particularly so with
ILP systems which are particularly sensitive to such variations since
their inductive steps are powerful and underdetermined.

These issues are addressed by PAL. The central theme is that the notion of
a pattern, defined as a set of relations between components of a state (such
as a Chess position), allows the efficiency issues to be addressed without
compromising the quality of the induced knowledge.

Issue (1) is addressed by a specification of which facts deducible from the
background knowledge are relevant in a particular state. Broadly speaking
these are facts about the relationships between the components of the state
(Chess position). This issue is also addressed by use of novel constraint based
on labelling the different components (pieces) which are used to describe
examples (Chess positions) to guide and constrained the lgg algorithm, as
the lgg is only computed between literals which involve the same components
(Chess pieces). This constraint is described in section 5.2.3, and provides a
considerable reduction of the search space.

These two refinements also address issue (3) since the learning mechanism
automatically produces a set of relevant ground facts from the background
knowledge together with specific information about the current state, rather
than requiring the user to generate these examples.

CHAPTER 1. INTRODUCTION 6

Issue (2) is addressed by PAL which can learn a limited class of non-
determinate concepts.

PAL contains an automatic example generator, which puts the onus of
providing examples on the system rather than the user. The user has just to
classify states and accept or reject hypotheses. We demonstrate that efficient
learning is possible using this example generator. This addresses issue (4).

In summary, the thesis shows that several Chess concepts, which are
outside the scope of current ILP systems, can be learn by PAL. It is shown
as well, that the learned concepts can be used to construct a correct playing
strategy. Furthermore, chapter 8 demonstrates that the approach is not
restricted to Chess, by showing how PAL can be used in another domain,
where other ILP systems have similar difficulties to those they experience in
the Chess domain.

1.4 A guide through the thesis

Chapter 2 analyses Chess as a domain and looks at the different approaches
employed by Chess programs. It reviews the supporting psychological evi-
dence which suggests that human players follow a pattern-based approach
and argues for the desirability of learning concepts in the form of patterns.

Chapter 3 presents a general overview of concept formation in machine
learning. It reviews the different machine learning techniques and how they
have been used in Chess. It provides evidence that a relational language is
suitable for expressing concepts in Chess.

Chapter 4 reviews concept formation within a first order formalism. It
describes a generalisation model for Horn clauses introduced by Plotkin
[Plo69, Plo71a] which has been used by several first order systems. It also
analyses why current first order learning systems are inadequate for learning
patterns in Chess.

Chapter 5 describes PAL, a first order inductive system capable of learn-
ing concepts in Chess. It describes in detail the generalisation method used
by the system, an automatic example generator based on “perturbations”,
and how it is used to guide the learning process.

Chapter 6 compares PAL with other first order systems and discusses
their applicability in Chess by looking at their performance over a simple
concept. It then shows how PAL is used to learn several Chess concepts,
such as those in Figure 1.1, e.g., pin, skewer, discovered-check, discovered-

CHAPTER 1. INTRODUCTION 7

attack, fork, etc. It discusses the robustness of PAL and points out its main
deficiencies.

Chapter 7 shows that the patterns learned by PAL can be used to con-
struct a correct playing strategy for a simple endgame (King and Rook
against King). It discusses the strategy which was followed to design the
strategy, how the strategy was proved to be correct, and how it can be im-
proved by adding extra background knowledge.

Chapter 8 shows how PAL can be applied to other domains. In particular,
PAL is used to learn a qualitative model of a simple dynamic system from its
state descriptions. The performance of PAL is compared with that of Golem
in a domain where Golem was originally tested. The performance of PAL in
this domain helps to asses the general applicability of the approach.

Finally, conclusions and future work are given in chapter 9.

Chapter 2

Problem solving in Chess

Problem solving, as part of human intelligence, has been widely studied by
the Artificial Intelligence (AI) community. Chess, in particular, has received
the attention of computer scientists and psychologists alike. Computer prob-
lem solving in Chess has followed two general approaches. The engineering
or search intensive approach, where a large number of positions are explored
with little Chess knowledge involved, and the cognitive or knowledge inten-
sive approach in which, closer to psychological studies, a large amount of
knowledge is used to perform a more selective search.

This chapter looks at Chess as a test domain for Al, and in particular
for machine learning. It reviews the psychological studies, which suggest
that human players use knowledge in the form of patterns to analyse posi-
tions and derive their playing strategies. It examines previous pattern-based
approaches to Chess and provides an insight for the desirability of learning
patterns in Chess.

2.1 Chess as a machine learning domain

Chess has been the game par excellence in Artificial Intelligence and has
served as a convenient vehicle for studying cognition and perception [Cha77,
dG65, Nie9l, SG73]. It is constrained but not trivial, it has many similarities
to real world domains, where special cases exist, the space is too large to
perform exhaustive search, it definitely needs expertise (at least for humans)
as well as search, and the results of actions can be only partially predicted.
The rules of play can be easily formulated, experiments are easy to perform

CHAPTER 2. PROBLEM SOLVING IN CHESS 9

and it has been widely studied (a recent panel discussion on the role of Chess
in AT research is given in [LHST91]).
Michie [Mic82] identifies five key features in Chess.

1. The game constitutes a fully defined and well-formalised domain.
2. The game challenges the highest levels of human intellectual capacity.

3. The challenge extends over a large range of cognitive functions such as
logical calculation, rote learning, concept formation, analogical think-
ing, imagination, deductive and inductive reasoning.

4. A massive and detailed corpus of knowledge has been accumulated.

5. A generally accepted numerical scale of performance is available.

Together, these make Chess a good domain for Al research and, in par-
ticular, for machine learning research.

2.2 Historical background

The idea of a Chess playing machine dates back to the 1760’s when a Hun-
garian inventor, Wolfang von Kempelen, astounded Europe with his Maelzel
Chess Automaton, later discovered to be operated by a diminutive Chess
master hidden in a secret compartment. A more honest attempt was made
in the 1914 by a Spanish inventor, L. Torres y Quevedo, who constructed a
device that played the King and Rook against King endgame (starting from
certain positions). However, the seminal work on which most of the current
Chess programs are based was done by Shannon [Sha88], building on the
discoveries of John von Neumann and Oskar Morgenstern, who in their gen-
eral theory of games had devised the minimax algorithm by which the best
move can be calculated. Shannon did not present a particular program; it
remained for A.M. Turing [Tur53| to describe a program along these lines
that was sufficiently simple to be simulated by hand.

The basic idea behind Shannon’s proposal is as follows. As he observed,
in Chess there are a finite number of positions each with a finite number of
alternative moves. Thus Chess can be completely described as a branching
tree. The nodes corresponding to positions and the branches to the alterna-
tive moves from each position. It is clear that for a player who could view

CHAPTER 2. PROBLEM SOLVING IN CHESS 10

the entire tree with all its outcomes, Chess becomes a simple game. Starting
from the terminal positions, he can work backwards, determining on each
node which is the best branch for him, or his opponent, until he arrives at an
alternative for his next move. As a complete search tree for Chess requires
exploring around 10'?° positions [Sha88|, current systems explore up to a
certain depth, estimate the value of those positions, and combine them back
to choose the move with the highest score. An evaluation function is used to
estimate the winning chances from the point of view of one of the players.
The higher the value, the higher the player’s chances to win, the lower the
value, the higher the opponent’s chances to win. One player tends to move
to high value positions (which is called MAX), while the other tends to low
value positions (which is called MIN). Whenever MAX is to move he or she
chooses a move that maximises its value, while on the contrary, MIN chooses
a move that minimises its value. Given the values at certain depth-level po-
sitions, this principle (called minimax) determines the values of all the other
positions in the search tree.

2.3 Search intensive approach

Most computer Chess programs have followed variants of the minimax algo-
rithm. In the late 70’s, the depth of search was found to correlate almost
linearly with the program’s rating [New88|. Each additional ply!' added about
200 rating points to the computer Chess strength and it was estimated that
by 1992 a computer would be better than any human. Research concentrated
on the design of special-purpose machines to explore the search tree. The an-
alytical speed of the current Chess champion machine, called Deep-Thought,
was 750,000 positions per second in 1990 and its performance rating exceeded
2600 [HACN90]. It is estimated that a new implementation will increase the
speed of analysis by more than 1,000-fold, to about 1 billion positions per
second and that it will be ready by 1992 (which might fit with earlier predic-
tions). Deep-Thought’s search gives a solid horizon of 10 ply in the opening
phase, 9 ply in the middle game, rising to 10 ply and above in the endgame.
A singular extension feature searches forceful variations out to a depth of
16 to 18 ply [Mic89]. While the search intensive approach has achieved sig-
nificant performance in Chess, the approach is of restricted applicability in
other domains, and its model of “expertise” is opaque to human players.

LA ply is defined as a single move of one of the players.

CHAPTER 2. PROBLEM SOLVING IN CHESS 11

2.4 Psychological evidence

Chess has been subject of several cognitive studies in the past. Most of the
psychological evidence comes from the experimental research of de Groot
[dG65]. In one set of experiments, subjects of differing Chess skill were
shown Chess positions for a few seconds and then were asked to reconstruct
the positions. On positions taken from actual games, experienced players
performed significantly better than novices. However, on random, but le-
gal Chess positions, novices recalled positions as well as experienced players.
The explanation being that the player builds up a library of Chess “pat-
terns” (configurations of pieces) that he sees frequently on the board. When
presented with a new position, he can code it in terms of a few appropriate
patterns from his library. De Groot also asked Chess players to find the
best move of an interesting position and to talk aloud while thinking. From
an analysis of the verbal protocols, de Groot also concluded that it is not
in depth nor in breadth that Grandmasters necessarily calculate any more
extensively than experienced competition players, say one class below the
master level, do. Much more spectacular is the grandmaster’s superiority in
Chess perception, namely in registering, understanding and reproducing real
game positions after an exposure of a few seconds [dG86]. Chase and Simon
[CS88] concluded as well, on later experiments, that the basic ability under-
lying Chess skill relies on the capacity to perceive familiar patterns quickly.
This suggests that one reasonable measure of a person’s Chess knowledge is
the number of patterns he or she has stored in memory, since the number
appears to grow with the competence of the player.

Using patterns to guide the human reasoning process is not exclusive
to Chess. In an engineering domain, a pattern might refer to a particular
behaviour in sampling data, which can then be used for fault diagnosis.
In the context of Chess we refer to a pattern as a relation between pieces
and places in the board, which can then be used to suggest a move. In
general, a pattern-based approach will be applicable to domains where a
search intensive approach, like minimax, will fail to work or otherwise be
inapplicable.

CHAPTER 2. PROBLEM SOLVING IN CHESS 12

2.5 Playing Chess with patterns

Following psychological evidence, some systems have used knowledge in the
form of patterns to guide their playing strategies in certain end-games [Bra77,
Bra82, Hub68] and tactically sharp middle-game positions [Ber77, Pit77,
Wil79]. The idea is that although the use of knowledge takes time, it is
compensated for by a smaller and more directed search.

Perhaps the most successful system in terms of depth analysis is Wilkins’
PARADISE system [Wil79]. It consists of around 200 production rules, con-
structed around the recognition of patterns, and is able to elaborate plans of
up to 19-ply depth. Each rule has a pattern to match (i.e., an interrelated
set of features based on relations between pieces and places in the board) as
its condition. More primitive patterns are used as building blocks for more
complex patterns. For each instance of the condition found, the production
posts zero or more concepts in a data base (which can be seen as a black-
board [HR85]) for use by the system in its reasoning processes. A search
tree with additional rules is used to show that one move suggested by the
pattern-based analysis is in fact the best. PARADISE was tested on tacti-
cally sharp middle-game positions, i.e., positions where the success can be
judged by the gain of material rather than a positional advantage.

Bramer [Bra77| describes a model, based on the recognition of patterns,
for the King and Rook against King (KRK) and the King and Pawn against
King (KPK) endgames. In Bramer’s model, all the immediate successors
of a position are matched against ranked patterns. The chosen move is
the one which matches the pattern with the highest score. Occasional ties
are resolved with additional associated functions, but no further search is
performed.

Huberman [Hub68]|, constructed programs for three endgames, King and
Rook against King (KRK), King and two Bishops against King (KBBK), and
King, Bishop, and Knight against King (KBNK). Her model is only intended
to be applied to positions in which the winning party can construct a forcing
tree. That is, a tree in which the winning party can always force a better
position for him/her. This is done with two functions, better and worse, that
are used to prune a breadth first search.

Michie and Bratko extended Huberman’s ideas by introducing an advice
language, in AL1/AL3, based on ‘pieces-of-advice’ to construct forcing-trees
[Bra82, Mic76]. Each piece-of-advice has a better-goal to achieve, a holding-
goal to maintain, and move-constraints that select a subset of all legal moves.

CHAPTER 2. PROBLEM SOLVING IN CHESS 13

Similarly to Huberman’s definitions for the better and worse functions, the
goal predicates used in the definition of pieces-of-advice are based on the
recognition of patterns. In AL1/AL3, a plan succeeds when there is a forcing
tree which represents a detailed strategy for the achievement of the goals of
a piece of advice. When a plan fails, a combination of plans is considered.
Counter-plans (plans from the opponent’s point of view) are also considered
during this process.

Gadwal et al. have recently extended the advice language used in AL1/AL3
to construct plans at different levels (expert and student) which are then used
in a tutoring system for helping students to learn how to play Bishop-Pawn
endgames [GGM91]. Student plans are created by weakening expert plans.
Different strategies are compiled along with information about the possible
responses, the best responses, whether or not the better-goal and the holding-
goal are satisfied, etc. In the tutoring mode, the system tries to identify the
plan behind the student moves and offers advice accordingly, based on its
stored information.

Levinson and Snyder [L.S91] report a system, Morph, which uses weighted
patterns to guide its playing strategy. Morph makes a move by generating
all legal successors of the current position, evaluating each position using its
current weighted patterns, and choosing the position that is considered less
favourable to the opponent. Positions are evaluated by combining the weights
of the most specific patterns that match a position using an evaluation func-
tion. Morph is able to adjust the weights of the patterns and learn new
patterns from traces of games and it will be further discussed in chapter 3,
where different machine learning approaches for Chess are reviewed.

Patterns in Chess have been used to suggest moves (e.g., [Bra77, LS91]),
suggest goals from which to generate plans (e.g., capture a piece as in [Wil79]
or achieve/maintain a goal as in [Bra82, Mic76]), and have been used to focus
the search by suggesting only a subset of possible moves (e.g., [BE90Q]).

2.6 Why learn patterns?

A pattern-based approach has proven to be adequate as a reasoning strat-
egy in several domains. In particular, production systems or expert sys-
tems, which has been applied to a wide range of domains can be regarded as
pattern-based systems, where each production rule has a pattern to match
as conditions. The emphasis in Chess systems which follow a pattern-based

CHAPTER 2. PROBLEM SOLVING IN CHESS 14

approach, has been in developing ways of using and combining patterns to
produce plans, while a substantial programming effort is devoted to the se-
lection of the right patterns for the task. This makes the approach difficult to
implement, susceptible to errors and of restricted applicability. The need for
automatically generating patterns has long been recognised [Mic77, Qui83],
yet little progress has been made within the machine learning community
(different machine learning approaches will be reviewed in chapter 3).

Extracting skill knowledge has been the fundamental bottleneck in the
construction of expert systems [FM83] and has been one of the major incen-
tives for machine learning research. From cognitive studies it appears that
practice is the major independent variable in the acquisition of Chess skill
[CS88], and that this is linked to the number of patterns that a player has
stored in memory. Although the patterns used by computer programs are not
necessarily meant to be equivalent to those used by humans, their definitions
often requires the extraction of knowledge from experts. The difficulties in
the extraction of knowledge from human experts makes the mechanisation
of learning patterns a desirable goal.

In general, the use of a pattern-based reasoning process has been re-
stricted by the time-consuming process of defining the required patterns for
the task. From a programming perspective, machine learning can ease this
limitation by automating the acquisition of patterns. Concept learning from
examples, a large subarea of machine learning, provides a framework in which
general descriptions of classes of objects are induced from examples. In prin-
ciple, this framework can be used to learn pattern definitions from a set
of example positions. The next chapter provides a general characterisation
for concept learning and analyses why different machine learning approaches
have been inadequate for Chess.

Chapter 3

Machine learning

Perhaps the most distinctive characteristic of human intelligence is learning.
It includes the acquisition of knowledge, development of skills through in-
struction or practice, organisation of knowledge, discovery of facts, etc. In
the same way, Machine Learning (ML) is devoted to the study and computer
modelling of learning processes in their multiple manifestations. Instructing
a computer to perform a task often requires a time-consuming and difficult
process of hand-coding a complete and correct algorithm. Machine Learning
strives to ease the burden by providing tools to automate this process.

A large part of machine learning is devoted to the construction of con-
cept descriptions from a set of positive and negative examples. Despite the
relatively easy access to a large number of examples and the existence of
recognised expertise, Chess still remains as a challenging domain for concept
formation.

This chapter is divided in two sections. Section 3.1 provides a general
background for concept learning. Section 3.2 describes different machine
learning techniques used in Chess, shows their problems, and provides sup-
porting evidence for an adequate learning framework.

3.1 Concept learning

A large subarea of machine learning is devoted to inferring rules from ex-
amples. General descriptions of classes of objects, obtained from a set of
examples, can be used for classification and prediction. Its main interest is
not in learning concepts the way humans do, but rather to induce symbolic

15

CHAPTER 3. MACHINE LEARNING 16

representations of them (e.g., see [Sim81]). The availability of a large number
of examples together with relatively easy access to recognised Chess experi-
ence, provide an adequate basis in which an inductive inference framework
can be applied to learn patterns in Chess. Angluin and Smith [AS83] list five
items that must be specified to characterise an inductive inference problem.

1. The Class of Rules.

2. The Hypothesis Space.

3. The Set of Examples and Presentation.
4. The Class of Inference Methods.

5. The Criteria for a Successful Inference.

The rule class denotes the class of functions or languages under consider-
ation. For instance, all regular sets over a particular alphabet, context-free
languages, recursively enumerable functions, Prolog programs, etc. The hy-
pothesis space is a set of descriptions such that each rule in the class has
at least one description in the hypothesis space. Different hypothesis spaces
can be used for the same rule class. For instance, if the class of rules is
all regular sets over the alphabet {0,1}, the hypothesis space can be all the
regular expressions over the same alphabet, deterministic finite acceptors,
or context-free grammars. The hypothesis space must have descriptions for
all the rules in the class, but it may contain descriptions of other things as
well. For convenience, we will assume that the language the hypothesis space
describes (i.e., the hypothesis language) is the same as the class of rules, and
introduce the following definitions:

Hypothesis Language : The syntax used in constructing hypotheses.

Hypothesis Space : Set of all possible hypotheses within the hypothesis
language.

3.1.1 The hypothesis space

The hypothesis language determines the hypothesis space from which the
inference method selects its rules. The chosen language imposes a constraint
(or ‘bias’) on what can be learned and what reasoning strategies are allowed.

CHAPTER 3. MACHINE LEARNING 17

In choosing a language, we must consider not only what we want the sys-
tem to do, but also what information must be specified in advance to allow
the system to solve the problem, whether the system will be able to solve
the problem, and in what time. The hypothesis language broadly depends
on the application area. Once a particular language is chosen, most of the
developer’s time is spent in carefully defining adequate knowledge structures
for the learning task. This time-consuming work becomes even more criti-
cal when the hypothesis language restricts the expressiveness in such a way
that the domain knowledge needs to be ‘squashed’ into the adopted formal-
ism. This is further discussed in section 3.2.5, where an adequate hypothesis
language for Chess is considered, and in chapter 5, where constraints are
introduced on this language to improve tractability.

The induction process can be viewed as a search for hypotheses or rules
[Mit82]. The whole space of possible rules can be systematically searched
until a rule is found that agrees with all the data so far. Given a particular
hypothesis space, suppose that there is an enumeration of descriptions, say
dy,...,d,, such that each rule in the hypothesis space has one or more de-
scriptions in this enumeration. Given any collection of examples of a rule,
the method of identification by enumeration goes down this list to find the
first description, say d;, that is compatible with the given examples and then
conjectures d; [Gol67]. This method, although general and powerful, is im-
practical for all but very limited cases, due to the size of the hypothesis
space.

For learning to take place efficiently, it is often crucial to structure the
hypothesis space. This can be done with a model of generalisation, although
there are other ways too (some of which are discussed in chapter 4). This
thesis is largely concerned with hypothesis search of clauses'. Roughly, a
clause C] is more general than another clause Cy (or Cy is more specific
than C) if Cy can be deduced from C;. A formal definition of generalisation
(which is used as the principal structuring technique in the thesis) will be
given in chapter 4. Clauses can be organised in a hierarchy, where all the
clauses below a node in a specialisation (generalisation) hierarchy are spe-
cialisations (generalisations) of the node. This allows pruning of complete
branches during search knowing that all the specialisations or generalisations
of a clause inherit some property. The most common properties are those of
failing to prove a fact known to be true (e.g., a positive example) or prov-

LA formal definition of a clause will be given in chapter 4.

CHAPTER 3. MACHINE LEARNING 18

ing a fact known to be false (e.g., a negative example). Knowing particular
generalisations and specialisations of a particular clause can also delimit the
space of potential clauses [Mit82].

3.1.2 Set of examples and presentation

Gold [Gol67] considers different types of data presentation and their effects
on the inference of languages. A presentation can consist of positive exam-
ples only, or positive and negative examples. Most inference methods require
admissible presentations. That is, for every false rule that is consistent with
the positive examples, there is a negative example to falsify it. This reflects
Popper’s methodological requirement that theories should be refutable by
facts [Poph9]. Examples are used for testing and forming hypotheses. In
practice, a selection of examples is made over the example space. This selec-
tion can be made by an oracle, left to the environment, randomly selected, or
proposed by the system. A “good” selection of examples can be used to im-
prove the system’s performance, and in some cases, an inference method can
be highly dependent on it. This is further discussed in chapter 4 when auto-
matic example generators are reviewed. In particular, an example selection
can be improved with knowledge about the domain. This will be discussed
in chapter 5 where domain knowledge is used to constrain the generation of
examples and in chapter 6, where the symmetric properties of the domain
are used to improve the learning rate.

A reasonable example presentation for learning a single pattern in Chess
is a set of Chess positions with/without the particular pattern that we are
interested in learning. In practice, Chess players learn patterns without
being explicitly told that instances of patterns are being shown. Learning
an unknown number of patterns from traces of games is a more challenging
problem which is outside the scope of the thesis. However, some comments
on ways to learn playing rules from traces of games will be made in chapter 9.
Even for single concept learning, the number of possible Chess positions is
so big, that restrictions on the pieces involved and/or a careful mechanism
for selecting examples are needed for an effective inference to take place.

3.1.3 Inference methods

Intuitively an inference method is a computational process of some kind that
reads in examples and outputs guesses from the hypothesis space. Several

CHAPTER 3. MACHINE LEARNING 19

properties can be associated with them. Gold introduced the concept of
identification in the limit [Gol67]. That is, if M is an inductive inference
method that is attempting to describe correctly some unknown rule R, when
M is run repeatedly on larger and larger collections of examples of R, an
infinite sequence of M’s conjectures is generated, say, hi, hs,.... If there
exists some number m such that h,, is a correct description of R and h,, =
hmi1 = hpmao = ..., then M is said to identify R correctly in the limit on
this sequence of examples.

Patterns in Chess do not have to be correct in the sense that two players
can have different patterns, and yet both be competent players. Therefore,
in choosing an inference method for Chess, we are more interested in having
some guarantee on the ‘quality’ of the hypotheses that are produced. This
could be in terms of compactness, simplicity, efficiency, predictiveness, etc.
Human understandability plays a central role in choosing particular inference
systems, which brings us back to the adopted hypothesis language.

3.1.4 Criteria of success

An important component in specifying an inference problem is what is con-
sidered as the criterion for success. Identification in the limit is one of them.
However, a person using an inference method to identify an unknown rule
usually cannot tell whether the method has converged. More recently, Valiant
[Val84] has proposed a general criterion of correct identification of a rule from
examples in a stochastic setting. The idea is that after randomly sampling
positive and negative examples of a rule, an identification procedure should
conjecture a rule that with “high probability” is “not too different” from
the correct rule. In practice, it is desirable to have some guarantee of the
quality of the hypothesis at finite stages. The most common are based on
completeness and correctness. A hypothesis is complete if it accounts for all
the positive examples®. A hypothesis is correct if it does not account for any
negative example. Often, in systems where the user plays an active role in
the induction process by providing adequate examples to the system, he or
she determines when to stop the process. The stopping criterion for systems
which generate their own examples is determined when the system cannot
generate any new example that will create an inconsistency in the hypothe-
sis. In Chess, a large number of examples is relatively easy to generate, and

2A formal definition in terms of coverage will be given in chapter 4.

CHAPTER 3. MACHINE LEARNING 20

the stopping criterion will depend on how the examples are generated and
provided to the learner.

3.2 Machine learning approaches in Chess

As a favourite domain in artificial intelligence, it is not surprising to find
that most machine learning techniques have been applied to Chess. A brief
description of each approach with a critical discussion of their utility for
learning Chess patterns is given below.

3.2.1 Propositional similarity-based learning (PSBL)

PSBL systems learn classification rules from a set of training examples. Each
example corresponds to an instance of a class and is described by a set of
attribute/value pairs plus the corresponding class of which the example is
a member. The hypothesis language of PSBL systems is at most equiva-
lent to propositional logic, a finite set of positive and negative examples are
presented in a ‘batch’ mode, and the criterion of success is based on com-
pleteness and correctness (with perhaps some exceptions). Their limitations
have been well recognised, namely:

1. A restricted representation, inadequate for expressing relational knowl-
edge.

2. An inability to use background knowledge.

Several attempts have been made to use PSBL in Chess. Quinlan used 1D3
[Qui83] to induce classification rules in the form of decision trees for lost
in 2 and 3 ply positions for the King and Rook against King and Knight
(KRKN) endgame. Shapiro [Sha87, SN82| took this approach further to
classify win/draw positions in the King and Pawn against King (KPK) and
King and Rook against King and Pawn on the rook’s file and seventh rank
(KRKPa7) endgames using a structured version of ID3. The decision trees
are constructed using an information-based approach aimed to minimise the
expected number of tests to classify an object. Muggleton used DUCE
[Mug87] to generate new attributes and structure a rule set in the KRKPa7
endgame. DUCE takes as input a set of conjunctive productions or rules, in
a propositional framework, and uses six operators to progressively transform

CHAPTER 3. MACHINE LEARNING 21

them by asking an oracle to validate them. In the KRKPa7 endgame, Shapiro
used 36 primitive board attributes to describe each position. Similarly, the
initial rule base given to DUCE for this endgame consisted of examples of
the form:

won-for-white < attribute;\ attributes A ... attributesg

In a domain like Chess, a well defined set of attributes is hard to specify
even for experts. Quinlan reports 2 man-months work required to define the
3-ply attributes for the KRKN endgame [Qui83]. Shapiro reports an esti-
mated 6 man weeks effort for the KPK endgame [Sha87]. Although systems
like ID3 and DUCE were originally tested on Chess, their relative success can
be attributed to a careful selection of attributes [MBHMMS89]. Muggleton
et al. report a recent comparative study of machine learning formalisms in
Chess [MBHMMS9]. The study involved Quinlan’s C4 [Qui87], Bratko et al.
’s Assistant86 [CKB87], Muggleton’s Duce [Mug87], and Muggleton’s CIGOL
[MB88]. The learning problem involved deciding the legality of positions in
the Chess endgame King and Rook against King. The experiments involved
learning from piece-on-place attributes and learning with an extended hy-
pothesis vocabulary over randomly generated sets of training instances (this
is more extensively described in chapter 6). They concluded that the ability
to produce high performance in this domain was almost entirely dependent
on the ability to express first order predicate relationships. We can imagine
an experiment in Chess with a propositional system that could learn 16 clas-
sification rules for a particular concept, one for each column and rank of a
Chess board, instead of one or maybe two rules with variables ranging from 1
to 8. This kind of experiment shows the importance of a first order represen-
tation language which can be emphasised by imagining a Chess board with
1,000 by 1,000 squares. Trying to simplify and reduce the number of rules
produced by an PSBL algorithm, by choosing more appropriate attributes,
is not an easy task (e.g., Shapiro reports 55 lines of C code, using a high-
level pattern library, for one of the attributes he used for a Chess endgame
[Sha87]).

3.2.2 Chunks and macros

Chunking [LNR87] and Macro-learning [FHN72, Iba89, Kor85, Mor90] have
been used to improve a problem solver’s performance, based on the principle
of storing and generalising sequences of actions to use them in the future

CHAPTER 3. MACHINE LEARNING 22

without search. Solutions of subsequent problems can be speeded up by
treating the chunks or macros as starting primitive rules or operators and
solving subsections of the problems with a small number of them. Although
successful in certain artificial domains, it is not clear how to apply them in
a more realistic environment, like Chess, where the problem conditions can
change while solving a problem.

Campbell took an alternative approach and used chunking to group in-
terrelated Pawns and use them in the design of a playing strategy for Pawn
endgames [Cam88|. In his approach, a chunk is constructed by an influence
relation. A Pawn P1 influences a Pawn P2 if:

e they are on the same or adjacent files and they are of the same colour

e they are on the same or adjacent files, they are of different colour, and
the rank of the black pawn is greater than the rank of the white pawn

e P1 and P2 are influenced by some Pawn P3

The influence relation is used to partition a pawn position into chunks.
Several domain dependent properties, obtained from databases, depth-first
search, etc., are assigned to each chunk to characterise it. A pre-defined set
of operators is used to move between states in a chunk space. Different moves
are used to form plans and counter-plans in a similar way to AL3 [Bra82].
The mechanism for selecting meaningful chunks assignments for the Kings is
directed by the plans available to each player. His system is only applicable
in domains where entities can be grouped (chunked) with limited interaction
between groups (chunks) and from which a planning strategy can be con-
structed. While he succeeds in Pawn endgames by treating in a special way
Kings’ interactions, his approach is clearly not applicable in general where
clear-cut chunks are no longer easy/possible to construct.

More recently, Walczak [Wal91] have used a geometrical relation between
pieces to construct chunks in complete Chess games. Instead of trying to
define chunks with limited interaction to form plans in Pawn endgames, as
in Chunker, Walczak is interested in grouping pieces to predict the opponent’s
moves in complete Chess games. Two pieces are geometrically related if at
least one of them can move into the square occupied by the other piece and
the two pieces are contiguous. Chunks are defined between at least two
geometrically related pieces of the same colour. Following each move made
by the opponent, Walczak’s system, IAM, searches for all the opponent’s

CHAPTER 3. MACHINE LEARNING 23

pieces and chunks all the related pieces. The size of the chunk is limited
to a 16 square area. TAM also records the first five opening moves of the
opponent. All the chunks are compared with those used in other games
(IAM requires at least two traces of games of the opponent). Chunks which
match other chunks (considering reflections and rotations of the board) from
other games are saved. The number of times that each chunk is observed in
several games is recorded. To predict the opponent’s moves, IAM finds all
the chunks that could be matched after a single move. The move which ends
in the largest chunk which has been used the highest number of times before,
is the one that it is predicted. The hypothesis is that Chess masters tend
to reduce the complexity of a game position by moving to board positions
that contain familiar patterns. Walczak reports to have predicted with IAM
over 13% in average of the moves of Kasparov from the first half of the 1990
World Championship. TAM achievements are difficult to evaluate considering
that the first 5 opening moves, which are likely to be repeated, are recorded
and that its actual results account for 5.4 predicted moves in average. IAM
uses a fixed relation to chunk pieces, i.e., chunks can only be constructed
with pieces that are geometrically related (as defined above). It is not clear
whether extensions to this definition will be needed and how it will affect its
performance.

3.2.3 Explanation-based learning/generalisation

The basic idea of EBL/G [dJM86, MKKCS86] is to start with a domain theory
that defines a target concept. The learning process consists of repeatedly
accepting a training example, applying the domain theory to prove that
the example is an instance of the target concept, and then extracting the
weakest pre-conditions of that proof to form an efficient chunk that provides
an easy-to-evaluate sufficient condition for the target concept. This approach
offers the advantage of allowing the system to use as much knowledge as
possible from the domain. Its disadvantages include the potentially high
cost of generating proofs, the difficulty in having a complete domain theory,
and the likelihood that the domain theory will contain errors. EBL/G has
been used to generalise single instances of specific plans or solutions into plan
schemata that can then apply to similar problems [Ben89, Mo090, Sha89].
This approach suffers from problems similar to those of macro-learning and
chunking. In complex domains like Chess, it is simply not possible to learn
schemata for every possible tactic.

CHAPTER 3. MACHINE LEARNING 24

Several authors like, Minton [Min84], Tadepalli [Tad89], and more re-
cently, Flann [FD89], have applied EBL/G to Chess. Minton uses EBL/G to
learn simple plans from move sequences in which all the opponent’s moves are
forced. Tadepalli’s system uses a planning strategy similar to AL3 [Bra82].
His system learns over-general plans from examples. When a new counter
example appears it learns a counter plan. As the planning strategy is based
in generating plans and counter plans, it tends to improve the plan’s accu-
racy at the expense of increasing planning effort. Perhaps the most successful
EBL/G system for learning concepts in Chess has been Flann’s Induction-
Over-Explanation (IOE) [FD89]. IOE learns from a set of examples with a
more “conservative” generalisation method, which allows to learn more spe-
cific concept definitions. It has been able to derive definitions for skewer,
sliding-fork, knight-fork, and general-king-fork, from a definition of check-
with-bad-exchange. The obvious objection to this approach is that it must
start with a stronger domain theory with at least a general (and very close)
definition of the target concept definitions that we want to learn in the first
place. The definition of such concepts is not always an easy task and defeats
the purpose of the induction problem as most of the relevant knowledge needs
to be given in the first place.

3.2.4 Parameter adjustment

Self-tuning methods like neural networks, genetic algorithms and simulated
annealing, adjust their parameters (e.g., coefficients in algebraic expressions)
over time in order to improve the system’s performance. In neural networks,
the back propagation algorithm, although it was a breakthrough in the ap-
plication of multilayer perceptrons, has important drawbacks. Namely, long
training times, sensitivity to the presence of local minima and having to know
in advance the network topology: the exact number of units in a particular
hidden layer, as well as the number of hidden layers. Similarly, there have
been some criticisms of the use of genetic algorithms for parameter optimi-
sation in computer Chess because of its inefficiency [vT91, vIHI1].
Levinson and Snyder [LS91] report a parameter-adjustment system, Morph,

which learns weighted patterns, consisting of networks of connections, from
traces of games. An evaluation function is used to decide the next move
by looking at all the possible next positions and combining the weights of
the applicable patterns to those positions. The next move is that which
ends in the least favourable position for the opponent. Each position in a

CHAPTER 3. MACHINE LEARNING 25

game is represented as a directed graph with nodes created for all pieces
and all the unoccupied squares adjacent to the Kings, and edges constructed
for attack-and-defend relationships (direct, indirect, discovered) between the
pieces. Patterns are constructed as the smallest connected subgraph made
up of those edges which do not appear in adjacent positions, and then aug-
mented by adding to it all the edges adjacent to their initial set of nodes.
Updates in the weights of the patterns are made after arriving at a final
position. Determining the exact method by which the pattern values should
be combined, i.e., tuning the evaluation function, is a difficult and critical
problem (Levinson et al. report some of these problems [LS91]). Morph is
limited to learn patterns which express attack/defend relations. For instance,
it is unable to learn if two Rooks are in diagonal or if a Rook is in a bor-
der. All the patterns in Morph are constructed from a fixed set of relations
(links). Once a new pattern is learned, it cannot be used to construct other
patterns (i.e., to be used as another link). This however is compensated by
a mechanism able to learn from traces of games.

3.2.5 A rationale for using a first order framework

Expressing relations between pieces, which can be naturally represented in
first order logic, seems to play a key role in the definition of Chess patterns.
The hypothesis is that first order patterns will be short, easy to understand,
and powerful enough to play with. In addition, first order learning systems
have used background knowledge to induce concepts from examples. This is
important as it allows a simpler (and often more natural) way to represent
examples. Background knowledge can help as well to reduce the inductive
steps taken when learning particular concepts. Furthermore, a basic core of
background knowledge definitions can be used to learn several concepts in
Chess. An obvious candidate for the background knowledge is the rules of
the game.

Until recently, first order induction systems have been applied to very
simple domains. Their main drawback comes from the exploration of a large
hypothesis space, which has forced them to restrict it in such a way that only
very simple concepts can be induced (e.g. [dRBS88, Fen90, MBS88, Sha8l,
SB86, Rou91]). Concepts in Chess can be expressed in terms of relations
between pieces (e.g., threats, checks), relations between pieces and places
(e.g., legal moves, distance to a particular place), relations between places
(e.g., adjacent squares), etc. A reasonably varied set of concepts within a

CHAPTER 3. MACHINE LEARNING 26

more realistic background knowledge marks Chess as an ideal domain to test
the power of first order systems. The next chapter analyses several machine
learning efforts using a first order formalism, discusses their applicability to
Chess, and describes a particular model of generalisation.

Chapter 4

First order learning

Evidence suggests that an adequate representation of patterns in Chess re-
quires a relational formalism, where the exact position of pieces is not as im-
portant as their relation to other pieces and places in the board [MBHMMS9].
So it is important to see if first order induction is applicable to Chess.

Section 4.2 provides a general overview of first order learning. Section 4.3
reviews a model of generalisation for first order clauses introduced by Plotkin
[Plo71b]. Finally, section 4.5 shows that, although a relational language is
regarded as an adequate formalism for Chess, current first order systems are
still not adequate for this domain. First, some definitions from logic are
presented. Some of the concepts and notation will be used in the sections to
follow.

4.1 Preliminaries

A wariable is represented by a string of letters and digits starting with an
upper case letter. A function symbol is a lower case letter followed by a string
of letters and digits. A predicate symbol is a lower case letter followed by a
string of letters and digits. A term is a constant, variable, or the application
of a function symbol to the appropriate number of terms. An atom or atomic
formula is the application of a predicate symbol to the appropriate number
of terms. A [iteral is an atom or the negation of an atom. The negation
symbol is . A clause is a disjunction of a finite set (possibly empty) of
literals of the form:

VX1.. . VX(A VAV ... VAV -B VB V...V B,)

27

CHAPTER 4. FIRST ORDER LEARNING 28

where the A;s and B;js are literals, V is the universal quantifier, where V.X
denotes “for all X7, and X; ... X, are all the variables occurring in the A;s
and Bjs. The following notation is equivalent:

Al,AQ,...,Ak%Bl,BQ,...,Bn

Thus, all the variables are assumed to be universally quantified, the commas
in the B;s denote conjunction and the commas in the A;s denote disjunction.
Clauses can also be represented as sets of literals. For instance, the above
clause can be represented as { Ay, As, ..., A, =By, "By, ..., 7B, }. Set opera-
tions, such as set-difference and subset can then be applied between clauses.
For instance, if C; = {A, B} and Cy = {4, B,C}, C1— {A} = {B} and
C); CC2.

A Horn clause is a clause that contains at most one positive literal (e.g.,
H «+ Bi, Bs, ..., B,). The positive literal (H) is called the head, the
negative literals (all B;’s) the body. A set of Horn clauses is a logic program.
Literals, clauses and logic programs are well formed formulae (wff). A wif is
said to be ground if it has no variables. An interpretation of a logic program
consists of some domain of discourse and assignments of each constant to
an element of the domain, each function to a mapping on the domain, and
each predicate to a relation on the domain. A model of a logic program is
an interpretation for which the clauses express true statements. A wif F' is
satisfiable if there exists a model for F'. Let F} and F, be two wif’'s. We
say that Fy semantically entails Fy (or Fy = F5, also F logically implies or
entails Fy, or Fy is a logical consequence of F}), iff every model of Fj is a
model of Fy. The least Herbrand model of a logic program P, is the set of
ground atoms which are logical consequences of the program. We say that F}
syntactically entails Fy (or Fy F Fy) iff F, can be derived from F} using the
set of deductive inference rules. The set of inference rules is said to be sound
and complete iff F} = Fy, whenever F} = Fy. We say that F} is more general
than Fy iff F} = Fy and F; £ Fy (every model of F is a model of Fy). This
definition imposes a lattice on the set of all formulae. The top element (most
general) is the empty clause (O) and the bottom (most specific) is the empty
program.

A substitution 6 = {Vy/t1,...,V,/t,} consists of a finite sequence of dis-
tinct variables paired with terms. An instance of a clause C' with substitution
0, represented by C'0, is obtained by simultaneously replacing each occurrence
of a component variable of 8 in C' by its corresponding term. Every sub-term
within a given term or literal can be uniquely referenced by its place. A place

CHAPTER 4. FIRST ORDER LEARNING 29

within a term or literal C' is denoted by an n-tuple of natural numbers and
defined recursively as follows. The term at place (i) within f(to,...,t,) is
t;. The term at place (ig,...,i,) within f(to,...,t,) is the term at place
(11,...,1,) In t;,. Let t be a term found at place p in literal L, where L is
a literal of C'. The place of term ¢ in C' is denoted by the pair (L,p). If C
is a clause or a term and 0 = {vy/t1,...,v,/t,} a substitution, the inverse
substitution 6’51 = {1, {p11s - Prma 1) /015 -, (s {Prts - -+ s D 1) /Un b
The inverse substitution is applied by replacing all ¢; at places p;1,...,Dim
within C' by v;. Clearly C § 6=! = C. For example, if literal L = likes(X,
brother(X)) and 6 = {X /john}, then L6 = likes(john, brother(john)), ;' =
{<john, {<1><2/1>}>/X}, where < 1 > and < 2,1 > are the places
where the variable X is found, and LO§~! = L. The substitution 6 is said
to be a unifier of the atoms A and A’ whenever, A0 = A’ 0. u is the most
general unifier (mgu) of A and A’ if and only if for all unifiers v of A and
A’ there exists a substitution ¢ such that (Au)d = A~.

If F; and F, are two wift’s, F| and F3 are said to be standardised apart
whenever there is no variable which occurs in both F; and F5. Resolution is
a deductive inference rule that allows us to infer a new clause from two given
clauses. ((C'—{A})A(D—{-A"}))0 is said to be the resolvent of the clauses
C and D, whenever C and D are standardised apart, A € C, =A’ € D, and
0 is the mgu of A and A’. Resolution is used for deriving the consequences
of a logical program. Given a program P, C'is a logical consequence of P iff
P A = C can be shown by resolution to derive the empty clause (O).

4.2 Inductive logic programming

Inductive Logic Programming (ILP) is a fast growing research area which
combines Logic Programming with Machine Learning to induce first order
logic programs from examples [Mug91a]. In inductive logic programming the
system’s current knowledge consists of data and background knowledge ex-
pressed as a logic program. These are assumed to be true in the intended
interpretation. A formula is true if it is a logical consequence of the current
knowledge. The inductive problem is to find a hypothesis, a set of clauses,
consistent with the current background knowledge and capable of explaining
the data in the sense that all the positive literals but no negative literals in
the data are deducible from the hypothesis and the background knowledge.
Given background knowledge K and some examples £ and £, a potential

CHAPTER 4. FIRST ORDER LEARNING 30

induction hypothesis H explaining the data must be such that: (KAH) = EF
and IC A H A E™ is satisfiable. ILP involves producing logic programs which
satisfy the above conditions from examples'. These conditions define a search
space on hypotheses which can be organised with a model of generalisation.
Induction can be achieved by searching through those clauses more general
than a known specialisation of a clause, or through more specific clauses than
a known generalisation. These search spaces are usually organised into hier-
archies, where all the clauses below (above) a particular clause are specialisa-
tions (generalisations) of that clause. In general, there are infinite ascending
and descending chains within the hierarchy, constructed by conjoining and

disjoining formulae. The next section introduces a model of generalisation
for ILP.

4.3 Generalisation

Plotkin [Plo71b] (who did not restrict himself to Horn clause logic) was the
first to analyse in a rigorous manner the notion of generalisation based on
g-subsumption. Clause C f-subsumes clause D (denoted as C' < D) iff there
exists a substitution o such that Co C D (i.e., there exists a substitution
that makes clause C' a subset of clause D). Clause C' is more general than
clause D if C'#-subsumes D. It is possible to have clauses that are equivalent
under subsumption, i.e., Co C D and Do’ C C. Plotkin also investigated
the existence and properties of least general generalisations (lgg). The lgg
of two terms or literals is a generalisation which is less general than any
other generalisation. Two terms or literals are compatible if they have the
same predicate name and sign. The lgg of two terms or literals is defined for
two compatible terms or literals. The lgg algorithm replaces all the different
terms that have the same place? within compatible literals by new variables
[Plo69, Plo71b] (see Table 4.1). Plotkin shows that any set of compatible
literals have an lgg.

In some sense the least general generalisation of literals is the dual of the
most general unifier. For example, if:

L, = foo(a,f(a),g(X,b),f)

Tt is clear that H could be replaced by €1 (that is, if CAET I/ £ for all £ € £7).
However, in general, we look for compactness of data into general descriptions of classes
of objects which can be used for classification and prediction.

2See section 4.1 for the definition of place.

CHAPTER 4. FIRST ORDER LEARNING 31

If L; and Lo are two compatible terms or literals
1. Let P1:L1 and P2:L2.

2. Find two terms, t; and t,, in the same place in P, and P,
such that t; # ty and either both have a different function
letter or at least one of them is a variable.

3. If there is no such pair, then finish. P, = P, = lgg(L1, Lo).

4. Else, choose a variable X distinct from any variable occurring
in P, or P,, and whenever t; and t, appear on the same place
in P, and P, replace them with X.

5. Go to 2.

Table 4.1: The lgg algorithm for terms

and

Ly = fOO(Yaf(Y)>g(Cab)7h(g))

then

lgg(Ly, Ly) = foo(Z,£(Z),g(W,b),V).

Similarly, a lgg of two clauses is a generalisation which is less general than
any other generalisation. The lgg of two clauses C; and C5 is defined as:
{l:1; € Cyand Iy € Cy and | = lgg(ly,ls)}. This extends to sets of clauses.
A set of literals S = {L; | i € [1...n]} is a selection of a set of clauses H =
{Ciliel...n]}iff L;isin C; (i € [1...n]), and any two literals in S are
compatible. The main result is that every set of clauses has an lgg which is
not empty iff the set of clauses has a selection.

Plotkin [Plo71a, Plo71b] also introduces the notion of relative least gen-
eral generalisation of clauses (or rlgg).

Definition 1 Clause C0-subsumes clause D relative to KC, denoted as C' <y
D, if K+ CO — D for some substitution 6.

Definition 2 If H is a set of clauses, C' 1is the rlgg of H relative to K, if
for every D in H, C < D, and for a C' such that C' <y D for every D in
H, then C" <k C.

CHAPTER 4. FIRST ORDER LEARNING 32

In general, there is no rlgg of two clauses relative to some background
knowledge. This is true for Horn-clauses as well [Nib88|. However, Plotkin
shows that rlgg exists for ground theories. One problem with Plotkin’s defi-
nition is that one clause which refers to one concept can be more general than
another clause that refers to a different concept. Under Plotkin’s definition
P + @ is more general than R + 5, Q) relative to R < P, S.

A model-theoretic characterisation of f-subsumption, called generalised
subsumption, was introduced by Buntine [Bun88|] for Horn clauses, with an
additional condition on the heads of the clauses.

Definition 3 Clause C = Cy + C41,Cs, ..., C,, covers atom A with respect
to interpretation J, iff there exists a substitution 6 for C' such that Cyf = A
and C;0 is true in J for all 1 < n.

Definition 4 A clause C' subsumes clause D w.r.t. program P, denoted as
C <p D, iff for every interpretation J which makes P true and every ground
atom A, C covers A w.r.t. J whenever D does.

Buntine also laid down the foundations for an algorithm to test for subsump-
tion:

Theorem 1 Clause C' = Cheqqa < Chroay, subsumes D = Diyegq < Diody
(where the variables in C and D are distinct) w.r.t. program P (C' <p D) iff
there exists a minimal substitution o such that, Cheea0 = Dheaq and for any
ground substitution 6 for D which substitutes new constants not occurring in
P, C or D for variables it is true that P'U Dyogy8 = 3 (Choayot).

Proof: see Buntine [Bun88].

Roughly, when comparing two clauses, it is necessary to show that the more
general clause can be converted to the other by repeatedly:

1. turning variables into constants or other terms
2. adding atoms to the body, or

3. partially evaluating the body by resolving some clause in the program
P with an atom in the body.

Testing for generalised subsumption is only semi-decidable, i.e., termina-
tion is guaranteed only when in fact C <p D. If the program has no re-
cursion termination is guaranteed, similarly for a program without function

CHAPTER 4. FIRST ORDER LEARNING 33

symbols. The main difference between logical implication (P = (C' — D))
and Buntine’s generalised subsumption (C' <p D), arises when the heads of
the clauses are not compatible or when C' is recursive. Roughly, C <p D
when the body of D implies the body of C' in the context of P.

While Plotkin’s definition is proof-theoretic, Buntine’s is model-theoretic.
Buntine’s definition of relative subsumption is strictly weaker that Plotkin’s
(see Niblett [Nib88] for a more thorough discussion). In effect, generalised
subsumption (Buntine’s) simplifies to f-subsumption when there is no back-
ground knowledge.

Similarly, a least general generalisation of two clauses relative to some
background knowledge, is a generalisation which is less general than any
other generalisation. Buntine suggests a method for constructing rlggs using
Plotkin’s lgg algorithm between two clauses as follows:

Theorem 2 Let C and D be two clauses with disjoint variables and P a logic
program. Let 01 be a substitution grounding the variables occurring in Cheqq
to new constants, 05 grounding the remaining variables in C, and likewise ¢
and ¢y for D. Iflggp(C, D) exists, it is equivalent w.r.t. P to the lgg(C', D’),
where C' = C 0 U{—-Ay,...,mA}, and D' = D ¢ U{=By, ..., B,}. Where
for1 <i<n, PACyayb6s = A;, and A; is a ground atom constructed from
symbols occurring in P, C, 01, 02, and D. Likewise for each B,;.

Proof: see Buntine [Bun88|.

This however assumes the deduction of all the ground facts from the
theory. Similarly, there is, in general, no rlgg between two clauses relative
to some background knowledge. The problem arises from the fact that an
infinite number of facts can be logically implied by the theory. Again, an
rlgg exists when the logic program is a set of facts (i.e., for ground theories)
or when it is a DATALOG program (i.e., without function symbols).

Even with a finite set of facts, the lgg algorithm of two clauses can gen-
erate a very large number of literals. If the length of a clause C' is repre-
sented by |C], then the length of the lgg of two clauses C; and Cy can be
|C1] - |Cq|. For example, following Buntine’s method, the rlgg of two ground
unit clauses: member(1,[0,1]) and member(0,[1,2,0]), relative to the set of
ground unit clauses: member(1,[1]), member(0,[2,0]), and member(1,[1,0]),
is the lgg of C and C defined as follows:

C1 = member(1,[0,1]) < member(1,[1]), member(0,[2,0]),
member(1,[1,0]).

CHAPTER 4. FIRST ORDER LEARNING 34

Cy = member(0,[1,2,0]) <= member(1,[1]), member(0,[2,0]),
member(1,[1,0]).

which produces,

member(X,[Y,Z|T]) +
member(1,[1]), member(X,[Z|T]), member(1,[1|T]),
member(Y,[W|R]), member(0,[2,0]), member(Y,[W,0]),
member(1,[1|R]), member(X,[Z,0]), member(1,[1,0]).

Although this contains the recursive definition for member/2, it contains
many other literals as well. Several authors report clauses of thousands of
atoms long for very simple concepts [Bun88, Fen90, MF90, Rou91]. Plotkin
[Plo69, Plo71a] suggests the use of logical clause reduction to remove redun-
dant literals from a clause. A literal L is logically redundant in a clause C'
if X ANCF C—{L}. However, this is again semi-decidable and inefficient
as it requires theorem proving. The main problem is that lgg produces very
small generalisation steps and some heuristics are required to converge faster
into a solution. Furthermore, the lgg of clauses is limited to learning single
clauses (i.e., it cannot learn disjunctive definitions), cannot include negation
of literals, and cannot introduce new terms. The particular strategy followed
in this thesis for an effective use of rlgg will be discussed in chapter 5 where
the description of PAL is given.

The notion of generalisation described above illustrates some of the prob-
lems of current ILP systems. Some implications are that most ILP systems
either use very restricted theories, or very strong constraints, which limit
their applicability to very simple domains. In the next section, an overview
of the different approaches taken by ILP systems is presented.

4.4 An overview of ILP systems

ILP systems are reviewed under 3 criteria: the hypothesis search strategy,
the example selection, and their background knowledge. A classification of
constraints used to limit the hypothesis space is given in section 4.4.4.

4.4.1 Hypothesis search: top-down vs bottom-up

ILP systems which search a generalisation hierarchy (or bottom-up) include,
Marvin [SB86], Cigol [MBS88], Relex [Fen90], Golem [MF90], Itou [Rou9l],

CHAPTER 4. FIRST ORDER LEARNING 35

and Clint [dRB88, dRB90]. Bottom-up systems start with a very specialised
clause and gradually generalise it, turning constants into variables, removing
conditions (literals from the body of the clause), or transforming the body
of the clause using background knowledge. In general, an infinite number of
facts deduced from the theory can be used to construct “very specialised”
definitions, and even with finite length hypotheses, there is a large number
of ways in which to generalise them.

Systems which search a specialisation hierarchy (or top-down), include,
MIS [Sha81], Foil [Qui90], Linus [LDGI1], and Focl [PK90]. Top-down sys-
tems start with a very general clause and gradually specialise it, replacing
variables with terms, adding literals to the body, or transforming the body
using background knowledge. Similarly, there is a large number of ways in
which to specialise a clause.

Both approaches suffer from a combinatorial explosion in the search for
hypotheses. Most systems trade efficiency for applicability by applying strong
restrictions to limit the hypothesis space.

4.4.2 Example selection: user vs batch vs automatic

A characterisation of inductive inference methods can be based on the amount
of information on which a system relies for its “correct” behaviour. An impor-
tant component of such characterisation is the particular example selection
suitable for the inference method. The efficiency of an inference method can
be measured by the number of examples that it requires to converge to a
correct rule. Some systems require a large number of examples to “justify”
the construction of an hypothesis. Other systems might depend on a very
careful example presentation. In general, the learning performance of an in-
ference method changes with the example presentation. Selection of “good”
examples, has allowed some systems to learn concepts that would otherwise
be infeasible for them to learn [MB88, Rou91, SB86, Win85]. Examples can
be provided by the environment, selected by an informed oracle, can be a
subset of the example space, randomly generated, automatically generated
by the system, etc. In some domains, examples might not be immediately
available. The most common example presentations are either interactively
by the user, or an example generator, or in ‘batch’, selected from an exist-
ing sample set (often generated by the user). In general, the termination
criterion can be linked to the example presentation.

CHAPTER 4. FIRST ORDER LEARNING 36

e Systems which rely for their success on a careful presentation of exam-
ples by the user, include MIS [Sha81], Cigol [MBS88], Itou [Rou91], and
Marvin [SB86]. The user provides the “right” examples and guides the
learning process. The user is aware of the target concept and deter-
mines the criterion of success.

e Systems which accept a set of examples in batch, include Golem [MF90],
Foil [Qui90], and Linus [LDGY91]. The termination criterion is based
on completeness and correctness (with perhaps some exceptions) of the
hypotheses.

e Systems which generate their own examples, include Clint [dRB88] and
Relex [Fen90]. The termination criterion is either determined by the
user or when the system is unable to generate a new example that will
produce an incorrect or incomplete hypothesis.

4.4.2.1 Automatic example generators

This section deviates so as to look in general into some automatic example
generators. Systems which induce concepts from a batch of examples often
require an “artificial” generation of them by the user as not all domains
have them readily available for the process. Systems which accept exam-
ples interactively by the user are often highly dependent on an “adequate”
sequence selection. This dependency, or hidden knowledge, requires a good
understanding of the system’s internal characteristics and calls into question
its learning capabilities. It is believed that “careful” experiment selection is
more effective for concept formation than a random experiment selection (e.g.
see [Ang88, Lin91]). Experimentation (or active instance selection) has been
employed in several machine learning systems (e.g., [CG87, DB83, Fen90,
Len76, PK86]) to reduce the dependency on the user and guide effectively
the learning process.

Example generators in concept learning provide two basic functions: test
the hypotheses and gather information to constrain the hypothesis gener-
ator. In general, over large hypothesis spaces, “clever” experimentation is
required to search this space efficiently. Several strategies have been sug-
gested. Some systems, like AM [Len76], LEX [MUBS83], or PET [PK&6],
provide a hierarchy of concepts. Selection of examples involves choosing in-
stances of concepts which have a relation in the hierarchy with the current
hypothesis (or concepts involved in the hypothesis). A considerable amount

CHAPTER 4. FIRST ORDER LEARNING 37

of knowledge about the domain is required to provide an initial hierarchy of
concepts and examples, and not all the domains can be easily structured in
this way.

Feng [Fen90] provides a theoretical basis for choosing a new example based
on information theory. His next-best-verification algorithm chooses the next
example as the best to verify a hypothesis based on information content.
In practice, he requires a set of heuristics to define a sequential number for
the examples, the best example being the one which follows in the sequence.
The definition of a sequential number is not easy to do as several “sequences”
along different “dimensions” can exist.

Clint [dRB88] starts with the most specific function-free clause constructed
in the concept description language that covers a positive example w.r.t. the
current background knowledge (the starting clause). It then constructs new
clauses, by incrementally selecting and deleting subsets of literals from the
original clause, which have a greater coverage of positive examples without
covering any negative. To validate such new clauses, it generates examples
which are covered by the clauses, but not by the original clause. If the exam-
ple is validated as positive by an oracle, the new clause is kept as the current
hypothesis and the process continued. Otherwise, a new subset of literals is
selected (i.e., a new clause is constructed). The process stops when no more
literals can be eliminated from a clause without covering a negative example.
A similar example generation strategy has been used by other systems such
as Marvin [SB86]. In a clause of length N Clint’s original search is of 2V
subsets, however, in practice not all the subsets need to be considered. If a
clause covers a negative example when a subset S} of literals is eliminated
from the current clause, then any superset of S; is no longer considered as
a candidate for elimination. The space is also reduced as literals are elimi-
nated. The number of examples generated by Clint depends on the number
of literals in the starting clause. Even with function-free clauses, and with
a restricted hypothesis language and background knowledge definitions, the
starting clause can be huge and difficult to compute.

In [SF86], Subramanian and Feigenbaum show that a substantial improve-
ment in the number of generated examples can be achieved on factorable
concepts by considering each component independently. A concept is fac-
torable if credit or blame can be assigned independently to each component
of the concept. The components of a concept expressed as a Horn clause
are the different literals in its body. Generating new examples correspond
to changes in the arguments used in the head of the clause. Different ar-

CHAPTER 4. FIRST ORDER LEARNING 38

guments affect different literals. In this context, a concept is factorable if
changes in some arguments of the head of the clause affect some literals in
the body independently from changes in the other arguments of the head. In
general, knowing that credit or blame can be assigned independently to each
component is not known/possible. In particular, several concepts in Chess
like fork, pin or skewer cannot be factored into independent components as
changes in the description of one of the pieces will affect the others.

Ruff and Dietterich [RD89] report some experiments using Boolean truth
tables as hypotheses with different example selection strategies. They argue
that there is no essential difference between an example generator that uses a
“clever” (although computationally expensive) strategy which divides the hy-
pothesis space in half and an example generator that guarantees to eliminate
at least one hypothesis, or even a simple example generator that randomly
selects examples (without repeating experiments). They did not provide any
evidence that their results could scale or generalise. This is not applicable
for a domain like Chess, where some concepts can cover a relatively small
subset of the example space. In such cases, a random strategy can prove to
be useless as a large number of negative examples can be generated before
a positive example is selected (examples will be given in chapter 6). It is
thus imperative to have a guided experimentation strategy, however, select-
ing the “best” example can be infeasible. Chapter 5 introduces an automatic
example generator for Chess which is guided by the concept definition.

4.4.3 Background knowledge: clauses vs facts

One of the main arguments against existing propositional systems is based
on their lack of use of background knowledge. Background knowledge is im-
portant as it allows us to represent examples in a simple way and can be used
to learn several concept definitions. In some ILP systems, the background
knowledge (generally represented as Horn clauses) is carefully selected by the
user. Recent systems (i.e., Foil, Focl, Linus, and Golem), have represented
their background knowledge with a set of ground facts. ILP systems with
ground and non-ground background knowledge are analysed below.

e All ILP systems which represent their background knowledge as non-
ground clauses suffer from search problems, need a careful selection of
background knowledge definitions (and sometimes of examples), and
have been applied to very restricted domains. Their main problem

CHAPTER 4. FIRST ORDER LEARNING 39

arises from the combinatorial explosion in the search for hypotheses,
which is severely affected by the size and characteristics of the back-
ground knowledge. Their main advantages include its concise represen-
tation, they can incorporate in principle any previously known concepts
without requiring any transformation process, and the new learned con-
cepts are immediately accessible to the system in the next inductive
cycle.

e In trying to improve applicability, recent systems have replaced the
representation of the background knowledge with a set of ground facts.
This approach has been used in larger domains [Mug91a| as it elimi-
nates some problems of previous systems. In particular, for bottom-up
systems, rlgg exists for ground theories. Ground theory systems require
a careful selection of a “representative” subset of ground facts in ad-
vance, which is often tailored to the nature of the examples over which
the induction is made. A huge memory space is sometimes needed to
store ground theories and none of the current systems is used in an
incremental way.

There is a fundamental space-time vs applicability tradeoff when choos-
ing a particular background knowledge representation. Systems which use
ground theories are limited by the number of facts that they can store. In
some domains, generating and storing facts to achieve the required results
can be impractical, and sometimes a reformulation of the background facts is
required to keep the number of facts down into workable conditions. Bratko
et al. [BMV92] report this problem when using Golem to induce qualitative
models and is further described in chapter 8. In general, the generation of
appropriate background facts can be a time-consuming process, highly depen-
dent on the examples. This memory-greedy and time-consuming generation
process is compensated by an efficiency gain over systems which use non-
ground theories and has been applied to larger domains. The combinatorial
hypothesis search of non-ground theory systems has limited strongly their
applicability. Regardless of the approach, problems can only be magnified
when adding extra background knowledge and in general only a very limited
number of background concepts have been used by ILP systems.

CHAPTER 4. FIRST ORDER LEARNING 40

4.4.4 Constraints on the hypothesis space

Structuring the hypothesis space with a generalisation/specialisation hierar-
chy provides only a guideline to ILP systems and different heuristics have
been used to restrict the space and provide a notion of “relevance” between
competing background knowledge. A suitable selection of background knowl-
edge by the user provides an implicit notion of relevance to the system; how-
ever this is not enough to achieve practical results. The following constraints
have been used by several ILP systems.

e Functional Restriction: The system is provided with information which
states which arguments are determined (output arguments) in a predi-
cate if the rest are known (input arguments). This information can be
used to form directed graphs which link input/output arguments and
guide the construction of hypotheses (e.g., [MF90, Qui90, Rou91]). The
linkage between input and output arguments can be constrained as well
by using typed variables, where input/output links can be formed only
between arguments with the same type.

e Variable Connection Restriction: Consider only clauses in which all
variables appear at least twice in the clause (e.g., [{RB88, dRB90,
MF90, Rou91]) or introduce a new literal to the body only if at least
one existing variable is used (e.g., [Qui90]).

e Rule Schema Restriction: Construct hypotheses only from a class of
clauses defined through rule models (i.e., consider only hypotheses
which “match” a particular rule schema [dRB92, Mor89, Thi89, Wro89)]

or with particular “refinement” operators as in MIS [Sha81].

o Information Content Restriction: Construct hypotheses which produce
a compression in information content w.r.t. the examples (e.g., [MB88]),
hypotheses with the Minimum Description Length (MDL) [MSB91], or
guide the hypothesis search with a measure of information gain based
on the discrimination between positive and negative examples (e.g.,

[Quigo]).

e Faplicit Relevance: Use additional predicates to determine which back-
ground knowledge predicates are relevant to the current hypothesis
(e.g., with determinations [RG88] or with integrity constraints [dIRBM91]).

CHAPTER 4. FIRST ORDER LEARNING 41

o [nitial Clause Restriction: Provide an initial clause and add only liter-
als to the body which can be deduced from the body of the clause and
the background knowledge (e.g., [Rou91, SB86]).

4.5 A review of some ILP systems

Most ILP systems have been used to infer simple concepts, such as list def-
initions like member or append, the concept of an arch, family relations,
etc., with restricted background knowledge (e.g. [dRB88, MB88, Rou9l,
SB86, Sha81]). By contrast, concepts in Chess which can be used in a play-
ing strategy, might involve background definitions for threats, checks, legal
moves, distances to places, etc. These concepts comprise a more realistic
background knowledge with a larger hypothesis space from which relatively
varied concepts can be induced. The suitability for learning concepts in
a domain like Chess, is reviewed below for ground and non-ground theory
systems.

4.5.1 Non-ground theory systems

Most ILP systems under this category require a very careful selection of
examples, tend to produce over-generalisations [MB88, SB86], or are lost in
the combinatorics of specialisations [Sha81]. MIS [Sha81], Cigol [MB88], and
Itou [Rou91]| are briefly reviewed below.

4.5.1.1 MIS

MIS [Sha81] is a top-down system which starts with a set of positive and
negative examples (provided by the user) and one or more refinement op-
erators to specialise clauses. MIS starts with the most general theory and
stops when all the positive examples are deduced from the theory without
deducing any of the negatives. MIS is an interactive system where exam-
ples are provided by the user. At each step, while MIS can derive a false
fact given some resource bounded computation, it applies the contradiction
backtracing algorithm (see below) to find a false clause and remove it from
the hypothesis. When MIS cannot derive a true fact given some resource
bounded computation, it generates a new hypothesis (i.e., adds a new clause
to the hypothesis) using a refinement operator (see below). MIS continues

CHAPTER 4. FIRST ORDER LEARNING 42

Set T to {O}

repeat
read the next fact
repeat
while the conjecture T is too strong
(i.e., it implies a negative example)
apply the contradiction backtracing algorithm,
and remove from 7T the refuted hypothesis.
while the conjecture T is too weak
(i.e., it does not imply a positive example)
add to 7 refinements of previously
refuted hypotheses.
until the conjecture 7 is neither too strong
or too weak (w.r.t. the facts read so far).
forever

Table 4.2: MIS algorithm

until neither of the while loops is entered (see Table 4.2). Roughly, @ is a re-
finement of P if P implies @) and size(P) < size(Q), where size is a function
that maps from clauses to natural numbers. A refinement operator is said
to be complete over a set of sentences, if we can obtain all the sentences by
successive refinements from the empty clause. A refinement operator induces
a partial order over the hypothesis language. This can be ‘illustrated’ by a
refinement graph where every node in a lower level is a specialisation of pre-
vious upper levels. Given a refinement operator complete for the hypothesis
language, MIS traverses its refinement graph until a complete axiomatisation
for the target concept represented in the language is found.

The backtracing algorithm starts from a derivation tree of a refutation
proof® and interactively tests the terms resolved upon by constructing ground
atoms for each term and asking the user to validate them. The algorithm is
only applied when a logic program succeeds but with a wrong answer. If the
logic program fails, MIS can only add new clauses.

MIS was applied to simple domains with different refinement operators.

3See section 4.1.

CHAPTER 4. FIRST ORDER LEARNING 43

Ci(+) C2(+)
6 7
C

Figure 4.1: A resolution step

In general, as the background knowledge grows, so do the combinatorics of
its search space. Because of this, MIS is unable to learn concepts with a large
background knowledge within reasonable time limits.

4.5.1.2 CIGOL

Cigol [MB88] constructs Horn clauses from examples using three operators,
truncation, absorption, and intra-construction. Cigol was designed around
the idea of inverting resolution. Resolution allows us to infer a new clause
C from two clauses C and Cy with literals L; and Lo, with a most general
unifier (mgu) (see section 4.1). If =Ly and L, are the literals of C; and Cy
with an mgu 6, 6 can be expressed as 6§ = 6,05, and the resolvent clause C'
will be:

C = (C — (L })0, U (Co — {Ls})00 (4.1)

Absorption constructs Cy given C' and (', assuming that the literal resolved
on is positive in Cy and negative in Cy (see Figure 4.1).
Rearranging equation 4.1, we get,

Cy = (C = (Cr = {L1})61)05 " U {Lo} (4.2)

Cigol provides a partial solution for this equation, by considering only the
case where (] is a unit clause (i.e., C1 = L1). This means that the operator
can only be applied when one of the clauses resolved on is a unit clause, which
in practice corresponds to the examples provided by the user. Noticing that
=110, = Ly0s, and assuming that C| = L;, we obtain:

CHAPTER 4. FIRST ORDER LEARNING 44

C1 A C2
% /An% ’A,z
B1 B2

Figure 4.2: Two resolution steps with common clause A

Cy = (CU{=L1}6,)05" (4.3)

From equation 4.3 there are 2 sources of indeterminacy (since C; = L),
namely ; and 6, ', where 6, is an inverse substitution in the domain of Cy
defined as a list of terms, the places where they should be replaced, and the
variables to replace them with (see section 4.1).

Cigol needs to identify which clauses from the current examples are C'
and C;. Then it has to construct a substitution in the domain of C; and an
inverse substitution in the domain of C.

Intra-Construction works by combining two resolution steps back-to-back
(see Figure 4.2). If we assume that C; and Cj resolve on a common literal
L within A to produce By and Bs, this operator constructs A, C4, and Cy
given B; and By with L negative. Since the common literal L in A is resolved
away, the clauses A, C; and C5 can contain a predicate symbol not found in
B; and Bs. In this way new predicates are introduced by Cigol.

The third operator in Cigol is truncation. This operator constructs an lgg
of a set of unit clauses (see section 4.3).

Cigol only applies truncation to new unit clause examples. It then applies
the inverse-resolution operators (absorption and intra-construction) and se-
lects that which produces the best compression on the information content.
The information content of each clause is assigned by the size of the syntactic
objects which compose it. Redundant clauses are removed using Buntine’s
redundancy algorithm [Bun88|. The algorithm is summarised in Table 4.3.

Roughly, the absorption operator (first introduced in Marvin [SB86]) re-
places in the body of one clause the body of another clause by its head.
The literals that have been replaced are lost and can have harmful effects
if the wrong choice is made for the clauses involved or if different orders of
absorptions are made. For example, if we have in the theory:

CHAPTER 4. FIRST ORDER LEARNING 45

while examples are provided by the user
apply truncation (as a filter)
apply intra-construction and absorption
select one which produces the most information
compression contents
ask the user for confirmation
reduce clauses

Table 4.3: Cigol algorithm

A<+ B,C.
D+ C FE.

with the following example:
F <+ B,C,E.

absorption produces with the first clause:
F+ AFE.

and with the second clause:

F « B,D.

Literals C' or E are removed (depending on the clause which is chosen) thus
preventing one more absorption with the other clause. The search space of
Cigol grows as the background knowledge grows, its operators work only
with unit clauses, and the user (oracle) must be very careful in the sequence
of training examples. All of which makes it only applicable to very limited
domains.

4.5.1.3 ITOU

Itou [Rou91] is a recent ILP system with some improvements over systems
like Marvin [SB86] and Cigol. Itou starts with a clause provided by the

CHAPTER 4. FIRST ORDER LEARNING 46

while examples are provided by the user
accept a new example by the user
if the example is not explained by the theory
perform exhaustive elementary saturation
repeat until the user does not accept a generalisation
perform truncation (remove literals from the
saturated body).
perform intra-construction

Table 4.4: Ttou algorithm

user and performs an exhaustive elementary saturation process to construct
a starting clause, which is later generalised by removing literals.

Elementary saturation is defined as follows. Given H; <— B; and a back-
ground knowledge clause Hy < Bs, a new clause H; < B A Hy0 is produced
iff Byf-subsumes By (i.e., B, C By). This is equivalent to doing the absorp-
tion operator but without removing the resolvent literals from the clause, i.e.,
avoiding some of the problems of Marvin and Cigol. Computing exhaustive
elementary saturations is equivalent to rlgg [Mug9la] and may never stop.
Even in domains with finite theories, this approach can produce very large
clauses, which has constrained the applicability of Itou to simple domains.

The generalisation process, also called truncation, drops literals from the
saturated clause. For each possible generalisation, the user is asked for con-
firmation. Truncation in Itou can remove any literal in the clause, however,
preference is given to literals which introduced other literals during the sat-
uration process. The saturated clauses are reduced using functional and
variable connection restrictions (see section 4.4.4). Itou also uses the intra-
construction operator of Cigol to reformulate the theory. The algorithm is
summarised in Table 4.4.

Itou uses a “flattening” and “unflattening” strategy to transform clauses
with function symbols to clauses without function symbols and vice versa
(this has been previously done manually in Marvin). To flatten a clause,
[tou follows the following process. For every functor of arity n, f(t1,...,t,),
that appears in a clause:

e Introduce a new predicate symbol f, of arity n+ 1 : f,(t1,...,¢,, X).
The new predicate f, is defined by f,(t1,....t,, X) <> X = f(t1,...,tn).

CHAPTER 4. FIRST ORDER LEARNING 47

e For each occurrence of a term f(t4,...,t,) in a clause C' of the logic pro-
gram P, replace it by a variable X, with the predicate f,(t1,...,t,, X)
in the body of C.

For example:
member(a,cons(a,nil)) <
is flattened to:

member(X,Y) < cons,(X,2,Y), a,(X), nil,(Z).
cons,(X,Y,cons(X,Y))

ap(a)

nily(nil) <

In the unflattening procedure, for each flattened predicate f,(t1, . .., t,, X)
in the body of clause C, replace all the occurrences of X by the functional
term f(ty,...,t,).

To improve efficiency in Itou, all the occurrences of the same term are
replaced throughout the clause by the same variable. This means that the
system is very sensitive to coincidences of terms in the examples, as the
same variable can be assigned to terms which refer to different objects. In
Chess, several repeated pieces can be at the same rank or file and distinction
between them is clearly desirable during the generalisation process. Itou per-
forms saturations between literals of the example clause and the background
knowledge. Once a literal is added to the body, it can be used to generate
new literals. With many background knowledge definitions it is difficult to
provide an initial clause that will neither initiate a large production of lit-
erals, nor fail to incorporate the literals required for the concept definition.
This makes Itou very dependent on the examples provided by the user and
the “complexity” of the background knowledge.

Even after applying constraints, the size of the saturated (and flattened)
clauses can be very big (specially with several function symbols), thus the
possible truncations (i.e., requests for the user’s confirmation) can be huge.
The system also relies heavily on the oracle to validate each proposed gener-
alisation, thus guiding the system towards the target concept.

The almost unrestricted generation of literals from the background knowl-
edge has made Ttou (like most ILP systems) applicable only to very restricted
domain theories from which the induction process can be more easily con-
trolled.

CHAPTER 4. FIRST ORDER LEARNING 48

4.5.2 Ground theory systems

Recently, systems have used a finite set of ground unit clauses as background
knowledge to improve the use and selection of the background knowledge.
Within this approach, probably the best known systems are Golem [MF90]
and Foil [Qui90]. Both systems are reviewed below.

4.5.2.1 GOLEM

Golem [MF90] follows the rlgg generalisation method suggested by Buntine
(see section 4.3) with ground theories and functional and variable connec-
tion restrictions (see section 4.4.4) to limit the size of the hypotheses. The
examples are processed in batch and the termination criterion is based on
completeness and correctness. Golem incrementally constructs clauses which
cover as many positive examples as possible without covering any negative
until all the positive examples are covered. The algorithm is summarised in
Table 4.5.

Once a generalisation is found, the clause is reduced by removing literals
from the body of the clause until no more removals can be performed without
covering a negative example.

In domains like Chess a very large number of facts can be deduced from
some background concepts (e.g., a definition of threat between two pieces,
can imply over 20,000 facts). Background knowledge in Golem is replaced
by ground facts and although Golem has been able to run with up to 20,000
background facts, it starts to slow down after storing 10,000 facts. Generating
all the background facts can be a time-consuming and tedious process, and
it is not always easy to know what to generate unless the training examples
are known in advance.

Although Golem has been applied to some real world problems [Mug91b],
it is unable to learn non-determinate clauses, that is clauses whose literals are
not completely determined by instantiations of the head. Because of this, a
large number of Chess concepts that are inherently non-determinate, like at-
tacks by discovery, one-ply threats, etc., which can be described in terms of a
non-deterministic concept, like piece movement, are not learnable by Golem.
In general, Golem’s restriction can require to redefine the background knowl-
edge in terms of deterministic concepts only. This is not always easy/possible
to do, specially in domains like Chess, where by nature legal moves (as well as
many other concepts) are non-deterministic. The non-deterministic nature

CHAPTER 4. FIRST ORDER LEARNING

e Given a set of ground unit clauses consisting of: positive and
negative examples, and background knowledge.

e repeat

— Take a random selection of positive examples and per-
form rlgg between pairs of examples using the back-
ground facts (i.e., take the lgg between two clauses, the
head being the examples and the body the background
facts).

— Select the lgg with the greatest cover over the positive
examples consistent with the negative examples (GC').

— while increasing cover

x Perform rlgg, between GC and a positive example,
which is consistent with the negative examples.

* remove the positive examples covered by the hypoth-
esis

e until all the positive and no negative examples are covered

Table 4.5: Golem algorithm

49

CHAPTER 4. FIRST ORDER LEARNING 50

of the game is part of the reason why Chess is an interesting and challenging
game. Bratko reports similar problems with Golem when learning qualitative
models? (see also chapter 8).

4.5.2.2 FOIL

Foil [Qui90], is a top-down system that uses an information gain measure
to support an specialisation on the basis of its ability to discriminate be-
tween positive and negative examples. Similarly to Golem, Foil starts with
a set of ground unit “clauses”, representing positive and negative examples,
and background facts, and incrementally learn clauses until all the positive
without any negative examples are covered by the clauses. To understand
Foil more clearly, we need to introduce some definitions. A tuple is a finite
sequence of constants. A tuple satisfies a clause if there is a mapping of the
variables of the head of the clause onto the tuple and an extension of all vari-
ables in the body into constants satisfying the body. Foil starts with some
positive and negative tuples satisfying a target concept, and a very general
clause, which is gradually specialised by adding literals to its body. Foil must
choose the predicate name and the variables (which we can called a variabli-
sation of the predicate) to use in the literal to be added. If the added literal
uses only existing variables of the current clause, then the new set of positive
and negative tuples is a subset of those tuples which satisfy the additional
predicate. If a new variable is introduced by the new literal, the tuples are
extended to include values for that variable. This is done automatically in
Foil. That is each tuple represents a value assignment to all bound variables
in the clause. The value assignment (i.e., positive or negative) of each tuple
is taken from the original tuple assignment.

Each literal in the body of the clause takes one of the four forms: X; = X,
X; # Xy, PV, Va, ..., V), or = P(Vy, Vs, ..., V), where the X;’s are existing
variables, the V;’s are existing or new variables, and P is some relation.
New literals in Foil must contain at least an existing variable. Foil uses an
information gain metric to decide which literal to add. This metric is defined
as:

P
Gain(literal) = T % [log, (————) — log, (

BN,)RR

0
Py + Ny

4Personal communication.

CHAPTER 4. FIRST ORDER LEARNING 51

e Given a set of positive and negative tuples, and background
knowledge tuples.

e repeat until all positive tuples are covered.

— set current clause to be most general predicate head with
an empty body.
— repeat until no negative tuples are covered.
x compute the information gain of all the possible sin-
gle literals that can be added to the current clause
x select that literal with the most information gain
x add the literal to the body of the current clause

x remove the positive tuples that are satisfied by the
new clause.

Table 4.6: Foil algorithm

where Py and Ny are the number of positive and negative tuples before adding
the literal to the clause, P; and N; are the number of positive and negative
tuples after adding the literal to the clause, and 7" is the number of positive
tuples before adding the literal that satisfy the new literal. The algorithm is
described in Table 4.6.

Foil’s information gain heuristic does not guarantee to find a solution
when there are several possible next literals that have approximately equal
gain. Because of this, Foil is unable to learn the definition of quicksort®, as
the background facts of partition, which are required for the construction of
the clause, are unable to discriminate between positive and negative exam-
ples (i.e., provide a positive value for the information gain heuristic). With
its information gain heuristic, Foil can make locally optimal decisions but
globally undesirable choices. This problem recurs throughout a large class
of concepts. Foil has no function symbols and its performance is affected by
the number of arguments in the target concept®. With its dependency on the

°A new implementation of Foil, which uses a primitive back-up facility (called Foil2),
has been able to learn quicksort, but only after a careful selection of the background facts
and examples. Foil2 will be further discussed in chapter 6.

6A. Srinivasan reports running Foil for two days with a predicate of nine arguments

CHAPTER 4. FIRST ORDER LEARNING 52

number of examples, Foil can change its hypothesis if it is provided with the
same positive examples twice. Similar problems are reported by I. Bratko
when using Foil for qualitative reasoning (personal communication). As with
Golem, a large time needs to be devoted to the definition of background facts.

The longer the clause and the larger number of variables required to define
a concept, the more difficult it is for a top-down system like Foil to learn
it. Depending on the background knowledge and example representation,
concepts in Chess which are powerful enough to be used in a playing strategy
may well be several literals long involving a large number of arguments.
Concrete examples of Chess concepts will be given in chapter 6.

4.5.3 Summary

Chess has been an interesting and challenging domain for concept learning.
Evidence suggests that high performance of concept learning systems for this
domain depends on the ability to represent relational concepts. ILP is a fast
growing research area which provides the mechanism and language which
should be able to represent and learn patterns necessary for play simple
endgames. We have seen that the applicability of ILP systems has been
mainly restricted to simple concepts over limited background knowledge.
Concepts in Chess, which are powerful enough to be useful when playing,
may require a more realistic background knowledge, involving definitions for
several concepts like legal moves, check mates, etc. This rules out the appli-
cability of most ILP systems. In particular, systems which use non-ground
theories are lost in the complexities of the search. Their almost unrestricted
derivation of facts from the background knowledge makes them inadequate in
the presence of several background knowledge definitions. Their advantages
include a compact background knowledge representation and their ability to
use newly learned concepts in the next inductive cycle. Ground theory sys-
tems have widened the ILP applicability by improving the selection and use
of background knowledge. However, they depend on a careful definition of
background facts and examples. These systems, however, have made a signif-
icant performance improvement over non-ground theory systems, and a more
detailed analysis involving Golem and Foil will be made in chapter 6 with
a simple concept in Chess. First, an ILP system using non-ground theories

(personal communication). We have noticed similar problems with predicates of six argu-
ments.

CHAPTER 4. FIRST ORDER LEARNING 93

and capable of learning concepts in Chess is described in the next chapter.

Chapter 5
PAL

This chapter describes a first order learning system, called PAL!, capable
of learning patterns in Chess. PAL uses a constrained relative least general
generalisation algorithm (rlgg) as a generalisation method over non-ground
theories, avoiding the process of carefully pre-defining a set of background
facts. A non-recursive representation language is used to derive a limited
number of relevant facts from the background knowledge. The generalisation
method is coupled with an automatic example generator, thus reducing the
user’s intervention and guiding the learning process. The automatic selection
of examples is guided by the current concept definition in a structured ex-
ample space. Examples are characterised as descriptions of Chess positions,
and unlike other systems the exact arguments of the target concept are not
specified in advance. Chapter 6 shows how PAL is able to learn several Chess
concepts. Chapter 7 describes a strategy, constructed with patterns learned
by PAL, that plays correctly a simple endgame. Chapter 8 shows how PAL
can be used in other domains by learning a qualitative model of a simple
dynamic system.

Section 5.1 describes the characteristics of PAL and illustrates its basic
behaviour with a simple example. Section 5.2 describes in detail the generali-
sation method and the heuristics used for an effective use of rigg. Section 5.3
discusses the characteristics of the automatic example generator and how
it is used to guide the learning process. Finally, the learning algorithm is
summarised in section 5.4.

!Patterns and Learning. Previous descriptions of PAL are given in [Mor91b, Mor91a].

o4

CHAPTER 5. PAL 55

5.1 Introduction

This research is oriented towards an effective automatic acquisition of Chess
which can be used for playing from simple example descriptions together
with the rules of the game. PAL is first characterised in terms of its example
presentation, representation language, and generalisation method. An out-
line of the learning algorithm is given and a simple example is provided to
illustrate the system’s behaviour.

5.1.1 Set of examples and presentation

Examples in PAL consist of a set of ground unit clauses describing each
piece on the board. The arguments used in the target concept definition
and the pieces involved in it are not specified in advance. A Chess posi-
tion can be completely described by a set of four-place atoms (contents/4)
stating the side, name, and place of each piece in the board. For instance,
contents(white, rook, square(2,3), posl) states that a white Rook is at the
second file and third rank in the board described by position 1. Other pieces
in a board position can be described in the same way. In general, other
descriptions can be used as well, some of which are given in chapter 6. De-
scriptions of board positions in terms of the pieces involved allows a simple
and natural way in which to represent examples which does not depend on
the user’s knowledge of the final form of the target definition. This contrasts
with other learning systems, and in particular with propositional learning al-
gorithms where most of the programming time has been devoted to a careful
selection and definition of a complete set of “relevant” attributes in which to
describe the examples (e.g., [Qui83, Sha87]). For example, Shapiro defined
31 attributes to describe examples for the induction of a decision tree to clas-
sify win/draw positions for the King and Pawn against King (KPK) endgame
[Sha87]. Defining such attributes is not an easy task. Shapiro comments:

“It took about six man-weeks to complete this portion of the work
described [define the 31 attributes for the KPK endgame]. At
least half of this time was spent considering special cases for the
two subproblems rookpawn and get-to-mainpatt. This was due to
the considerable difficulty found with the iterative refinement of
the attributes. When there were only one or two classes of clash
the choice of refinement was critical. Changing the definition of

CHAPTER 5. PAL 56

an attribute to eliminate one clash caused other clashes? with
different attributes.”

A larger and often obscure set of attributes is required for more difficult
endgames (e.g., Shapiro’s attributes for the KPa7KR endgame [Sha87] and
Quinlan’s attributes for the KRKN endgame [Qui83]) in which clashes of
classes are more likely to occur.

Many learning systems depend on an appropriate selection of examples
by the user. A “good” selection of examples is not always easy to provide and
it is difficult to assess the robustness of systems which depend on it. In PAL,
an automatic example generator is used to select the examples and guide the
learning process. The example space is structured into classes of examples
and the selection is guided by the current concept definition. Details of the
example generator are given in section 5.3.

5.1.2 Hypothesis language and background knowledge

The hypothesis language and background knowledge representation must be
able to express patterns (relations between pieces and places) and ‘recognise’
instances of those patterns from descriptions of board positions. A pattern
definition is defined as a non-recursive Horn clause with the following format:

Head < Dy,Ds,...,D,, Fi,F>, ..., F,. (5.1)
where,

e Head is the head of the pattern definition. Instantiations of the head
are regarded as the patterns recognised by the system.

e The D;s are “input” predicates used to describe positions (e.g., con-
tents/4) and represent the pieces which are involved in the pattern.

e The Fjs are instances of definitions which are either provided as back-
ground knowledge or learned by PAL, and represent the conditions
(relations between pieces and places) to be satisfied by the pattern.

2A clash is said to occur if two or more examples are described with the same attribute
values but with different class values.

CHAPTER 5. PAL o7

PAL starts with some pattern definitions and incrementally learns new pat-
terns from descriptions of Chess positions. Details of how a particular pattern
is constructed from these descriptions are given in section 5.2.

A uniform representation language is used for the hypotheses and the
background knowledge, thus previously learned concepts are immediately
accessible to the system without requiring any transformation process.

5.1.3 Generalisation method

PAL is a bottom-up learning system which starts with a very specialised
concept definition and gradually generalises it with new examples. Its gener-
alisation method is based on the rlgg algorithm suggested by Buntine [Bun88]
and discussed in chapter 4. PAL uses a restricted background knowledge rep-
resentation, such that given a finite number of pieces and pattern definitions,
only a finite number of facts can be derived from them. Additional heuristics
are used to limit the size of the hypotheses and increase the generalisation
steps. Details are given in section 5.2.

5.1.4 Algorithm

An outline of the algorithm used by PAL can now be described. Given a set
of background knowledge definitions (pattern definitions) and a description
of a Chess position (a set of ground unit clauses), PAL constructs an initial
clause with facts (instance of patterns) derived from the example description
and the background knowledge definitions. An automatic example generator
is used to provide new examples (validated by the user) until a termination
criterion is met. Each new positive example is used to derive new facts from
the background knowledge and construct a new clause. General descriptions
of pattern definitions are constructed by following a generalisation process
between clauses. The basic algorithm is outlined in Table 5.1 and illustrated
in Figure 5.1. A more detailed description of PAL is given in the sections
to follow. In particular, section 5.2 discusses how to construct a clause from
an example description and the pattern definitions and how to generalise
between two clauses, and section 5.3 describes how to automatically generate
new examples.

CHAPTER 5. PAL

given:
e background knowledge definitions (BK)
e a description of a Chess position (EX1)

construct an initial definition (Defn) with facts derived
from BK and EX1

while a stopping criterion is not met
generate a new example description (NFEz)
if the example is positive
construct a new definition (NDefn) with facts derived
from BK and NEz
Set Defn = generalisation between Defn and NDefn
else continue
output Defn

Table 5.1: PAL algorithm

Example Background . H ‘

Knowledge xample
Current New
Definition Definition

/

Generalise

Figure 5.1: Outline of the algorithm

o8

CHAPTER 5. PAL 99

Figure 5.2: Example position

5.1.4.1 An example case

First, a realistic case, outside the scope of current ILP systems®, is presented
to illustrate the system’s behaviour. PAL uses the following primitive repre-
sentation. Positions are described by contents(Side, Piece,square(File, Rank),Pos)
atoms, where Side is white or black, Piece is pawn, knight, bishop, rook,
queen, or king, square/2 represents the position of each piece, where File
and Rank are 1,2,..., or 8, and Pos is the example position?. Suppose that
we want to learn the definition of a special kind of fork in Chess, where a
piece is threatening another piece and at the same time checking a King.
PAL is provided with a description of a position where this kind of pattern
exists, but it is not told what the concept to learn is or which are the rele-
vant arguments of the target definition. If the initial example is described as
follows (this is illustrated in Figure 5.2):

contents(black king,square(3,4),posl).
contents(black,queen,square(3,6),posl).
contents(white,king,square(6,7),pos1).
contents(white,knight,square(1,5),pos1).

and the background vocabulary consists of:

3The applicability of systems like Golem and Foil will be further discussed in chapter 6.
40ther representations can be used, some of which are given in chapter 6.

CHAPTER 5. PAL 60

contents(Side, Piece, Place, Pos):

Describes the position of each piece in a position.
sliding_piece(Piece, Place, Pos):

Piece in Place is Queen, Rook or Bishop.
other_side(Side1,Side2):

Sidel is the opponent side of Side2.
legal_move(Side, Piece, Place, NPlace, Pos):

Piece in Place can move to NPlace.
in_check(Side, Place, OPiece,OPlace, Pos):

King in Place is in check by OPiece in OPlace.

PAL uses the example description with the above background vocabulary
to derive (recognise) a set of atoms (patterns) and construct a plausible
definition. Background definitions, either provided by the user or learned
by PAL, assume that there is an implicit example description. For instance,
consider the following definition of in_check/5° (a complete description of all
the background knowledge definitions is given in appendix G):

in_check(Side,KPlace,OPiece,OPlace,Pos) <+
contents(Side king, KPlace,Pos),
contents(OSide,OPiece,OPlace,Pos),
other_side(Side,OSide),
piece_move(OSide,OPiece,OPlace,KPlace,Pos)

This definition gets instantiated only if there is an example description with
a King at KPlace and an opponent’s piece OPiece at OPlace with a piece
move to KPlace. This will be further discussed in section 5.2.2.

Given the above example description and background vocabulary, PAL
constructs the following initial plausible definition® (for presentation pur-
poses, we have adopted the following notation: bl = black, wh = white, and
square(X,Y) = (X,Y)):

5Background knowledge definitions can include predefined predicates, such as
piece_move in the definition of in_check. The user informs PAL which predicates are
considered to be relevant with a list of predicate names, i.e., from which background
knowledge definitions to derive a set of atoms.

6The complete clause consists of 22 literals in total, with 2 more contents/4 literals
and 11 more legal_move/5 literals between the white Knight, white King and black King.

CHAPTER 5. PAL 61

concept (bl king,(3,4),bl,queen,(3,6),wh, king,(6,7),wh,knight,(1,5),pos1) <«
contents(bl king,(3,4),pos1),
contents(wh king,(6,7),posl),

other_side(bl,wh),
other_side(wh,bl),
sliding_piece(queen,(3,6),posl),
in_check(bl,(3,4),knight,(1,5),pos1),
legal move(bl king,(3,4),(4,5),pos1),

legal move(wh,king,(6,7),(7,8),pos1),

legal move(wh,knight,(1,5),(2,7),posl),

PAL then follows an experimentation process by automatically generating
examples (validated by the user) from which other facts are deduced and
similar definitions constructed. Following a generalisation process between
definitions, eventually PAL recognises that one King is irrelevant to the con-
cept and arrives at the definition given below after generating 22 positive
and 67 negative examples.

concept(S1,king,(X1,Y1),51,P2,(X2,Y2),52,P3,(X3,Y3),Pos) +
contents(S1,king,(X1,Y1),Pos),
contents(S1,P2,(X2,Y2),Pos),
contents(S2,P3,(X3,Y3),Pos),
other_side(S1,52),
in_check(S1,(X1,Y1),P3,(X3,Y3),Pos),
legal move(S2,P3,(X3,Y3),(X2,Y2),Pos).

The above definition says that there is a fork if there is an example description
(Pos) where a piece P3, in square(X3,Y3), checks the opponent’s King at
square(X1,Y1) and threatens at the same time piece P2 in square(X2,Y?2).
The next section, describes how PAL constructs pattern definitions from
example descriptions and how it generalises between definitions.

CHAPTER 5. PAL 62

5.2 The generalisation method

Chapter 4 describes a model of generalisation, based on subsumption, be-
tween Horn clauses, and presents Buntine’s method for constructing the rel-
ative least general generalisation or rlgg of two clauses. A plausible learning
algorithm is first described following Buntine’s method. Heuristics are then
introduced to limit the size of the hypotheses and increase the generalisation
steps followed by the algorithm. Finally the generalisation algorithm used
by PAL is summarised with these heuristics.

5.2.1 Rlgg of clauses

Buntine suggested a method for constructing the relative least general gen-
eralisation (rlgg) of two clauses [Bun88| (see also section 4.3). His method
can be extended to a set of clauses. Let C, Cy, ..., C, be a set of clauses
with disjoint variables and K a logic program. For 1 < i < n, let 6,; be
a substitution grounding the variables of the head of clause C; to new con-
stants and 0, » grounding the remaining variables in C; to new constants. If
lggic(Cy, Cy, . .., Cy) exists, it is equivalent w.r.t. K to the lgg(C], C5, ..., CV),
where for 1 < i <n,

Oz, = Ciei,l U {_‘Ai,lu _|Ai’2, .. } (52)

where K A Cipoayti10i2 = Aik, Aik is a ground atom, and the A; ;s are all
the possible ground atoms deduced from the theory. Equation 5.2 can be
rewritten as:

C{ = Cineadi1 < Civoayli1, Aig, Aia, - - (5.3)
Let the resulting least general generalisation of N clauses be denoted as:
GC(n) =1gg(C1,C5, ..., CL).

Since 1gg(C1, Cy, ..., Cy) = lgg(CY,1gg9(Cs, .., 1gg(C,_1, Cy) . ..)) [PloT1b],
then,

GC(n) =1lgg(Cl,GC(n —1)).

This can be used for constructing the rlgg of a set of clauses. If a set of
examples is described with a set of clauses, this can form the basis of a
learning algorithm whose target definition is the rlgg of these examples (see

CHAPTER 5. PAL 63

Table 5.2). In particular, a learning algorithm can accept a new example,
construct a clause with it and atoms derived from the background knowledge
(logic program), and gradually generalise the clause by taking lggs of this
clause and subsequent clauses constructed from new examples until meeting a
termination criterion. PAL’s learning algorithm is based on this framework”.
A direct implementation of it is impractical for all but the simplest cases, as
it essentially involves the deduction of all ground atoms logically implied by
the theory. However, the rigg exists if a finite number of ground atoms are
a logical consequence of the theory.

5.2.2 Knowledge representation: Producing only rele-
vant facts

This section introduces constraints which produce a limited set of relevant
facts from the background knowledge and the example description. An ex-
ample in PAL, is specified by a set of ground unit clauses, representing the
position of each piece in the board. PAL uses an example description to
derive (recognise) a set of facts (instances of patterns) from its background
knowledge (pattern definitions). In PAL, the background knowledge is en-
coded as pattern definitions, within a restricted form of non-recursive Horn
clauses. Each time an example description is given to the system the follow-
ing ground clause is constructed:

Head(—Dl,Dg,...,Dn,Fl,F2,...,Fm8. (54)
where,

e [ead is a ground atom constructed with the arguments used to describe
the example (see below).

e The D;s are the “input” predicates used to describe the position.

e The Fjs are ground instances of pattern definitions which are either
provided as background knowledge or learned by PAL (which are de-
rived from the background knowledge and the example description).

"The reader may wish to compare at this point Table 5.1 and Table 5.2.

8Roughly, the D;’s and F;’s of Equation 5.4 correspond to the Ctoqy, and the Ay’s of
Equation 5.3. Note also that Equation 5.3 is simplified by considering the examples as
ground clauses.

CHAPTER 5. PAL

e given:

— a logic program (K)
— a set of example clauses with disjoint variables (SC)
e Take an example clause (C) from SC. Let 6;; be a sub-
stitution grounding the variables in the head of C) to new

constants and 6; o grounding the remaining variables to new
constants

e Construct a new clause (NC') defined as:
NC = 019171 U {ﬁAl,la _\ALQ, .. } where
I A Chvodyb116012 = A, and Aq; is a ground atom

e Set SC= SC —{C}
e while SC # {0}

— Take a new example clause (C;) from SC. Let 6;; be
a substitution grounding the variables in the head of
C; to new constants, and 0;, grounding the remaining
variables to new constants

— Construct a new clause (C?) defined as:
CJ/ = Cjej,l U {ﬁAj,ly _|Aj72, .. } where
IC A Chriodytiibj2 = Ajr and Ak is a ground atom

— Set NC = Igg(C},NC)
— Set SC = SC —{C;}

e output NC

Table 5.2: A plausible rlgg algorithm for a set of example clauses

64

CHAPTER 5. PAL 65

Clause definitions assume that there is an implicit example description. This
is more clearly explained below.

5.2.2.1 Determining the clause head

Unlike other systems, descriptions of board positions provided as ground unit
clauses constitute valid example presentations of the target concept. Since
they do not specify exactly which are the relevant arguments of the target
definition, a “tentative” concept head is initially constructed with a new
predicate name with all the arguments used in the example description. In
the example of section 5.1 this corresponds to “concept” with all the argu-
ments used in the contents/4 atoms (where, arguments([foo(X,b),foo(a,Y)])
= [X,b,a,Y]). The initial head, in conjunction with the facts derived from the
background knowledge with the example description, constitutes an initial
concept clause. This clause is gradually generalised by taking the lgg of it
and clauses constructed from other example descriptions. Once a generali-
sation is produced, heuristics are used to reduce the size of the clause and
the number of arguments used in the head. Descriptions of pieces which
are removed from the concept definition (and therefore, from the concept’s
head) are considered as irrelevant to the definition. The heuristics used to
determine which pieces are relevant and which irrelevant will be described in
section 5.2.3.

New heads, compatible with the current concept head, are constructed
from subsequent examples by considering only the arguments of the descrip-
tions of the relevant pieces (see Table 5.3). Once a concept clause has been
constructed, the concept head is augmented with new arguments which ap-
pear in the body of the clause. This will be explained in Table 5.4 where the
learning algorithm is fully described®.

The arguments which appear in the concept definition, other than the
position (Pos), can be used to show exactly which pieces are involved in
future instantiations of the pattern. For example, after learning the concept
of threat, knowing that a white Knight at file 1 and rank 5 threatens a black
Queen at file 3 and rank 6 in a particular position, can be used by a planning
system to suggest a move. This is more informative to a planning system
than knowing only that there is a threat in a position. By not using a pre-
defined concept head, a more natural way in which to represent examples

9 Appendix A shows a trace of the generalisation process involved when learning a Chess
concept.

CHAPTER 5. PAL 66

given:
an example description (Dy).
set Current-Head = concept(Ay, As, ..., A,), where
concept is a new predicate name and
Ay, ..., A, = arguments(Dy)

while termination criterion is not met
accept a new example description (D)
set D. = relevant-pieces(D;)
set Head; = concept(Ay, As, ..., Ay), where
Ay, ..., Ay = arguments(D5)
set NHead = generalisation(Head;, Current-Head)
set Current-Head = reduce(NHead)

Table 5.3: Determining the head of the clause

can be provided which does not depend on the user’s knowledge of the final
form of the target definition.

5.2.2.2 Determining the body of the clause

Even with a finite theory for Chess, the large number of plausible facts deriv-
able from it, makes the finiteness irrelevant in practice (e.g., consider all the
possible legal moves of the pieces in Chess). We want to consider only those
facts which are relevant to a particular position (e.g., only the legal moves
of a particular Chess position). A fact F' is relevant to example descrip-
tion D if at least one of the ground atoms of D occurs in the derivation
of F. Background definitions given as ground unit clauses are also consid-
ered as relevant. PAL only considers facts which are relevant to the example
description.

The background knowledge definitions used by PAL assume that there is
an implicit example description. The representation language used for the
background definitions facilitates the derivation of relevant facts. For exam-
ple, the pattern definition of in_check, given in section 5.1, gets instantiated
only with descriptions of Chess positions where there is a King at KPlace
and an opponent’s piece OPiece at OPlace with a piece move to KPlace.

PAL uses the current example description (the D;s) in conjunction with

CHAPTER 5. PAL 67

the current background knowledge to derive a set of relevant facts (the Fjs).
Both, the D;s and the Fjs constitute the body of the clause for the cur-
rent example description. The pattern definitions used in the example of
section 5.1 are, sliding_piece/3, other_side/2, legal_move/5, and in_check /5
(some of their instances are shown in the example). Roughly, the D;s repre-
sent which pieces are involved in a particular pattern, while the Fjs are the
conditions that those pieces must satisfy for the pattern to be recognised.
As non-ground background definitions follow the format of Equation 5.4,
only a finite number of relevant facts can be deduced from the background
definitions and a particular position.

All the pattern definitions which are available to the system are used to
derive a set of relevant facts. Each new example description replaces any
previous example descriptions. Depending on the pattern definitions and
on the particular board description, PAL is able to derive more or fewer
ground atoms. Once a pattern definition is learned, it is included into the
background knowledge and can be used to learn subsequent concepts.

5.2.2.3 Dynamic patterns

Chase and Simon suggest that the correlation between perceptual skill and
Chess skill can be accounted for by assuming that many Chess patterns are
directly associated with appropriate plausible moves [CS88]. Similarly, PAL
can learn pattern definitions which are associated with a particular move.
Only one move ahead is considered during the learning process; however,
once a pattern is learned, it can be used to learn other patterns as well.
Make_move is a predicate that changes the current state of the board
description. The make_move predicate defines 1-ply moves. Instantiations
of this predicate represent the different possible 1-ply movements. The
make_move predicate has a similar format as the legal_move/5 predicate,
except that it makes sure that the opponent’s King is not in check before
the actual movement is performed, it has an extra argument and it is used
to change descriptions of positions (the background knowledge definitions of
legal_move and make_move are given in appendix G). For instance,

make_move(white,king,square(1,2),square(2,3),pos1,pos2)

represents a movement of the white King from one place to another chang-
ing the current description of the board from position 1 (pos!) to position 2
(pos2) (i.e., creating a new state description with contents(white,king,square(2,3),pos2)

CHAPTER 5. PAL 68

in it). To constrain the production of moves, only moves which involve at
least one of the pieces in the example description and only 1-ply ahead are
considered.

A pattern is static if it does not depend on make_move. PAL produces
clauses as described in Equation 5.4 above for static patterns. A pattern is
dynamic if it has at least one instance of the make_move predicate. To learn
dynamic patterns the actual movement of a piece is performed (changing the
description of the board) and new patterns (ground atoms) are generated
(deduced) after each move. The user can specify if the pattern to be learned
is static or dynamic. The following clause is produced for dynamic patterns:

Head <+
Dy, Ds, ..., Dy,
L F, .. F,,
MV, Fia, Fig, ..o Fig,
MVy, Fyq, Foo, ... Fyy,

MVF7FT',17F7‘,27"'7FTS' (55>

)

where,

e MYV, is an instance of the make_move predicate representing a legal
move with the opponent’s side not in check, and the F; ;’s are instances
of pattern definitions that change as a consequence of the move.

If a new predicate name appears/disappears after a move, its complement is
added before/after the move!?. For example, the following definition tests for
a possible capture of a piece in Chess. The definition of threat /7 given below,
was learned by PAL after generating 23 positive and 8 negative examples.

threat(S1,P1,(X1,Y1),52,P2,(X2,Y2),Posl) «
contents(S1,P1,(X1,Y1),Posl),
contents(S2,P2,(X2,Y2),Posl),
other_side(S2,51),
make _move(S1,P1,(X1,Y1),(X2,Y2),Pos1,Pos2),
— contents(S2,P2,(X2,Y2),Pos2).

10The complement of P is =P and vice versa.

CHAPTER 5. PAL 69

Its interpretation is that a piece P2 is being threatened if it can be captured
by another piece (P1). Similarly, the following definition tests for possible
checks involving one move. The 1-ply check definition, given below, was
learned by PAL using the definition of in_check given in section 5.1 after
generating 20 positive and 18 negative examples. Its interpretation is that a
piece P1 (not checking a King) can check the opponent’s King after moving
to a new place (X3,Y3) (more examples are given in chapter 6).

can_check(S1,P1,(X1,Y1),S2 king,(X2,Y2),(X3,Y3),Posl) <«
contents(S1,P1,(X1,Y1),Posl),
contents(S2 king,(X2,Y2),Posl),
other_side(51,52),
= in_check(S2,(X2,Y2),P1,(X1,Y1),Posl),
make_move(S1,P1,(X1,Y1),(X3,Y3),Posl,Pos2),
in_check(S2,(X2,Y2),P1,(X3,Y3),Pos2).

5.2.3 Other constraints and heuristics

As seen in chapter 4, the lgg algorithm produces very small generalisation
steps and can generate a large number of literals. PAL uses the following
constraints and heuristics to limit the length of the clauses and remove re-
dundant literals.

5.2.3.1 Variable connection

A variable is connected to a literal, if it is equal to a variable of that literal.
A variable connection constraint is used to reduce the number of arguments
in the head of the clause and the number of literals involved.

e Variable head arguments which are not connected to literals in the body
of the clause (other than the input predicates or D;s) are removed from
the definition.

e Body literals with variable arguments that are not connected to other
variables in the body of the clause are eliminated from the definition!!.

" There is only one exception to this, when a move predicate is made to a place which
is ‘unconnected’, but which is followed by new connected predicates.

CHAPTER 5. PAL 70

Disallowing unconnected variables is a natural restriction which has been
used by other ILP systems (e.g., [ARB88, MF90, Rou91]). Pattern defini-
tions express different relations between pieces and places in the board. The
variable connection constraint removes those literals which are not connected
(related) to any other literal in the clause. Input predicates (D;s) with vari-
able arguments in their position that are not connected to the body of the
clause are considered as irrelevant and removed from the concept definition.
For instance, the following is an example of an unconnected clause:

married(X) < husband(X,Y).

Allowing unconnected variables in the body of the clause can produce a
very large number of literals many of which may be redundant. Controlling
such explosive generation of literals by allowing some unconnected variables
is not easy. Without this constraint, several authors have reported clauses
of thousands of literals long for very simple concepts (e.g., [Bun88, Fen90,
MF90]). In particular, Rouveirol [Rou91] reports how a clause of 1,100 literals
is reduced to 70 literals using this constraint for a simple concept.

5.2.3.2 A novel and powerful constraint

The variable connection constraint can make big reductions in the length of
the clauses after the lgg has been computed, however, there can still remain
many redundant literals. In particular, the lgg of two clauses can introduce
a large number of redundant literals by taking the lgg of compatible literals
that refer to different objects.

A Chess pattern consists of a set of relations between pieces. Given
two positions which are instances of the same pattern we can identify a
correspondence between pieces in the two positions. For example, when the
pattern is threat, there is a piece A threatening a piece B in each position.
The fact that we can form this correspondence provides a constraint for the
generalisation mechanism.

Our solution for implementing this constraint is to label every constant
occurring in the atoms used to describe positions and to keep those labels
during the derivation process. By keeping track of which pieces are responsi-
ble for which literals, we can eliminate all the generalisations between literals
involving different pieces. This is a novel and powerful constraint which can
produce significant cuts in the production of irrelevant literals. A simple
example is used to illustrate this.

CHAPTER 5. PAL 71

The lgg algorithm methodically produces the lgg of compatible literals,
starting with the heads of the clauses and progressively moving towards the
end of the clauses. The constants occurring in the example description, from
which all the literals are derived, are labeled with unique constant symbols.
For instance, if we have an example position with two pieces:

contents(wh,bishop,(2,3),posl) — contents(wh,,bishopg, (2+,35),posl)
contents(blknight,(1,5),posl) ~— contents(bl, knighty, (1,,5,),posl)

unique labels, ie., a, B, v, ... are associated with each constant of the
example description. These labels are kept during the derivation of each
fact from the background knowledge. For example, if we have the pattern
definition of legal_move, we can have:

contents(wh,, bishopg, (2,,35), posl)
contents(bl,, knighty, (1,,5,), posl)
legal_move(wh,, bishopg, (2+,35), (6,7), posl)

legal_move(bl,, knighty, (1,,
legal_move(bl,, knight,, (1,,

5,), (24,3s), posl)

55), (3,6), posl)

where the labels associated with the arguments of the atom describing a
particular piece are kept during the derivation proofs of relevant facts which
involve those labelled constants. The derivation process might involve several
atoms (descriptions of several pieces). For instance, the legal move of the
black Knight into the place of the white Bishop in the example above. In
this way the system can distinguish which piece(s) is(are) “responsible” for
which facts by following the labels in the clause.

Significant cuts in the production of irrelevant literals can be made by
using the labels to guide and constrain the lgg of compatible literals. If
the example generator (described in section 5.3) changes the white Bishop
at square(2,3) to a black Pawn at square(5,6), and the black Knight in
square(1,5) to a white Bishop at square(4,7), then PAL produces a new clause
but maintains the corresponding labels of the first position (see Figure 5.3).

contents(bl,, pawng, (5,,65), pos2)
contents(wh,,, bishopy, (4,,7,), pos2)

CHAPTER 5. PAL 72

Piece1 = white bishop at(2,3)/black pawn at(5,6)
Piece2 = black knight at(1,5)/white bishop at(4,7)

Figure 5.3: The ‘O’ and ‘X’ represent the associated labels that are used to
distinguish each piece description (i.e., a, 3, ...).

legal_move(bl,, pawng, (5,,6s), (5,5), pos2)

o)y (5y,65), pos2)
o)s (3,6), pos2)

legal_move(wh,,, bishopy, (4,,7
legal_move(wh,,, bishopy, (4,,7
The labels used in the first position for the first piece are associated with the
first piece of the second example. The example generator knows which pieces
are changed and associates their corresponding labels'?. The lgg between
compatible literals is guided by the associated labels to produce a smaller
number of literals as lggs are produced only between compatible literals with
common labels. In the example above, the lggs between legal moves of the
white Bishop in the first position (9 literals) will be taken only with the legal
moves of the black Pawn in the second position (1 literal). Similarly for the
rest of the compatible literals of the clauses. A simple matching procedure
is employed to do this; lggs of compatible predicates with different labels are
not considered. The resulting clause is:

contents(S1,, Plg, (X1,,Y1s), Pos)
contents(S2,, P2y, (X2,,Y2,), Pos)
legal_move(S1,, Plg, (X1,,Y1s), (X3,Y3), Pos)

12Examples which are manually provided or selected at random required that the pieces
are presented in the same order. Examples are given in chapter 6.

CHAPTER 5. PAL 73

legal_move(S2,, P2y, (X2,,Y2,), (X1,,Y1s), Pos)
legal_move(S2,, P2y, (X2,,Y2,), (3,6), Pos)

If variable arguments X3 and Y3 in one of the above literals are not
connected to any other variable in the clause, this literal is eliminated by the
variable connection constraint.

The labels are also used to distinguish between relevant and irrelevant
(i.e., unconnected) atoms to construct appropriate compatible heads (see
section 5.2.2).

What are we leaving out?

Without this constraint the lgg algorithm considers generalisations be-
tween predicates that involve different pieces. This is equivalent to consider
generalisations that result from switching the pieces in the board. On the
other hand, this constraint can produce a large reduction in the length of
the clauses. In the above example, Piecel has nine legal moves in the first
position and one in the second, while Piece2 has four legal moves in the first
position and six in the second. The [gg algorithm without labels produces
91 literals for the legal move predicate (i.e., (9 + 4) x (6 + 1)). With labels
it produces 33 (9 x 1 + 6 x 4). In general, the lgg algorithm can produce
clauses of length N? for two clauses with N compatible literals. Lets say we
have N compatible literals (such as legal moves) from three different pieces
P1, P2, and P3, that can be split as follows N = N; + Ny + N3 (where
N; is the number of literals of piece Pi for ¢ = 1,2,3). If we have another
example with the same number of compatible literals for the same pieces, the
lgg algorithm produces a clause of length (N; + Ny + N3)?, while lgg with
labels produce a clause of length N7 + NJ + NZ.

5.2.3.3 Restricted moves

Considering all the possible facts that change after each possible move can
produce very long clauses (e.g., consider all the possible new legal moves that
can be generated after all the 1-ply moves of all the pieces). To constrain
this, only those moves which introduce a new predicate name or remove an
existing predicate name are added to the clause (see for example the defini-
tions of threat and can_check given above). Concepts where this constraint is

CHAPTER 5. PAL 74

partially relaxed and its consequences to the efficiency of PAL, are discussed
in chapter 7.

5.2.4 The generalisation algorithm

Table 5.4 summarises the generalisation algorithm!®. It has been able to
learn concepts like forks, threats, pins, skewers, discovered checks/attacks,
etc. (results are given in chapter 6). Examples are given as descriptions of
Chess positions. The background knowledge is described as pattern-based
definitions from which only a finite number of relevant facts can be derived
given an example description. Unique labels associated with the description
of each piece are used to guide the lgg between clauses, reduce the length
of the clauses, and avoid the production of irrelevant literals which normally
occur with an lgg algorithm. The user can inform the system whether the
concept to learn is dynamic or static, although static patterns can be learned
starting from dynamic definitions. In the next section an automatic example
generator, which is used to guide the learning process, is described.

5.3 Automatic example generator: A learn-
ing mechanism

An important component in the characterisation of an inference method is
its example presentation. It is generally believed that a “careful” experiment
selection is more effective for concept formation than a random experiment
selection. In many inductive systems, the examples are provided by the user.
The examples can be given interactively or in a batch mode. In an interactive
presentation, examples are often carefully selected by the user to achieve the
desired results (e.g., [MB88, Rou91l, SB86, Win85]). Unfortunately in some
such cases, the system will fail to produce the required concept if it is provided
with another selection of examples or even with the same examples but in a
different sequence. For instance, a system like Cigol [MB88| will produce the
following generalisations if presented with the following sequence of examples
(where => means the generalisations produced by Cigol):

(1) member(a,[a]).

13A simplified Prolog implementation of the algorithm is given in appendix H.

CHAPTER 5. PAL

I0)

given:
e a description of a Chess board position D,

e a set of pattern definitions 7' (domain theory)

construct an initial clause Current-Clause = Head; <— Body,, where
Head, = concept(Ay, As, ..., Ay),
concept is a new predicate name, and
Ay, ..., Ay = arguments(D)
Body, = all possible relevant facts derivable from T'U Dy

while new example descriptions are provided
accept a new Chess board description D;
set D = relevant-pieces(D;)
construct a new clause Clause; = Head; < Body;, where
Head; = concept(Aq, As, ..., A,) and
Ay, ..., Ay = arguments(D))
Body; = all possible relevant facts derivable
from T'U D;

set NClause = lgg(Current-Clause, Clause;) [considering labels]
set Current-Clause = Current-Head < Current-Body =
resulting clause after applying variable connection
constraints to NClause
output Output-Head < Current-Body, where
Output-Head = concept(Ay, ..., Aj, Aji, ..., Ay),
Ay, ..., A; = arguments(Current-Head), and
A, ..., A, = arguments(Current-Body) not present in
Current-Head.

Table 5.4: Chess generalisation algorithm

CHAPTER 5. PAL 76

(2) member(1,[1,2]).
(3) member(f,[f,g,h]).

(3’) => member(A,[A|B]). (removes (1), (2), (3))

(4) member(1,[1]). (removed by (3’)

(5) member(1,[2,1,3]).

(6) member(a,[b,a,c,d]).

(6’) => member(A,[B,A,C|D]). (removes (5), (6))

(7) member(1,[3,2,1,4]).

(8) member(b,[c,d,b,e,f]).

(8”) => member(A,[B,C,A,D|E]). (removes (7) (8))

(8”) => member(A,[B|C]) :— member(A,C). (removes (6’) (8"))

Which ends with the final definition of member:

member(A [A|B]).
member(A,[B|C]) :— member(A,C).

However, if the fourth example is given at the beginning,

(1) member(a,[a]).
(4) member(1,[1]).

Cigol produces,
(1’) => member(A,[A]).

which, unless it is rejected by the user, will produce with the rest of the
examples:

member(1,[1,2]).

member(f,[f,g,h]).

member(A,[A]).

member(A,[B|C]) :— member(A,C).
member(A,[B,A,C|D]).

The “closest” we can get to the intended definition, once the first clause is
accepted, is the following program (again by choosing an adequate sequence
of examples):

CHAPTER 5. PAL 77

member(A[A]).

member(A,[A,B]).

member(A [A,B,C|D]).
member(A,[B|C]) :— member(A,C).
member(A,[B,A,C|D]).

In general, it may be difficult to choose the right examples in the right order
and it is difficult to determine the robustness of the system with user-selected
examples.

Providing examples in batch mode usually requires the user to collect
a fixed (preferably large) set of examples. Providing such a set can be a
difficult task and it is not easy to know in advance if the system will learn
the concept with such a set. Failing to provide an adequate example set
results in incomplete and/or incorrect definitions (for which the user has to
provide additional examples). Usually, a long process of analying why the
system failed with the provided examples and the provision of new examples
needs to be followed in order to correct the system’s behaviour.

An automatic example generator can reduce the requirement on the user
to collect examples and at the same time guide the learning process. Sec-
tion 4.4.2 reviewed some automatic example generators. In this section, a
general framework for describing the example space is first discussed. Then,
the strategy to generate examples based on the concept definition is de-
scribed. Finally, the particular strategy followed by PAL to traverse the
example space based on “perturbations” is given.

5.3.1 A framework for describing the example space

Just as structuring the hypothesis space can be crucial for concept learning
to take place efficiently, so does the example space need to be structured for
designing an efficient example generator. In a concept learning algorithm,
the example space depends on the number of arguments required to describe
an instance of the target concept and on the size of their domains. If an
example can be described by instantiating a particular number of arguments,
the example space is defined by all the examples that can be generated by
changing or ‘perturbing’ the values of such arguments.

A perturbation class is defined as the set of instances that can be gen-
erated by changing only the values of some specified arguments. Similarly,
a perturbation level represents all the instances that can be generated by

CHAPTER 5. PAL 78

1 {P1,L1,P2,L2}
3 {p1,11,P2} {P1,L1,L2} {P1,P2,L2} {L1,P2,L2}
2 {p1,L1}y {p1,P2} {P1,L2} {L1,P2} {L1,L2} {P2,L2}

1 {p1} {1} {P2} {L2}

Figure 5.4: Perturbation space

changing the values of a certain number of arguments. A generator is de-
fined as a unique constant symbol used to distinguish each argument of the
definition and which provides a link between an argument and its domain.

New examples are generated by “perturbing” (changing) the values of the
arguments that the generators refer to. If an example can be described by
instantiating N arguments, the example space can be distributed among N
perturbation levels with 2V — 1 different perturbation classes. For example,
if an instance of the concept of threat between two pieces is described with
four arguments, with P1, L1, P2, and L2 as generators (meaning that piece
P1 in place L1 threatens piece P2 in position L2), the perturbation space can
be structured in four levels (see Figure 5.4).

For example, the second perturbation level of Figure 5.4 represents all the
classes of examples that can be generated by changing any two arguments
at the same time (i.e., {P1,L1}, {P1,P2}, ...). At each perturbation class,
D; x D; x...x D, examples can be generated, where each Dy, is a particular
argument domain at that class. For instance, the perturbation class {L1,P2}
represents the class of examples that can be generated by changing the po-
sition of the attacking piece L1 and the piece which is being threatened P2.
If the following domain information is given to the system:

domain(piece, [pawn, knight, bishop, rook, queen, king]).
domain(place, [square(1,1),square(1,2), ..., square(8,8)]).

then the place of the attacking piece can be changed to 63 different posi-
tions and the piece being attacked can be changed for 5 new different pieces.
Clearly the example space grows exponentially with the number of arguments
involved.

CHAPTER 5. PAL 79

Several domain constraints can be applied to reduce this space. In par-
ticular, not all the perturbations generate legal examples. For instance, the
first and last ranks can be eliminated from the domain of the positions of
the Pawns. Knowing that any legal position must contain two and only two
Kings (one on each side) can be used to constrain the domains of the possible
values for the pieces and avoid changing sides of one King without chang-
ing the other, etc. Despite these constraints, the example space can still be
huge (e.g., two Kings alone can be in 3612 different legal positions, which
corresponds to a perturbation class at level 2).

Given the above framework for organising the example space, the gener-
ation of examples is affected by the definition of two main strategies. One is
concerned with how to select examples from a particular perturbation class.
The adopted strategy is based on the current concept definition and is de-
scribed in the next section. The other strategy defines the way in which
to traverse the example space (i.e., which perturbation levels and classes to
consider first). This is discussed in section 5.3.3.

5.3.2 An example selection strategy

Structuring the example space can help us to design a particular strategy in
which to traverse the space, however, we would like to “intelligently” select
values from each perturbation class. PAL’s example selection strategy is
guided by the current concept definition. Given a concept definition and a
perturbation class, new examples are generated by selecting values from the
domains of the arguments involved in the class.

A failure set for an example description is defined as the literals in the
current clause that are not provable given the background knowledge and
the current example description. Similarly, the success set for an example
description is defined as the literals in the current clause that are provable
from the background knowledge and the current example description. The
goal is to generate an example that will fail on at least one of the literals of
the current concept clause of the definition (i.e., produce a non-empty failure
set). The reason being that it may be a positive example (all the examples
are validated by the user) that should be covered by the target clause (i.e.,
the strategy is looking for plausible generalisations of the current clause). If
the example is positive, it is given to the generalisation algorithm described
in section 5.2 and a new generalised definition is produced.

If the example is classified (by the user) as negative, the example selection

CHAPTER 5. PAL 80

strategy takes the failure set and tries to construct a new example that will
succeed on at least one of the literals of the failure set (i.e., tries to generate
a non-empty success set for the failure set). This is because the failure set
must have at least one literal relevant to the target clause. Removing the
failure set from the definition would produce an overgeneralisation, so the
strategy is looking for a plausible specialisation of that over-general clause.

Domain knowledge is used to generate only legal positions. The strategy
maintains a list of all the generated examples to avoid generating duplicates.
It also keeps a list of the failure/success sets for each definition, to avoid
generating different examples that will fail/succeed on the same sets. If no
new examples can be generated to fail/succeed on different sets of the same
concept definition (i.e., it has finished exploring a perturbation class), the
strategy waits for the next perturbation class (see Table 5.5).

For instance, following the example of fork described in section 5.1 (black
King at square(3,4), black Queen at square(3,6), white King at square(6,7),
and white Knight at square(1,5)), the position of the white King can be
changed from square(6,7) to square(1,7), causing the following literal to fail
(among others);

legal move(white,king,square(1,7),square(7,8),posl).

This produces a new positive example and eventually a new generalisa-
tion. However, if the position of the Knight is changed from square(1,5)
to square(2,5), although it fails on several literals (i.e., has a non-empty fail-
ure set), it produces a negative example. The strategy checks which literals
failed on that example and tries to find a place that will succeed on at least
one of them (e.g., square(5,5)). Similarly, replacing the Knight for another
piece fails on several literals and produces a negative example. However,
changing the Knight to any other piece produces the same failures. The
strategy realises that it cannot produce a positive example by changing ex-
clusively the Knight with another piece (i.e., it cannot produce a non-empty
success set) and continues with the next perturbation class.

The strategy in which the perturbation classes are given to the example
selection strategy is described in the next section. The complete algorithm
involving both strategies is summarised in Table 5.7.

CHAPTER 5. PAL

given:

e domain values for the arguments used in the example descrip-
tion

e a perturbation class

e a concept clause (Defn)

while making sure that duplicate examples, or examples with the
same failure set are not generated,
generate an example such that:
failure-set(Defn) # {0} and show it to the user
if the example is accepted by the user (positive), exit
else if the example is rejected by the user (negative),
set NegDefn = failure-set(Defn)
while making sure that duplicate examples or examples with
the same success set are not generated,
generate an example such that:
success-set(NegDefn) # {0} and show it to the user
if the example is accepted by the user (positive), exit
else if the example is rejected by the user (negative),
continue

Table 5.5: Example selection strategy

81

CHAPTER 5. PAL 82

5.3.3 An experimentation strategy

So far, we have seen how to structure the example space into perturbation
classes and how to generate new examples from each class guided by the
concept definition. This section describes the strategy which has been fol-
lowed to traverse the example space. In PAL, experiments involving the
minimum number of “changes” are performed first. That is, perturbation
classes with the minimum number of generators are explored first. The per-
turbation classes are generated dynamically. The experimentation strategy
takes the arguments used to describe the initial example and constructs only
the lowest perturbation level with them. After exploring a perturbation class
(looking at all its possible values), only its immediate perturbation classes
above are generated. Arguments with empty domains are not considered in
the example space. Similarly, if an argument is eliminated from the head
of the concept definition (as described in section 5.2), all the perturbation
classes where its generator appears are removed from the perturbation space.

For example, following the hypothetical concept of a threat with 4 argu-
ments, the perturbation space will initially consist of 4 perturbation classes:

{p1} {L1} {P2} {L2}

As soon as all the possible places of the attacking piece L1 have been tried,
the new perturbation space becomes:

{P1,L1} {L1,P2} {L1,L2}
{P1} {pP2} {L2}

Similarly, after exploring the possible attacking pieces P1, we have:

{P1,L1} {P1,P2} {P1,L2} {L1,P2} {L1,L2}
{P2} {L2}

If the attacked piece is removed from the head of the concept (i.e., P2 is no
longer relevant), then the new perturbation space becomes:

{P1,L1} {P1,L2} {L1,L2}
{L2}

Recognising irrelevant arguments is important since they represent signifi-
cant cuts in the search space'. All the perturbation classes of a lower level

14 An argument which is not in the perturbation space is not necessarily removed from
the definition (i.e., arguments with empty domains).

CHAPTER 5. PAL 83

are explored before classes of upper levels. The perturbation process ends
when there are no more perturbation classes left or stopped by the user (see
Table 5.6).

Although the experimentation strategy proceeds by levels, the perturba-
tion classes of one level can be sorted to prefer particular perturbation classes
first. Similarly, heuristics can be incorporated to prefer certain perturbations
first. Unless indicated, PAL changes first the side of all the pieces (i.e., all
the white pieces are changed to black and vice versa) and removes all the
generators corresponding to the sides from the perturbation space.

An evaluation function is used to sort classes from the same perturba-
tion level. It gives preference to perturbation classes whose arguments are
constants, have domains with smaller number of elements, and appear in
a larger number of literals in the current hypothesis. Each argument of a
perturbation level is assigned with the following value:

value(Arg) = varcte(Arg) + domsize(Arg) — nliterals(Arg).

where varcte value is 20 for variable arguments and 0 for constants'®, dom-
size is the size of the domain of the argument, and nliterals is the number of
literals where the argument appears in the definition'®. The value of pertur-
bation classes with several arguments is defined as the sum of the values of
their arguments. Experiments with different evaluation functions are given
in chapter 6.

In section 5.2.3, the arguments used to describe example positions are
labelled with unique constant symbols to guide the generalisation algorithm.
The example generator uses the same labels (i.e., the generators) to distin-
guish the perturbation classes, keep track of the changes, and inform the
generalisation method of them.

The example space depends on the descriptions of the pieces involved
in the initial example and only examples with at most the same number of
pieces can be generated. It is assumed that the example space, determined
by the domains of the arguments involved in the initial example, contains
at least the examples required by the generalisation algorithm to derive the
target definition.

15This arbitrary assignment is used to express a preference for ‘perturbing’ constant
arguments first. Other values will be considered in chapter 6.

16This follows the labels of the definition, as described in section 5.2.3, to distinguish
between different arguments with the same values.

CHAPTER 5. PAL 84

To create an initial perturbation space

given:
e an example description (EX)

e domain values for the arguments used in the example descrip-
tion

set [Ay,..., A,] = arguments(EX)

begin
forl<i<n
set gen; = unique constant symbol for A;, which links A;
with domain(A;) (create generators)
set class; = [gen]
end

set current level = 1
set pert-level(1) = [classy, classy, ..., class,]
set pert-level(2) = []

To change levels

given:
e an explored perturbation class (class;)

e the current perturbation level
pert-level(N) = [class;, classj, ..., classy)

set pert-level(N) = pert-level(N) — { class; }

if pert-level(N) = []
set current level = N + 1
set pert-level(N + 2) =[]
else begin
for j < k < m (all the perturbation classes of pert-level(N))
set new-sets = all possible sets of length N + 1 form by
adding new elements of class; to class;
set pert-level(M + 1) = new-sets U pert-level(M + 1)
end

Table 5.6: Algorithms to create an initial perturbation space and to change
perturbation levels

CHAPTER 5. PAL 85

given:
e an example description

e domain values for the arguments used in the example descrip-
tion

e a concept clause definition
construct the lower level of the perturbation space (see Table 5.6)

while there are perturbation classes left
(1) sort the perturbation classes
(2) take the first perturbation class and
call the ezperimentation strategy (see Table 5.5)
if a positive example is generated, exit
else change-levels (see Table 5.6) and goto 2.

Table 5.7: The perturbation algorithm

The perturbation method (summarised in Table 5.7) has been used to
guide the learning process of the generalisation algorithm described in Ta-
ble 5.4.

5.3.4 PAL without the example generator

The assignment of unique labels to the description of the initial example
provides a linkage between the example generator and the generalisation
method. The perturbation method uses the labels to organise its perturba-
tion strategy, while the generalisation method uses them to constrain the
lgg algorithm, handle properly coincidences in the examples, and distinguish
between different pieces. PAL’s generalisation algorithm can be used with
examples selected from an external agent (e.g., by the user, or randomly se-
lected from an example set). In general, the generalisation process requires
less examples when a ‘trained’ user carefully selects the examples. Compar-
isons of PAL’s performance with/without the example generator are made in
chapters 6 and 7, when PAL is used to learn different Chess concepts. PAL
still assigns unique labels when the examples are selected externally, however,

CHAPTER 5. PAL 86

the descriptions of the pieces must be given in the same order to maintain
consistency. For instance if the first example is described as follows:

contents(white,pawn,square(2,5),posl).
contents(black,rook,square(1,8),pos1).

PAL will assign unique labels to the arguments used in the example descrip-
tion. If another example has the following description:

contents(black,queen,square(2,5),pos2).
contents(white,bishop,square(1,8),pos2).

PAL will assume that the white Pawn has been changed for a black Queen
and the corresponding labels of the white Pawn are assigned to the black
Queen. Similarly, it will assume that the black Rook has been changed for a
white Bishop.

PAL takes the description of the pieces to build a concept head. By
keeping the same order in which the pieces are given to the system compatible
heads can be constructed. Otherwise, PAL would be considering examples
where the pieces have been switched.

5.3.5 Related work

Section 4.4.2.1 provides a general overview of different example generators.
In this section we compare the automatic example generator used by PAL
with that of other systems.

One approach followed by some ILP systems with an automatic example
generator (e.g., Clint [dRB88] or Marvin [SB86)), is to select a subset of lit-
erals from the current hypothesis and search for an example that will succeed
with that subset but fail with the current hypothesis. This can be computed
by taking the current hypothesis (C') a subset of it (C”), standarising them
apart, and finding an example (Cj__,0) which satisfies the following query:
+ C" N =C. This however assumes a perfect query answering mechanism.
For first-order logic this is only semi-decidable (it may never stop) and sys-
tems which followed this approach have restricted their hypothesis language
to DATALOG programs (i.e., programs without function symbols), where
queries are decidable. Rather than searching for an example, PAL suggests

CHAPTER 5. PAL 87

examples directly trying to fail the current hypothesis. A similar strategy is
followed by systems like AM [Len76] and LEX [MUB83] where examples are
proposed by the system (e.g., extreme cases in AM or near misses in LEX)
and their usefulness are tested later. PAL, however, does not use a hierarchy
of concepts (as LEX or AM) from which to suggest examples.

Subramanian and Feigenbaum [SF86] showed that a large reduction of
examples can be obtained in factorable concepts by considering each compo-
nent independently (see also section 4.4.2.1). In general, information about
the factorability of the concepts is not available/possible. We can say that
PAL explores the different possible independent factors of a concept by con-
sidering the different perturbation classes. PAL explores first one plausible
independent factor by changing the value of one argument while holding
others constant. This process continues with other arguments and with com-
binations of arguments until no more perturbation classes can be explored.
PAL can tell exactly which arguments affect which literals by following the
unique label symbols associated with each definition and could tell in prin-
ciple which are the independent factors.

PAL’s example generator provides a way in which to structure the exam-
ple space, the examples space can be reduced during the learning process,
performs small perturbations first, and has a clear termination criterion.

5.4 The learning algorithm

The learning algorithm can be summarised using the descriptions of the pre-
vious two sections. Initially, PAL is provided with some background knowl-
edge, the domain values of the arguments involved to describe an example,
and a description of a “typical” example of the target concept. PAL first
constructs an initial concept definition and an initial perturbation level. It
then calls the example generator to create new examples (see section 5.3).
Each time a positive example is created, the system uses the constrained rlgg
algorithm (see section 5.2) to construct a new concept definition. The exam-
ple generator tries to fail on at least one of the concept literals by changing
(perturbing) the arguments involved in the current perturbation class. If the
perturbation method generates a negative example, then the system analyses
which literals failed on that example and tries to construct a new example
that will succeed on at least one of them. If the system cannot generate a
new example (i.e., a new generalisation of the current definition will require

CHAPTER 5. PAL 88

producing an example that involves changing different arguments), then it
expands the perturbation space and continues with the next perturbation
class. The process ends when there are no more perturbation levels left, or
when the user decides to terminate the process.

5.4.1 Disjunctive definitions

As mentioned in chapter 4, the lgg algorithm constructs a single clause (the
least general generalised clause) from a set of clauses. The lgg algorithm
fails with disjunctive definitions (i.e., definitions which required more than
one clause). Each time an lgg is computed between two example clauses
of different disjuncts, an overgeneralised clause is produced. In order to
learn disjunctive definitions, systems which use lgg must rely on the negative
examples provided to the system and/or the user. This is also true for most
inductive learning algorithms.

In PAL each new definition is checked against the current negative exam-
ples. If a definition covers a negative example, it is rejected and the example
is stored. Since PAL generates its own examples, there is no guarantee that
sufficient negative examples will be produced to reject possible overgenerali-
sations. PAL asks the user for confirmation before accepting any definition.
In practice, very few definitions were rejected by the user due to the example
generator strategy followed by PAL. When the perturbation process finishes,
the final definition is checked against the stored examples. Those examples
which are covered are eliminated and those which are not covered are tried
again. PAL selects the first uncovered example and the whole process is
repeated until all the positive examples have been covered without covering
any negative example. In this way, PAL learns disjunctive concepts by learn-
ing each clause separately (see Table 5.8). Alternative methods for handling
disjunctive concepts, like storing intermediate hypotheses and allowing some
form of backtracking, are left for future research. As the perturbation pro-
cess cannot guarantee to produce an instance of each particular disjunct, the
user must provide at least one example for each disjunct in advance, if he
wants all the disjuncts to be learned.

5.4.2 Distinction between components

PAL is applicable to domains where examples are given as descriptions of
states in terms of components. In Chess the components are the pieces in

CHAPTER 5. PAL 89

the board. In a simulation, the components can be the state variables (an
example will be given in chapter 8). Associating descriptions of states with
unique variables serve two purposes in PAL. On one hand, it guides and
constraints the generalisations between clauses. On the other, it is used to
construct the example space and guide the automatic example generator.

The background knowledge in PAL, which is used to construct the body
of the hypotheses, describes relations between the different components. The
labels are used to consider only compatible literals which refer to the same
components (i.e., compatible literals which express relations involving dif-
ferent components are not considered). This removes a large number of
irrelevant literals that would be otherwise generated.

The arguments of the atoms used to describe an instance of the target
concept are associated with unique labels. They are used to construct the
example space as new instances are constructed by changing the values of
such arguments. The hypotheses are associated with these labels so that the
automatic example generator can know exactly which literals are affected
by which labels (i.e., which literals will be affected by changing particular
arguments).

5.4.3 Additional clause reduction

Redundant literals in the final concept definition are removed by expanding
the definitions of the literals involved in the body and matching the ex-
pansions against the rest of the literals. Literals which are matched by an
expansion are removed from the definition. For example, using the defini-
tion of in_check and legal_move, the definition of fork given in section 5.1 is
reduced to:

concept(S1,k,(X1,Y1),51,P2,(X2,Y2),52,P3,(X3,Y3),Pos) <«
contents(S1,P2,(X2,Y2),Pos),
other_side(S1,52),
in_check(S1,(X1,Y1),P3,(X3,Y3),Pos),
legal move(S2,P3,(X3,Y3),(X2,Y2),Pos).

CHAPTER 5. PAL

90

given:
e an initial example description
e domain values for the arguments
e background knowledge definitions

construct an initial clause (as described in section 5.2)
construct an initial perturbation level (as described in section 5.3)

do until no more perturbation levels or stopped by the user
call the perturbation algorithm to generate a new positive example
call the generalisation algorithm to generate a new definition
if the new definition covers a negative example
(or if it is rejected by the user)
then reject the definition and store that example
end do
check the final definition against the stored examples
if some examples are not covered,
then pick the first uncovered example and start again
else reduce the new definition and add it to the background
knowledge

Table 5.8: Learning algorithm

CHAPTER 5. PAL 91

5.5 Summary

An ILP system capable of learning patterns in Chess expressed in a subset
of first order Horn clauses has been described. PAL uses a constrained rela-
tive least general generalisation algorithm of clauses (rlgg) as generalisation
method, and an automatic example generator to reduce the user’s interven-
tion and guide the learning process. Examples are given as atoms describing
the position of each piece in the board. The goal predicate or relevant argu-
ments for the concept are not specified in advance. PAL uses a non-recursive
pattern-based knowledge representation, which considers the current exam-
ple description and from which only a finite set of relevant facts can be
derived. Each description of the board is associated with unique labels to
guide the generalisation algorithm and reduce the length of the hypotheses,
providing an effective implementation of rlgg. The background knowledge
definitions are restricted to general predicates stating the rules of the game,
which in conjunction with a simple example presentation, provides an ade-
quate framework in which to learn patterns in Chess. Examples of concepts
learned by PAL will be given in the next chapter.

The example space, from which the automatic example generator selects
its examples, is generated dynamically and can be reduced during the learn-
ing process. It has a clear termination criterion and it is guided by the
current concept definition. It avoids the production of duplicates or spurious
examples that do not create any new failures/successes in the literals of the
concept definition. Disjunctive definitions can be learned by PAL, although
the user might intervene to avoid overgeneralisations and an instance of each
disjunct must be provided in advance.

The user informs the system whether the concept to learn is static or
dynamic (i.e., involving a 1-ply move), selects the patterns to be used as
background knowledge, provides the particular domains of the arguments
used to describe the examples, and chooses an initial example. A simplified
Prolog implementation of PAL!" is given in appendix H with enough com-
ments to allow an interested reader to produce a complete reconstruction of
the algorithm. Chapter 6 describes the conditions on which several Chess
concepts were learned by PAL, compares its performance with other ILP
systems, and discusses PAL’s limitations. Chapter 7 shows that the patterns
learned by PAL can be used to construct a correct playing strategy for a

I"PAL is written in Quintus Prolog.

CHAPTER 5. PAL 92

simple endgame. Chapter 8 shows how PAL can be used to other domains
by learning a qualitative models of a dynamic system from descriptions of

qualitative states.

Chapter 6

Learning patterns in Chess

Although Chess is considered as the game par excellence in Al, very little
progress has been made within the machine learning community to learn
concepts in Chess. Chapter 5 describes PAL, a first order learning system
capable of learning patterns in Chess from simple example descriptions to-
gether with the rules of the game. This chapter shows how PAL is used to
learn several concepts in Chess, compares its performance with other ILP
systems, and discusses its main limitations. In particular, section 6.1 shows
how PAL is used to learn the concept of illegal white-to-move positions for
the King and Rook against King endgame, which has been recently used
to evaluate some ILP systems. Section 6.2 analyses the applicability of Foil
[Qui90] and Golem [MF90] in Chess by looking at their performance on a dif-
ferent concept in Chess. Section 6.3 describes how PAL is used to learn other
more useful Chess concepts which involves a larger background vocabulary.
Finally, section 6.4 analyses PAL’s performance and discusses its limitations.

6.1 Illegal WTM KRK positions

A comparative study between Duce [Mug87], Cigol [MB88], Assistant-86
[CKB87], and C4 [Qui87], suggests that the ability to produce high per-
formance in a domain like Chess, relies almost exclusively on the ability
to express first order predicate relations [MBHMMS89]. The study involved
learning the concept of illegal white-to-move (WTM) positions for the King
and Rook against King (KRK) endgame. It consisted of 2 main experiments
(with 100 and 1000 examples each).

93

CHAPTER 6. LEARNING PATTERNS IN CHESS 94

e Experiment 1: 5 random training sets of 100 and 1000 examples. The
hypothesis vocabulary is limited to express the file and rank of each
piece.

e Experiment 2: 5 random training sets of 100 and 1000 examples with
additional hypothesis vocabulary to express equality between files/ranks,
less than (one file/rank is less than other file/rank), and adjacent (one
file/rank is adjacent to another file/rank).

The resulting outputs of each system were tested against 5 random sets of
1,000 positions. Although efficiency problems constrained Cigol to be used
only with training sets of 100 examples, its average performance in the second
experiment (77.2 %) surpassed that of the other systems.

Since then, several ILP systems have used the same problem as a test-
bench (namely, Foil [Qui90], Golem [MF90], and Linus [LDGO91]). All of
them have arrived at the following (or equivalent) definition with training
sets of 1,000 examples!:

illegal(A,B,C,D,C,E).

illegal(A,B,C,D,E,D).

illegal(A,B,A,B,C,D).

illegal(A,B,C,D,A,B).

illegal(A,B,C,D,A E) + adjacent(B,E).
illegal(A,B,C,D,E,B) < adjacent(A E).
illegal(A,B,C,D,E,F) < adjacent(A,E), adjacent(B,F).

Where, illegal(A,B,C,D,E,F'), means that white King in place (A, B), white
Rook in (C, D), and black King in (E, F'), is an illegal WTM position. Thus,
illegal positions are those where the black King is in check, the Kings are
adjacent to each other or when two pieces occupy the same place. This
definition is not correct, as it ignores examples where the white King is in
between the black King and the white Rook (all on the same rank/file), which
should be considered as legal. However, it covers more than 98% of the cases.

PAL was tested with both the automatic example generator and with ran-
domly generated training sets on the same concept. The same background

LGolem uses adjacent or equal as background knowledge (i.e., a file/rank is adjacent or
equal to another file/rank), with which the number of clauses is reduced to 4.

CHAPTER 6. LEARNING PATTERNS IN CHESS 95

knowledge was added to PAL. A simplification in the way to describe exam-
ples was used to learn this concept, which is closer to that used by the other
systems. Each example was described as a set of piece(SP,F,R,Pos) atoms,
where SP represents the name and side of the piece, in this case [wk,wr, bk] for
white King, white Rook, and black King respectively. F' represents the files
[a,b,...,h] and R the ranks [1,2,...,8], and Pos is the example description.
For instance,

piece(wk,e,4,posd).
piece(wr,c,2,pos4).
piece(bk,e,2,posd).

represents a position (pos4) where the black King is in check by the Rook
and in opposition with the white King. The example space was constrained
by declaring the domain of side-piece as empty (i.e., only examples where the
files and/or ranks are changed can be generated). The definitions were not
reduced to leave them with the same number of arguments, although all the
clauses could be expressed with only 2 pieces involved. The following defini-
tion (equivalent to the definition given above), was obtained after generating
58 + and 21 — examples in total?:

(1) illegal(wk,A,B,wr,C,D,bk,C,E,Pos) +

piece(wk,A B,Pos), piece(wr,C,D,Pos), piece(bk,C,E,Pos).
(2) illegal(wk,A,B,wr,C,D bk, E.D Pos) <+

piece(wk,A B Pos), piece(wr,C,D,Pos), piece(bk,E,D,Pos).
(3) illegal(wk,A,B,wr,A,B,bk,C,D,Pos) <«

piece(wk,A B,Pos), piece(wr,A,B,Pos), piece(bk,C,D,Pos).
(4) illegal(wk,A,B,wr,C,D ,bk,A B,Pos) «

piece(wk,A B,Pos), piece(wr,C,D,Pos), piece(bk,A,B,Pos).
(5) illegal(wk,A,B,wr,C,D,bk,A E,Pos) <

piece(wk,A B,Pos), piece(wr,C,D,Pos), piece(bk,A,E,Pos),

adjacent(B,E), adjacent(E,B).
(6) illegal(wk,A,B,wr,C,D bk, E,B,Pos) +

piece(wk,A B,Pos), piece(wr,C,D,Pos), piece(bk,E,B,Pos),

adjacent(A,E), adjacent(E,A).
(7) illegal(wk,A,B,wr,C,D,bk,E,F,Pos) <«

piece(wk,A B ,Pos), piece(wr,C,D,Pos), piece(bk,EF ,Pos),

2The same definition can be obtained with 14 carefully selected examples.

CHAPTER 6. LEARNING PATTERNS IN CHESS 96

adjacent(A,E), adjacent(E,A),
adjacent(B,F), adjacent(F,B).

PAL was modified to accept examples that were randomly generated.
Each file/rank of each piece was generated by a random integer generator
between 1 and 8, and all the pieces in the example description were given
in the same order to maintain consistency in the assignments of labels (see
chapter 5). After N randomly generated examples, PAL considers all the
positive examples to generate a definition. It takes the first positive example,
creates an initial clause and considers the remaining positive examples, one
by one, from which similar clauses are constructed and new generalisations
constructed. If with a new positive example, a generalisation is created
which covers a negative example, then that generalisation is ignored and
the example is stored. If a positive example creates a generalisation which
does not cover any negative example, then this new definition is kept and
used with the rest of the positive examples. After all the positive examples
have been tried, the final definition is saved and checked against the list of
stored examples. Those examples which are covered by the definition are
removed and the process continues with the rest of the (uncovered) examples
until all the positive, without any negative examples have been covered (see
Table 6.1). The general principle of generating definitions to cover positive
examples without covering any negatives until all the positives are covered,
is similar to the strategy used by other ILP systems like Golem or Foil. PAL,
however, does not allow definitions to cover a small percentage of negative
examples, as the other systems do. A more detailed comparison between
Golem and PAL is given in section 6.2.

As with other ILP systems, PAL was tested over 5 training sets of 100
randomly generated examples. The following clauses were obtained for each
training set:

Test1: clauses (1), (2), (4), (5), (6), and a special case for (7).

Test2: clauses (1), (2), (5), and (6).

Test3: clauses (1), (2), (3), a special case for (5), a special case for (6),
and (7).

Test4: clauses (1), (2), a special case for (4), a special case for (5), a
special case for (6), and (7).

CHAPTER 6. LEARNING PATTERNS IN CHESS

e Generate N random examples.
Set P = list of positive examples.
Set S = [] (list of uncovered examples).

o while P # []

1. take the first example from P (e;) and create an initial
clause definition (Ci-Defn). Set P = rest(P).

2. if P =[], output Cy-Defn. Set P = S, set S =[] and

continue.

3. else, take the first positive example from P (e;), create
a clause with it (Cy-Defn), and
set NewC-Defn = generalisation(Cy-Defn, Cy-Defn)
— if NewC-Defn covers a negative example,
then ignore it, store ey in S, set P = rest(P), and
goto 2.
— else make C1-Defn = NewC-Defn, set P = rest(P),
and goto 2.

Table 6.1: PAL’s algorithm for randomly generated examples

97

CHAPTER 6. LEARNING PATTERNS IN CHESS 98

e Testh: clauses (1), (2), (3), a special case of (4), (5), and (7).

Similar ‘incomplete’ clauses are obtained when any of the other ILP systems
is used with training sets of 100 examples. The problem is that in most cases,
while several examples for clauses (1) and (2) can be randomly generated,
almost none are generated for the rest of the clauses. PAL needs at least two
examples of each disjunct to produce the appropriate generalisation (this is
also true for a system like Golem). There is about 1/8 chance of generating
one example for clauses (1) or (2), 1/16 for clause (7), 1/32 for clauses (5)
or (6), and 1/64 chances of generating one for clauses (3) or (4). Thus
an average of 16 examples are required to generate one of the clauses (1)
or (2), 32 examples to generate clause (7), 64 for clauses (5) or (6), and
128 examples are required for clauses (3) or (4). Sometimes both examples
might lie on the same rank or file, producing an over-specialised clause. An
estimate of between 448 examples and 544 (considering an extra example for
clauses (1), (2), (5), (6), and (7) in case an example lies on the same rank
or file), is in theory required to generated all the clauses. With this in mind,
an additional test was made with a training set of 500 examples. This was
enough to produce all the clauses of the above definition. PAL does not allow
hypotheses to cover any negative example. Clauses (1) and (2):

illegal(wk,A,B,wr,C,D,bk,C E,Pos) «

piece(wk,A B,Pos), piece(wr,C,D,Pos), piece(bk,C,E, Pos).
illegal(wk,A,B,wr,C,D bk, E,D,Pos) <«

piece(wk,A B, Pos), piece(wr,C,D,Pos), piece(bk,E,D,Pos).

are overgeneral as they cover examples where the white King is in between
the white Rook and the black King, and the three pieces are on the same
file or rank. During the above trials, those special examples were considered
as positive (thus, as illegal positions). In general, it is desirable to allow
some inconsistency of the hypotheses with the data. An inconsistency can
be produced in the presence of noise and/or when the available background
knowledge is not enough to produce a correct definition. Although not im-
plemented, PAL could be modified to allow a small percentage of negative
examples to be covered by a clause, as some ILP systems do, producing an
equivalent performance. This is left for further research.

Bain [Bai91], has been working to learn a correct definition of illegal po-
sitions using non-monotonic learning with extensions over Cigol and Golem.

CHAPTER 6. LEARNING PATTERNS IN CHESS 99

The idea is that after testing the hypothesis over a large set of examples,
the clauses that cover some negative examples are further specialised. This
is done by taking all the negative examples that are covered by a clause,
generalising them (but now taking the positive examples as negatives), and
adding the complement of the head of the resulting clause, to the overgeneral
clause. Bain reports the following complete definition for this domain:

illegal(A,B,C,D,C,E) «+
not(legal_speciall(A,B,C,D,E)).
illegal(A,B,C,D,E,D) «
not(legal_special2(A,B,C,D,E)).
illegal(A,B,A,B,C,D).
illegal(A,B,C,.D,EF) «+
adj_or_eq(A,E),
adj_or_eq(B,F).

legal speciall(A,B,A,C,D) «+
less_than(B,C),
less_than(D,B).

legal speciall(A,B,A,C,D) «+
less_than(B,D),
less_than(C,B).

legal special2(A,B,C,B,D) <«
less_than(A,C),
less_than(D,A).

legal special2(A,B,C,B,D) «
less_than(A,D),
less_than(C,A).

Where legal_special covers those exceptions where the white King is in be-
tween the Rook and the black King, and adj_or_eq(A,B) means that file/rank
A is adjacent or equal to file/rank B.

Although not implemented, the same method could be used by PAL. Pro-
viding one instance for each disjunct and less_than/2 as background knowl-
edge, PAL produces the following clauses for the definition of legal_special:

legal special(wk,A,B,wr,C,B,bk,D B ,Pos) «+

CHAPTER 6. LEARNING PATTERNS IN CHESS 100

piece(wk,A,B,Pos), piece(wr,C,B,Pos), piece(bk,D,B,Pos),
less_than(C,A),
less_than(C,D),
less_than(A,D).
legal _special(wk,A,B,wr,C,B,bk,D,B,Pos) <«
piece(wk,A B ,Pos), piece(wr,C,B,Pos), piece(bk,D,B,Pos),
less_than(D,A),
less_than(D,C),
less_than(A,C).
legal _special(wk,A B ,wr,A,C bk,A,D,Pos) <«
piece(wk,A B ,Pos), piece(wr,A,C,Pos), piece(bk,A,D,Pos),
less_than(C,B),
less_than(C,D),
less_than(B,D).
legal _special(wk,A B ,wr,A ,C bk,A,D,Pos) <«
piece(wk,A B ,Pos), piece(wr,A,C,Pos), piece(bk,A,D,Pos),
less_than(D,B),
less_than(D,C),
less_than(B,C).

6.2 PAL vs Foil vs Golem

The main purpose of the concept of illegality described above, was to illus-
trate the inadequacies of propositional systems. In this section, the applica-
bility of Golem [MF90] and Foil [Qui90] in Chess is tested with a more inter-
esting concept®. Learning more useful concepts in Chess can involve concepts
like legal moves, checks, etc. as background knowledge. For ground-theory
systems, providing background facts for such concepts can be a difficult and
time-consuming process. In order to simplify the test, an idea similar to the
“exceptions” for the concept of illegal positions was extended with additional
background knowledge. The target concept, called diagonal, represents those
positions where three pieces are in a diagonal line. The basic idea behind
this concept can be used to learn concepts such as pin, skewer or discovered
checks. In addition to less_than/2, the definition of line/4 was provided as
background knowledge to represent any two positions in a diagonal, vertical,

3The latest public versions of Golem (Golem1.0alpha, 1991) and Foil (Foil.2, 1991) were
used in the test.

CHAPTER 6. LEARNING PATTERNS IN CHESS 101

Figure 6.1: Three pieces in diagonal (i.e., diagonal(3,2,5,4,8,7).)

or horizontal line. That is, line(X1,Y1,X2,Y2) means that position (X1,Y1)
and position (X2,Y2) are in a straight line. For ground-theory systems, this
represents 1,456 facts for line/4 and 28 facts for less_than/2. To simplify the
concept, only positions where the first piece (X1,Y 1) was in the lower left
corner, the second piece (X2,Y2) in the middle, and the third piece (X3,Y3)
in the upper right corner, were considered as positive. This makes a total of
196 possible positive examples out of 64% (262,144) examples in the example
space. With this background knowledge, the target definition can be defined
as follows (see Figure 6.1):

diagonal(X1,Y1,X2,Y2,X3,Y3) «
less_than(X1,X2), less_than(X2,X3),
less_than(Y1,Y2), less_than(Y2,Y3),
line(X1,Y1,X2,Y2), line(X2,Y2,X3,Y3).

6.2.1 Learning diagonal with PAL

PAL was tried on this concept. The example positions were described with
piece(P,F,R), where F and R are the file and rank of a piece, and P represents
the particular piece. Since the piece and side are not important to this test,
the domain for P was [pl, p2, p3]. The initial example given to PAL is shown

CHAPTER 6. LEARNING PATTERNS IN CHESS 102

in Figure 6.1 (i.e., piece(pl,3,2,posl), piece(p2,5,4,posl), piece(p3,8,7,posl)).
PAL was provided with background definitions for line and less_than. The
example space was again constrained only to changes in the positions of the
3 pieces. PAL arrived at the following correct definition after generating 3
+ and 135 — examples.

diagonal(p1,X1,Y1,p2,X2,Y2,p3,X3,Y3,Pos) «
piece(pl,X1,Y1,Pos), piece(p2,X2,Y2,Pos), piece(p3,X3,Y3,Pos),
less_than(X1,X2), less_than(X1,X3), less_than(X2,X3),
less_than(Y1,Y2), less_than(Y1,Y3), less_than(Y2,Y3),
line(X1,Y1,X2,Y2,Pos), line(X1,Y1,X3,Y3,Pos),
line(X2,Y2,X3,Y3,Pos).

6.2.2 Learning diagonal with Foil

Foil was tested under the same conditions. The complete background facts
for line/4 and less_than /2 were provided as background knowledge. Different
positive and negative examples were given to Foil to try to learn this concept
(the outputs produced by Foil are also included). Since no negative literals
are expected in the final definition, and in order to simplify Foil’s search,
they were not considered in the test.

e Test;: With the same examples used by PAL (i.e., 4 4+ and 135 —), Foil
is not able to produce any definition. The reason being the relatively
few number of positive examples in comparison with the number of
negative examples.

e Testy: Foil was tested with all the possible positive examples of the
target concept (196 +) and the same negatives examples used by PAL
(135 —). With them, Foil produced the following incorrect definition:

diagonal(X1,Y1,X2,Y2,X3,Y3) «
line(X1,Y1,X2,Y2), line(X1,Y1,X3,Y3), line(X2,Y2,X3,Y3),
line(X1,X3,Y1,Y3), less_than(X1,X3).
diagonal(X1,Y1,X2,Y2,X3,Y3)
=(X1,Y1), =(X2,Y2).

E.g., counter example: diagonal(3,5,4,4,5,3).

CHAPTER 6. LEARNING PATTERNS IN CHESS 103

o Tests: Negative examples were incrementally added to Foil to try to
learn the correct definition. Each time an incorrect hypothesis was
produced, new negative examples were given to try to correct it. Foil
changed its hypothesis several times (none of which was correct). For
instance, the following definition was produced by Foil with all the
positive examples and the same negative examples required by Golem
(159 —) to produce a correct definition (see below):

diagonal(X1,Y1,X2,Y2,X3,Y3) «
line(X1,Y1,X2,Y2), line(X1,Y1,X3,Y3), line(X2,Y2,X3,Y3),
less_than(X1,X3), less_than(Y1,Y3).

E.g., counter example: diagonal(1,1,3,1,2,2).

e Final Test: Foil eventually learned the target concept when all the
positive examples were given and with 179 carefully selected negative
examples. Foil’s definition is as follows:

diagonal(X1,Y1,X2,Y2,X3,Y3) «
less_than(X1,X2), less_than(X1,X3),
less_than(Y1,Y2), less_than(Y2,Y3),
line(X1,Y1,X2,Y2), line(X1,Y1,X3,Y3).

Although Foil is able to learn the above concept, it was only through a long
process of several sessions of analysing why Foil failed and providing new
examples to constrain Foil’s hypotheses. This example illustrates some of
the problems mentioned in chapter 4. Namely, problems of preparing the
right data (background facts as well as examples) and problems with its
information gain heuristic.

6.2.3 Learning diagonal with Golem

Similarly tests were run with Golem. However, the background definition
of line/4 is non-deterministic (i.e., the same inputs can produce different
outputs). Although the definition of diagonal is determinate (i.e., all the
arguments in the literals are determine given an instantiation of the head),
Golem cannot learn diagonal with line/4). The way to avoid this problem

CHAPTER 6. LEARNING PATTERNS IN CHESS 104

in Golem, is to design some deterministic background knowledge that could
be used to define an “equivalent” definition. Instead of line/4, the complete
background facts for abs_diff /3 (absolute difference between two numbers)
was provided as background knowledge. That is, abs_diff (N1,N2, Diff) means
that the absolute difference between N1 and N2 is Diff. This represents a
total of 64 background facts. With this new background knowledge, we
expect Golem to arrive to the following equivalent definition:

diagonal(X1,Y1,X2,Y2,X3,Y3) <
abs_diff(X1,X2,D1), abs_diff(Y1,Y2,D1),
abs_diff(X1,X3,D2), abs_diff(Y1,Y3,D2),
abs_diff(X2,X3,D3), abs_diff(Y2,Y3,D3),
less_than(X1,X2),less_than(X1,X3), less_than(X2,X3),
less_than(Y1,Y2),less_than(Y1,Y3), less_than(Y2,Y3).

Similar to Foil, Golem was tested with a different number of examples.

e Test;: With the same examples required by PAL, Golem produces the
following incorrect definition:

diagonal(X1,Y1,X2,Y2,X3,Y3) «
abs_diff(X1,X2,D1), abs_diff(Y1,Y2,D1),
abs_diff(X1,X3,D2), abs_diff(Y1,Y3,D2),
less_than(X1,X2), less_than(X1,Y3).

E.g., counter example: diagonal(1,3,2,2,3,1).

e Testy: Golem was then given all the possible positive examples (196 +)
and the same negative examples used by PAL (135 —). Golem produces
the following (still incorrect) definition:*

diagonal(X1,Y1,X2,Y2,X3,Y3) «
abs_diff(X1,X2,D1), abs_diff(Y1,Y2,D1),
abs_diff(X1,X3,D2), abs_diff(Y1,Y3,D2),
less_than(X1,X2), less_than(X2,X3).

4Golem’s strategy to reduce the size of the rlgg clauses is based on the negative examples
(see chapter 4). Since Golem was given the same negative examples as Testy, it should
have produced the same definition, however, Golem can sometimes change slightly its
definition if it is run twice. The same counter example in Test; applies here.

CHAPTER 6. LEARNING PATTERNS IN CHESS 105

e Tests: Negative examples were incrementally given to try to obtain the
solution. Some of its intermediate incorrect hypotheses include (with
196 +, 150 —):

diagonal(X1,Y1,X2,Y2,X3,Y3) «
abs_diff(X1,X2,D1), abs_diff(Y1,Y2,D1),
abs_diff(X2,Y3,D2), abs_diff(Y2,Y3,D2),
abs_diff(X1,Y1,D3), abs_diff(X2,Y2,D3), abs_diff(X3,Y3,D3),
less_than(X1,X2), less_than(X2,X3).

E.g., counter example: diagonal(4,3,5,6,6,5).

e Final Test: Golem was able to produce a correct definition with all the
positive example (196 +) and with 159 negative examples. Golem’s
definition is as follows:

diagonal(X1,Y1,X2,Y2,X3,Y3) «
abs_diff(X1,X2,D1), abs_diff(Y1,Y2,D1),
abs_diff(X1,X3,D2), abs_diff(Y1,Y3,D2),
abs_diff(X2,Y3,D3), abs_diff(Y2,Y3,D3),
abs_diff(X1,Y1,D4), abs_diff(X2,Y2,D4), abs_diff(X3,Y3,D4),
less_than(X1,X2), less_than(X2,X3).

Golem is able to learn at least an equivalent definition of the target concept.
However, in some cases the background knowledge needs to be defined in
terms of deterministic concepts and the resulting definition can become ob-
scure to the user. As with Foil, Golem retains the burden of preparing the
background facts.

6.2.4 Golem and PAL

At this point it is convenient to establish the main differences between Golem
and PAL, since in both systems the generalisation algorithm is based on rlgg.

Example presentation : Examples in Golem are given as ground instances
of the goal predicate. In PAL a set of ground unit clauses are given
to describe example states where the exact arguments used in the goal
predicate are not specified in advance. PAL also uses an automatic
example generator to guide its learning process.

CHAPTER 6. LEARNING PATTERNS IN CHESS 106

Background knowledge : Golem uses ground unit clauses as background
knowledge, while PAL uses a restricted form of non-recursive Horn
clause from which a finite set of relevant ground atoms are derived for
each example description.

Generalisation method : Both systems are based on rlgg and both used
a variable connection constraint. In addition, Golem uses a functional
constraint to limit the size of the clauses, and reduces a clause until no
more reductions are possible without covering a negative example. PAL
uses an identification of internal structures within a state and exploits
this via a labelling mechanism to reduce the length of the clauses and
guide the generalisation process. Negative examples in PAL are only
used to avoid the production of over-generalisations.

Clause restrictions : Golem is restricted to learn determinate clauses.
PAL can learn a limited class of non-determinate, although non-recursive,
clauses.

Applicability : Golem is meant to be a general purpose learning system.
PAL is only applicable to domains which can be represented by states
which have an internal structure with well defined components, and
with background knowledge definitions which express relations between
the components. The general applicability of PAL will be further dis-
cussed in chapter 8, where PAL is applied to another domain.

6.2.5 Summary

In this section, Foil and Golem were tried on a particular Chess concept
which involves a larger, although still simple, background knowledge. “In
principle”, both systems could be used in Chess, however the example illus-
trates some of their main problems. Both systems suffer from the problem
of preparing the background facts. In Chess, some concept definitions can
involve concepts of legal moves, threats, checks, etc. Defining background
facts for such concepts is a time consuming and difficult process. Specially
since it is sometimes unworkable for the systems to include all the back-
ground facts, even if they are finite. In such cases, appropriate subsets need
to be selected to maintain efficiency, which requires a prior knowledge of the
training example set. Neither system is used in an incremental way, which

CHAPTER 6. LEARNING PATTERNS IN CHESS 107

means that once a concept is learned, ground facts need to selected again if
it is going to be used in the induction of a new concept.

In addition to this, Foil’s construction of hypotheses is heuristically guided
by its information gain measure. This measure is affected by the number of
positive and negative examples in the training set (e.g., see Test; in sec-
tion 6.2.2). Like any greedy search algorithm, Foil is prone to make lo-
cally optimal but globally undesirable choices. A new implementation of Foil
(Foil2, which was used in the test) incorporates checkpoints, that is, points
where two or more alternatives appear to be roughly equal. If the greedy
search fails, the system reverts to the most recent checkpoint and continues
with the next alternative. This however, does not eliminate the need to care-
fully choose the training set to ensure that the desired literal is included in
the definition. In domains where the example space can be very large, as with
many Chess concepts, trying to select an adequate subset for the required
generalisation, is not an easy task and often requires an interactive process
of analysing the system failures and adding new examples to try to correct
them. Foil, as any other top-down heuristically guided algorithm, has prob-
lems with concepts several literals long. We have seen some of them when
learning the definition of diagonal. Depending on the background knowl-
edge, concepts in Chess which are powerful enough for play may require long
clauses. Some of these concepts are given in the next section and in chapter 7.

In addition to the preparation of the background facts, Golem is limited
to learning determinate clauses. The non-deterministic nature of obvious
background knowledge in Chess, such as legal moves, makes a large num-
ber of Chess concepts inherently non-determinate. Finding a determinate
counterpart for such concepts is not always easy/possible to do, and some-
times can only be made in terms of such “opaque”, although deterministic
concepts, that the solution is not longer transparent to the user.

6.3 Learning concepts in Chess

In this section, PAL is used to induce a more useful and interesting set of
concepts in Chess. PAL was provided with background knowledge defini-
tions to express the basic rules of the game, like legal moves, checks and
check-mates, as well as ways to recognise illegal positions for reducing the
number of examples produced by the example generator. The domains of the
arguments used to describe Chess positions and a representative example for

CHAPTER 6. LEARNING PATTERNS IN CHESS 108

each concept were also given.
The information about the domains is as follows:

domain(piece,[pawn, knight bishop,rook,queen king]).
domain(side, [black,white]).
domain(place,[square(1,1),square(1,2),...,square(8,8)]).

The concept of illegal described above contain practically no Chess knowl-
edge and could be equally applied to a different domain. The following back-
ground vocabulary was provided to the system (all the background knowledge
definitions used by PAL to learn the Chess concepts in this chapter are given
in appendix G):

contents(Side, Piece, Place, Pos):

Describes the position of each piece.
other_side(Side1,Side2):

Sidel is the opponent side of Side2.
sliding_piece(Piece, Place, Pos):

Piece is Bishop, Rook or Queen.
in_check(Side, Place, OPiece, OPlace, Pos):

King in Place is in check by OPiece in OPlace.
check_mate(Side, Place, Pos):

Side with King in Place is check mated.
legal_move(Side, Piece, Place, NPlace, Pos):

Piece in Place can move to NPlace.
stale(Side, Piece, Place, Pos):

Piece in Place cannot move.
make_move(Side, Piece, Place, NPlace, Pos1,Pos2):

Piece in Place moves to NPlace.

Although this is a richer background vocabulary, it reflects some of the basic
concepts that a new Chess player is expected to have, and will be used to
learn several Chess concepts.

The number of examples produced by the example generator, as described
in chapter 5, is compared with those produced by PAL when additional
knowledge about symmetries is taken into account and with those produced
by a user. The number of examples that PAL presents to the user can be
reduced by taking advantage of the symmetric properties of the board. In

CHAPTER 6. LEARNING PATTERNS IN CHESS 109

particular, some concepts in Chess do not depend on any particular orien-
tation of the board, and for each example, 7 equivalent examples can be
generated, considering reflections along the horizontal, vertical and diagonal
axes. PAL can take advantage of this knowledge to produce further gener-
alisations between all the “symmetric” examples before presenting the user
with a new example. The exceptions being with concepts involving Pawns
or castlings. The user can inform the system which axes of symmetry to con-
sider. Even with concepts which are not specific to Pawns and which have 3
axes of symmetry, an over-generalisation can be produced with instances of
such concepts involving Pawns. In such cases, the over-generalisation will be
rejected by the system (or the user) and the process will continue with other
examples (hopefully without Pawns). Since the final concept does not depend
specifically on Pawns, the previously rejected examples will be covered by the
final definition. The minimum number of examples that a trained user (the
author) needed to produce the same definitions was also recorded, as well as
the cpu times for these experiments®. Results are summarised in Tables 6.2
and 6.3. The contents of these tables will be discussed in section 6.4.

6.3.1 Chess concepts

PAL is able to learn a wide range of Chess concepts, with the above con-
ditions, some of which are described below. Throughout the definitions, Si
denotes Sidei for i = {1,2}, Pj denotes Piecej for j = {1,2,3}, (X,Y) de-
notes square(X,Y), Pos denotes a board position, and = denotes negation.
The number of examples generated by the system with/without symmetries
and those produced by the user are given in parenthesis after each concept
name and arity (i.e., ConceptName/Arity (PAL, PAL w/symmetry, user):).
Appendix A, shows a trace of PAL when learning the concept of can_threat
(described below).

e Threat/7 (23 + 8 —, 10 + 7 —, 2 +): A piece (P1) threatens an
opponent’s piece (P2) if P1 can capture P2. The system is told that
it is a dynamic pattern. Threat/6 only applies when the opponent’s
side is not in check (this last condition is imposed by the definition of
make_move /5. See chapter 5 and appendix G).

threat(S1,P1,(X1,Y1),52,P2,(X2,Y2),Posl) <«

5All the experiments were run in a SUN Sparc-Station 14

CHAPTER 6. LEARNING PATTERNS IN CHESS 110

contents(52,P2,(X2,Y2),Posl),
other_side(S2,51),
make_move(S1,P1,(X1,Y1),(X2,Y2),Pos1,Pos2),
— contents(S2,P2,(X2,Y2),Pos2).

e Threatl/7 (18 + 8 —, 8 + 7 —, 2 +): The static counterpart of the
above definition can be learned as well. One piece (P1) threatens an
opponent’s piece (P2) if there is a legal move of P1 to the place of
P2. The difference between threat and threat1 is that the former is
applicable only when the opponent’s side is not in check.

threat1(S1,P1,(X1,Y1),52,P2,(X2,Y2),Pos) <«
contents(52,P2,(X2,Y2),Pos),
other_side(S2,S1),
legal_move(S1,P1,(X1,Y1),(X2,Y2),Pos).

e Fork/10 (22 + 67 —, 9 + 16 —, 3 +): There is a “special” fork if a
piece (P3) threatens another piece (P2) and checks the King at the
same time (this is the definition given in the example of chapter 5).

fork(S1 king,(X1,X2),51,P2,(X2,Y2),52,P3,(X3,Y3),Pos) «
contents(S1,P2,(X2,Y2),Pos),
other_side(S2,51),
in_check(S1,(X1,Y1),P3,(X3,Y3),Pos),
legal_move(S2,P3,(X3,Y3),(X2,Y2),Pos).

The definition of threat1/7, given above, can be added to the back-
ground knowledge. With it, PAL produces the following definition:

fork(S1,king,(X1,X2),S1,P2,(X2,Y2),92,P3,(X3,Y3),Pos) «
in_check(S1,(X1,Y1),P3,(X3,Y3),Pos),
threat1(S2,P3,(X3,Y3),51,P2,(X2,Y2),Pos).

Both definitions are learned from almost the same number of exam-
ples. The only difference is the “length” of the definition, as PAL can
use threatl’s definition to produce a further “reduction” in the final
definition.

CHAPTER 6. LEARNING PATTERNS IN CHESS 111

e Can_threat/8 (23 + 7 —, 6 + 9 —, 3 +): A piece (P1) can threaten
another piece (P2) after making a move to (X3,Y3). This is another
dynamic pattern, which is learned after the concept of threat has been
learned. Appendix A shows the generalisation process followed by PAL
in order to learn this concept.

can_threat(S1,P1,(X1,Y1),52,P2,(X2,Y2),(X3,Y3),Pos1) +
contents(S1,P1,(X1,Y1),Posl),
- threat(S1,P1,(X1,Y1),52,P2,(X2,Y2),Posl),
make_move(S1,P1,(X1,Y1),(X3,Y3),Posl,Pos2),
threat(S1,P1,(X3,Y3),52,P2,(X2,Y2),Pos2).

e Can fork/11 (34 + 29 —, 3 + 0 —, 3 +): A piece (P1) can produce
a fork to the opponent’s King and piece (P3) after making a move to
(X4,Y4). This concept is learned after learning the concept of fork.

can_fork(S1,P1,(X1,Y1),92,king, (X2,Y2),
S2,P3,(X3,Y3),(X4,Y4),Pos1) «
contents(S1,P1,(X1,Y1),Pos),
— fork(S2,king,(X2,Y2),92,P3,(X3,Y3),S1,P1,(X1,Y1),Posl),
make _move(S1,P1,(X1,Y1),(X4,Y4),Pos1,Pos2),
fork(S2,king, (X2,Y2),92,P3,(X3,Y3),S1,P1,(X4,Y4),Pos2).

e Can_check/8 (20 + 18 —, 2 + 1 —, 2 +): A piece (P1) can check the
opponent’s King after a moving to (X3,Y3).

can_check(S1,P1,(X1,Y1),52 king,(X2,Y2),(X3,Y3),Posl) «
contents(S1,P1,(X1,Y1),Posl),
other_side(51,52),
= in_check(S2,(X2,Y2),P1,(X1,Y1),Posl),
make_move(S1,P1,(X1,Y1),(X3,Y3),Posl,Pos2),
in_check(S2,(X2,Y2),P2,(X3,Y3),Pos2).

e Discovered_check/11 (17 + 44 —, 5 4+ 6 —, 4 +): A check by piece (P2)
can be “discovered” after moving another piece (P1) to (X4,Y4).

CHAPTER 6. LEARNING PATTERNS IN CHESS 112

disc_check(S1,P1,(X1,Y1),51,P2,(X2,Y2),

S2.king,(X3,Y3),(X4,Y4),Posl) «

contents(S1,P1,(X1,Y1),Posl),

other_side(S1,52),

sliding_piece(P1,(X1,Y1),Posl),

— in_check(S2,(X3,Y3),P1,(X1,Y1),Posl),

make_move(S1,P2,(X2,Y2),(X4,Y4),Pos1,Pos2),

in_check(S2,(X3,Y3),P1,(X1,Y1),Pos2).

e Discovered_threat/11 (26 + 48 —, 4 + 2 —, 3 +): A piece (P1) can
threat an opponent’s piece (P3) after moving another piece (P2) to
(X4,Y4). Tt is learned after learning the concept of threat.

disc_threat(S1,P1,(X1,Y1),51,P2,(X2,Y2),
$2,P3,(X3,Y3),(X4,Y4),Posl) +
sliding_piece(P1,(X1,Y1),Posl),
— threat(S1,P1,(X1,Y1),52,P3,(X3,Y3),Posl),
make_move(S1,P2,(X2,Y2),(X4,Y4),Pos1,Pos2),
threat(S1,P1,(X1,Y1),52,P3,(X3,Y3),Pos2).

e Pin/10 (22 + 42 —, 4 +3 —, 3 +) and (22 + 60 —, 4 + 3 —, 3
+): A piece (P3) cannot move because it will produce a check on its
own side by piece (P1). Since PAL is provided with the definition
of legal moves, it cannot move a piece to find out that it produces a
check (it is an illegal move). Rather, the definition of pin is learned
from the opponent’s perspective. That is, if an opponent’s piece (P3)
cannot move, it is threatened by P1, and by capturing P3, P1 checks
the opponent’s King. This is learned after the learning the concept of

threat.

pinl(S1,P1,(X1,Y1),52 king,(X2,Y2),52,P3,(X3,Y3),Pos1) +
sliding_piece(P1,(X1,Y1),Posl),
stale(S2,P3,(X3,Y3),Pos1),
threat(S1,P1,(X1,Y1),52,P3,(X3,Y3),Posl),

— in_check(S2,(X2,Y2),P1,(X1,Y1),Posl),
make_move(S1,P1,(X1,Y1),(X3,Y3),Pos1,Pos2),
— contents(52,P3,(X3,Y3),Pos2),

CHAPTER 6. LEARNING PATTERNS IN CHESS 113

Figure 6.2: A position accepted by Pinl

— stale(S2,P3,(X3,Y3),Pos2),
- threat(S1,P1,(X1,Y1),52,P3,(X3,Y3),Pos2),
in_check(52,(X2,Y2),P1,(X3,Y3),Pos2).

This definition, however, is incorrect as it accepts positions where a
Pawn cannot move (i.e., stale) because it is “blocked” by another piece
rather than being unable to move because it creates a check on its own
King (e.g., see Figure 6.2). To correct this, the system must know that
the 3 pieces involved in the concept must be in an horizontal, vertical
or diagonal line. By adding to the background knowledge the definition
of in_line to express this, and after learning the concept of threat, PAL
learns a correct definition. Note that with this new background knowl-
edge, PAL can learn a static pattern definition for pin. The concept of
in_line used in this definition was learned by PAL, after adding a con-
cept in the background knowledge that recognises whenever two pieces
are in a vertical, horizontal or diagonal line (line), and by introducing
a comparison between numbers (less_than). Appendix B describes the
learning process. The new definition is as follows:

pin2(S1,P1,(X1,Y1),52,king,(X2,Y2),52,P3,(X3,Y3),Pos) «
sliding_piece(P1,(X1,Y1),Pos),
stale(S2,P3,(X3,Y3),Pos),
threat(S1,P1,(X1,Y1),52,P3,(X3,Y3),Pos),

CHAPTER 6. LEARNING PATTERNS IN CHESS 114

in_line(S2 king,(X2,Y2),52,P3,(X3,Y3),51,P1,(X1,Y1),Pos).

e Skewer/11 (19 + 55 —, 4 + 22 — 3 —): A King in check by a piece (P1)
“exposes” another piece (P3) when it is moved out of check to (X4,Y4).
This definition is learned after learning the concept of threat1.

skewer(S1,P1,(X1,Y1),52,king,(X2,Y2),
S2,P3,(X3,Y3),(X4,Y4),Posl) «

sliding_piece(P1,(X1,Y1),Posl),
stale(S2,P3,(X3,Y3),Posl),
in_check(S2,(X2,Y2),P1,(X1,Y1),Posl),
~ threat1(S1,P1,(X1,Y1),52,P3,(X3,Y3),Posl),
make_move(S2 king,(X2,Y2),(X4,Y4),Pos1,Pos2),
— stale(S2,P3,(X3,Y3),Pos2),
— in_check(S2,(X2,Y2),P1,(X1,Y1),Pos2),
threat1(S1,P1,(X1,Y1),52,P3,(X3,Y3),Pos2).

6.4 Discussion

6.4.1 Hypothesis language limitations

The hypothesis language is limited to non-recursive concepts (chapter 8 dis-
cusses the applicability of PAL and shows how it can be used to learn concepts
in a different domain). The background definitions and the concepts learned
by PAL assume that there is an implicit example position description. This
allows concepts to be represented in a compact and understandable way and
provides a mechanism where a selective deduction of relevant facts can be
made. PAL cannot include negation, unless a predicate name appears or dis-
appears after a move, it cannot introduce new predicate symbols, and cannot
learn recursive definitions. The latter is partly due to the example represen-
tation, although in principle, previously generated heads could be included
into the list of relevant atoms to allow it to learn recursive concepts. As the
target concept head is not specified in advance, previous heads will have to be
updated with changes in the arguments used by the current head. Allowing
recursive definitions, will required to limit the depth of the resolution steps
that are allowed, to limit the number of deductions from the background
knowledge. Non-recursive definitions has not been a limitation in Chess.

CHAPTER 6. LEARNING PATTERNS IN CHESS 115

Concept Generated G.E. G.E. | Add. Back.
Examples | Symm. | User | Knowledge

threat /7 234+8— |104+7—| 2+ | —

threatl/7 1I8+8— | 84+T7— | 24 | —

fork/10 22 +67— |9+ 16 — | 3 + | threatl (optional)

can_check/8 204+18—| 2+1— |2+ |—
can_threat/8 234+7— | 6+9— | 3+ | threat
can_fork/11 34+29—-134+0— | 3+ |fork
disc_check/11 |17+ 44 — | 5+6 — | 4+ | —
disc_threat/11 | 26 + 48 — | 4 +2 — | 3 + | threat

pinl/10 22442 - | 4+3— | 3+ | threat
pin2/10 22460 — | 443 — | 3+ | threat, in_line
skewer /11 19 +55 — |4+ 22— | 3+ | threatl
Average (Tot) 57 12.27 2.81

Table 6.2: Table of results for Chess concepts

Despite its limitations, PAL has been able to learn several Chess concepts
in a compact and understandable way from simple example descriptions,
which is outside the scope of current machine learning systems. Further
discussion on PAL’s learning capabilities will be given in chapter 7.

6.4.2 Learning rate

The learning rate is determined by the number of examples produced by
the system over particular concepts and the time required to learn them.
Table 6.2 gives the number of positive and negative examples produced by
PAL, with and without symmetries, the number of examples produced by
the user, and the additional background knowledge that is used to learn the
concepts. Table 6.3 shows the cpu times require to induce the concepts in a
SUN Sparc-Station 1+,

The number of examples generated by PAL compares very favourably
with the size of example space (e.g., the example space for 3 pieces is approx-
imately =~ 10® examples). Using additional knowledge about the symmetric
properties of the board, can reduce the number of examples presented to the

SPAL is written in Quintus Prolog.

CHAPTER 6. LEARNING PATTERNS IN CHESS 116

Concept Gen. G.E. | G.E.

Exam. | Symm. | User
threat/7 3:42 4:44 | 0:14
threatl/7 1:05 1:38 | 0:09
fork/10 4:28 3:46 | 0:11

can_check/8 3:18 1:28 | 0:11
can_threat/8 8:16 9:02 | 0:37
can_fork/11 16:11 4:01 | 0:53
disc_check/11 | 18:47 | 11:53 | 0:36
disc_threat/11 | 29:00 | 14:53 | 1:32

pinl/10 21:00 | 16:08 | 0:35
pin2/10 6:14 1:54 | 0:12
skewer/11 9:18 5:14 | 0:29
Total 121:19 | 74:36 | 5:39

Table 6.3: Table of cpu times (minutes:seconds)

user to almost one fifth in average. Each concept can be learned in a few min-
utes (considering the extra time required by the user to analyse the examples
and definitions produced by PAL). The cpu times of PAL with symmetries,
is not so much reduced as the number of examples (only to about half of
the time). The reason being that although fewer examples are shown to the
user, additional work is done for each one of them (i.e., 7 generalisations as
opposed to 1). It is important to note that the cpu times and the number
of examples produced by PAL, when the user knows the target concept and
provides adequate examples, are sufficiently small to consider using PAL to
define a known concept rather than hand-coding it. This is especially sig-
nificant for the construction of Chess systems which follow a pattern-based
approach, as a substantial programming effort is devoted to the definition
of patterns. Furthermore, example presentations are accepted by PAL as
descriptions of Chess positions which are easier to provide and understand
by a human player.

The learning rate is affected by the initial example, the available back-
ground knowledge, and the strategy to select examples. All of these factors
are further discussed below.

CHAPTER 6. LEARNING PATTERNS IN CHESS 117

6.4.2.1 Selecting the initial example

Depending on the background knowledge, a greater or lesser number of facts
can be derived from particular examples, and some care must be taken to se-
lect the starting examples. In general, the initial examples were chosen with
the minimum number of pieces required to learn the concept, and in such a
way, that only a small number of legal moves could be made. Some fortuitous
circumstances in the examples can make PAL fail to produce a desired gen-
eralisation at a particular perturbation class, and sometimes this will not be
achieved until the next perturbation level. Once the examples were chosen,
they were very rarely changed to try to improve the system’s performance,
and in some cases some features, unexpected by the user, emerged from the
examples (see for example appendix A). None of the initial examples involve
more than 5 pieces and none of the concepts involve more than 3 pieces.
PAL’s example space is generated dynamically and most of the time irrele-
vant pieces were identified early in the learning process. No systematic study
was made on the effect of adding irrelevant pieces when learning concepts, but
it is expected to decrement PAL’s performance. Similarly, concepts which
involve a larger number of pieces in their definitions will clearly affect PAL’s
performance, as the example space grows exponentially with the number of
pieces.

6.4.2.2 Available background knowledge

As seen with the definition of pin the amount of background knowledge avail-
able to the system can affect the quality of the concepts. In some cases, the
available background knowledge is not enough to produce a correct definition,
within the hypothesis language, and additional knowledge must be included.
A starting core of background knowledge definitions can be used to learn
intermediate concepts, which in turn can be used to learn further defini-
tions (see appendix B and F). One important question is how much starting
knowledge to include in order to learn a wide range of concepts. This will
be further discussed in chapter 7, where the hypothesis language limitations
of PAL are further discussed. It is important to note that, with reasonable
domain knowledge, PAL could learn, in principle, only static patterns. This
however, can become cumbersome when trying to define appropriate back-
ground definitions for learning one-ply concepts like, can_threat, can_check or
can_fork as described above. As the background knowledge increases, PAL’s

CHAPTER 6. LEARNING PATTERNS IN CHESS 118

performance will tend to decrease, despite its pattern-based approach.

6.4.2.3 Selection of examples

The number of examples produced and explored by the system depends on
the strategy by which the example space is traversed. Section 5.3 describes
an evaluation function which is used to sort perturbation classes of the same
perturbation level. Different changes in the evaluation function were tried to
test their impact in the learning rate. The changes included:

e [gnore the evaluation function.

e Reduce the importance of constants (i.e., change varcte(Arg) value from
20 to 10 when Arg is a variable).

e Prefer changes where an argument appears in a small number of literals
(i.e., change the evaluation function from, value(Arg) = varcte(Arg) +
domsize(Arg) — nliterals(Arg), to value(Arg) = varcte(Arg) + dom-
size(Arg) + nliterals(Arg)).

Since the examples produced by PAL depend on the particular concept def-
inition, different sorting algorithms can improve or worsen the system’s per-
formance. As long as PAL continues to proceed by levels, all of the above
changes make little impact in the number of examples that are generated
by the system, however, they can change the number of explored examples,
and subsequently the time required to arrive at the intended definition. In
particular, if the only perturbation class that can produce an example for
the required generalisation is last in the current perturbation level, then the
system can spend a long time trying all the possible examples of the pre-
ceding classes (although only very few might be shown to the user). For the
above Chess concepts, the sorting strategy described in chapter 5, produces a
slightly smaller number of examples and faster times. This suggests that the
example structure is fairly robust in the sense that the sorting of levels did
not change greatly PAL’s performance, although further tests are needed.
The strategy followed by PAL has been to do ‘simple’ perturbations first.
Additional improvements in the learning rate can be obtained by including
domain dependent knowledge to the example generator. Taking advantage
of the symmetric properties of some Chess concepts significantly reduces the
number of examples presented to the user and increases the generalisation

CHAPTER 6. LEARNING PATTERNS IN CHESS 119

steps. Another possibility is to include knowledge about translations of po-
sitions (i.e., shift the positions of all the pieces one or more squares in the
board). Knowing that a concept is invariant with respect to shifted positions
can be used to increase the generalisation steps by generalising between sev-
eral shifted positions of a positive example at the same time.

Although not implemented, the invariance of a clause with respect to an
axis of symmetry can be deduced from the examples and the concept defi-
nitions. For instance, the example generator can produce an example which
is symmetric along a particular axis of symmetry with respect to the last
positive example. If this symmetric example is accepted as positive and does
not create an over-generalisation, then the axis of symmetry could be stored
and used in the future. For each new example all its symmetric examples
(along the stored axes of symmetry) can be used in the generalisation pro-
cess to increase the generalisation steps. A similar process could be used to
‘discover’ invariance of a concept with respect to shifted positions.

6.4.3 Learning concepts in other domains

PAL is applicable to pattern-based domains where examples are given by a
set of components describing a particular state of a system and the back-
ground knowledge use the description of the states (examples) to express
relations between the components. PAL has been applied to the 8-puzzle,
where the position of each tile in the board is used to describe a current state,
background knowledge has relations between the positions of the tiles (e.g.,
adjacent) which are used to induce new concepts, and the example genera-
tor produces new examples by changing the positions of the tiles. Similarly,
PAL has been used to learn simple concepts in card games. A concept is
described by a set of cards, the background knowledge has relations between
cards (e.g., less-than, same-suit, same-colour, etc.), and the example genera-
tor changes the possible values and suits of the cards. In chapter 8, PAL is
used to learn qualitative models of dynamic systems, which shows that PAL
can be successfully used to other domains besides Chess.

6.5 Summary and conclusions

Domains like Chess, where a relatively large amount of background knowl-
edge can be used to induce inherently non-determinate concepts, are still

CHAPTER 6. LEARNING PATTERNS IN CHESS 120

inadequate for other ILP systems. PAL is flexible enough to allow the
adding/removing of different background knowledge definitions and learn
concepts like illegality, with almost no background knowledge and with a sim-
pler Chess board representation, and concepts like pin or discovered_threat,
with a much richer background vocabulary.

The efficiency of PAL can be affected by the number of pieces in the
target concept, the example generation process, and the current background
knowledge. A target concept with a large number of pieces can take a long
time to learn, as the example space grows exponentially with the number of
pieces. The learning rate of PAL can be improved by adding extra domain
knowledge to increase the generalisation steps (e.g., by considering geomet-
rical properties of the board). The available background knowledge plays a
central role in the induction process. One interesting question is how much
starting knowledge is required to learn a wide range of Chess concepts. This
is further discussed in chapter 7.

This chapter shows that a good sample of Chess concepts, outside the
scope of current ILP systems, can be learned by PAL. It also shows that
they can be learned in a relatively short time from board descriptions which
are easy for a human player to understand and provide. An obvious question
is whether the concepts learned by the system can be used for playing Chess.
To answer this question, a correct playing strategy for a simple endgame was
designed with concepts learned by PAL. This is the topic of the next chapter.

Chapter 7

KRK: a case study

Chapter 2 shows how most Chess systems which follow a knowledge inten-
sive approach have designed their playing strategies around the recognition
of patterns. A substantial programming effort is spent in the selection of
the appropriate patterns. In the previous chapter, PAL was used to learn
several Chess patterns. This chapter tests whether the patterns learned by
the system can be used to construct a correct playing strategy'. Due to
the complexity of Chess, the correctness of playing strategies can only be
tested over ‘simple’ endgames. King and Rook against a sole opponent King
(KRK) was chosen, since a simple playing strategy based on the recognition
of patterns can be easily constructed and, more importantly, verified.

7.1 Design of a KRK playing strategy

Mechanisation of the King and Rook against the sole opponent King has
a long standing history. Torres y Quevedo in the last decade of the 19th.
century constructed an electro-mechanical device to play KRK, which check-
mates from any starting position subject to certain qualifications. The initial
positions must have the Rook dividing both Kings and its file must be either
< 3 or > 6. Michie describes a reconstruction with 6 decision rules and shows
how in worst cases the strategy checkmates in 62 moves [Mic77]. Chapter 2
describes Bramer’s [Bra77], Huberman’s [Hub68], and Michie and Bratko’s
[Bra82, Mic76] approaches to Chess, all of which were applied to KRK, and

LCorrect in the sense that it selects moves that will ultimately lead to victory from a
winning position against any sequence of play by the opponent.

121

CHAPTER 7. KRK: A CASE STUDY 122

Figure 7.1: Three strategy rules for the KRK endgame

used pattern recognition as the driving force for their playing strategies.
Designing a pattern-based playing strategy involves the following steps:

(1) Design the general strategy of the game,
(2) Learn the patterns involved in it,

(3) Check the strategy and return to (1) if necessary.

There is a trade-off between the number of patterns used by the play-
ing strategy and the amount of search that the strategy performs. A larger
number of patterns tends to compensate for smaller searches. A simple strat-
egy which involves 1-ply search was chosen for this endgame. It consists of
ordered rules with the following format:

if pattern(s) in current position,
move piece to form a new position,
ensure pattern(s) in new position.

For instance, a rule for a KRK playing strategy can be as follows:

if both Kings are in opposition, (Patt;)

move Rook to new position,

ensure the opponent’s King is in check, (Patts)
and that the Rook is not threatened. (Patts)

Where Pattq, Patty, and Patts represent particular patterns of the game.
A broad winning strategy in the KRK endgame is to force the opponent’s
King to the edge, or into a corner if necessary, and then deliver mate in

CHAPTER 7. KRK: A CASE STUDY

123

while making sure that stalemate is never created or the Rook left
undefended under attack
repeat until mate

if the Kings are in opposition, try to force the opponent’s King
to move backwards

else try to move the King to one square away from opposition.

else try to move the King closer to the opponent’s King, while
maintaining the Rook dividing both Kings.

else try to move the Rook closer to the opponent’s King, while
maintaining the Rook dividing both Kings.

else try to move the Rook to divide both Kings either vertically
or horizontally.

Table 7.1: KRK strategy

Figure 7.2: Two strategy rules for the KRK endgame

CHAPTER 7. KRK: A CASE STUDY 124

a few moves. The basic principles and the main concepts learned by the
system for this strategy are outlined in Table 7.1. Figure 7.1 illustrates
three of the rules used in the playing strategy for the KRK endgame: if
both Kings are in opposition, move the Rook to form an L shaped pattern
(left); if both Kings are on the same side, move the Rook to divide both
Kings (center); if the Kings are already divided, move the Rook closer to
the opponent’s King (right). Similarly, Figure 7.2 ilustrates another two
rules: with the Rook dividing both Kings, move the King to be “almost” in
opposition with the opponent’s King (left); if the Rook is threatened (right),
in a wr-bk-wk pattern, move the Rook to the edge away of the threat into
a wr-wk-bk pattern. The complete strategy, comprising 18 rules, is detailed
in appendix D and the concepts learned by the system are fully described in
appendix C.

7.1.1 Background knowledge

Chase and Simon [CS88] suggest that some patterns are built around visual
features, such as spatial proximity, as well as Chess functions. This is more
noticeable in Chess endgames, where some concepts require geometrical prop-
erties of the board, e.g., if a piece is closer or moves closer to another piece or
even to a particular place, like the queening square?. The concept of distance
between pieces was defined and included as background knowledge for this
purpose. As described in chapter 5, concept definitions are constructed from
facts derived from background knowledge which include at least one of the
atoms of the example description. In general, other background knowledge
definitions can be included which do not involve directly any of the atoms
from the example description. This is the case when we want to produce
comparisons between distances of pieces. The definition of less_than was
included in the background knowledge but used only after deriving all the
pattern-based facts®.

So far, only moves that introduce a new predicate name or remove an
existing one have been included in the definition of dynamic patterns. This
condition is relaxed for geometrical knowledge, such as distance, which can
change as a consequence of a move, but which do not necessarily disappear.
A direct consequence of this relaxation is that, in some cases, very long

2The square where a Pawn is promoted.
3In practice, it takes compatible facts (facts with the same arity and functor symbol)
and compares their corresponding arguments (arguments which appear at the same place).

CHAPTER 7. KRK: A CASE STUDY 125

clauses can be produced, affecting the system’s performance. For instance,
in a KRK endgame, there can be 30 plausible moves in a single position
(14 Rook moves and 8 moves for each King), each associated with 2 new
distances (to the other two pieces) and 7 new comparisons (less_than(A,B)
or less_than(B,A), between the 2 new distances and between them and the
original 3 distances between pieces). This can produce clauses with more
than 200 literals, many of which have the same name and predicate symbol.
One way of reducing an explosive generation of facts is by constraining the
background knowledge definitions. For instance, instead of defining distance
between any two pieces in the board, distance is defined only between certain
pieces (e.g., restr_distance and restr_manh_dist defined below). This was used
to learn some of the concepts involved in the playing strategy.

In addition to the background knowledge described in section 6.3, the
following “geometrical” background vocabulary was provided to the system.
Table 7.2 specifies which of this background knowledge was available to the
system in conjunction with the rest of the background knowledge to learn
particular concepts.

less_than(Num1,Num?2):

Numl is less than Num?2.
distance(Placel,Place2, Dist, Pos):

Distance (Dist) between a piece in Placel and a piece in Place2.
restr_distance(Placel, Place2, Dist, Pos):

Distance (Dist) between a King in Placel and the Rook in Place2.
manh._dist(Placel,Place?2, Dist, Pos):

Manhattan distance between two pieces.
restr_manh_dist(Placel, Place?2, Dist, Pos):

Manhattan distance between a King and the Rook.
coordz(Place, X, Pos):

The file of a piece in Place.
coordy(Place,Y,Pos):

The rank of a piece in Place.

7.2 KRK concepts

As in chapter 6, the examples generated by PAL were compared with those
shown to the user when symmetric properties of the concepts are considered,

CHAPTER 7. KRK: A CASE STUDY 126

Concept Generated | Gen. Exs. | G.E. | No. | Additional Back.
Examples | Symmetry | Man. | Cls. | Knowledge
threatkR /7 13+9 — 24+ 1- 2 + 1 | —
rook divs/10 | 72 + 15 — |46 + 16 — | 28 + | 4 | coordx, coordy
opposition/8 | 11 +43 — | 240 — 2 + 2 | distance
alm_oppos/9 | 16 + 15— | 1+ 0 — 2 + 1 | distance,
manh_distance
r_edge/4 6+8— | 29+6—- | 8+ | 4 | —
ks_sside/10 9B +5— |60+10— |28+ | 4 | coordx, coordy
l_patt/12 69 4+ 148 — | 15+2 — | 144+ | 2 | opposition
rKk/10 70+ 18 — |55+ 19 — | 28 + | 4 | coordx, coordy
rkK /10 644+9— |57+20— |28+ | 4 | coordx, coordy
closerKk/10 15+1— 24+0—- | 4+ 1 | distance
rcloserKk/10 | 18 4+ 3 — 24+40—- | 4+ 1 | manh_distance
awayRk/10 27T+ 4 — 8+3— | 7T+ 1 | restrict_distance
rawayRk/10 | 26 +16 — | 7T+0— | 7+ 1 | restr_manh _dist
rcloserRk/10 | 48 + 15 — | 18 +4 — | 10 + | 2 | restr_manh_dist
in_lineRk/7 32410—- | 9+2— 6 + 2 | coordx, coordy
closeRK2/8 8+ 3 — 54+2— | 2+ 1 | distance
distkR6/8 13+10— | 74+2— | 24 | 1 |distance
Average per
clause (Tot) 26.8 114 51 | — | —

Table 7.2: Results for the KRK

and with those produced by a trained user (the author) to obtain the same
definitions. As some of the concepts involve disjunctive definitions, although
the concept as such is completely symmetric along the 3 axes of symmetry,
each disjunct can have only a single axis of symmetry. To learn such con-
cepts, each disjunct was learned separately and the user was prompted for
the particular symmetry axes. Table 7.2 shows the main results. The first
column has the name of the concept to learn, together with its arity. The
next three columns have the number of examples produced by the system
without/with symmetries and by the user. The fifth column has the number
of clauses required to defined the concept and the last column has the addi-
tional background knowledge added to the system. The last row shows the
average number of examples generated per clause.

CHAPTER 7. KRK: A CASE STUDY 127

As in chapter 6, the average number of examples presented to the user is
greatly reduced when knowledge about symmetries is included and in some
cases, it is smaller than the number of examples that could be manually pro-
vided to achieve the same results. Not all the concepts can take advantage of
all the symmetries. For this domain, concepts described with 4 disjunctive
clauses have only one axis of symmetry on each disjunct. Similarly, the dis-
juncts of two clause concepts are symmetric along two axes and one clause
concepts are symmetric along 3 axes. In general, the less orientation depen-
dent the disjuncts of a concept are, the greater generalisation steps can be
achieved.

7.3 Checking the strategy

The strategy outlined in Table 7.1 and fully described in appendix D can
checkmate the opponent’s King for all possible starting positions where the
winning side makes the first move (roughly 40,000, considering reflections
and rotations), regardless of the opponent’s moves. The correctness of the
strategy was tested by following every possible path of a starting position.
A simple depth-first program using bit sets, to mark positions from which
check mates were forced by the strategy for all the possible paths, was used to
verify the correctness of the strategy. Each path was followed and checked for
loops, captures or stalemates, until a check mate was delivered or a marked
position encountered. The algorithm to check the correctness of the strategy
is described in Table 7.3.

Checking the correctness of a playing strategy for Chess can only be made
for a limited number of Chess endgames due to the size of the search space?.
Finding the correct strategy took a couple of weeks, although all the patterns
can be learned in one day. The original strategy consisted of 11 rules with
12 concepts and changes were made by the author to avoid loops, captures
or stalemates. “Tuning” the strategy involved changing the conditions of
rules, changing the order of the rules, creating a new rule with the available
patterns, or learning a new pattern to include it as an extra condition to a
rule or to create a new rule. In total 5 new concepts were created, there was
one rule reordering and 6 new rules were added. Some errors in the original
strategy included not checking for stalemates or possible captures of the rook.

4The most recent database generated for an endgame has been made for the KRBKNN
endgame involving a search space of 6 x 10° positions.

CHAPTER 7. KRK: A CASE STUDY 128

e Given the set of rules for the KRK endgame.

e while there are unmarked winning-side-to-move (WSM) po-
sitions

— set NewPos = an unmarked WSM position
— mark NewPos

— set Path = [NewPos|

— call win-move

wWin-move

make a winning-side move using the KRK-rules
if the new position is check mate

then stop

else call lose-move

lose-move

if the losing-side King is stalemated or
can safely captured the Rook or
can move to a position which is in Path
then return failure
else while a losing-side move can move into an
unmarked position
make a losing side move to an unmarked
position NewPos;
mark NewPos;
set Path = [NewPos; | Path]
call win-mowve

Table 7.3: Algorithm for checking the correctness of the KRK-rules

CHAPTER 7. KRK: A CASE STUDY 129

Figure 7.3: A worst case example for the KRK strategy

New rules were added to avoid loops and contemplate special border cases.
In general, it was relatively easy to identify a flaw in the strategy and correct
it (sometimes learning a new concept). A larger amount of time was spent in
checking the correctness of the strategy each time a new change was made.

7.3.1 Improving the strategy

Although the strategy will checkmate the opponent’s King for every starting
position with the winning side to move, the longest “path” involves 57 moves®
(see Figure 7.3).

The design of the above strategy follows a very naive approach. It can
be improved if the concept of the area on which the opponent’s King is
“confined” by our Rook is included in the background knowledge. This can
be used to learn how to “squeeze” the opponent’s King’s area until mate can
be delivered in a few moves. The design of such strategy was developed in 5
days, it uses 7 concepts of the previous strategy with 8 new concepts in 19
rules. Full details of the concepts and the rules of the strategy, are given in
appendix E.

®The worst case is when the opponent’s King is in file/rank 3 and the winning-side
King is in file/rank 1. The strategy takes at most 9 moves to force the opponent’s King
to move “backwards”. Thus, it takes 54 moves to mate plus 3 initial moves in the worst
case to get the rook in the right position.

CHAPTER 7. KRK: A CASE STUDY 130

while making sure that stalemate is never created or the Rook left
undefended under attack,
repeat until mate.

e move the Rook to reduce the area of the opponent’s King until
it is trapped in a corner.

e else, move the King to keep the current area, closer to the
Rook and/or closer to the opponent’s King.

e if the opponent’s King is trapped in a corner, deliver mate in
a few moves.

Table 7.4: New KRK strategy

Figure 7.4: Squeeze the area of the opponent’s King (left) and keep the area
(center) until it is trapped into a corner (right)

CHAPTER 7. KRK: A CASE STUDY 131

The new strategy is outlined in Table 7.4 and illustrated in Figure 7.4. It
does not use Manhattan distance as background knowledge to learn the new
concepts, requires a smaller number of patterns, and was developed in less
time. Although it is far from being optimal, the new strategy safely mates
the opponent’s King from every starting position of the winning side in less
than 50 moves. Trying to optimise the strategy would involve a much bigger
effort that requires the detection of many exceptions. Zuidema reports how
trying to improve the strategy of a program for the same endgame, resulted
in an overburdened program, with smaller improvements produced only after
a great deal of programming effort [Zui74]. Bramer also reports the nuisance
of special cases and how the number of patterns was almost doubled when
constructing a sub-optimal strategy for this endgame [Bra75]. In general,
refining the algorithm and exceptions of rules can only be made at a high
price in terms of time to do it and computation resources. A tool that allows
a fast induction of patterns from examples using a high level language can
facilitate this task.

Bain and Muggleton are trying to use Golem to learn an optimal strategy
for this endgame from a complete database where positions are classified
by their optimal N-depth-ply to check mate. The idea is to learn rules to
distinguish different N-depth-ply positions. All the positions at depth IV are
given as positive examples and the rest of positions as negative examples.
These can be used to induced rules that could play optimally by moving
from positions classified by the rules of depth N to positions classified of
depth N — 1. So far, they have succeeded for depths 0 and 1. However, the
deterministic nature of the background knowledge used by Golem, might be
inappropriate to distinguish between positions of different depths and the
resulting rules may be difficult to understand.

7.4 Discussion

This chapter has shown how PAL can be used to learn useful patterns. Its
pattern-based knowledge representation allows it to derive only a finite set
of “relevant” atoms from the background knowledge. The “complexity” of
the background knowledge which affects all the rlgg-based algorithms, be-
comes relevant when learning dynamic patterns with background knowledge
definitions which do not follow the pattern-based approach (e.g., less_than).

Additional background knowledge can be used, not only to correct con-

CHAPTER 7. KRK: A CASE STUDY 132

cept definitions, but also to learn more “powerful” concepts that can be used
in the design of better playing strategies. Chapter 6 and appendix B show
how adding to the background knowledge the concept of vertical, horizontal
or diagonal line between two pieces (line) and a way to compare numbers
(less_than), can be used to learn the concept of 3 pieces in a vertical, hori-
zontal or diagonal line, and amend the definition of pin. In this chapter, the
KRK playing strategy was improved by adding the concept of confined_area,
which is used to learn the concept of squeeze, to reduce the area on which
the opponent’s King is confined. One of the initial aims of this research was
to learn Chess concepts using just the rules of the game. In practice, it is
clear that additional “geometrical” knowledge is required for some concepts.
An important question is how much knowledge is needed?

Background knowledge definitions which express the rules of the game
with some “primitive” concepts like distances and less_than seems to be
adequate for learning a wide range of concepts. In particular, they were
used to learn patterns to decide whether a Pawn could safely promote, in a
King and Pawn against King (KPK) endgame, by solely moving the Pawn
(results are summarised in appendix F). The background knowledge included
distance and Manhattan distance between 2 pieces, distance to the queening
square (the square where the Pawn is promoted) and less_than. Several
sub-patterns were learned first, as constructing blocks for more complicated
patterns (see also the definition of in_line in appendix B), which shows how
PAL could be used to learn more complicated concepts starting from ‘simple’
ones. The real question then is, how simple can we go?

There is a bottom line to the nature of the concepts that PAL can learn.
In particular, PAL is unable to learn the concept of confined_area with say,
background definitions of multiplication between numbers and distances to
the borders of the Chess board. PAL cannot distinguish between all the
different multiplications between numbers to produce only the desired area.
However, giving a weaker version of area (i.e., all the possible areas that a
piece can form in a board, which gives a restriction on the possible multipli-
cations) and less_than, PAL can learn the following version of confined_area®:

confined(S1,rook,square(X1,Y1),52,king,square(X2,Y2),
A1,A2,A3 bx1,bx8 byl,by8,Pos) +
contents(S1,rook,square(X1,Y1),Pos),

6The complete definition involves four disjuncts, one for each corner.

CHAPTER 7. KRK: A CASE STUDY 133

contents(S2 king,square(X2,Y2),Pos),
sliding_piece(rook,square(X1,Y1),Pos),
other_side(S1,52),
area(square(X1,Y1),bx1,byl,A1,Pos),
area(square(X1,Y1),bx8 by8,A2 Pos),
area(square(X2,Y2),bx1,byl,A3,Pos),
area(square(X2,Y2),bx8,by8,A4,Pos),
less_than(A4,A2), less_than(A1,A3).

where area(Place, Bord1,Bord2, Area, Pos), means that a piece in Place, forms
an area of size Area, with borders Bordl and Bord2 in example position Pos.
In the definition, bx1, bz8, byl, and byS§ are the left, right, bottom, and top
borders, respectively. That is, the Rook’s lower left hand side area is smaller
than that of the opponent’s King, while its upper right hand side area is
bigger.

7.5 Conclusions

There have been some attempts to use a pattern-based approach in the design
of playing strategies in Chess [Bra77, Bra82, Hub68, Wil79]. The emphasis
on these systems has been on ways to use and combine patterns, while a
substantial programming effort is actually employed in the definition of the
right patterns. In this chapter, it is shown how PAL can learn patterns that
are useful for the design of a playing strategy. PAL provides a useful tool
for the development of playing strategies as concepts are relatively easy to
learn from descriptions of Chess positions, from which a pattern can be more
easily recognised by the user.

The background knowledge used in chapter 6 was used to learn several
interesting concepts, like discovered_attacks, forks, pins, etc. From this chap-
ter, it is clear that the background vocabulary needs to be extended to include
geometrical definitions, as some concepts depend on spatial relations as well.

The pattern-based knowledge representation allows PAL to learn several
concepts which are difficult to learn by other ILP systems, however, it also
imposes a constraint of what is learnable by PAL. The characteristics of the
background knowledge determines what can be learned by the system. Some
background knowledge might be insufficient to learn particular concepts (e.g.,
learn confined_area with multiplication), while other background definitions

CHAPTER 7. KRK: A CASE STUDY 134

(e.g., confined_area), might allow the system to learn very powerful concepts
(e.g., squeeze).

Chapter 8

Learning qualitative models

Although this research is focussed on learning Chess concepts, this chapter
shows how PAL can be applied to a different domain by changing its back-
ground knowledge. PAL is applicable to structural domains where examples
are given by a set of components (Chess pieces) describing a particular state
of a system (a Chess board), and the background knowledge uses the descrip-
tion of the states (examples) to express relations between the components.
Qualitative simulation domains are like Chess in the sense that examples can
be given by a set of components (i.e., qualitative variables) describing a par-
ticular state of a system, and the background knowledge can express relations
between those components (e.g., QualVarl + QualVar2 = QualVar3).

In a recent paper, Bratko et al. [BMV92] report how Golem was used
to learn a qualitative model of a simple dynamic system (the U-tube). The
hypothesis is that qualitative models are easier to learn than differential
equations (attempts to learn linear “quantitative” equations have been made
in systems like Bacon [LBS83]). In this chapter PAL is used to learn a
qualitative model for the U-tube. A comparison between PAL and Golem
is given. In particular, it is shown that some of the problems encountered
by Golem in this domain (i.e., non-determinate target concept, the need for
very large number of background facts and the use of generalisation against
background examples) can be overcome by PAL.

Section 8.1 describes the QSIM formalism first introduced by Kuipers
[Kui86]. Section 8.2 explains the characteristics of the U-tube, a simple dy-
namic system where Golem was tested. Section 8.3 reviews the experiments
with Golem and discusses its results. Section 8.4 shows how PAL is applied
to this domain, explains its results, and compares its results with Golem. Fi-

135

CHAPTER 8. LEARNING QUALITATIVE MODELS 136

nally, in section 8.5 conclusions and future research directions are indicated.

8.1 Qualitative simulation

Qualitative models have been shown to be better suited for some tasks
than traditional numerical models (see for example [BML89, Pea88]). QSIM
[Kui86] is a qualitative formalism used for simulating dynamic models and
was taken as the basis for the experiments with Golem. In QSIM, a qualita-
tive simulation of a system starts with a description of the known structure
of the system and an initial state, and produces possible future states of
the system. The structure of the system is described by a set of physical
parameters (or qualitative variables) and a set of constraints describing how
those parameters are related to each other. The constraints are designed to
permit a large class of differential equations to be mapped into qualitative
constraint equations. In the QSIM formalism, six constraints are allowed:
add (i.e., X+Y = Z), mult (i.e., X XY = Z), minus (i.e., X = =Y), m_plus
(i.e., X = M*(Y), that is, X monotonically increases with Y'), m_minus
(ie., X = M~ (Y), X monotonically decreases with Y), and deriv (i.e.,
dX/dt =Y).

Each qualitative variable has a set of landmark values. The qualitative
state of a variable consists of its value or range of values and its direction of
change, i.e., inc (increasing), std (steady) or dec (decreasing).

Following Bratko et al. [BMV92], a QSIM qualitative simulation algo-
rithm can be sketched in Prolog as follows:

simulate(State) :— % Start with State
transition(State, NextState), % Move to next state
simulate(NextState).

% State = state(Variablel, Variable2, ...)
transition(state(V1, V2, ...), state(NewV1, NewV2, ...)) -
trans(V1, NewV1), % Model independent
trans(V2, NewV2),

legalstate(NewV1, NewV2, ...). % Model-dependent

CHAPTER 8. LEARNING QUALITATIVE MODELS 137

La Lb

Fab

Figure 8.1: The U-tube

Trans is a non-deterministic relation that generates possible transitions of
the variables and is defined as part of the QSIM theory [Kui86]. The model
of a particular system is defined by legalstate which imposes constraints on
the values of the variables.

The learning task is: given general constraints such as deriv or add as
background knowledge and some qualitative states of a system (examples),
induce its model. This can be expressed as follows:

QSIM-Theory A Qual-Model = Example-Behaviours

The target concept consists of defining the predicate legalstate in the
form:

legalstate(...) :—
constraint1(...),
constraint1(. ..),

where constraint; is one of add, mult, minus, m_plus, m_minus, or deriv.

8.2 The U-tube

The experiment consisted of learning a qualitative model for the U-tube.
The U-tube (illustrated in Figure 8.1) consists of two containers, A and B,

CHAPTER 8. LEARNING QUALITATIVE MODELS 138

connected with a pipe and filled with water to their corresponding levels La
and Lb. If the flow from A to B is Fab (and from B to A, Fba), the difference
in the level of the containers A and B is Diff, and the pressure along the
pipe is Press, then a qualitative model for the U-tube, defined by a set of
constraints on the physical parameters of the system, can be formulated as
follows:

d
%LO,:FZ?CL

d

—Lb= Fab
dt “
Fab= —Fba
Diff = La — Lb

Press = M. (Diff)
Fab = M} (Press)

If we are not explicitly interested in the pressure, the two equations involving
M can be simplified into one:

Fab = M (Diff)

Appropriate landmark values for all the variables of this model for the U-tube
are:

e La: munf, 0, la0, inf
o Lb: minf, 0, Ib0, inf
o Fab: minf, 0, fab0, inf
e EFba: minf, fba0, 0, inf
e Diff: minf, 0, diff0, inf

where inf and minf are infinite and minus infinite respectively, and la0, (b0,
etc., are the initial values of the variables. These symbolic values are ordered
from left-to-right with a less-than relation.

The qualitative variables can be represented as follows: Name: Value/Deriv.
Where Name identifies each variable, Value can take a landmark or an in-
terval of landmark values, and Deriv can be inc, std, or dec. For example,

CHAPTER 8. LEARNING QUALITATIVE MODELS 139
Time | La Lb Fab Fba Dift
t0 la0/dec 1b0/inc fab0/dec fba0/inc diff0/dec
(t0,t1) | 0..1a0/dec | 1b0..inf/inc | 0..fab0/dec | tha0..0/inc | 0..diff0/dec
t1 0..1a0/std | 1b0..inf/std | 0/std 0/std 0..diff0/std
(t1,inf) | 0..1a0/std | 1b0..inf/std | 0/std 0/std 0..diff0/std

Table 8.1: Behaviour for the U-tube

if in the initial state the value of level La is equal to la0 and it is decreasing
(dec). This can be represented as follows:

La = la0/dec

In the time interval that follows, La is between 0 and la0 and decreasing.
This is described as follows:

La = 0..1a0/dec

The qualitative simulation of the U-tube, if in the initial state there is more
water in container A, is given in Table 8.1.

The standard qualitative model used in [BMV92] for the U-tube can be
written in Horn clause notation as follows:

where [c(...), ¢(...), ..

legalstate(La,Lb,Fab) <
add(Lb,Diff,La, [c(1b0,diff0,1a0)]),
m_plus(Diff, Fab, [c(0,0), c(diff0,fab0)]),
minus(Fab, Fba, [c(fab0,fba0)]),

deriv(La, Fba),
deriv(Lb, Fab).

(8.1)

.| represent a list of corresponding values. In the add

constraint they say that whenever Lb = (b0 and Diff = diff0, La = la0 (i.e.,
b0 + diff0 = 1a0).

CHAPTER 8. LEARNING QUALITATIVE MODELS 140

8.3 Experiments with Golem

In Golem the definitions of the constraint predicates were tabulated into
tables of ground facts. The following simplifications were made:

e Golem did not consider corresponding values. This makes the reper-
toire of constraints available to Golem weaker (i.e., knowing (b0 + diff0
= la0, can be used to constrain the possible values that the variables in
the add constraint can assume). On the other hand a smaller number
of background facts needs to be generated (i.e., Golem would other-
wise need to generate all the possible add predicates with the possible
corresponding values as background facts).

e The mult constraint was not tabulated. A very large number of facts
must be tabulated for this constraint, which makes it problematic for
a system like Golem. Although not needed on this domain, it might be
required in another domain.

e The add constraint requires a very large number of ground facts and
was not tabulated explicitly. Instead it was replaced by three more
economical relations: norm_mag (normalises a given qualitative value
with respect to a landmark value), lookup_consist_table (lookup table
for adding signs), and verify_add_deriv (lookup table for adding deriva-
tives). This means that the add constraint cannot be included in the
rules generated by Golem.

e Consistency of infinite values in the add constraint were ignored. The
add constraint checks for consistency of additions involving infinite
values. That is, if we add two infinite values, the result must be infinite
as well (i.e., add(inf,inf,inf)). Ignoring this constraint does not affect
the results for this domain.

The following constraint predicates were thus tabulated in Golem:

range(F, Range).

deriv(F1, F2).

m_plus(F1,F2,[]).

m_minus(F1,F2,[]).

norm_mag(FunName, QValue, 0, NormalisedQValue).
lookup_consist_table(NormV1, NormV2, NormV3).
verify_add_deriv(Dirl, Dir2, Dir3).

CHAPTER 8. LEARNING QUALITATIVE MODELS 141

range(la:0/std,0..1a0/std).

range(la:0/std,0..1a0/dec..std).
range(la:0/std,0..1a0/dec..inc).
range(la:O/std,O. Ja0/std...std).

m_ plus(fab 0/dec,tba:0..inf/dec,[]).
m_plus(fab:0/dec,tba:0..inf/std,[]).
m_plus(fab:0/dec,fba:0..inf/inc,[]).
m_plus(fab:0/dec,tba:fba0..0/dec,[]).

deriv(la:la(). inf/dec,tba:fba0..0/std).
deriv(la:1a0..inf/dec,tba:fba0..0/inc).
deriv(la:1a0..inf/inc,fba:fba0..0/dec).
deriv(la:la0..inf/inc,fba:fba0..0/std).

norm_mag(la,1a0,0,pos).
norm_mag(la,inf,0,pos).
norm_mag(la,minf..0,0,neg).
norm_mag(la,0..1a0,0,pos).

Table 8.2: Examples of background facts for Golem

Some of the background facts, taken from [BMV92] are given in Table 8.2
to illustrate their meaning. In total 5,408 background facts from the above
predicates were provided to Golem.

Golem used four positive examples, the first three from Table 8.1, plus
an additional example state described as follows:

La:0/std, Lb:0/std, Fab:0/std, Fba:0/std, Diff:0/std.

In addition, six negative examples were manually provided by the authors
to Golem. Their first attempt, with only five negative examples, produced
an over-general model. Golem (see page 48) uses the negative examples to
reduce the clause found by the rlgg algorithm until no more removals can
be performed without covering a negative example. This means that Golem
can over-generalise if a small set of negative examples are initially chosen.

CHAPTER 8. LEARNING QUALITATIVE MODELS 142

In the experiments with Golem the four variables (i.e., La, Lb, Fab, Fba)
were considered, although in principle, only La, Lb and Fab should be re-
quired. Results of Golem running with three variables are described later.
The model induced by Golem with 4 + and 6 — examples considering four
variables is as follows:

legalstate(la:A /B, 1b:C/D, fab:E/B, fba:F/D) :—
deriv(la:A/B, fba:F /D),

deriv(1b:C/D, fab:E/B),

minus(la:A/B, Ib:G/D, []),

minus(la:G/B, 1b:C/D, []).

Golem constructed this model using 10 examples and 5,408 background facts.
The result of the rlgg algorithm was a clause with 26 body literals, reduced
to 4 literals by generalising against the 6 negative examples.

To show that this model is complete and correct with respect to the
standard model, Bratko et al. provided some analytic justification and tested
the model on certain behaviour sequences.

From [BMV92] it is easy to identify three problems with Golem. The first
is its inability to learn non-determinate concepts. Because of this, Golem
cannot learn the definition of the model given in Equation 8.1 since it is non-
determinate. That is, the existential variable Diff is not uniquely determined
in the clause given La and Lb.

The second problem is the large number of possible facts that needs to be
generated for some background definitions, like add or mult. In particular,
add was simplified into three more “economical” predicates to reduce the
number of tabulated facts. The number of facts increases with the number of
variables and landmark values. For this domain, the add constraint requires
several thousand facts for each triple of variables®.

The third problem is the use of negative examples to reduce the clause as
much as possible. Although this is justified by the need to reduce the length of
the clauses produced by the rlgg algorithm, in many cases negative examples
need to be incrementally provided by the user until a correct definition is
found (see section 6.2).

LConsidering four landmark values for each variable and three intervals between the
landmarks, each variable can assume seven possible values and three possible directions of
change. Thus each variable can be in 21 possible qualitative states. Thus the combination
of three variables in a three place predicate gives 3! x 213 = 55, 566.

CHAPTER 8. LEARNING QUALITATIVE MODELS 143

If Golem is run under the same conditions with only the first three vari-
ables in the head of the clause, it produces the following result:

legalstate(la:A /B, 1b:C/D, fab:E/B) :-
deriv(1b:C/D, 1b:C/D).

which is clearly an overgeneral and therefore incorrect model. Before gener-
alising against the 6 negative examples the clause has 18 literals. To obtain
better results additional negative examples need to be provided to Golem.
No tests were made with additional negative examples, so conclusions cannot
be drawn about whether a correct model can be induced.

8.4 Experiments with PAL

In qualitative simulation, each state of a system is given by the values and di-
rections of change of each qualitative variable. In PAL, the qualitative states
(examples) are described by two-place atoms: qvar(Name: Value/Deriv,State).
For instance, the first qualitative behaviour of Table 8.1 (time = t0) can be
described as follows:

la:la0/dev,t0).
Ih:Ib0 /inc,£0).
qvar(fab:fab0/dec,t0).
qvar(fba:fba0/inc,t0).
qvar(diff:diff0/dec,t0).

qvar
qvar

N N N N

From Equation 8.1 it can be seen that not all the qualitative variables are
required in principle to induce a model. First, we will show how PAL induces
a model for the U-tube considering the same variables as Golem. We will
then show the results of PAL with fewer variables.

The background knowledge for PAL consisted of definitions for the qual-
itative constraints: deriv, add, minus, m-minus, and m_plus (roughly 100
lines of Prolog code). They were taken from the original Prolog code used by
Bratko et at. to generate the background facts for Golem?. As in Golem, the
corresponding values for the constraints were ignored. In PAL, background
knowledge definitions use the description of the current state of the system
to derive only a finite number of relevant facts. A pattern in PAL is defined
as follows (see also chapter 5):

2T am grateful to Saso Dzeroski for providing me with the code.

CHAPTER 8. LEARNING QUALITATIVE MODELS 144

Head + Dy,Dy,..., Dy, F1, Fy, ... F,.

where the D;s are the “input” predicates used to describe a position (state).
A modification was made to the main predicates (i.e., the constraints) to
transform them into pattern definitions suitable for PAL. For instance, in
the following definition for the constraint add, the quar/2 predicates (i.e.,
the “input” predicates) were added (indicated by the comment “New”).

add(F1:M1/D1,F2:M2/D2 F3:M3/D3,State) :—
qvar(F1:M1/D1,State), % New
qvar(F2:M2/D2,State), % New
qvar(F3:M3/D3,State), % New
verify_add_inf_consistence(M1, M2, M3),
verify_add_mag(F1, F2, F3, M1, M2, M3),
verify_add_der(D1, D2, D3).

This representation constrains the generation of facts from the background
definitions as only those facts which apply to a particular state can be derived.
The same change was made to other background predicates. For instance,

minus(F1:M1/D1, F2:M2/D2,State) :—
qvar(F1:M1/D1,State), % New
qvar(F2:M2/D2,State), % New
verify_minus_zeroinf_consistence(M1, M2),
verify_minus_mag(F1, F2, M1, M2),
verify_minus_der(D1, D2).

The rest of the code remained unchanged,

verify_add_mag(F1, F2, F3, M1, M2, M3) -
norm_mag(F1, M1, 0, A1),
norm_mag(F2, M2, 0, A2),
norm_mag(F3, M3, 0, A3),
lookup_consist_table(Al, A2, A3).

lookup_consist_table(neg, neg, neg).
lookup_consist_table(neg, zero, neg).
lookup_consist_table(neg, pos, neg).
lookup_consist_table(neg, pos, zero).

CHAPTER 8. LEARNING QUALITATIVE MODELS 145
lookup _consist_table(neg, pos, pos).

The same positive examples that were provided to Golem were manually
given to PAL. With them, PAL obtains the following definition®:

legalstate(la:A/B,1b:C/D fab:E/B.fba:F/D,S) -
qvar(lb:C/D,S),
qvar(la:A/B,S),
qvar(fba:F/D,S),
qvar(fab:E/B,S),
deriv(lb:C/D,fab:E/B,S),
deriv(la:A/B,fba:F/D,S),
deriv(fba:F/D,fab:E/B,S),
deriv(fab:E/B,fba:F/D,S),
m_minus(la:A/B,1b:C/D,S),
m_minus(la:A/B,fba:F/D,S),
m_minus(lb:C/D fab:E/B,S),
m_minus(fab:E/B.tba:F/D.S),
m_plus(lb:C/D.fba:F/D,S),
m_plus(la:A/B.fab:E/B,S),
minus(fab:E/B,fba:F/D,S),
add(1b:C/D fab:E/B.la:A/B,S),
add(la:A/B,fba:F/D,1b:C/D,S).

This model, has the principal components of the model for the U-tube. In
general terms, a U-tube model must show that Fab o< (La — Lb) and that
dLa/dt = —Fab or that dLb/dt = Fab. The first condition is shown by
the last two add constraints. The second condition is given by the first two
deriv constraints. The other two derivs (i.e., deriv(fba:F/D,fab:E/B,S), and
deriv(fab:E/B.fba:F /D),S), say that when the change in Fab is negative then
the flow Fba is negative and vice versa. The rest of the constraints follow
directly from the physics of the modelled system.

PAL produces a longer clause than Golem, because Golem uses the nega-
tive examples to reduce the clause as much as possible. Unlike Golem, PAL
can use the add constraint as background knowledge.

3Redundant literals produced by symmetry and associativity of the constraints (e.g.,
m_plus(A, B) and m_plus(B, A), and add(A, B,C) and add(B, A,C)), were removed from
the definition.

CHAPTER 8. LEARNING QUALITATIVE MODELS 146

Running PAL with only the first three variables (i.e., La, Lb, Fab) pro-
duces the following definition:

legalstate(la:A/B,1b:C/D,fab:E/B,S) -
qvar(1b:C/D,S),
qvar(la:A/B,S),
qvar(fab:E/B,S),
deriv(lb:C/D fab:E/B,S),
m_minus(la:A/B.1b:C/D,S),
m_minus(lb:C/D,fab:E/B,S),
m_plus(la:A/B.fab:E/B,S),
add(fab:E/B,Ib:C/D,la:A/B,S).

which again captures the essential features of a model for the U-tube.

Since Golem cannot learn the standard model because it is non-determinate,
it is of interest to note that PAL can learn a specialisation (w.r.t. #-subsumption)
of this clause if the qualitative variable diff is provided.

In the next section, the models induced by PAL are compared in qualita-
tive terms, together with the model induced by Golem, against the standard
model of Equation 8.1 without considering corresponding values.

8.4.1 Comparison of Golem and PAL

The models induced by Golem and PAL were compared against the standard
model by evaluating the models on possible states of the U-tube. This pro-
vides a measure of the quantitative performance of the outputs of the two
algorithms. Some possible states were eliminated on the grounds that they
are physically impossible. No values were considered where the qualitative
variables could assume an infinite or minus infinite value, and levels La and
Lb were non-negative (e.g., the landmark values for La in the tests were as
follows: La : 0, 0..1a0, la0, la0..inf). With these constraints, the total num-
ber of possible states is 2,160. That is, La can be in 12 states, Lb in 12, and
Fab in 15 (in the generated states, Fba was determined from Fab).

Table 8.3 gives the total number of states that are accepted (+) and re-
jected (—) for each model. Pall refers to the first model induced by PAL
(with 4 variables), Pal2 is the model with three variables, and Golem is the
model induced by Golem and reported in [BMV92]. The standard model
accepts 80 examples when no infinite values are considered and the levels

CHAPTER 8 LEARNING QUALITATIVE MODELS 147
Example | Standard | Pall Pal2 Golem
Space
2,160 80 + 58 + 58 + 50 +
2,080 — | 2,102 — | 2,102 — | 2,110 —
Legal | Standard | Pall Pal2 Golem
States
32 32 + 32 + 32 + 24 +
0 — 0— 0— 8 —

Table 8.3: Results for the U-tube

on the containers are considered positive. In [BMV92] only 32 are of these
states are considered to be possible legal states for the U-tube*. This fur-
ther reduction in the number of examples was obtained by adopting further
constraints. All the models were tested on these states.

From Table 8.3 it can be seen that Pall and Pal2 accept the 32 legal
states. In fact, they accept the same states for this example space. Golem’s
model is equivalent to the standard model only in a dynamic sense. From
some initial states, the Golem model produces the same behaviour as the
standard model. The model induced by Golem fails in a state where all the
water is in container B:

La:0/inc, Lb:1b0..inf/dec, Fab:minf..0/inc, Fba:0..inf/dec
or a state where all the water is in container A:
La:la0..inf/dec, Lb:0/inc, Fab: fab0..inf/dec, Fba:minf..fba0/inc

Both of these states are considered to be legal. It should be noted that the
examples accepted by Pall and Pal2 (i.e., 58), and Golem (i.e., 50), are
subsets of those accepted by the standard model (i.e., 80).

8.4.2 Other related work

Following [BMV92], other authors have worked on this problem. Dzeroski
[DB92] experimented with mFoil, a top-down ILP system, and the U-tube.
mFoil is similar to Foil except that it uses a different heuristic function,

4Again, I am grateful to Saso Deroski for providing me with the examples.

CHAPTER 8. LEARNING QUALITATIVE MODELS 148

beam search instead of hill climbing, and the stopping criterion is based on
statistical significance, similar to the one used in CN2 [CN89] (see [DB92]
for mode details).

Using a Laplacean heuristic function, a significance level of (99%), and
with a beam size of 20 (its default value is 5), mFoil obtained the following
clause from the same four positive examples and 543 randomly generated
negative examples:

legalstate(La,Lb,Fab,Fba) :—
minus(Fab,Fba),
add(Lb,Fab,La),
m_minus(La,Fba),
deriv(Fab,Fba).

Although this model is not equivalent to the standard model, Dzeroski re-
ports that among the beam, there are 19 other clauses (models) which can
distinguish between the given positive and negative examples, two of which
are reported correct with respect to the standard model in a dynamic sense.
One of them is:

legalstate(La,Lb,Fab,Fba) :—
minus(Fab,Fba),
add(La,Fba,Lb),
deriv(Lb,Fab),
deriv(La,Fba).

This model accepts the same examples as Pall/2 (i.e., in an example space
of 2,160, it accepts the same 58 states as Pall/2, and rejects the same 2,102
states. It obviously accepts all of the 32 legal states).

Varsek [Var91] applies a genetic algorithm to the same problem. The
representation is based on binary trees, where the leaves corresponds to the
QSIM constraints. A crossover operation corresponds to changing subtrees
between trees and a mutation operation generates random subtrees on single
trees. The fitness value was determined by different parameters that were
determined experimentally. The setting of the experiments was as follows:
17 positive and 78 negative examples, an initial population of 200 individuals
with an average size of 7.8 constraints, and 35 generations (a total of 3,400
candidate models were created and evaluated). Varsek obtained, among oth-
ers, the following model:

CHAPTER 8. LEARNING QUALITATIVE MODELS 149

legalstate(La,Lb,Fab,Fba) :—
add(Lb,Fab,La),
minus(Fab,Fba),
deriv(La,Fba),
deriv(Lb,Fab).

which again accepts the same examples as Pall/2.

PAL has advantages over both these approaches. It learns models of
equivalent power without the requirement for large numbers of negative ex-
amples, and it does not require an adequate tuning of parameters to obtain
the target concept.

Perhaps the best results for learning qualitative model have been obtained
by Coiera with a system called Genmodel [Coi89]. Genmodel is specifically
designed for learning qualitative models and has learned, among others, a
model for the U-tube. Genmodel starts with a sequence of example be-
haviours of a dynamic system, and constructs a list of landmark values and
a set of corresponding values for the qualitative variables. It then derives the
set of all the constraints that can be applied to the first state. In this sense,
Genmodel derives the same constraints from an initial example description
as PAL®. Genmodel then uses the corresponding values and the rest of the
example behaviours to filter out the constraints, removing those which are
inapplicable. Genmodel does not use function symbols, but has the advan-
tage of using the full power of QSIM by considering the corresponding values
to filter out a larger number of constraints. With 4 variables and the same
examples, Genmodel obtains the following model:

legalstate(La,Lb,Fab,Fba) :—
m_minus(Fab,Fba),
minus(Fab,Fba),
deriv(La,Fba),
deriv(Lb,Fab).

which accepts the same examples as the standard model (without consider-
ing corresponding values). With information about the corresponding values,
PAL obtains the same results as Genmodel. Although PAL was not origi-
nately designed to this domain, it is interesting to note that it can achieved
an equivalent performance to Genmodel.

®We compare the results produced by Genmodel reported in [Coi89] for the bath-tube
with an experiment with PAL on the same problem and the same conditions.

CHAPTER 8. LEARNING QUALITATIVE MODELS 150

8.5 Discussion

Although the U-tube looks relatively simple, Bratko et al. [BMV92] and Dze-
roski [DB92] report how ILP systems like Foil [Qui90] and Linus [LDG91] are
not suited to the task. Each variable has 4 landmark values and 3 time inter-
vals, which gives 7 possible qualitative values for each variable. Combining
these with the three possible directions of change give 21 possible qualitative
values for each variable. With three variables, the total number of states for
the U-tube is 213 = 9,261.

We have demonstrated that the learning mechanism employed by PAL
generalises to this qualitative physics domain, and that the results are com-
parable with those of Golem in terms of quality, and that in some respects
PAL’s performance is superior.

1. PAL is not restricted to learning determinate clauses. Such clauses oc-
cur naturally in this and other structural domains (such as Chess).
This is demonstrated by the fact that the standard model is non-
determinate. PAL has learned a specialisation of this model.

2. The non-deterministic nature of the background knowledge means that
a large number of ground facts are required by Golem, which restrict
its application in larger domains. The implicit relevance restrictions
imposed by PAL means that more background knowledge can be used
more economically.

3. The restrictions on rlgg used by PAL do not restrict the quality of the
solution and produce a more general result than Golem.

Chapter 9

Conclusions and future work

Pattern-based reasoning has been used by several computer systems to guide
their reasoning strategies'. For Chess, in particular, a pattern-based ap-
proach has been used with relative success in simple end-games [Bra77,
Bra82, Hub68] and tactically sharp middle games [Ber77, Pit77, Wil79].
However, a substantial programming effort needs to be devoted to the defi-
nition and implementation of the right patterns for the task.

Our aim has been to learn Chess patterns from simple example descrip-
tions together with the rules of the game. To achieve this goal, we have
used an Inductive Logic Programming (ILP) framework as it provides an
adequate hypothesis language and mechanism where patterns and examples
can be simply expressed and, in principle, learned in the presence of back-
ground knowledge. The limitations of current ILP systems are more clearly
exposed in domains like Chess, where a large number of background defini-
tions can be required, it is common to have non-deterministic concepts, some
background knowledge definitions can cover a very large number of facts all
of which are required, and concepts can be several literals long. In PAL,
examples are given as descriptions of states of a system (e.g., a description of
the pieces in a chess board) and instances of patterns (background knowledge
definitions) are derived from such descriptions. Together they are used to
construct new pattern definitions, which can then be used in new examples.
In order to ‘recognise’ instances of patterns from such state descriptions, we
have introduced a pattern-based knowledge representation. This approach
makes a more selective use of the background knowledge by considering only

'In particular, the conditions used in the production rules used in most expert systems
can be regarded as particular patterns to match.

151

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 152

those definitions which apply to the current example description, reducing
most of the problems encountered by other ILP systems. The approach has
been successfully applied in Chess and in qualitative reasoning, and it is sus-
pected to be useful to other domains where a pattern-based approach can be
applied. Providing examples as descriptions of states means that the exact
arguments of the target concept are not specified in advance. PAL uses an
automatic example generator to guide the learning process and to recognise
which arguments are relevant for a concept. The generation of examples is
based on the current concept definition and it is organised in a structured
example space.

A novel mechanism for labelling the arguments of the components used in
the state descriptions and the atoms which are derived from the background
knowledge have been used for two main purposes. On one hand it guides and
constraints the generalisation process as only compatible literals of the same
components are considered. On the other hand, it is used to construct the
example space and guide the example generator by indicating which literals
are affected by which arguments.

PAL is applicable to domains where examples are given be a set of compo-
nents describing particular states of a system, and the background knowledge
uses the description of the states to express relations between the compo-
nents. The main emphasis of the thesis has been to apply PAL to Chess,
however, it can be used to other domains where examples can be given as
descriptions of states.

9.1 Main contributions of the Thesis

This thesis has made a contribution both to computer Chess, and to Inductive
Logic Programming (ILP).
In Chess we have shown that:

e A wide range of symbolic representations of patterns in Chess, ex-
pressed in a compact and understandable way, can be learned from
examples represented in a simple and natural way. This is outside the
scope of both current ILP systems, and other learning mechanisms.

e The concepts learned by PAL are powerful enough to be used in the
design of playing strategies. This is particularly relevant to planning
systems which rely on a pattern-based approach to produce plans in

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 153

reactive environments like Chess, as a substantial programming effort
is devoted to the definition of adequate patterns.

The thesis has also made a contribution to ILP. In Chapter 1 (page 5) we
defined four issues which should be addressed within any ILP-based learn-
ing mechanism for Chess patterns, and for pattern-based concepts more
generally. The issues are: the volume of background knowledge, the non-
determinacy of pattern-based concepts, incremental concept acquisition, and
robustness of learning with respect to example presentation.

These issues are largely resolved in PAL. The specific contributions which
resolve the issues are:

e PAL uses an implicit notion of relevance within a pattern-based knowl-
edge representation to produce only a limited number of relevant facts
from the current state description. This mechanism worked adequately
in both Chess and the qualitative modelling domain despite its sim-
plicity. This mechanism not only reduces the time complexity of the
algorithm it also provides a finer tuning of background knowledge than
existing algorithms and eliminates the requirement that users identify
the relevant ground facts to be derived from a background theory.

e The identification of internal structures within a state, pieces in Chess
and qualitative variables in the U-tube model, and the exploitation of
this identification via a labelling mechanism considerably reduces the
complexity of the basic lgg algorithm. As with the notion of relevance
this constraint did not restrict the concepts discovered.

e The use of the automatic example generator to ensure that the user
did not select the correct sequence of examples demonstrates that, in
pattern-based domains at least, the rlgg mechanism can be made suf-
ficiently robust for use by domain experts without knowledge of ILP
technology.

9.2 Future work

As with most research work, there is the potential for further progress. We
will look at three areas. Improvements in the generalisation method, im-
provements in the example generator, and we will explore the possibilities of
learning new concepts from traces of games.

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 154

9.2.1 The generalisation method

PAL’s generalisation method is based on transforming the rlgg of clauses into
a more manageable and constrained lgg of “saturated” clauses. To avoid a
possible combinatorial generation of facts during this transformation process,
recursive definitions are not considered and some constraints, discussed in
chapter 5, are introduced to limit the size of the clauses. In general, the
lgg of clauses is limited to single clauses (i.e., it cannot learn disjunctive
definitions), cannot include negation of literals, and cannot introduce new
terms. PAL only tackles partially the first limitation by considering the
negative examples generated so far by PAL, however it still relies on the user
to avoid the creation of over-generalised clauses when learning disjunctive
definitions. If there is insufficient knowledge in PAL to derive a definition
that will distinguish between positive and negative examples, the hypothesis
fails. This can be, in some cases, corrected by introducing specialisations
and /or allowing some inconsistencies in the hypotheses. Bain’s closed-world
specialisation method [Bai91], mentioned in chapter 6 for learning a correct
definition of illegality in the KRK endgame, could be incorporated into PAL
for this purpose, either by introducing a new predicate or by introducing a
new component.

9.2.2 The example generator

The number of examples presented to the user by the example generator com-
pares very favourably with the size of the example space. However, it should
be clear that a very long experimentation process may result when learning
concepts involving a large number of pieces. Knowing that a concept does
not depend on a particular orientation of the board was used to improve the
learning rate by making generalisations between all the symmetric examples
of the current positive example before presenting to the user a new example.
Instead of specifying the particular symmetric characteristics of the concept
at hand, the axes of symmetry can be deduced from the examples and the
hypotheses produced by the system.

The example generator can produce examples which are symmetric with
respect to the last positive example along a particular axis of symmetry. If
this symmetric example is accepted as positive by the user and if it does not
produce an over-generalisations, then the particular axis of symmetry used
to generate the example, can be stored and used in the future. This process

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 155

can continue until all the symmetric properties of the concept are known.
With them further generalisations steps can be produced by considering all
the symmetric examples. This is particularly relevant for learning disjunctive
concepts as each disjunct is in general no longer symmetric along the 3 axes.

A more immediate and general extension is to used the labels to split
the example space into independent factors. The labels associated with the
hypotheses can distinguish exactly which literals are affected by which argu-
ments. Although not implemented, this information can be used to identify
directly which are the independent factors of the concept and reduce even
more the example space by considering each factor separately. The main
advantage of this approach over Subramanian et al. [SF86] is that the fac-
tors are deduced directly from the concept definition, rather than given by
the user or deduce after an experimentation process. Similarly the indepen-
dent factors could be changed dynamically during the learning process. For
instance, the positions of two pieces can be considered as an independent
factor when they occur together in some literals in the current concept defi-
nition. If during the learning process a new definition removes all the literals
affecting both positions, then each position can be considered, from then on,
independently.

9.2.3 Learning from traces of games

In chapter 7 a correct strategy for playing a simple endgame was designed
with patterns learned by PAL. A system on top of PAL could be used to
learn complete game-strategies from traces of games. Subsequent positions
of traces of games can be compared to see what patterns changed as a conse-
quence of a move. Each move can then be associated with a set of patterns
before and after the move, which are considered as relevant to the move. This
is already done by PAL when learning dynamic patterns, however, while in
PAL several moves are considered to identify patterns that change for learn-
ing a single concept, in traces of games the actual moves are given but they
can correspond to different concepts. The real problem is to identify which
of the moves in different traces of games, correspond to the same general rule
in the strategy. This process could be guided in principle by matching the
moves and the corresponding patterns associated with them.

Learning from traces of games is a natural way in which to learn to play
Chess. This is already done, to a certain extent, by Morph [LS91] (see also
chapter 4). In Morph, the descriptions of positions are associated with a

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 156

fixed and large set of relations between pieces, defining all the possible direct
and indirect threats of the pieces involved, and only patterns associated with
these relations can be learned. In PAL, Chess board positions are described
in a much simpler way, and a set of background knowledge definitions, used
to identify relations between the pieces and places in the board, can be
incrementally augmented with new relations learned from a set of example
descriptions.

A powerful learning system that could be constructed by combining PAL’s
learning capabilities to learn appropriate relations, with a learning system
that could take these relations with traces of games, to learn playing strate-
gies.

Bibliography

[Ang88]

[AS83]

[Bai91]

[BE9O]

[Ben&9]

[Ber77]

[BMLSY]

[BMV92]

D. Angluin. Queries and concept learning. Machine Learning,
2(4):319 — 342, 1988.

D. Angluin and C. H. Smith. Inductive inference: theory and
methods. Computing surveys, 15(3):237-269, 1983.

M. Bain. Experiments in non-monotonic first-order learn-
ing. In S. Muggleton, editor, Proceedings of the International
Workshop of Inductive Logic Programming, pages 195 — 206,
Viana de Castelo, Portugal, 1991.

H. J. Berliner and C. Ebeling. Hitech. In T.A. Marsland and
J. Schaeffer, editors, Computers, chess and cognition, pages 79
— 109. Springer-Verlag, New York, 1990.

S. W. Bennett. Learning approximate plans for use in the real
world. In B. Spatz, editor, Proceedings of the Sixth Interna-
tional Workshop on Wachine Learning, pages 224-228, San
Mateo, CA, 1989. Morgan Kaufmann.

H.J. Berliner. A representation and some mechanisms for a
problem-solving chess program. In M.R.B. Clarke, editor, Ad-
vances in Computer Chess 1, pages 7-29. Edinburgh Univer-
sity Press, Edinburgh, 1977.

I. Bratko, I. Mozetic, and N. Lavrac. Kardio: a study in deep
and qualitative knowledge for expert systems. MIT Press, Cam-
bridge, 1989.

I. Bratko, S. Muggleton, and A. Varsek. Learning qualitative
models of dynamic systems. In S. Muggleton, editor, Inductive

157

BIBLIOGRAPHY 158

[Bra75]

[Bra77]

[Brag82]

[Bunss]

[Cam66]

[Cam88]

(CGST]

[Cha77]

[CKB87]

Logic Programming, pages 437-452. Academic Press, London,
1992.

M. A. Bramer. Representation of knowledge for chess
endgames. Technical report, Open University, Faculty of
Mathematics, Milton Keynes, 1975.

M. A. Bramer. Representation of knowledge for chess
endgames: Towards a self-improving system. PhD thesis, Open
University, Milton Keynes, 1977.

I. Bratko. Knowledge-based problem-solving in AL3. In Hayes
J E Michie D Pao Y H, editor, Machine intelligence 10, pages
73-100. Horwood, 1982.

W. Buntine. Generalized subsumption and its applications to
induction and redundancy. Artificial intelligence, 36(2):149-
176, 1988.

D. T. Campbell. Pattern Matching as an FEssential in Distal
Knowing. Holt, Rinehart and Winston, New York, 1966.

M. S. Campbell. Chunking as an abstraction mechanism.
Technical Report CMU-CS-88-116, Carnegie Mellon Univer-
sity, Computer Science Department, Pittsburgh, PA, 1988.

J. G. Carbonell and Y. Gil. Learning by experimentation.
In P. Langley, editor, Proceedings of the Fourth International
Workshop on Machine Learning, pages 256—266, Los Altos,
CA, 1987. Morgan Kaufmann.

N. Charness. Human chess skill. In P.W. Frey, editor, Chess
skill in man and machine, pages 34-53. Springer-Verlag, 1977.

B. Cestnik, I. Kononenko, and I. Bratko. ASSISTANT 86: a
knowledge-elicitation tool for sophisticated users. In I. Bratko
and N. Lavrac, editors, Proceedings of the 2nd Furopean Work-
ing Session on Learning, pages 31-45, Wilmslow, 1987. Sigma
Press.

BIBLIOGRAPHY 159

[CN8Y)]

[Coi89)]

(CS8S]

[DBS3]

[DBY2]

AG65]

AGS6]

[dJMS6]

[ARBSS]

P. Clark and T. Niblett. The CN2 induction algorithm. Ma-
chine learning, 3 (4):261-283, 1989.

E. Coiera. Generating qualitative models from example be-
haviors. Technical Report DCS Report No. 8901, School of
Electrical Engineering and Computer Science, University of
New South Wales, Sydney, Australia, 19809.

W. G. Chase and H. A. Simon. The mind’s eye in Chess. In
A. Collins and E.E. Smith, editors, Readings of cognitive sci-
ence: a perspective from psychology and artificial intelligence,
pages 461-494. Morgan Kaufmann, San Mateo, CA, 1988.

T. G. Dietterich and B. G. Buchanan. The role of experi-
mentation in theory formation. In Proceedings of the Interna-
tional Machine Learning Workshop, pages 147-155, Urbana,
IL, 1983. University of Illinois, Department of Computer Sci-
ence.

S. Dzeroski and I. Bratko. Handling noise in inductive logic
programming. Technical Report Proceedings ILP92: Inter-
national Workshop on Inductive Logic Progamming, ICOT
TM-1181, Institute for New Generation Computer Technol-
ogy, Tokyo, Japan, 1992.

A. de Groot. Thought and Choice in Chess. Mouton, The
Hague, 1965.

A. D. de Groot. Intuition in chess. ICCA Journal, 9(2):67-75,
1986.

G. de Jong and R. Mooney. Explanation-based learning: an
alternative view. Machine Learning, 1((2)):145-176, 1986.

L. de Raedt and M. Bruynooghe. On interactive concept-
learning and assimilation. In D. Sleeman and J. Richmond,
editors, Proceedings of the Third European Working Session
on Learning, pages 167-176, London, 1988. Pitman.

BIBLIOGRAPHY 160

[ARBYO]

[dRB92]

[ARBMO1]

[FD8Y]

[Fen90]

[FHNT2]

[FM83]

[GGMO1]

[Gol67]

L. de Raedt and M. Bruynoghe. Indirect relevance and bias in
inductive concept-learning. Knowledge Acquisition, 2(4):365—
390, 1990.

L. de Raedt and M. Bruynooghe. Interactive concept-learning
and constructive induction by analogy. Machine Learning,
8(2):107 — 150, 1992.

L. de Raedt, M. Bruynooghe, and B. Martens. Integrity con-
straints and interactive concept-learning. In L.A. Birnbaum
and G.C. Collins, editors, Proceedings ML91: Fighth Interna-
tional Conference on Machine Learning, pages 394 — 398, San
Mateo, CA., 1991. Morgan Kaufmann.

N. S. Flann and T. G. Dietterich. A study of explanation-based
methods for inductive learning. Machine learning, 4(2):187—
226, 1989.

C. Feng. Learning by Experimentation. PhD thesis, The Turing
Institute - University of Strathclyde, 1990.

R. E. Fikes, P. E. Hart, and N. J. Nilsson. Some new directions
in robot problem solving. In B. Melzer and D. Michie, editors,
Machine intelligence 7, pages 405-430. Edinburgh University
Press, Edinburgh, 1972.

E. Feigenbaum and P. McCorduck. The Fifth Generation:
Artificial Intelligence and Japan’s Computer Challenge to the
World. Addison-Wesley, Reading, MA, 1983.

D. Gadwal, J.E. Greer, and G.I. McCalla. UMRAO: a chess
endgame tutor. In J. Mylopoulos and R. Reiter, editors, Pro-
ceedings of the 12th. International Joint Conference on Arti-
ficial Intelligence, pages 1081 — 1086, San Mateo, CA, 1991.
Morgan Kaufmann.

E. M. Gold. Language identification in the limit. Information
and Control, 10:447-474, 1967.

BIBLIOGRAPHY 161

[HACN90]

[HRS5]

[Hub68)

[Ibag9]

[Kor85)

[Kuig6]

[LBS83)

[LDGI1]

[Len76]

[LHS*91]

F. H. Hsu, T. Anantharaman, M. Campbell, and A. Nowatzyk.
A grandmaster chess machine. Scientific american, 263(4):18-
24, 1990.

B. Hayes-Roth. A blackboard architecture for control. Artifi-
cial intelligence, 26(3):251-321, 1985.

B. J. Huberman. A program to play chess end games. Tech-
nical Report CS-106, Stanford University, Computer Science
Department, Stanford, CA, 1968.

G. A. Iba. A heuristic approach to the discovery of macro-
operators. Machine learning, 3(4):285-317, 1989.

R. E. Korf. Macro-operators: a weak method for learning.
Artificial intelligence, 26(1):35-77, 1985.

B. Kuipers. Qualitative simulation. Artificial Intelligence, 29
(3):289-338, 1986.

P. Langley, G.L. Bradshae, and H.A. Simon. Rediscover-
ing chemistry with the Bacon system. In J.G. Carbonell
R.S. Michalski and T.M. Mitchell, editors, Machine learning,
pages 307 — 330. Tioga, Palo Alto, CA., 1983.

N. Lavrac, S. Dzeroski, and M. Grobelnik. Learning nonrecur-
sive definitions of relations with linus. In Y. Kodratoff, edi-
tor, Proceedings of the European Working Session on Learning,
pages 265281, Berlin, 1991. Springer-Verlag.

D. B. Lenat. AM: an artificial intelligence approach to discov-
ery in mathematics as heuristic search. Technical Report AIM-
286 ; STAN-CS-76-570, Stanford University, Artificial Intelli-
gence Laboratory, Stanford, CA, 1976.

R. Levinson, F.H. Hsu, J. Schaeffer, T.A. Marsland, and D.E.
Wilkins. Panel: the role of chess in artificial intelligence re-
search. In J. Mylopoulos and R. Reiter, editors, Proceedings
of the 12th. International Joint Conference on Artificial In-
telligence, pages 547 — 552, San Mateo, CA, 1991. Morgan
Kaufmann.

BIBLIOGRAPHY 162

[Lin91]

[LNRST]

[Lor73]

[1.891]

[MBSS]

[MBHMMS9|

IMF90]

[Mic76]

[Mic77]

C. Ling. Logic Program Synthesis from Good Examples. In
S. Muggleton, editor, Proceedings of the International Work-
shop of Inductive Logic Programming, pages 41 — 57, Viana de
Castelo, Portugal, 1991.

J. E. Laird, A. Newell, and P. S. Rosenbloom. SOAR: an archi-
tecture for general intelligence. Artificial intelligence, 33(1):1—
64, 1987.

K. Lorenz. Behind the Mirror. Harcourt Brace Jovanovich,
New York, 1973.

R. Levinson and R. Snyder. Adaptive Pattern-Oriented Chess.
In Proceedings of the Ninth National Conference on Artificial
Intelligence, pages 601-606, Boston, 1991. AAAI Press - The
MIT Press.

S. Muggleton and W. Buntine. Machine invention of first-
order predicates by inverting resolution. In J. Laird, editor,
Proceedings of the Fifth International Conference on Machine
Learning, pages 339-352, San Mateo, CA, 1988. Morgan Kauf-

mann.

S. Muggleton, M. Bain, J. Hayes-Michie, and D. Michie. An
experimental comparison of human and machine learning for-
malisms. In B. Spatz, editor, Proceedings of the Sixth Inter-
national Workshop on Machine Learning, pages 113-118, San
Mateo, CA, 1989. Morgan Kaufmann.

S. Muggleton and C. Feng. Efficient Induction of Logic Pro-
grams. In S. Arikaxa, S. Goto, S. Ohsuya, and T. Yokomari,
editors, Proceedings of the Conference of Algorithmic Learning
Theory, pages 368-381, Tokyo, Japan, 1990. Ohmsha.

D. Michie. AL1: a package for generating strategies from ta-
bles. SIGART Newsletter, (59):12-14, 1976.

D. Michie. King and rook against king: historical background
and a problem on the infinite board. In M.R.B. Clarke, edi-
tor, Advances on Computer Chess 1, pages 30-59. Edinburgh
University Press, Edinburgh, 1977.

BIBLIOGRAPHY 163

[Mic82]

[Mic89]

[Min84|

[Mit82]

[IMKKCS6]

[Mo090]

[Mor89]

[Mor90]

[Mor91al

[Mor91b]

D. Michie. Computer chess and the humanisation of technol-
ogy. Nature, (299):391-394, 1982.

D. Michie. Brute force in chess and science. ICCA journal,
12(3):127-143, 1989.

S. Minton. Constraint-based generalization: learning game-
playing plans from single examples. In Proceedings of the
National Conference on Artificial Intelligence, pages 251-254,
Menlo Park, CA, 1984. Kaufmann.

T. M. Mitchell. Generalization as search. Artificial intelli-
gence, 18(2):203-226, 1982.

T. M. Mitchell, R. M. Keller, and S. T. Kedar-Cabelli.
Explanation-based generalization: a unifying view. Machine
Learning, 1(1):47-80, 1986.

R. J. Mooney. Learning plan schemata from observation:
explanation-based learning for plan recognition. Cognitive sci-
ence, 14(4):483-509, 1990.

K. Morik. Sloppy modeling. In K. Morik, editor, Knowledge
Representation and Organization in Machine Learning, pages
107-134. Springer-Verlag, Berlin, 1989.

E. Morales. Some experiments with macro-operators in the 8-
puzzle. Technical Report TIRM-90-042, The Turing Institute,
Glasgow, 1990.

E. Morales. Learning chess patterns. In S. Muggleton, ed-
itor, Proceedings of the International Workshop of Inductive
Logic Programming, pages 291-307, Viana de Castelo, Portu-
gal, 1991.

E. Morales. Learning features by experimentation in chess.
In Y. Kodratoft, editor, Proceedings of the European Working
Session on Learning, pages 494-551, Berlin, 1991. Springer-
Verlag.

BIBLIOGRAPHY 164

IMSB91]

IMUBS3]

[Mug87]

[Mug91a

[Mug91b]

[NewsS)|

[Nib8§]

[Nie91]

[Pea88]

S. Muggleton, A. Srinivasan, and M. Bain. MDL codes for
non-monotonic learning. Technical Report TIRM-91-049, The
Turing Institue, Glasgow, U.K., 1991.

T.M. Mitchell, P.E. Utgoff, and R. Banerji. Learning by exper-
imentation: acquiring and refining problem-solving heuristics.
In J.G. Carbonell R.S. Michalski and T.M. Mitchell, editors,
Machine learning, pages 163 — 1930. Tioga, Palo Alto, CA.,
1983.

S. Muggleton. Duce, an oracle based approach to constructive
induction. In J. McDermott, editor, Proceedings of the Tenth
International Joint Conference on Artificial Intelligence, pages
287292, Los Altos, CA, 1987. Morgan Kaufmann.

S. Muggleton. Inductive Logic Programming. New Generation
Computing, 8:295-318, 1991.

S. Muggleton. Proceedings of the International Workshop of
Inductive Logic Programming. Viana de Castelo, Portugal,
1991.

M. M. Newborn. Recent progress in computer chess. In D.N.L.
Levy, editor, Computer Games I, pages 154-205. Springer-
Verlag, New York, 1988.

T. Niblett. A study of generalisation in logic programs. In
D. Sleeman and J. Richmond, editors, Proceedings of the Third
Furopean Working Session on Learning, pages 131-138, Lon-
don, 1988. Pitman.

J. Nievergelt. Information content of chess positions: impli-
cations for game-specific knowledge of chess players. In J.E.
Hayes, D. Michie, and E. Tyugu, editors, Machine intelligence
12: towards an automated logic of human thought, pages 283—
289. Clarendon Press, Oxford, 1991.

D. A. Pearce. The induction of fault diagnosis systems from
qualitative models. In Proceedings AAAI-88: Seventh National
Conference on Artificial Intelligence, pages 353 — 357, San Ma-
teo, CA., 1988. Morgan Kaufmann.

BIBLIOGRAPHY 165

[Pit77]

[PKS6]

[PK90]

[P1o69)]

[Plo71a]

[Plo71b]

[Poph9]

[Quis3]

[QuisT]

[Qui90]

J. Pitrat. A chess combination program which uses plans.
Artificial Intelligence, 8:275-321, 1977.

B. W. Porter and D. F. Kibler. Experimental goal regression:
A method for learning problem-solving heuristics. Machine
Learning, (1):249-286, 1986.

M. Pazzani and D. Kibler. The Utility of Knowledge in In-
ductive Learning. Technical Report 90-18, University of Cal-
ifornia, Department of Information and Computing Science,
Irvine, CA, 1990.

G. D. Plotkin. A note on inductive generalization. In
B. Meltzer and D. Michie, editors, Machine intelligence 5,
pages 153-163. Edinburgh University Press, Edinburgh, 1969.

G. D. Plotkin. A further note of inductive generalization.
In B. Meltzer and D. Michie, editors, Machine intelligence 6,
pages 101-124. Edinburgh University Press, Edinburgh, 1971.

G. D. Plotkin. Automatic methods of inductive inference. PhD
thesis, Edinburgh, 1971.

K. R. Popper. The Logic of Scientific Discovery. Basic Books,
New York, 1959.

J. R. Quinlan. Learning efficient classification procedures and
their application to chess end games. In R.S. Michalski, J.G.
Carbonell, and T.M. Mitchell, editors, Machine Learning: an
artificial intelligence approach, pages 463-482. Tioga, Palo
Alto, CA, 1983.

J. R. Quinlan. Generating production rules from decision trees
(Vol 1). In J. McDermott, editor, Proceedings of the Tenth
International Joint Conference on Artificial Intelligence, pages
304-307, Los Altos, CA, 1987. Morgan Kaufmann.

J. R. Quinlan. Learning logical definitions from relations. Ma-
chine learning, 5(3):239-266, 1990.

BIBLIOGRAPHY 166

[RDSY]

[RGSS]

[Rou91]

SBS6]

[SFS6]

SG73]

[Sha81]

[Sha&7]

[Sha88|

R. A. Ruff and T. G. Dietterich. What good are experi-
ments? In B. Spatz, editor, Proceedings of the Sizth Inter-
national Workshop on Machine Learning, pages 109-112, San
Mateo, CA, 1989. Morgan Kaufmann.

S.J. Russell and B.N. Grosof. A sketch of autonomous learn-
ing using declarative bias. In P. Brazdil, editor, Proceedings
of the International Workshop on Machine Learning, Meta-
reasoining and Logic, pages 147 — 166, Sesimbra, Portugal,
1988.

C. Rouveurol. ITOU: Induction of first order theories. In
S. Muggleton, editor, Proceedings of the International Work-
shop of Inductive Logic Programming, pages 127-157, Viana
de Castelo, Portugal, 1991.

C. Sammut and R. B. Banerji. Learning concepts by ask-
ing questions. In R.S. Michalski, J.G. Carbonell, and R.M.
Mitchell, editors, Machine learning: an artificial intelligence
approach [Volume 2], pages 167-191. Kaufmann, 1986.

D. Subramanian and J. Feigenbaum. Factorization in exper-
iment generation. In Proceedings AAAI-86: Fifth National
Conference on Artificial Intelligence, pages 518 — 522, 1986.

H. A. Simon and K. Gilmartin. A Simulation of Memory for
Chess Positions. Cognitive Psychology, 5:29-46, 1973.

E. Y. Shapiro. Inductive inference of theories from facts. Tech-
nical Report Research Report 192, Yale University, Depart-
ment of Computer Science, New Haven, CT, 1981.

A. D. Shapiro. Structured induction in expert systems. Turing
Institute Press in association with Addison-Wesley, Woking-
ham, 1987.

C. E. Shannon. A chess-playing machine. In D.N.L. Levy,
editor, Computer Games I, pages 81-88. Springer-Verlag, New
York, 1988.

BIBLIOGRAPHY 167

[Sha89]

[Sim81]

[SN82]

[Tad89]

[Thi89)

[Tur53]

[Tur63]

[Val84]

[Var91]

J. W. Shavlik. An empirical analysis of EBL approaches for
learning plan schemata. In B. Spatz, editor, Proceedings of
the Sizth International Workshop on Machine Learning, pages
183-187, San Mateo, CA, 1989. Morgan Kaufmann.

H. A. Simon. The sciences of the artificial. MIT Press, Cam-
bridge, MA, 1981.

A. Shapiro and T. Niblett. Automatic induction of classifi-
cation rules for a chess endgame. In M.R.B. Clarke, editor,
Advances in Computer Chess 3, pages 73-91. Pergamon, Ox-
ford, 1982.

P. Tadepalli. Planning in games using approximately learned
macros. In B. Spatz, editor, Proceedings of the Sizth Inter-
national Workshop on Machine Learning, pages 221-223, San
Mateo, CA, 1989. Morgan Kaufmann.

S. Thieme. The acquisition of model-knowledge for a model-
driven machine learning approach. In K. Morik, editor, Knowl-
edge Representation and Organization in Machine Learning,
pages 177-191. Springer-Verlag, Berlin, 19809.

A. Turing. Digital computers applied to chess. In B.V. Bow-
den, editor, Faster Than Thought: A Symposium on Digital
Computing Machines, pages 286-310. Pitman, London, 1953.

A. Turing. Computing machinery and intelligence. In E.A.
Feigenbaum and J. Feldman, editors, Computers and thought,
pages 11-35. Krieger, 1963.

L. G. Valiant. A theory of the learnable. Communications of
the ACM, 27(11):1134-1142, 1984.

A. Varsek. Qualitative model evolution. In J. Mylopoulos
and R. Reiter, editors, Proceedings IJCAI-91: Twelfth Inter-
national Joint Conference on Artificial Intelligence, pages 1311
— 1316, San Mateo, CA., 1991. Morgan Kaufman.

BIBLIOGRAPHY 168

[vT91]

[vITHI1]

[Wal91]

[Wil79]

[Wing5]

[Wro89]

[Zui74]

A. van Tiggelen. Neural networks as a guide to optimization:
the chess middle game explored. ICCA Journal, 14(3):115 —
118, 1991.

A. van Tiggelen and H.J. Herik. ALEXS: An optimization
approach for the endgame KNNKP(h). In A. Cohn, editor,

Advances in Computer Chess 6, pages 161 — 177. Ellis Horwood
Ltd., Chichester, 1991.

S. Walczak. Predicting actions from induction on past perfor-
mance. In L.A. Birnbaum and G.C. Collins, editors, Proceed-
ings of the Eighth International Workshop on Machine Learn-
ing, pages 275 — 279, San Mateo, CA., 1991. Morgan Kauf-
mann.

D. E. Wilkins. Using patterns and plans to solve problems and
control search. Technical Report (AIM-329 ; STAN-CS-79-
747), Stanford University, Artificial Intelligence Laboratory,
Stanford, CA, 1979.

P. H. Winston. Learning structural descriptions from exam-
ples. In R.J. Brachman and H.J. Levesque, editors, Readings
in Knowledge Representation, pages 141-168. Kaufmann, Los
Altos, CA, 1985.

S. Wrobel. Demand-driven concept formation. In K. Morik, ed-
itor, Knowledge Representation and Organization in Machine
Learning, pages 289-319. Springer-Verlag, Berlin, 1989.

C. Zuidema. Chess, how to program the exceptions? Technical
Report Afdeling informatica, IW21, Mathematisch Centrum,
Amsterdam, 1974.

Appendix A

Learning Can-threat

This appendix shows a trace of the generalisation process involved when
learning the concept of can_threat, that is, if piece can threat another piece
after making a legal move. PAL learned this concept after learning the
concept of threat. The user’s input is given in boldface and italics are used
to include comments. For presentation purposes square(X,Y') is denoted by
(X,Y). In the user’s initial example the white Knight can threat the black
Pawn by moving to square(3,2). In all clauses = denotes negation. Examples
are illustrated with figures.

|7— pal.

169

APPENDIX A. LEARNING CAN-THREAT 170

Positive, Negative or Stop (p/n/s)? p. (Initially PAL changes sides)

tmp(A,king,(2,3),A knight,(1,1),B,king,(3,1),B,pawn,(5,3),(1,2),(1,3),
(1,4),(2,1),(2,4),(3,2),(3,3),(3,4),(4,1),(4,2),(5,C),Posl) <+
contents(A knight,(1,1),Posl), contents(A king,(2,3),Posl),
contents(B,pawn,(5,3),Pos1), contents(B king,(3,1),Posl),
other_side(A,B),
legal move(A knight,(1,1),(3,2),Posl),

legal move(A king,(2,3),(3,4),Posl),
legal move(A king,(2,3),(3,3),Posl),
legal move(A king,(2,3),(2,4),Posl),
legal move(A king,(2,3),(1,4),Posl),
legal move(A king,(2,3),(1,3),Posl),
legal move(A king,(2,3),(1,2),Posl),
legal move(B,pawn,(5,3),(5,C),Posl),
legal move(B,king,(3,1),(4,2),Pos1),

APPENDIX A. LEARNING CAN-THREAT 171

legal move(B,king,(3,1),(4,1),Pos1),
legal_ move(B,king,(3,1),(2,1),Posl),
— threat(A,knight,(1,1),B pawvn,(5,3),Pos.1)7

— threat(B,king,(3,1),A knight,(1,1),Posl),
make_move(A knight,(1,1),(3,2),Pos1,Pos2),
threat(A knight,(3,2),B,pawn,(5,3),Pos2),
make_move(B,king,(3,1),(2,1),Pos1,Pos3),
threat(B,king,(2,1),A knight,(1,1),Pos3).

PAL recognises the intended one-ply threat of the Knight, however, it also
recognises a possible one-ply threat of the opponent’s King
Accept definition Yes/No/Save-Stop (y/n/s):? y

Positive, Negative or Stop (p/n/s)? p. (Changed Knight to Bishop)

tmp(A,king,(2,3),A,B,(1,1),C king,(3,1),C,pawn,(5,3),(E,F),(1,2),(1,3),
(1,4),(2,1),(2,4),(3,3),(3,4),(4,1),(4,2),(5,D),Posl) «
contents(C,king,(3,1),Posl), contents(C,pawn,(5,3),Posl),
contents(A king,(2,3),Posl), contents(A,B,(1,1),Posl),
other_side(A,C),

legal_move(C,king,(3,1),(2,1),Posl),
legal move(C,king,(3,1),(4,1),Posl),
legal move(C king,(3,1),(4,2),Posl),
legal move(C,pawn,(5,3),(5,D),Posl),
legal_move(A king,(2,3),(1,2),Posl),
legal_move(A king,(2,3),(1,3),Posl),
legal_ move(A king,(2,3),(1,4),Posl),
legal move(A king,(2,3),(2,4),Posl),

APPENDIX A. LEARNING CAN-THREAT 172

legal move(A king,(2,3),(3,3),Posl),
legal_ move(A king,(2,3),(3,4),Posl),

legal move(A,B,(1,1),(E,F),Posl),

= threat(C,king,(3,1),A,B,(1,1),P081),

— threat(A,B,(1,1),C,pawn,(5,3),Posl),
make_move(C,king,(3,1),(2,1),Pos1,Pos2),
threat(C king,(2,1),A,B,(1,1),Pos2),
make _move(A,B,(1,1),(E,F),Pos1,Pos3),
threat(A,B,(E,F),C,pawn,(5,3),Pos3).

Accept definition Yes/No/Save-Stop (y/n/s):? y

Positive, Negative or Stop (p/n/s)? p. (Changed black King’s file)

tmp(A,king,(B,3),A,C,(1,1),D king,(3,1),D,pawn,(5,3),(B,4),(E,F),(1,2),
(1,4),(2,1),(2,4),(4,B),(4,1),(4,2),(5,G),Posl) «+
contents(A,C,(1,1),Posl), contents(A king,(B,3),Posl),
contents(D,pawn,(5,3),Posl), contents(D,king,(3,1),Posl),
other_side(A,D),

legal_move(A king,(B,3),(2,4),Pos1),
legal_move(A king,(B,3),(B,4),Posl),
legal_ move(A king,(B,3),(1,4),Pos1),
legal move(A, k1ng,(B,3),(1,2) Posl),
legal move(A,C,(1,1),(E,F),Posl),
legal_move(D king,(3,1),(4,2),Posl),
legal_move(D,king,(3,1),(4,B),Posl),
legal move(D king,(3,1),(4,1),Posl),
legal move(D king,(3,1),(2,1),Posl),

APPENDIX A. LEARNING CAN-THREAT 173

legal move(D,pawn,(5,3),(5,G),Posl),

- threat(A,C,(1,1),D,pawn,(5,3),Pos1),

= threat(D,king,(3,1),A,C,(1,1),Posl),
make move(A,C,(1,1),(E,F),Pos1,Pos2),
threat(A,C,(E,F),D,pawn,(5,3),Pos2),
make_move(D king,(3,1),(2,1),Pos1,Pos3),
threat(D,king,(2,1),A,C,(1,1),Pos3).

Accept definition Yes/No/Save-Stop (y/n/s):? y.

Positive, Negative or Stop (p/n/s)? p. (Changed white King’s file)

tmp(A,king,(B,3),A,C,(1,1),D king,(E,1),D,pawn,(5,3),(B,4),(F,G),(1,4),
(2,4),(5,H),Posl) <«

contents(D king,(E,1),Posl), contents(D,pawn,(5,3),Posl),
contents(A king,(B,3),Posl), contents(A,C,(1,1),Posl),
other_side(A,D),
legal move(A king,(B,3),(1,4),Posl),
legal move(A king,(B,3),(B,4),Posl),
legal move(A king,(B,3),(2,4),Posl),
legal move(A,C,(1,1),(F,G),Posl),
legal move(D,pawn,(5,3),(5,H),Posl),
- threat(A,C,(1,1),D,pawn,(5,3),Pos1),
make_move(A,C,(1,1),(F,G),Pos1,Pos2),
threat(A,C,(F,G),D,pawn,(5,3),Pos2).

1
3

With this example, only one possible threat (between the black Bishop and
the white Pawn) is possible after a legal move.

APPENDIX A. LEARNING CAN-THREAT 174

Accept definition Yes/No/Save-Stop (y/n/s):? y.

Positive, Negative or Stop (p/n/s)? p. (Changed Pawn to Knight)

tmp(A king,(B,3),A,C,(1,1),D king,(E,1),D,F,(5,3),(B,4),(G,H),(1,4),

(2,4),Posl) «

contents(A,C,(1,1),Posl), contents(A king,(B,3),Posl),

contents(D,F,(5,3),Posl), contents(D,king,(E,1),Posl),

other_side(A,D),

legal move(A king,(B,3),(2,4),Posl),

legal move(A king,(B,3),(B,4),Posl),

legal move(A king,(B,3),(1,4),Posl),

legal move(A,C,(1,1),(G,H),Posl),

= threat(A,C,(1,1),D,F,(5,3),Posl),

make_move(A,C,(1,1),(G,H),Pos1,Pos2),

threat(A,C,(G,H),D,F,(5,3),Pos2).

APPENDIX A. LEARNING CAN-THREAT 175

Accept definition Yes/No/Save-Stop (y/n/s):? y.

Positive, Negative or Stop (p/n/s)? n. (Changed white Knight’s file)
There are no possible threats after a piece movement. PAL now looks for a
place where some of the failed literals will succeed.

Positive, Negative or Stop (p/n/s)? p. (Changed white Knight’s file)
Since the black King can threat the white Knight after a legal move, this is
taken as a positive example by the user. However, it is not the threat that
PAL has in its current hypothesis (i.e. between the Bishop and Knight) and
produces an overgeneralisation which covers the previous negative example.
PAL rejects this generalisation and the example is stored. All the saved ex-
amples are checked against the final definition.

Too General, it will be ignored

APPENDIX A. LEARNING CAN-THREAT 176

PAL tries to find another position that will succeed on other failed literals

Positive, Negative or Stop (p/n/s)? p. (Changed white Knight’s file)

tmp(A,king,(B,3),A,C,(1,1),D king,(E,1),D,F,(G,3),(B,4),(H,1),(1,4),

(2,4),Posl) «+

contents(D king,(E,1),Posl), contents(D,F,(G,3),Posl),

contents(A king,(B,3),Posl), Contents(A,C,(1,1),Posl),

other_side(A,D),

legal_ move(A king,(B,3),(1,4),Pos1),

legal_move(A king,(B,3),(B,4),Posl),

legal_move(A king,(B,3),(2,4),Pos1),

legal move(A,C,(1,1),(H,I),Posl),

- threat(A,C,(1,1),D,F,(G,3),Posl),

make _move(A,C,(1,1),(H,I),Pos1,Pos2),

threat(A,C,(H,I),D,F,(G,3),Pos2).

APPENDIX A. LEARNING CAN-THREAT 177

Accept definition Yes/No/Save-Stop (y/n/s):? y.

Positive, Negative or Stop (p/n/s)? p. (Changed black Bishop’s file)

tmp(A king,(B,3),A,C,(D,1),E king,(F,1),E,G,(H,3),(B,4),(1,J),(1,4),
(2,4),Posl) «
contents(A,C,(D,1),Posl), contents(A king,(B,3),Posl),
contents(E,G,(H,3),Pos1), contents(E king,(F,1),Posl),
other_side(A,E),

legal move(A king,(B,3),(2,4),Posl),
legal move(A king,(B,3),(B,4),Posl),
legal move(A king,(B,3),(1,4),Posl),
legal move(A,C,(D,1),(I,J),Posl),

= threat(A,C,(D,1),E,G,(H,3),Pos1),
make_move(A,C,(D,1),(I,J),Pos1,Pos2),

(
threat(A,C,(1,J),E,G,(H,3),Pos2).

APPENDIX A. LEARNING CAN-THREAT 178

Accept definition Yes/No/Save-Stop (y/n/s):? y.

Positive, Negative or Stop (p/n/s)? p. (Changed black King’s file)

tmp(A king,(B,3),A,C,(D,1),E king,(F,1),E,G,(H,3),(B,4),(1,J),(1,4),
(2,4),Posl) +
contents(E king,(F,1),Posl), contents(E,G,(H,3),Posl),
contents(A king,(B,3),Posl), contents(A,C,(D,1),Posl),
other_side(A,E),

legal move(A king,(B,3),(1,4),Posl),
legal move(A king,(B,3),(B,4),Posl),
legal move(A king,(B,3),(2,4),Posl),
legal move(A,C,(D,1),(I,J),Posl),

= threat(A,C,(D,1),E,G,(H,3),Pos1),
make_move(A,C,(D,1),(I,J),Pos1,Pos2),

(
threat(A,C,(1,J),E,G,(H,3),Pos2).

APPENDIX A. LEARNING CAN-THREAT

Accept definition Yes/No/Save-Stop (y/n/s):? y

Positive, Negative or Stop (p/n/s)? p

(
tmp(A,king,(B,3),A,C,(D,1),E king,(F,1),E,G,(H
contents(A,C,(D,1),Posl), contents(A king,(B,3), Posl)
contents(E,G,(H,3),Posl), contents(E king,(F,1),Posl),
other_side(A E),
legal_ move(A king,(B,3),(
legal move(A king,(B,3),(B
legal move(A,C,(D,1),(1,J),Posl),
- threat(A,C,(D,1),E,G,(H,3),Posl),
make_move(A,C,(D,1),(L,J),Pos1,Pos2),
threat(A,C,(1,J),E,G,(H,3),Pos2).

2,4),Posl),
,4),Posl),

Changed black King’s file)

179

,3),(B,4),(1,J),(2,4),Posl) <«

APPENDIX A. LEARNING CAN-THREAT 180

Accept definition Yes/No/Save-Stop (y/n/s):? y.

Positive, Negative or Stop (p/n/s)? p. (Changed black King’s file)
The black King can threat the white Knight after a move and the white Knight
can also threat the black Bishop after a move. The position is classified as

positive by the user, but produces an overgeneralisation since it does not have
the 1-ply threat between the Bishop and the Knight.
Too General, it will be ignored

Positive, Negative or Stop (p/n/s)? n. (Changed white Knight’s file)
We want positions without an existing threat, i.e., which can be created after

APPENDIX A. LEARNING CAN-THREAT 181

a move.

Positive, Negative or Stop (p/n/s)? p. (Changed black Bishop’s file)
The white King can threat the black Bishop after a move. It is a positive
example, but creates an overgeneralisation.

APPENDIX A. LEARNING CAN-THREAT 182

Too General, it will be ignored

Positive, Negative or Stop (p/n/s)? n. (Changed black Bishop’s file)

Positive, Negative or Stop (p/n/s)? p. (Changed black Bishop’s file)

tmp(A,king,(B,3),A,C,(D,1),E king,(F,1),E,G,(H,3),(B,4),(1,J),(2,4),Pos1) +
contents(E king,(F,1),Posl), contents(E,G,(H,3),Posl),
contents(A king,(B,3),Posl), contents(A,C,(D,1),Posl),
other_side(AE),
legal move(A king,(B,3),(B,4),Posl),
legal move(A king,(B,3),(2,4),Posl),
legal move(A,C,(D,1),(L,J),Posl),
- threat(A,C,(D,1),E,G,(H,3),Posl),
make _move(A,C,(D,1),(I,J),Pos1,Pos2),
threat(A,C,(1,J),E,G,(H,3),Pos2).

APPENDIX A. LEARNING CAN-THREAT 183
Accept definition Yes/No/Save-Stop (y/n/s):? y
Positive, Negative or Stop (p/n/s)? n. (Changed black Bishop’s file)

Positive, Negative or Stop (p/n/s)? p

,3), Posl)
,1),Posl),

(

tmp(A king,(B,3),A,C,(D,1),E king,(F,1),E,G,(H,3),(B,4),(1,J),(2,4
(B
(F

)
contents(A,C,(D,1),Posl), contents(A king,
contents(E,G,(H,3),Pos1), contents(E king,
other_side(A,E),

legal_ move(A king,(B,3),(2,4),Pos1),
legal_move(A king,(B,3),(B,4),Posl),
legal_move(A,C,(D,1),(1,J),Pos1),

= threat(A,C,(D,1),E,G,(H,3),Pos1),
make_move(A,C,(D,1),(I,J), Posl,PosZ),
threat(A,C,(1,J),E,G,(H,3),Pos2).

(
(
J
(H,

Changed white King’s file)

),Posl) «

APPENDIX A. LEARNING CAN-THREAT 184

Accept definition Yes/No/Save-Stop (y/n/s):? y.

Positive, Negative or Stop (p/n/s)? p. (Changed black King’s rank)

tmp(A,king,(B,C),A,D,(E,1),F king,(G,1),F,H,(L,3),(J,K),(2,4),Posl) <«
contents(F king,(G,1),Posl), contents(F,H,(I,3),Posl),
contents(A king,(B,C),Posl), contents(A,D,(E,1),Posl),
other_side(A,F),
legal_ move(A king,(B,C),(2,4),Posl),
legal move(A,D,(E,1),(J,K),Posl),
= threat(A,D,(E,1),F,H,(1,3),Pos1),
make _move(A D, (E;1),(J,K),Posl,Pos2),
threat(A,D,(J,K),F,H,(I,3),Pos2).

APPENDIX A. LEARNING CAN-THREAT 185

Accept definition Yes/No/Save-Stop (y/n/s):? y.

Positive, Negative or Stop (p/n/s)? n. (Changed white Knight’s rank)

Positive, Negative or Stop (p/n/s)? p. (Changed white Knight’s rank)

tmp (A king,(B,C),A,D,(E,1),F king,(G,1),F,H,(I,J),(K,L),(2,4),Posl) <«
contents(A,D,(E,1),Posl), contents(A king,(B,C),Posl),
contents(F,H,(I,J),Posl), contents(F king,(G,1),Posl),
other_side(A,F),
legal move(A king,(B,C),(2,4),Posl),
legal move(A,D,(E,1),(K,L),Posl),
= threat(A,D,(E,1),F,H,(1,J),Posl),
make_move(A,D,(E,1),(K,L),Posl,Pos2),
threat(A,D,(K,L),F,H,(I,J),Pos2).

APPENDIX A. LEARNING CAN-THREAT 186

Accept definition Yes/No/Save-Stop (y/n/s):? y.

Positive, Negative or Stop (p/n/s)? n. (Changed black Bishop’s rank)

Positive, Negative or Stop (p/n/s)? p. (Changed black Bishop’s rank)

tmp(A king,(B,C),A,D,(E,F),G king,(H,1),G,1,(J,K),(LL,M),(2,4),Posl) «
contents(G king,(H,1),Posl), contents(G,I,(J,K),Posl),
contents(A king,(B,C),Posl), contents(A,D,(E,F),Posl),
other_side(A,G),
legal move(A king,(B,C),(2,4),Posl),
legal move(A,D,(E,F),(L,M),Posl),
= threat(A,D,(E,F),G,I,(J,K),Posl),
make_move(A,D,(E,F),(L,M),Pos1,Pos2),
threat(A,D,(L,M),G,I,(J,K),Pos2).

APPENDIX A. LEARNING CAN-THREAT 187

Accept definition Yes/No/Save-Stop (y/n/s):? y.

Positive, Negative or Stop (p/n/s)? p. (Changed white King’s rank)

tmp(A,king,(B,C),A,D,(E,F),G,H,(1,J),(K,L),(2,4),Posl) <«
contents(A,D,(E,F),Posl), contents(A king,(B,C),Posl),
contents(G,H,(I,J),Posl),
other_side(A,G),
legal_ move(A king,(B,C),(2,4),Posl),
legal move(A,D,(E,F),(K,L),Posl),
- threat(A,D,(E,F),G,H,(1,J),Posl),
make_move(A D, (EF),(K,L),Posl,Pos2),
threat(A,D,(K,L),G,H,(I,J),Pos2).

PAL recognises that the white King is irrelevant to the definition (i.e., its
variable arguments in its position are not connected to any other literal in
the definition) and eliminates it. It was not eliminated before because it had
a constant rank (1).

APPENDIX A. LEARNING CAN-THREAT 188

Accept definition Yes/No/Save-Stop (y/n/s):? y.

Positive, Negative or Stop (p/n/s)? p. (Changed Bishop to Rook)
The white Knight threatens the Black Rook and it accepted as positive. How-
ever the black Rook cannot threat the white Knight after a move (it is already
threatened).

Too General, it will be ignored

Positive, Negative or Stop (p/n/s)? p. (Changed Knight to Bishop)

tmp(A king,(B,C),A,D,(E,F),G,H,(I1,J),(K,L),(2,4),Posl) «
contents(G,H,(I,J),Posl), contents(A king,(B,C),Posl),
contents(A,D,(E,F),Posl),
other_side(A,G),
legal move(A king,(B,C),(2,4),Posl),
legal move(A,D,(E,F),(K,L),Posl),

APPENDIX A. LEARNING CAN-THREAT 189

- threat(A,D,(E,F),G,H,(I,J),Posl),
make_move(A,D,(EF),(K,L),Posl,Pos2),
threat(A,D,(K,L),G,H,(I,J),Pos2).

Accept definition Yes/No/Save-Stop (y/n/s):? y.

Positive, Negative or Stop (p/n/s)? p. (Changed Bishop to Rook)

tmp (A king,(B,C),A,D,(E,F),G,H,(1,J),(K,L),(2,4),Posl) <«
contents(A,D,(E,F),Posl), contents(A king,(B,C),Posl),
contents(G,H,(I,J),Posl),
other_side(A,G),
legal move(A king,(B,C),(2,4),Posl),
legal move(A,D,(E,F),(K,L),Posl),
- threat(A,D,(E,F),G,H,(1,J),Posl),
make_move(A D, (EF),(K,L),Posl,Pos2),
threat(A,D,(K,L),G,H,(I,J),Pos2).

APPENDIX A. LEARNING CAN-THREAT 190

Accept definition Yes/No/Save-Stop (y/n/s):? y.

Positive, Negative or Stop (p/n/s)? n. (Changed white Rook’s rank)

Positive, Negative or Stop (p/n/s)? p. (Changed black King’s rank)

tmp(A king,(B,C),A,D,(E,F),G,H,(I1,J),(K,L),(2,4),Posl) «
contents(G,H,(I,J),Posl), contents(A king,(B,C),Posl),
contents(A,D,(E,F),Posl),
other_side(A,G),
legal move(A king,(B,C),(2,4),Posl),
legal move(A,D,(E,F),(K,L),Posl),
— threat(A,D,(E,F),G,H,(I1,J),Posl),
make move(A,D,(E,F),(K,L),Pos1,Pos2),
threat(A,D,(K,L),G,H,(I,J),Pos2).

APPENDIX A. LEARNING CAN-THREAT 191

Accept definition Yes/No/Save-Stop (y/n/s):? y.

Positive, Negative or Stop (p/n/s)? p. (Changed black King’s rank)
PAL recognises that the black King is irrelevant and removes it from the
definition.

tmp(A,B,(C,D),E,F,(G,H),(I,J),Posl) +
contents(A,B,(C,D),Posl), contents(E,F,(G,H),Posl),
other_side(A,E),
legal move(A,B,(C,D),(I,J),Posl),

- threat(A,B,(C,D),E,F,(G,H),Pos1),
make _move(A B,(C,D),(I,J),Pos1,Pos2),
threat(A,B,(I1,J),E,F,(G,H),Pos2).

Accept definition Yes/No/Save-Stop (y/n/s):? s.

At this point the user is satisfied with this definition and stops the process.
I guess is pretty obvious, but ...

How would you like to call the concept? can_threat.

PAL checks this definition against all the stored examples (all the positive
examples that produced overgeneralisations). Since all of them are covered by
this definition, it reduces the definition and the process stops. If one of the
stored examples would have failed, PAL would have repeated the whole pro-
cess with that example, until no more stored examples were left. In this way
disjunctive clauses can be learned by PAL. It should be noted that although
several overgeneralisations were produced during the learning process, they
were all rejected by PAL.

APPENDIX A. LEARNING CAN-THREAT

can_threat(A,B,(C,D),EF,(G,H),(I,J),Posl) «+
contents(E,F,(G,H),Posl),
other_side(A,E),
- threat(A,B,(C,D),E,F,(G,H),Posl),
make _move(A B,(C,D),(I,J),Pos1,Pos2),
threat(A,B,(I,J),E,F,(G,H),Pos2).

yes
7=

192

Appendix B

A correct definition of Pin

This appendix, shows the steps followed by PAL to learn the concept of
in_line and a correct definition of pin, as described in chapter 6. It also
shows how PAL can learn incrementally by inducing simple concepts first.
To obtain the correct definition of pin, the system must know that the 3
pieces involved in the concept must be in an horizontal, vertical or diagonal
line. Although this could be provided as background knowledge, we can
instead include a geometrical concept which recognises wherever two pieces
are in a diagonal, vertical, or horizontal line. This can be used to learn a
weak version of the 3 pieces in line. The following background vocabulary
was given to PAL:

contents(Side, Piece, Place, Pos):
Describes the positions of each piece.
other_side(Side1,Side2):
Sidel is the opponent side of Side2.
all_but_K (Piece, Place, Pos):
Piece in Place is not a King.
line(Placel,Place2,Pos):
Placel and Place2 (of two pieces) are in vertical, horizontal
or diagonal line.

With the above background knowledge, the following definition was learned
by PAL. For presentation purposes square(X,Y) is denoted by (X,Y) though-
out.

w_line(S1,king,(X1,Y1),51,P2,(X2,Y2),52,P3,(X3,Y3),Pos) +

193

APPENDIX B. A CORRECT DEFINITION OF PIN 194

contents(S1,king,(X1,Y1),Pos), contents(S1,P2,(X2,Y2),Pos),
contents(S2,P3,(X3,Y3),Pos),

other_side(S1,52),

all_but_K(P3,(X3,Y3),Pos), all_but_K(P2,(X2,Y2),Pos),
line((X1,Y1),(X3,Y3),Pos), line((X1,Y1),(X2,Y2),Pos),
line((X2,Y2),(X3,Y3),Pos), line((X2,Y2),(X1,Y1),Pos),
line((X3,Y3),(X2,Y2),Pos), line((X3,Y3),(X1,Y1),Pos).

This pattern definition succeeds whenever there is a King in line with a
Piece, and both are in line with an opponent’s Piece. This however, does
not ensure that the 3 pieces must be in a straight line. PAL needs some
way of comparing between the relative position of the pieces. The following
background vocabulary was added for this purpose.

coordz(Place,X,Pos): The file of Place is X.
coordy(Place,Y,Pos): The rank of Place is Y.
less_than(N1,N2): N1 is less than N2.

PAL learned the concepts where the ranks and/or files of 3 pieces are in
‘ascending’ or ‘descending’ order. That is, [tz3/10, succeeds whenever there
are 3 pieces, a King (K), a piece (P) and an opponent’s piece (OP), and their
files have the following relation: Kx < Px < OPx or Kx > Px > OPx,
where Zx denotes the file of piece Z.

ltx3(Sidel king, (X1,Y1),S1,P2,(X2,Y2),92,P3,(X3,Y3),Pos) +
contents(S1,king,(X1,Y1),Pos), contents(S1,P2,(X2,Y2),Pos),
contents(S2,P3,(X3,Y3),Pos),
other_side(S1,52),
all_but_K(P2,(X2,Y2),Pos), all_but_K(P3,(X3,Y3),Pos),
coordx((X1,Y1),X1,Pos), coordx((X2,Y2),X2,Pos),
coordx((X3,Y3),X3,Pos),
less_than(X1,X2), less_than(X1,X3), less_than(X2,X3).

Itx3(Sidel king,(X1,Y1),51,P2,(X2,Y2),52,P3,(X3,Y3),Pos) +
contents(S1,king,(X1,Y1),Pos), contents(S1,P2,(X2,Y2),Pos),
contents(S2,P3,(X3,Y3),Pos),
other_side(S1,52),
all_but_K(P2,(X2,Y2),Pos), all_but_K(P3,(X3,Y3),Pos),
coordx((X1,Y1),X1,Pos), coordx((X2,Y2),X2,Pos),

APPENDIX B. A CORRECT DEFINITION OF PIN 195

coordx((X3,Y3),X3,Pos),
less_than(X2,X1), less_than(X3,X1), less_than(X3,X2).

Similarly, PAL learned an equivalent definition for the ranks of the pieces.

lty3(Sidel king, (X1,Y1),S1,P2,(X2,Y2),52,P3,(X3,Y3),Pos) «
contents(S1,king,(X1,Y1),Pos), contents(S1,P2,(X2,Y2),Pos),
contents(S2,P3,(X3,Y3),Pos),
other_side(S1,52),
all_but_K (P2,(X2,Y2),Pos), all_but_K(P3,(X3,Y3),Pos),
coordy((X1,Y1),Y1,Pos), coordy((X2,Y2),Y2,Pos),
coordy((X3,Y3),Y3,Pos),
less_than(Y1,Y2), less_than(Y1,Y3), less_than(Y2,Y3).
Ity3(Sidel king, (X1,Y1),S1,P2,(X2,Y2),52,P3,(X3,Y3),Pos) «
contents(S1,king,(X1,Y1),Pos), contents(S1,P2,(X2,Y2),Pos),
contents(S2,P3,(X3,Y3),Pos),
other_side(51,52),
all but_K(P2,(X2,Y2),Pos), all_but_K(P3,(X3,Y3),Pos),
coordy((X1,Y1),Y1,Pos), coordy((X2,Y2),Y2,Pos),
coordy((X3,Y3),Y3,Pos),
less_than(Y2,Y1), less_than(Y3,Y1), less_than(Y3,Y2).

Both definitions can be added to the background knowledge and used by
PAL to learn when both relations hold, arriving to the following definition:

ltxy3(Sidel king,(X1,Y1),51,P2,(X2,Y2),52,P3,(X3,Y3),Pos) +
1tx3(S1,king,(X1,Y1),51,P2,(X2,Y2),52,P3,(X3,Y3),Pos),
1ty3(S1,king,(X1,Y1),S1,P2,(X2,Y2),52,P3,(X3,Y3),Pos).

All of the above definitions can now be added to the background knowledge
and used by PAL to learn the concept definition of 3 pieces in a vertical,
diagonal, or horizontal line (respectively). PAL produces the following defi-
nition:

in_line(S1,king,(X1,Y1),S1,P2,(X2,Y2),92,P3,(X3,Y3),Pos) «
w_line(S1,king,(X1,Y1),51,P2,(X2,Y2),52,P3,(X3,Y3),Pos),
Itx3(S1,king,(X1,Y1),51,P2,(X2,Y2),52,P3,(X3,Y3),Pos).

in_line(S1 king,(X1,Y1),51,P2,(X2,Y2),52,P3,(X3,Y3),Pos) <«
w_line(S1,king,(X1,Y1),51,P2,(X2,Y2),52,P3,(X3,Y3),Pos),

APPENDIX B. A CORRECT DEFINITION OF PIN 196

Ity3(S1,king, (X1,Y1),81,P2,(X2,Y2),52,P3,(X3,Y3),Pos).
in_line(S1,king,(X1,Y1),S1,P2,(X2,Y2),82,P3,(X3,Y3),Pos) «

w_line(S1,king,(X1,Y1),51,P2,(X2,Y2),52,P3,(X3,Y3),Pos),

ltxy3(S1 king, (X1,Y1),51,P2,(X2,Y2),52,P3,(X3,Y3),Pos).

The definition of in_line/10 was added to the background knowledge and used
to learn a static definition of pin after generating 22 4+ and 60 — examples.

pin(S1,P1,(X1,Y1),82,king,(X2,Y2),52,P3,(X3,Y3),Pos) «
sliding_piece(P1,(X1,Y1),Pos),
stale(S2,P3,(X3,Y3),Pos),
threat(S1,P1,(X1,Y1),52,P3,(X3,Y3),Pos),
in_line(S2 king,(X2,Y2),52,P3,(X3,Y3),51,P1,(X1,Y1),Pos).

Appendix C

KRK concepts

This appendix has the concept definitions learned by PAL and used in
the King and Rook against King endgame (KRK) strategy. It is assumed
that the opponent’s King is in the loosing side. Throughout the definitions
square(X,Y) is denoted as (X,Y), King and Rook refer to the King and Rook
of the winning side, while OKing refers to the opponent’s King.

e ThreatkR/7: OKing threatens Rook (Figure 7.2-right).

threatkR(A king,(B,C),D,rook,(E,F),Posl) <+
contents(D,rook,(E,F),Posl),
contents(A king,(B,C),Posl),
other_side(D,A),
sliding_piece(rook,(E,F),Posl),
legal_move(A king,(B,C),(E,F),Posl),
make_move(A king,(B,C),(E,F),Pos1,Pos2),
not contents(D,rook,(E,F),Pos2).

e Rook_divs/10: Rook divides both, King and OKing, either vertically
or horizontally (Figure 7.1-center after the move).

rook_divs(A king,(B,C),A,rook,(D,E),F king,(G,H),Pos) <«
contents(F king,(G,H),Pos),
contents(A king,(B,C),Pos),
contents(A rook,(D,E),Pos),
other_side(A,F),

197

APPENDIX C. KRK CONCEPTS 198

sliding_piece(rook,(D,E),Pos),

coordx((G,H),G,Pos), coordx((D,E),D,Pos),

coordx((B,C),B,Pos),

less_than(G,D), less_than(G,B), less_than(D,B).
rook_divs(A king,(B,C),A rook,(D,E),F king,(G,H),Pos) «

contents(F king,(G,H),Pos),

contents(A king,(B,C),Pos),

contents(A rook,(D,E),Pos),

other_side(AF),

sliding_piece(rook,(D,E),Pos),

coordx((B,C),B,Pos), coordx((D,E),D,Pos),

coordx((G,H),G,Pos),

less_than(B,D), less_than(B,G), less_than(D,G).
rook_divs(A king,(B,C),A rook,(D,E),F king,(G,H),Pos) «

contents(A rook,(D,E),Pos),

contents(A king,(B,C),Pos),

contents(F king,(G,H),Pos),

other_side(A,F),

sliding_piece(rook,(D,E),Pos),

coordy((B,C),C,Pos), coordy((D,E),E,Pos),

coordy((G,H),H,Pos),

less_than(E,C), less_than(H,C), less_than(H,E).
rook_divs(A king,(B,C),A,rook,(D,E),F king,(G,H),Pos) <«

contents(A rook,(D,E),Pos),

contents(A king,(B,C),Pos),

contents(F king,(G,H),Pos),

other_side(A,F),

sliding_piece(rook,(D,E),Pos),

coordy((G,H),H,Pos), coordy((D,E),E,Pos),

coordy((B,C),C,Pos),

less_than(E,H), less_than(C,H), less_than(C,E).

e Opposition/8: King and OKing are on the same rank or file with one
square between them (Figure 7.1-left).

opposition(A king,(B,C),D king,(B,E),2,Pos) +
contents(D king,(B,E),Pos),
contents(A king,(B,C),Pos),

APPENDIX C. KRK CONCEPTS 199

other_side(A,D),

distance((B,C),(B,E),2,Pos),
distance((B,E),(B,C),2,Pos).

opposition(A king,(B,C),D king,(E,C),2,Pos) +

contents(A king,(B,C),Pos),
contents(D king,(E,C),Pos),
other_side(D,A),

distance((E,C),(B,C),2,Pos),
distance((B,C),(E,C),2,Pos).

e Almost_opposition/9: King is “almost” in opposition with OKing (Fig-
ure 7.2-left after the move).

almost_opposition(A king,(B,C),D king,(E,F),2,3,Pos) +

contents(D king,(E,F),Pos),

contents(A king,(B,C),Pos),

other_side(A,D),

distance((B,C), (E,F),2,Pos),

distance((E,F), (B,C),2,Pos),

manh,dlst((,C),(E,F),3,Pos),
manh_dist((E,F),(B,C),3,Pos).

e R_edge/4: Rook is on an edge of the board (Figure 7.2-right after the
move).

r_edge(A,rook,(B,1),Pos) <
contents(A rook,(B,1),Pos),
sliding_piece(rook,(B,1),Pos).
r_edge(A rook,(B,8),Pos) «
contents(A,rook,(B,8),Pos),
sliding_piece(rook,(B,8),Pos).
r_edge(A,rook,(8,B),Pos) «
contents(A,rook,(8,B),Pos),
sliding_piece(rook,(8,B),Pos).
r_edge(A rook,(1,B),Pos) «
contents(A,rook,(1,B),Pos),
sliding_piece(rook,(1,B),Pos).

APPENDIX C. KRK CONCEPTS 200

e Kings same side/10: Both, King and OKing, are to the left, right,
above, or below of Rook (Figure 7.1-center before the move).

kings_same_side(A king,(B,C),A rook,(D,E),F king,(G,H),Pos) «
contents(F king,(G,H),Pos),
contents(A king,(B,C),Pos),
contents(A rook,(D,E),Pos),
other_side(AF),
sliding_piece(rook,(D,E),Pos),
coordx((D,E),D,Pos), coordx((G,H),G,Pos),
coordx((B,C),B,Pos),
less_than(D,G), less_than(D,B).
kings_same_side(A king,(B,C),A,rook,(D,E),F king,(G,H),Pos) <«
contents(A king,(B,C),Pos),
contents(A rook,(D,E),Pos),
contents(F king,(G,H),Pos),
other_side(F,A),
sliding_piece(rook,(D,E),Pos),
coordy((G,H),H,Pos), coordy((D,E),E,Pos),
coordy((B,C),C,Pos),
less_than(H,E), less_than(C,E).
kings_same side(A king,(B,C),A, rook,(D,E),F king,(G,H),Pos) «
contents(F king,(G,H),Pos),
contents(A king,(B,C),Pos),
contents(A rook,(D,E),Pos),
other_side(AF),
sliding_piece(rook,(D,E),Pos),
coordy((D,E),E,Pos), coordy((G,H),H,Pos),
coordy((B,C),C,Pos),
less_than(E,H), less_than(E,C).
kings_same_side(A king,(B,C),A rook,(D,E),F king,(G,H),Pos) «
contents(A,rook,(D,E),Pos),
contents(A king,(B,C),Pos),
contents(F king,(G,H),Pos),
other_side(AF),
sliding_piece(rook,(D,E),Pos),
coordx((D,E),D,Pos), coordx((G,H),G,Pos),
coordx((B,C),B,Pos),

APPENDIX C. KRK CONCEPTS 201

less_than(G,D), less_than(B,D).

e L patt/12: The 3 pieces form an “L-shaped” pattern with OKing in
check by Rook and both Kings in oppositions (Figure 7.1-left after the
move).

1_patt(A king,(B,C),D king,(E,C),D,rook,(B,F),2,(E,F),Pos) «
contents(D king,(E,C),Pos),
contents(D,rook,(B,F),Pos),
contents(A king,(B,C),Pos),
other_side(A,D),
sliding_piece(rook,(B,F),Pos),
in_check(A,(B,C),rook,(B,F),Pos),
legal move(D,rook,(B,F),(E,F),Pos),
opposition(A king,(B,C),D king,(E,C),2,Pos),
opposition(D king,(E,C),A king,(B,C),2,Pos).

1_patt(A king,(B,C),D king,(B,E),D,rook,(F,C),2,(F,E),Pos) «
contents(A king,(B,C),Pos),
contents(D king,(B,E),Pos),
contents(D,rook,(F,C),Pos),
other_side(D,A),
sliding_piece(rook,(F,C),Pos),
in_check(A,(B,C),rook,(F,C),Pos),
legal move(D,rook,(B,F),(F,E),Pos),
opposition(D king,(B,E),A king,(B,C),2,Pos),
opposition(A king,(B,C),D king,(B,E),2,Pos).

e RKk/10: OKing divides Rook and King either vertically or horizontally

(Figure 7.2-right before the move).

rKk(A king,(B,C),A rook,(D,E),F king,(G,H),Pos) <«
contents(F king,(G,H),Pos),
contents(A king,(B,C),Pos),
contents(A rook,(D,E),Pos),
other_side(AF),
sliding_piece(rook,(D,E),Pos),
coordx((D,E),D,Pos), coordx((G,H),G,Pos),

APPENDIX C. KRK CONCEPTS 202

coordx((B,C),B,Pos),

less_than(D,G), less_than(D,B), less_than(G,B).
rKk(A king,(B,C),A,rook,(D,E),F king,(G,H),Pos) <«

contents(F king,(G,H),Pos),

contents(A king,(B,C),Pos),

contents(A,rook,(D,E),Pos),

other_side(A,F),

sliding_piece(rook,(D,E),Pos),

coordx((B,C),B,Pos), coordx((G,H),G,Pos),

coordx((D,E),D,Pos),

less_than(B,G), less_than(B,D), less_than(G,D).
rKk(A king,(B,C),A,rook,(D,E),F king,(G,H),Pos) <«

contents(A rook,(D,E),Pos),

contents(A king,(B,C),Pos),

contents(F king,(G,H),Pos),

other_side(AF),

sliding_piece(rook,(D,E),Pos),

coordy((B,C),C,Pos), coordy((G,H),H,Pos),

coordy((D,E),E,Pos),

less_than(H,C), less_than(E,C), less_than(E,H).
rKk(A king,(B,C),A,rook,(D,E),F king,(G,H),Pos) <+

contents(A,rook,(D,E),Pos),

contents(A king,(B,C),Pos),

contents(F king,(G,H),Pos),

other_side(AF),

sliding_piece(rook,(D,E),Pos),

coordy((D,E),E,Pos), coordy((G,H),H,Pos),

coordy((B,C),C,Pos),

less_than(H,E), less_than(C,E), less_than(C,H).

e RkK/10: King divides Rook and OKing either vertically or horizontally
(Figure 7.2-right after the move).

rkK (A king,(B,C),A,rook,(D,E),F king,(G,H),Pos) <«
contents(F king,(G,H),Pos),
contents(A king,(B,C),Pos),
contents(A,rook,(D,E),Pos),
other_side(A,F),

APPENDIX C. KRK CONCEPTS 203

sliding_piece(rook,(D,E),Pos),

coordx((D,E),D,Pos), coordx((B,C),B,Pos),

coordx((G,H),G,Pos),

less_than(D,B), less_than(D,G), less_than(B,G).
rkK (A king,(B,C),A,rook,(D,E),F king,(G,H),Pos) <+

contents(A,rook,(D,E),Pos),

contents(A king,(B,C),Pos),

contents(F king,(G,H),Pos),

other_side(AF),

sliding_piece(rook,(D,E),Pos),

coordx((D,E),D,Pos), coordx((B,C),B,Pos),

coordx((G,H),G,Pos),

less_than(B,D), less_than(G,D), less_than(G,B).
rkK (A king,(B,C),A,rook,(D,E),F king,(G,H),Pos) <«

contents(A rook,(D,E),Pos),

contents(A king,(B,C),Pos),

contents(F king,(G,H),Pos),

other_side(AF),

sliding_piece(rook,(D,E),Pos),

coordy((G,H),H,Pos), coordy((B,C),C,Pos),

coordy((D,E),E,Pos),

less_than(C,H), less_than(E,H), less_than(E,C).
rkK (A king,(B,C),A,rook,(D,E),F king,(G,H),Pos) <«

contents(F king,(G,H),Pos),

contents(A king,(B,C),Pos),

contents(A rook,(D,E),Pos),

other_side(AF),

sliding_piece(rook,(D,E),Pos),

coordy((G,H),H,Pos), coordy((B,C),C,Pos),

coordy((D,E),E,Pos),

less_than(H,C), less_than(H,E), less_than(C,E).

e CloserKk/10: The Manhattan distance of King to OKing decreases
after a move (e.g., Figure 7.2-left).

closerKk(A king,(B,C),D king,(E,F),G,H,(1,J),Posl) +
contents(D king,(E,F),Posl),
contents(A king,(B,C),Posl),

APPENDIX C. KRK CONCEPTS 204

other_side(D,A),
manh_dist((E,F),(B,C),G,Posl),
make_move(A king,(B,C),(I,J),Pos1,Pos2),
manh_dist((E,F),(L,J),H,Pos2),
less_than(H,G).

e RcloserKk/10: The distance of King to OKing decreases after a move.

rcloserKk(A king,(B,C),D king,(E,F),G,H,(I,J),Posl) +
contents(A king,(B,C),Posl),
contents(D king,(E,F),Posl),
other_side(A,D),
distance((E,F),(B,C),G,Posl),
make_move(A king,(B,C),(I,J),Pos1,Pos2),
distance((E,F),(I,J),H,Pos2),
less_than(H,G).

e AwayRk/10: The distance of OKing to Rook increases after a move by
Rook (e.g., Figure 7.2-right after the move).

awayRk(A rook,(B,C),D king,(E,F),G,H,(I,J),Posl) «
contents(A rook,(B,C),Posl),
contents(D king,(E,F),Posl),
other_side(A,D),
sliding_piece(rook,(B,C),Posl),
restr_distance((E,F),(B,C),G,Posl),
make_move(A rook,(B,C),(I,J),Posl,Pos2),
restr_distance((E,F),(I,J),H,Pos2),
less_than(G,H).

e RawayRk/10: The Manhattan distance of OKing to Rook increases
after a move by Rook (e.g., Figure 7.2-right after the move).

APPENDIX C. KRK CONCEPTS 205

rawayRk(A rook,(B,C),D king,(E,F),G,H,(I,J),Posl) «+
contents(A rook,(B,C),Posl),
contents(D king,(E,F),Posl),
other_side(A,D),
sliding_piece(rook,(B,C),Posl),
restr_manh_dist((E,F),(B,C),G,Pos1),
make_move(A rook,(B,C),(1,J),Pos1,Pos2),
restr_manh_dist((E,F),(1,J),H,Pos2),
less_than(G,H).

e RcloserRk/10: The Manhattan distance between Rook and OKing de-
creases after a move by Rook (Figure 7.1-right).

rcloserRk(A king,(B,C),D rook,(E,F),G,H,(E,I),Posl) +
contents(D,rook,(E,F),Posl),
contents(A king,(B,C),Posl),
other_side(A,D),
sliding_piece(rook, (E,F),Posl),
restr_manh_dist((B,C),(E,F),G,Posl),
make,move(D,rook(), (E,I),Posl,Pos2),
restr_manh_dist((B,C),(E,I),H,Pos2),
less_than(H,G).

rcloserRk(A king,(B,C),D,rook,(E,F),G,H,(LF),Posl) «
contents(A,kmg,(B,C),Posl),
contents(D,rook,(E,F),Posl),
other_side(A,D),
sliding_piece(rook,(E,F),Posl),
restr_manh_dist((B,C),(E,F),G,Pos1),
make,move(D,rook (E,F),(I,F),Pos1,Pos2),
restr_manh_dist((B,C),(I,F),H,Pos2),
less_than(H,G).

e In line/7: Rook and King are on the same rank or file.

in_lineRK(A king,(B,C),A,rook,(B,D),Pos) «
contents(A rook,(B,D),Pos),

APPENDIX C. KRK CONCEPTS 206

contents(A king,(B,C),Pos),
sliding_piece(rook,(B,D),Pos).

in_lineRK (A king,(B,C),A,rook,(D,C),Pos) «+
contents(A king,(B,C),Pos),
contents(A rook,(D,C),Pos),
other_side(A E),
sliding_piece(rook,(D,C),Pos).

e CloserRK2/8: The distance between Rook and King is 2 (e.g., Fig-
ure 7.1-center).

closeRK2(A,rook,(B,C),A king,(D,E),2,Pos) «
contents(A,rook,(B,C),Pos),
contents(A king,(D,E),Pos),
sliding_piece(rook,(B,C),Pos),
distance((D,E),(B,C),2,Pos),
distance((B,C),(D,E),2,Pos).

e DistkR6/8: The distance between Rook and OKing is 6.

distkR6(A,rook,(B,C),D king,(E,F),6,Pos) <«
contents(A,rook,(B,C),Pos),
contents(D king,(E,F),Pos),
other_side(A,D),
sliding_piece(rook,(B,C),Pos),
distance((E,F),(B,C),6,Pos),
distance((B,C),(E,F),6,Pos).

Appendix D
KRK rules

This appendix has the rules used for the playing strategy of the KRK endgame.
The rules are tried in order. If the conditions before a move hold, and the
move makes the conditions after the move to succeed, then that move is
followed. The 1-ply strategy rules use the concept definitions described in

appendix C.

R1: if opposition, and
with move move rook,
ensure check_mate.

R3: if rook_divs, and
opposition, and
with move move rook,
ensure r_edge, and
rook_divs, and
opposition.

207

R2:

R4:

if rook_divs, and
opposition, and
with move move rook,
ensure in_check, and
not threatkR, and
I_patt.

if rook_divs, and
threatkR, and
rKk, and

with move move rook,

ensure r_edge, and
rook_divs, and
not threatkR, and
rkK.

APPENDIX D. KRK RULES

R5:

R7:

R9:

R11:

R13:

if rook_divs, and
threatkR, and
not r_edge, and

with move move rook,

ensure r_edge, and
rook_divs, and
not threatkR.

if rook_divs, and
r_edge, and
closeRK2, and
almost_opposition, and
with move move rook,
ensure r_edge, and
not stale, and
not in_check, and
almost_opposition, and
rook_divs, and
not threatkR.

if with move move king,
ensure almost_opposition, and
rook_divs, and
not stale, and
not threatkR.

if rook_divs, and
str_closerKk, and
closerKk, and

with move move king,

ensure not threatkR, and
not stale, and
rook_divs.

if rook_divs, and
closerKk, and

with move move king,

ensure not threatkR, and

R6:

RS:

R10:

R12:

R14:

if rook_divs, and
threatkR, and
r_edge, and

with move move rook,

ensure r_edge, and
distkR6, and
rook_divs.

if rook_divs, and

almost_opposition, and

with move move rook,
ensure not stale, and
not in_check, and

almost_opposition, and

rook_divs, and
not threatkR.

if rook_divs, and
closerKk, and

with move move king,

ensure opposition, and
not stale.

if rook_divs, and
rcloserRk, and

with move move rook,

ensure rook_divs, and
not threatkR.

if rook_divs, and
awayRk, and

with move move rook,

ensure rook_divs, and

APPENDIX D. KRK RULES

not stale, and
rook_divs.

R15: if kings_same_side, and
with move move rook,
ensure rook_divs, and

not stale, and
not threatkR.

R17: if kings_same _side, and
r_edge, and
with move move rook,
ensure not r_edge, and
not stale, and
not threatkR.

R16:

R18:

209

not threatkR.

if kings_same_side, and
in_lineRK, and
with move move rook,
ensure not in_lineRK, and
not stale, and
not threatkR.

if kings_same_side, and
rawayRk, and
with move move rook,
ensure r_edge, and
not stale, and
not threatkR.

Appendix E

The improved KRK strategy

This appendix has the concepts learned by PAL and the rules used in the
improved KRK strategy. Besides the background knowledge specified in
chapter 7, the definition of “confined area” was provided to the system.

area(Placel, Place2, Room, Pos):
Rook at Placel confines the opponent’s King at Place2 to an
area of size Room

E.1 Concepts

Throughout the definitions square(X,Y) is denoted as (X,Y). King and Rook
refer to the King and Rook of the winning side, while OKing refers to the
opponent’s King.

e Squeeze/12: The area on which OKing is confined by Rook is reduced
after a movement of Rook. PAL recognises as well that the area disap-
pears when OKing is in check.

squeeze(A king,(B,C),D,rook,(E,F),G,H,(E,C),(B,F),(I,J),Posl) <«
contents(D,rook,(E,F),Posl),
contents(A king,(B,C),Posl),
other_side(D,A),
sliding_piece(rook,(E,F),Posl),
legal move(D,rook,(E,F),(E,C)
legal move(D,rook,(E,F),(B,F)

,Posl),
,Posl),

210

APPENDIX E. THE IMPROVED KRK STRATEGY 211

area((E,F),(B,C),G,Posl),
make_move(D,rook,(E,F),(E,C),Pos1,Pos2),
- area((E,C),(B,C),G,Pos2),

make_move(D rook,(E,F),(I,J),Pos1,Pos3),
area((I,J),(B,C),H,Pos3),

less_than(H,G),
make_move(D,rook,(E,F),(B,F),Pos1,Pos4),
- area((B,F),(B,C),G,Pos4).

e CloserkKR/12: OKing is closer to Rook than King.

closerkKR(A king,(B,C),D king,(E,F),D,rook,(G,H),I,J,Pos) «
contents(A king,(B,C),Pos),
contents(D king,(E,F),Pos),
contents(D,rook,(G,H),Pos),
other_side(D,A),
sliding_piece(rook,(G,H),Pos),
distance((G,H),(B,C),J,Pos),
distance((E,F),(G,H),I,Pos),
less_than(J,I).

e CloserKkR/12: King is closer to Rook than OKing.

closerKkR(A king,(B,C),D king,(E,F),D,rook,(G,H),I,J,Pos) <«
contents(A king,(B,C),Pos),
contents(D king, (E,F),Pos),
contents(D,rook,(G,H),Pos),
other_side(D,A),
sliding_piece(rook,(G,H),Pos),
distance((G,H),(E,F),J,Pos),
distance((B,C),(G,H),I,Pos),
less_than(J,I).

e K trap/7: OKing is “trapped” by Rook in a border.

k_trap(A rook,(B,2),C king,(D,1),Pos) «+

APPENDIX E. THE IMPROVED KRK STRATEGY

contents(A rook,(B,2),Pos),
contents(C,king,(D,1),Pos),
other_side(A,C),
sliding_piece(rook,(B,2),Pos).
k_trap(A,rook,(2,B),C king,(1,D),Pos) «
contents(A rook,(2,B),Pos),
contents(C,king,(1,D),Pos),
other_side(A,C),
sliding_piece(rook,(2,B),Pos).
k_trap(A,rook,(B,7),C king,(D,8),Pos) «
contents(A rook,(B,7),Pos),
contents(C,king,(D,8),Pos),
other_side(A,C),
sliding_piece(rook,(B,7),Pos).
k_trap(A,rook,(7,B),C king,(8,D),Pos) «
contents(A rook,(7,B),Pos),
contents(C,king,(8,D),Pos),
other_side(A,C),
sliding_piece(rook,(7,B),Pos).

e DistKR1/12: The distance between Rook and King is one.

distKR1(A king,(B,C),A rook,(D,E),F king,(G,H),I,1,Pos) <«

contents(F king,(G,H),Pos),
contents(A king,(B,C),Pos),
contents(A,rook,(D,E),Pos),
other_side(A,F),
sliding_piece(rook,(D,E),Pos),
distance((D,E),(B,C),1,Pos),
distance((B,C),(D,E),1,Pos),
distance((G,H),(B,C),I,Pos),
less_than(1,1).

e mvKcloserR/10: King gets closer to Rook after a move.

mvKcloserR(A king,(B,C),A,rook,(D,E),F,G,(H,I),Posl) <«

contents(A king,(B,C),Posl),

212

APPENDIX E. THE IMPROVED KRK STRATEGY 213

contents(A rook,(D,E),Posl),
sliding_piece(rook,(D,E),Posl),
restr_distance((B,C),(D,E),F,Pos1),
make_move(A king,(B,C),(H,I),Pos1,Pos2),
restr_distance((H,I),(D,E),G,Pos2),
less_than(G,F).

e Corner/7: OKing is in a corner with King in diagonal opposition.

corner (A king,(3,3),B,king,(1,1),Pos) <+
contents(A king,(3,3),Pos), contents(B king,(1,1),Pos),
other_side(A,B).

corner(A king,(3,6),B,king,(1,8),Pos) +
contents(A king,(3,6),Pos), contents(B,king,(1,8),Pos),
other_side(A,B).

corner(A king,(6,3),B king,(8,1),Pos) «+
contents(A king,(6,3),Pos), contents(B king,(8,1),Pos),
other_side(A,B).

corner(A king,(6,6),B,king,(8,8),Pos) +
contents(A king,(6,6),Pos), contents(B,king,(8,8),Pos),
other_side(A,B).

e Corner2/7: OKing is “almost” in a corner with King “almost” in op-
position.

corner2(A king,(3,3),B,king,(1,2),Pos) «+
contents(A king,(3,3),Pos), contents(B king,(1,2),Pos),
other_side(A,B).

corner2(A king,(3,3),B king,(2,1),Pos) «
contents(A king,(3,3),Pos), contents(B,king,(2,1),Pos),
other_side(A,B).

corner2(A king,(3,6),B king,(1,7),Pos) <«
contents(A king,(3,6),Pos), contents(B,king,(1,7),Pos),
other_side(A,B).

corner2(A king,(3,6),B king,(2,8),Pos) <+
contents(A king,(3,6),Pos), contents(B,king,(2,8),Pos),
other_side(A,B).

APPENDIX E. THE IMPROVED KRK STRATEGY 214

corner2(A king,(6,3),Bking,(8,2),Pos) «+
contents(A king,(6,3),Pos), contents(B king,(8,2),Pos),
other_side(A,B).

corner2(A king,(6,3),B king,(7,1),Pos) «
contents(A king,(6,3),Pos), contents(B,king,(7,1),Pos),
other_side(A,B).

corner2(A king,(6,6),B king,(8,7),Pos) <«
contents(A king,(6,6),Pos), contents(B,king,(8,7),Pos),
other_side(A,B).

corner2(A king,(6,6),B king,(7,8),Pos) «
contents(A king,(6,6),Pos), contents(B,king,(7,8),Pos),
other_side(A,B).

In addition to the above concepts, the following concepts, used in the
first KRK strategy, were used in the improved strategy (they are described
in appendix C).

e rook_divs: Rook divides both, King and OKing either vertically or
horizontally.

e opposition: Both, King and OKing are in opposition.

e threatkR: OKing threatens Rook.

e alm_oppos: Both, King and OKing, are almost in opposition.
e r_edge: Rook is on a border.

o rkK: King divides Rook and OKing either vertically or horizontally.

Table E.1 shows the examples generated by PAL with the additional
background knowledge used for each concept.

E.2 Rules

The following rules are used in the improved playing strategy of the KRK
endgame. The rules are tried in order and followed a similar format as those
given in appendix D.

APPENDIX E. THE IMPROVED KRK STRATEGY 215
Concept Generated | Add. Back.
Examples | Knowledge
squeeze /12 27 + 20 — | area
closerkKR /12 20 + 4 — | distance
closerKkR/12 16 + 3 — | distance
k_trap/7 43 + 12 —
distKR1/12 16 + 7 —
mvKcloserR/10 | 20 + 2 — | restr_distance
corner /6 440 —
corner2/7 84+ 0 —
Table E.1: Table of results for the new KRK concepts
R1: if k_edge and R2: if corner and
with move move rook not distKR1 and
ensure check mate. k_trap and
rook_divs and
with move move king
ensure almost_opposition and
rook_divs.
R3: if corner and R4: if corner2 and
k_trap and almost_opposition and
with move move rook k_trap and
ensure k_trap and rook_divs and
rkK. with move move rook
ensure not distKR1 and
k_trap and
rkK.
R5: if squeeze and R6: if squeeze and
with move move with move move rook
ensure distKR1 and ensure not closerkkKR and
not stale. not stale.
R7: if k_trap and RS8: if rook_divs and

almost_opposition and

with move move king

APPENDIX E. THE IMPROVED KRK STRATEGY

R9:

R11:

R13:

R15:

R17:

with move move king

ensure opposition and
not threatkR and
not stale.

if rook_divs and
mvKcloserk and

with move move king

ensure opposition and
not stale and
not threatkR

if not rook_divs and
with move move rook
ensure rook_divs and
not stale and
not threatkR.

if rook_divs and
mvKcloserk and
with move move king
ensure rook_divs and
not threatkR and
not stale.
if with move move king
ensure not closerkKR and
not stale.

if k_trap and
threatkR and

with move move rook

ensure k_trap and
r_edge and
not stale and

R10:

R12:

R14:

R16:

R18:

ensure almost_opposition and

rook_divs and
not stale and
not threatkR.

if mvKcloserk and
mvKcloserR and

with move move king

ensure not closerkKR and
not stale.

if mvKcloserR and

with move move king

ensure not stale and
not threatkR.

if mvKcloserk and

with move move king

ensure not closerkKR and
not stale.

if k_trap and
threatkR and

with move move rook

ensure k_trap and
closerKkR and
not stale and
not threatkR.

if k_trap and
stale and

with move move rook

ensure k_trap and
not stale and
not threatkR.

216

APPENDIX E. THE IMPROVED KRK STRATEGY 217

not threatkR.

R19: if with move move rook
ensure closerKkR.

Appendix F
Learning Can-Run for KPK

This appendix has the description of the patterns learned by PAL to decide
whether a white Pawn can safely promote from any white to move position
without moving the white King, in a white King and Pawn against black King
endgame. In addition to the background knowledge specified in Chapter 5,
the following background vocabulary was included for this endgame.

distance(Placel,Place2, Dist, Pos):
Distance (Dist) between a piece in Placel and a
piece in Place2.
manh._dist(Placel,Place2, Dist, Pos):
Manhattan distance between two pieces.
dist_qs(Place, Dist,Pos):
Distance (Dist) between a piece in Place and the
queening square.
coordz(Place, X, Pos):
The file of a piece in Place.
coordy(Place,Y,Pos):

The rank of a piece in Place.

The perturbation strategy was limited to changes only in the places of the
pieces (i.e., no changes in the sides or the pieces were made).

218

APPENDIX F. LEARNING CAN-RUN FOR KPK 219

F.1 Concepts

Only a broad description of the patterns is given below. Similarly to the
construction of the KRK playing strategies, an initial set of patterns was
learned by PAL, which was refined through experimentation. The final set
was checked against an exhaustive database generated for this purpose.
The strategy consists of 18 “main” patterns with the following format:

can_run if patterny, patterny, ...

All the patterns learned by PAL are static, except one which involves a 1-
ply movement to check whether a stalemate can be created. An additional
rule, not learned by PAL but constructed with patterns learned by PAL, was
included to the strategy to consider the case where the white Pawn is on the
second rank.

The following strategy decides whether a white Pawn can be safetely
promoted by moving exclusively the Pawn (i.e., can run). The patterns are
tried in order. Given a KPK position a white Pawn can run if one of the
main patterns is satisfied for that position. In total, 34 “sub”-patterns were
learned by PAL and used in the definition of the main patterns. There are
two main reasons for this sub-division:

e [t is easier to learn simplier patterns.
e A sub-pattern can be used in several patterns.

Similarly to the KRK endgame, the “quality” of the background knowl-
edge can affect the strategy. A much simplier strategy can be constructed for
this endgame if the definition of distance to the queening square considers
the possible interaction between Kings.

In the descriptions P refers to the white Pawn, K to the white King,
and k to the black King. P, and P, refers to the file and rank of the white
Pawn (similar notations are used for the other pieces). dist(A,B,D) means
that the distance between a piece A and a piece B is D. dist_qs(A,D) means
that the distance of piece A to the queening square is D. manh_dist(A,B,D)
and manh_dist_qs(A,D), refer to the Manhattan distance between two pieces
and the Manhattan distance between a piece and the queening square. A
at(X,Y’) denotes a piece A at square(X,Y’). move(P) denotes a movement
of the white Pawn and stale(k) denotes that the black King cannot move.

APPENDIX F. LEARNING CAN-RUN FOR KPK

can_run if { [k at (1,4), P at (2,2), K at (3,4)] or
[k at (1,4), P at (2,2), K at (3,5)] or
[k at (8,4), P at (7,2), K at (6,4)] or
[k at (8,4), P at (7,2), K at (6,5)] }
can_run if P, =2, move(P), P, =3, can_run
can_run if not { [k at (1,8), K at (3,7), P at (2,3)] or
[k at (1,7), K at (3,7), P at (2,4)] or
[k at (8,8), K at (6,7), P at (7,3)] or
[k at (8,7), K at (6,7), P at (7,4)] or
[move(P), stale(k)] },
K, =P, K, > P),

can_runl .
can_runl if dist_qgs(P, D1), dist_qs(k, D2), D1 < D2.
can_runl if dist_¢s(K,1), (P, =6 or P, =T1).
can_runl if dist_qs(K,1), K, =7, P, = 5.

can_runl if ([k, < K, < P,| or [k, > K, > P,]),
K, =6.K, >k,

can_runl if ([k, < K, < P, or [k, > K, > P,]),
K, =7, dist(K, P, D),
(D=1or D=2or D =3).

can_runl if ([k, < K, < P, or [k, > K, > P,]),
K, =71, dist(K, P, D),
(D#1or D#2or D #3),
dist(K, P, D2), manh_dist_qs(K, D2).

can_runl if {([k, < K, < P, or [k, > K, > P,]) or
[K, = ky, dist(K,k,2)]},
P, =k, =K, 2.

can_runl if ([k, < K, < P, or [k, > K, > P,]),

220

APPENDIX F. LEARNING CAN-RUN FOR KPK 221

K, =6, dist_qgs(K,2), dist_qs(P, D1), dist_qs(k, D1).

can_runl if ([k, < K, < P, or [k, > K, > P,]),
K, #8,
([Ky =ky, dist(K,k,2) | or [K, = ky, dist(K,k,2)]),
manh_dist(K,k, D), (D # 3 or D # 4).

(For P, = 3 and P_y = 4 additional conditions are required)

can_runl if ([k, < K, < P, or [k, > K, > P,]),
K, =8, dist(P, k,D1), dist_gs(P, D1), dist_qs(K,2).

can_runl if ([k, < K, < P, or [k, > K, > P,]),

K,=8, P, =3,

(| Ky =ky, dist(K,k,2)] or | K, =k, dist(K, k,2)]).
can_runl if k, =8, K, = 6, P, = 6, dist_qs(K,2), dist_qs(P,2), dist_qs(k,?2).
can_runl if dist_qs(K,1), dist_qs(P, D1), dist(P, k, D2),

(D1 =D2or D1+ 1= D2),

not {K, # 8k, #8, ([k, < P, < K] or [k, > P, > K,|) }.
can_runl if dist_¢s(K,1), K, =7, dist(k, P, D1), dist(K, P,D2), D1+ 1 = D2.
can_runl if dist_qs(K,1), P, =4, K, = k,, Ky # 8.

can_runl if dist_qs(K,1), P, = 3, dist_q¢s(k,3), K, = k,, Ky # 8.

Appendix G

Background knowledge
definitions

This appendix has the background knowledge definitions used by PAL. It is
assumed that the reader is familiar with Prolog. An estimated time of no
more than one week was required to define the whole background knowledge
definitions.

e legal move: Defines legal moves of chess pieces. A piece Piece can move
to place Place if it does not create a check on its own King.

legal move(Side,Piece,Place,NewPlace,Posl) :—
contents(Side,Piece,Place,Pos1),
piece_move(Side,Piece,Place,NewPlace,Posl),
do_move(Side,Piece,Place,NewPlace,Pos1,Pos2),
not in_check(Side,_,_,_,Pos2).

e in_check: An opponent’s piece has a plausible move to the place of the
King.

in_check(Side,KPlace,OPiece,OPlace,Pos) :—
contents(Side king, KPlace,Pos),
contents(OSide,OPiece,OPlace,Pos),
other_side(Side,OSide),
piece_move(OSide,OPiece,OPlace, KPlace,Pos).

222

APPENDIX G. BACKGROUND KNOWLEDGE DEFINITIONS 223

e check mate: A King is in check and cannot move (it does not consider
possible blockades from other pieces).

check_mate(Side,Place,Pos) :—
contents(Side,king,Place,Pos),
in_check(Side,Place,_,_,Pos),
not legal move(Side king,Place,_,Pos).

e stale: A piece cannot move and the opponent’s King is not in check.

stale(Side,Piece,Place,Pos) :—
contents(Side,Piece,Place,Pos),
not legal move(Side,Piece,Place,_,Pos),
other_side(Side,OSide),
not in_check(OSide,_,_,_,Pos).

e make move: Performs the actual movement of a piece changing the
state description. It checks first that the opponent’s King in not in
check.

make_move(Side,Piece,Place,NewPlace,Pos1,Pos2) :—
legal move(Side,Piece,Place,NewPlace,Pos1),
other_side(Side,OSide),
not in_check(OSide,_,_,_,Pos1),
do_move(Side,Piece,Place,NewPlace,Pos1,Pos2).

e other side: White is the opponent side of Black (and vice verse).

other_side(white,black).
other_side(black,white).

e sliding piece: A Queen, Bishop or Rook.

sliding_piece(Piece,Place,Pos) :—
contents(_Side,Piece,Place,Pos),
member(Piece,[queen,bishop,rook]).

APPENDIX G. BACKGROUND KNOWLEDGE DEFINITIONS 224

The following predicates are used to safe/restore current chess board de-
scriptions.

e do move: changes the current state description.

do_move(Side,Piece,Place,NewPlace,Pos1,Pos2) :—
current_state(State),
create_new _state(Posl,State,Pos2,NState),
retract_if_there(contents(_,_,NewPlace,Pos2)),
retract(contents(Side,Piece,Place),Pos2),

asserta(contents(Side,Piece,NewPlace),Pos2),
|

*9

restore_if redo(State).
e current_state: Returns the current state description (i.e., all the pieces).

current_state(State) —
description_pred(Descript),
findall(Descript,State).

e restore_state: Restores a state description.

restore_state(State) :—
description_pred(Descript),
retractall(Descript),
asserta_all(State).

e restore if redo: Used in the do-move predicate to restores a state in
case the rest of the literals fail for some reason.

restore_if_redo(-).
restore_if redo(State) :—

restore_state(State),
|

)

fail.

e create_new _state: Creates a copy of the current state description.

APPENDIX G. BACKGROUND KNOWLEDGE DEFINITIONS 225

create_new _state(Pos,State,NPos,NState) :—
new_pos(NPos),
replace(Pos,NPos,State,NState),
asserta_all(NState).

PAL is informed of which of the predicates are considered as background
definitions by a list of “features”. It is from this list that PAL derives its
relevant facts (see also appendix H).

feature(contents(_,_,square(_,_),_)).
feature(legal_move(_,_square(_,_),square(_,_),_)).
feature(in_check(_square(_,_),_,square(_,_),_)).
feature(check_mate(_,square(_,_),)).
feature(stale(_,_,square(_,_),-)).
feature(stale(_,-),).

(

feature(sliding_piece(_,square(_,_),_)).

make_move/6, which is used in the definition of dynamic patterns, is derived
from the legal_move/5 predicates (i.e., for each legal-move fact derived from
an example description, a make_move predicate is considered). In the above
concepts, piece_move/5 defines all the possible moves for the pieces.

In addition, PAL needs to know what is the domain and type of the
arguments used in the example description, and which are the predicates
that describe the examples.

description_pred(contents/4).

domain(side,[white,black]).
domain(piece,[pawn, knight bishop,rook,queen king]).
domain(place,[square(1,1),square(1,2),...,square(8,8)]).

type_arg(white,side) —!.
type_arg(black,side) :—!.
type_arg(square(_,_),place) :—!.
type_arg(_,piece).
PAL is also given predicates to recognise illegal positions for the example

generator (i.e., one King per side, do not allow Pawns in the first or last rank,
etc.).

Appendix H

A mini-PAL Prolog program

The purpose of this appendix is to provide a simplified implementation in
Prolog of the principal predicates of PAL. In particular, dynamic patterns and
disjunctive definitions are not considered. Not all the predicates are given,
however, sufficient comments are provided to allow an interested reader to
reconstruct them.

There are 5 main predicates in PAL:

e gopos and goneqg are the top predicates which call the example generator
and the generalisation method.

e cxtract_features is the predicate that derives all the ground atoms from
the background knowledge definitions and the current example descrip-
tion.

e generalise constructs a generalisation between two clauses following the
constrained [gg algorithm described in chapter 5.

e perturb generates new examples.

e reduce_defn reduces the definition considering the variable connection
constraints.

R S S
/* pal/0: makes sure that there are no previous examples and perturbation
classes, loads an initial example given by the user, constructs the initial
perturbation classes, an initial head (Head) and the body of the concept
clause, and calls the main predicates. Feats and CFeats represent the body
of the clause and its associated labels. */

226

APPENDIX H. A MINI-PAL PROLOG PROGRAM 227

pal -~
initialise,
load_example(Head,Feats,CFeats),
gopos(Head,Feats,CFeats).

/***********>l<>|<*******>I<***>l<>|<*******>I<******************************/

/* gopos/3: Calls the example generator (perturb) to produce a new example,
until the perturbation level fails (no more perturbation classes) or stopped
by the user. Each new example is shown to the user (display) and stored
(store_ezample) to avoid producing duplicates. If the example is positive, it
call the generalisation method (generalise) and sorts the list of perturbation
levels (order_list_of levels). If the example is negative it takes the literals
that fail with that example (Fail and CFail in perturb) and tries to produce
a new example that will succeed in at least one of them (see goneg). stop
accepts a name from the user to the new concept definition and incorporates
the definition to the background knowledge.

GH = current head of the hypothesis.

GFts = current body of the hypothesis clause.

CFts = labels of the current body. */

gopos(GH,GFts,CFts) :—
perturb(posit, GH,GFts,CFts,ExH,OldExDes, NewExDes,Fail, CFail),
|

display,

pos_neg_stop(Type),

store_example(Type,NewExDes),

l

(Type = positive,
generalise(GH,ExH,GFts,CFts,FinH FinFts,NCFts),
L
order_list_of levels(NCFts),
gopos(FinH,FinFts NCFts)

; Type = negative,
restore_exam_descript(NewExDes,OldExDes),
|

goneg(GH,GFts,CFts,Fail,CFail)
; Type = stop,

reduce_defn(GH,FFts,NH,NFts,CFts,_),

APPENDIX H. A MINI-PAL PROLOG PROGRAM 228

stop(NH,NFts)
).
gopos(Head,Feats,CFeats) —
reduce_defn(Head,Feats,NHead,NFeats,CFeats,_),
stop(NHead,NFeats).

/* gomeg/5: almost the same as gopos except that it uses the list of literals
(Failed) and their corresponding labels (CFailed) that failed with an example
to guide the perturbation process. */

goneg(GH,GFts,CFts,Failed,CFailed) :—

perturb(neg,GH, Failed,CFailed, ExH,OldExDes,NewExDes, _,),
L

display,

pos_neg_stop(Type),

store_example(Type,NewExDes),

|

(Type = positive,
generalise(GH,ExH,GFts,CFts, FinH,FinFts,NCFts),
L
order _list_of _levels(NCFts),
gopos(FinH,FinFts, NCFts)

; Type = negative,
restore_exam_descript(NewExDes,OldExDes),
L
goneg(GH,GFts,CFts,Failed,CFailed)

; Type = stop,
stop(GH,GFts)

).

goneg(GH,GF,CF,_,_) :— /* in case it is in the last perturb. level */
gopos(GH,GF,CF).

/* load_ezample/3: Accepts an example from the user. It construct a new
Head, add the description to the example to the background knowledge, and
derives all the ground atoms from it (see extract_features below). */

load_example(Head,Feats,CFeats) :—
clear_board,

APPENDIX H. A MINI-PAL PROLOG PROGRAM 229

which_example(Head),
|

*

display,
extract_features(Feats,CFeats).

/********>I<>I<>I<******************>I<>I<>l<*******>I<>I<>I<**********************/

/¥ extract_features/2: all the definitions that are considered as relevant
background definitions are identified by the predicate feature (see also ap-
pendix G) and declared as “dynamic”. eztract_features first picks all the
background names and then call the predicates to derive facts from them. */

extract_features(Fts,CFts) :—
setof(X, X ~feature(X),ListFeats),
all_features(ListFeats,Fts,CFts).

/* all_features/3: takes each one of the feature predicates and calls all/5.
all/5 generates all the possible solutions for the predicate (Feat) using mebg
to produce a “copy” (CFeats) with the assigned labeled symbols. It returns
a list of literals with new label symbols in all the arguments, except in those
places where there is an argument of a description of a piece (from which a
previously assigned label is used). */

all(Feat,Feats,CFeats,Inter,Fin) :—
copy _variable(Feat,CFeat),
setof(Feat/CFeat,Feat~CFeat ~mebg(Feat,CFeat),All),
divide_2(All,Feats,CFeats),

numbervars(CFeats,Inter,Fin),
|

all(_[],[],F.F).

/* mebg/2: is similar to EBG. It forms a list of substitutions and calls mebg.
mebg updates the list of substitutions (new_subst/3) with the particular ar-
guments of the atoms used to describe example positions that are involved
in the derivation process. All the predicates that involve the predicate use to
describe example positions (description_pred) are declared as dynamic. */

mebg((A,B),Subs) -
!

mebg(A,Subs),

APPENDIX H. A MINI-PAL PROLOG PROGRAM

mebg(B,Subs).
(B),Subs) -

mebg(A Subs)
mebg(B Subs)

A

not predicate_property(A,(dynamic)),
|
call(A).
mebg(Pred,Subs) -
description_pred(P/A),
functor(Pred,P,A),
|
current_exam(L),
member(Pred/Args,L),
new_subst(Pred,Args,Subs).
mebg(A,Subs) :—
clause(A,ATail),
mebg(ATail,Subs).

230

/*>I<>l<>l<>|<>l<>k>|<>X<>I<>k>l<>|<>l<>|<>k>l<>|<>l<>I<>l<>l<>|<>i<>l<>|<>l<>|<>k*>I<>l<>I<>l<>l<>|<>l<>l<>|<>X<>I<>k**********************/

/* generalise/7: makes a generalisation between two clauses. It produces a

generalisation, reduces it, and shows it to the user.
GH = Hypothesis head.

ExH = Example Head

GFts = The body of the hypothesis

CF'ts = The copy of the body (the labels)

FH = New hypothesis head

FFts and NCFts = Body and associated labels of the new hypothesis. */

generalise(GH,ExH,GFts,CFts,FH,FFts, NCFts) :—

create_generalisation(GH,ExH,GFts,CFts, NGH,NGFts,CFtsl),

|

)

reduce_defn(NGH,NGFts,FH FFts,CFts1,NCFts),

pprint_defn(FH,FFts).

APPENDIX H. A MINI-PAL PROLOG PROGRAM 231

/* create_generalisation/7: It derives the relevant facts of the new exam-
ple description, finds the lgg, between the head of the hypothesis (Head)
and the clause constructed for the example (ExHead), and uses the list of
substitutions generated to guide the lgg of the rest of the clauses. */

create_generalisation(GH,ExH ,GFts,CFts, NGH,NGFts,NCFts) :—
extract_features(ExFts,CExFts),
heads_lgg(GH,ExH,NGH,Subst),
all_feats_lgg(GFts,CFts,ExFts, CExFts,Subst, NGFts,NCFts).

/* all_feats_lgg/7: first selects compatible literals (same name and predicate
symbol) and then calls all_lgg. all_lgg match compatible literals based on the
copy or labels of the clause (match_up_to_N), and then calls clgg to make the
lgg between two compatible literals with matching labels. */

/* match_up_to_N /2: takes two lists of associated symbols and matchs them
iff they differ only in label symbols that are not related to the symbols used
in the arguments of the atoms that describe example positions (it assumes
that there are no variables as the matching process is between the “copy” or
labels of the literals). */

match_up_to_N([H|T],[H|R]) -
match_up_to_N(T,R).
match_up_to_N([Metal|T],[Meta2|R]) -
metavar(Metal),
metavar(Meta2),
match_up_to_N(T,R).
match_up_to_N([|,[]).

/* Identifies labels assigned with ‘numbervars’ (i.e., not from example de-
scriptions). */

metavar(MV) -
nonvar(MV),
MV = "$VAR'(N),
integer(N).

/* clgg/6: Tt returns the lgg of two terms, with the number of new substitu-
tions created and a new list of substitutions. */

APPENDIX H. A MINI-PAL PROLOG PROGRAM

clgg(N,Term1,P2 GP12,Sofar,Subst) :—

term(Terml),
|

add_to_subs(Term1/P2/GP12,Sofar,Subst,N).
clgg(N,P1,Term2,GP12,Sofar,Subst) :—

term(Term?2),
|

add_to_subs(P1/Term2/GP12,Sofar,Subst,N).
clgg(N,P1,P2,GP12,Sofar,Subst) —

functor(P1,F L),

functor(GP12,F,L),

unif(L,P1,P2 GP12,Sofar,Subst,N).

232

/* unif /7. fills-in the arguments of the generalisation by going through the
arguments of the two predicates to generalise. It returns the number of new

substitutions added. */

unif(0,_,_,_,L,1.,0) :—
|

unif(M,P1,P2 GP,Sofar,Subs,N) :—
arg(M,P1,Argl),
arg(M,P2,Arg2),
clgg(N1,Argl, Arg2,GArg,Sofar,InterSubs),
|

arg(M,GP,GArg),

M1 is M — 1,
unif(M1,P1,P2,GP,InterSubs,Subs,N2),
|

Nis N1 + N2.

/* add_to_subs/4: adds a substitution to a list if it is new and counts it. */

add_to_subs(A/B/A,L,L,0) :—
A ==B,
L
add_to_subs(New,] |,[New],1).
add_to_subs(A/B/OIld,[X/Y/OId|R],[X/Y/Old|R],0) -~
A==X,

APPENDIX H. A MINI-PAL PROLOG PROGRAM 233

B ==,
|

add_to_subs(Subs,[H|R],[H|T],N) :-

add_to_subs(Subs,R,T,N).

/**>I<********>l<>1<>I<>I<>I<********>l<>1<>I<>I<>I<***********************************/

/* perturb/9: creates new examples. It picks the first perturbation class
(PC) and tries to create new examples. If it fails (cannot create a new
example that will fail on some literals) then it changes the perturbation
space (change_levels/0) and continues. */

perturb(Type,H,Fts,CFts,ExH,OldExDes,NewExDes, Fail, CFail) :—

list_of levels([PC|]),
change(Type,PC,H, Fts,CFts,ExH,OldExGen,NewExGen,Fail, CFail).

perturb(Type,H,Fts,CFts,NH,OldExDes,NewExDes,F,CF) :—

change_levels,
|

*9

perturb(Type,H,Fts,CFts,NH,OldExDes,NewExDes,F,CF).

/* change/10: involves the following steps:

1.

Extract the current arguments from the current example description
which corresponds to the particular perturbation class (change_auz).

Change the arguments (change_args) of those arguments by selecting
new values from their domains.

Check if the new example corresponds to a legal position (check_if-legal).

Replace the new values in all the literals where the arguments appear
in the body of the hypothesis (replace_all_args).

Check which of those new literals fail with the new arguments (check_defn).
It uses the list of literals of the current concept definition (F'ts), the list
of literals in the definition instantiated by the new arguments (NewFts)
and the labels associated with the literals (CFts) to guide the process.

Check that the failures are indeed new to avoid producing examples
that fail for the same reasons (check_fails).

Return a head for the new example description (produce_head).

APPENDIX H. A MINI-PAL PROLOG PROGRAM 234

Flag = for positive or negative examples

PC = Perturbation Class

H = Current head of the hypothesis

Fts and CFts = body and labels of the hypothesis

OldP and NewP = old and new description of the board

Fails and CFuails = literals and labels that failed with the new example. */

change(F1,PC,H,Fts,CFts,NH,0ldP,NewP, Fail, CFail)
change_aux(PC,H,Fts,OldP,Args,CArgs),
change_args(Args,PC,NArgs NewP),
check_if legal,
replace_all args(NArgs,CArgs,CFts, Fts,NFts),
check_defn(F1,Fts,NewFts,CFts,Fail CFail),
check_fails(F1,Fail, CFail, Args,NArgs,PC),
|

*)

produce_head(Args,NArgs, H NH,CH).

/**/

/* reduce_defn /6: Reduces the current concept definition, by removing vari-
able arguments in the head of the clause that are not connected to literals
in the body (others than those used to describe examples), and by removing
literals with variable arguments which are unconnected to any other variable
in the body of the clause. */

reduce_defn(H,Fts,NH,NFts,CFts,NCFts) :—
reduce_head(H,Fts,CFts,NH),

reduce_body(Fts,NFts,CFts,NCFts),
l.

