
Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Reinforcement Learning

Eduardo Morales, Hugo Jair Escalante

INAOE

(INAOE) Reinforcement Learning 1 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Outline

1 Introduction

2 Solution Methods for MDPs

3 Approximate Solutions

(INAOE) Reinforcement Learning 2 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Introduction

Reinforcement Learning

• When we think about learning one of the ideas that
comes to mind is learning through interaction with the
environment
• This interaction gives us information about the

consequences of our actions, the cause-effect relations,
and what to do to achieve our goals
• Through our interaction we can obtain reward signals
• In Reinforcement Learning (RL) rewards are given to an

agent at a terminal state or at intermediate states

(INAOE) Reinforcement Learning 3 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Introduction

Reinforcement Learning

• In RL the objective of the learning agent is to discover a
state-action mapping to maximize its expected total
reward
• The agent needs to explore its environment and

rewards can be given at the end of the task
• Search/exploration and delayed reward are two

particular characteristics of RL
• Promise: Program agents through rewards without the

need to specify how to perform a task

(INAOE) Reinforcement Learning 4 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Introduction

Differences with other ML approaches

1 Training data is not given as tables of input - output pairs
2 The agent needs to obtain useful experience about

states, actions, transitions, and rewards in an active way
to behave optimally

3 The evaluation of the system occurs concurrently with
the learning process

(INAOE) Reinforcement Learning 5 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Introduction

Applications

• The first RL application was Samuel’s work on
Checkers (1959)
• He used a weighted lineal evaluation function with up to

16 terms
• His program resembled an updating weights approach

but there were no rewards at terminal states, which
could make it not to converge or to learn to loose
• He avoid this by making the weights for gaining material

always positive

(INAOE) Reinforcement Learning 6 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Introduction

Applications

• A commonly used applications of RL is the inverted
pendulum, where the aim is to keep the pendulum
straight (θ ≈ π/2) within the limits of the track (X , θ, Ẋ
and θ̇ are continuous and the control is bang–bang)
• Boxes (Michie, Chambers 1968) balanced the

pendulum for more than an hour after 30 trails (no
simulation)
• The state-space was discretized into “boxes” and the

system was run until the pendulum fell or went out of its
limits. In such cases, a negative reward was given to
the last “box” and propagated through the previously
visited “boxes”

(INAOE) Reinforcement Learning 7 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Introduction

Applications

• TD-gammon (Tesauro 1992) represents an evaluation
function with a neural network with a single hidden layer
with 40 nodes, which after 200,000 training games, was
able to considerably improve its performance
• With additional attributes and a network with a layer of

80 hidden nodes, after 300,000 training games, it
became one of the best three players in the world
• An RL algorithm was also developed to update the

evaluation function of a search tree which when applied
to chess improved its ELO performance from 1,650 to
2,150 after 308 games and three training days

(INAOE) Reinforcement Learning 8 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Introduction

Applications

Recent applications include:
• Jeopardy: Watson (IBM) - champion in Jeopardy (2011)

which used RL to learn when to bet in order to earn
more points
• Atari 2600 (2015): Learned how to play 46 Atari video

games playing better than humans is 29 games (DQN)
• Go: World champion in Go (Alpha Go 2016, Alpha Zero

2018, MuZero 2019)
• Chess: Best chess player (Alpha Zero, MuZero)
• Multiple applications in robotics

(INAOE) Reinforcement Learning 9 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Introduction

Reinforcement Learning

• In RL an agent learns how to behave, through trial and
error, in a dynamic and uncertain environment
• The agent is not told which actions to take and it has to

discover those that produce the highest benefits
• In standard RL, an agent is connected to an

environment through perception and action
• At each iteration, the agent receives an indication of its

current state (s ∈ S) and selects an action (a ∈ A). The
action (possibly) changes the state and the agent
receives a reward signal (r ∈ R)

(INAOE) Reinforcement Learning 10 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Introduction

Reinforcement Learning

(INAOE) Reinforcement Learning 11 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Introduction

Reinforcement Learning

• The behavior of the agent should seek actions that
increase, in the long run, the total accumulated rewards
• The objective is to find a policy (π), that maps states to

actions, which maximizes the total expected reward
• In general, the environment is non-deterministic (i.e.,

taking the same action at the same state may produce
different results)
• However, it is assumed to be stationary (the state

transition probabilities do not change or change very
slowly)

(INAOE) Reinforcement Learning 12 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Introduction

Example

(INAOE) Reinforcement Learning 13 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Introduction

Exploration and Exploitation

• Relevant aspects:
1 The agent follows a trial and error process
2 There can be delayed rewards

• There is a balance between exploration and exploitation
• To obtain good gains one may prefer to follow certain

actions, but in order to learn which ones to follow,
certain exploration is needed
• In some cases, it depends on how much time is

expected the agent to interact with the environment

(INAOE) Reinforcement Learning 14 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Introduction

Markov Decision Process

• In RL the agent needs to decide at each state which
action to take
• This sequential decision process can be characterized

by a Markov decision process (MDP)
• An MDP models a sequential decision problem where

the system evolves with time and is controlled by an
agent
• The dynamics of the system is defined by a probabilistic

state transition function that maps states and actions to
new states

(INAOE) Reinforcement Learning 15 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Introduction

MDP

Formally, a (finite) MDP is a tuple M = 〈S,A,Φ,R〉
comprising:
• A finite set of states S (si ∈ S, i = {1, . . . ,n})
• A finite set of actions A, that may depend on each state

(aj ∈ A(si))
• A reward function (R), that defines the goal and maps

each state-action pair to a number (reward), indicating
how desirable is the state:
r(s,a, s′) = E[Rt+1|St = s,At = a,St+1 = s′]
• An environment model or state transition function

p(s′|s,a) = Pr(St+1 = s′|St = s,At = a) that gives us
the probability of reaching state s′ ∈ S when taking
action a ∈ A in state s ∈ S

(INAOE) Reinforcement Learning 16 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Introduction

Additional Elements

• Policy (π(s)): Specifies how the system behaves at
certain time. It is a (possibly stochastic) mapping
between states and actions: π(s)→ a
• Value function (Vπ(s)/Qπ(s,a)): Is the total reward that

the agent is expected to obtain from state s (Vπ(s)) or
from state s and taking action a (Qπ(s,a)) and following
the policy π
• The rewards are given by the environment but the value

functions need to be estimated (learned) from the
interactions with the environment

Reinforcement Learning induces the value function, the
policy or both, while interacting with the environment

(INAOE) Reinforcement Learning 17 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Introduction

Reward Models

• Given a state st ∈ S and action at ∈ A(st), the agent
moves to a new state st+1 and receives a reward rt+1

• If we denote the rewards obtained after certain time t
as: rt+1, rt+2, rt+3, . . ., what we want is to maximize the
total expected reward (Gt or return)
• If there is a terminal state, the tasks are called episodic

otherwise they are called continuous

(INAOE) Reinforcement Learning 18 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Introduction

Reward Models

• Finite Horizon: The agent tries to optimize its expected
total reward of the next h steps, without worrying of
what happens afterwards:

E(
h∑

t=0

rt+1)

• This could be used as:
• Non stationary policy: At the first step the next h steps

are taken, at the next step the h − 1 are considered,
etc., until a termination condition. The main problem is
knowing how many steps to consider

• Receding-horizon control: Always take the next h steps

(INAOE) Reinforcement Learning 19 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Introduction

Reward Models

• Average Reward: Optimize in the long run the average
reward:

limh→∞E(
1
h

h∑
t=0

rt+1)

Problem: Cannot distinguishes between policies that
receive large rewards at the beginning or at the end of
an episode

(INAOE) Reinforcement Learning 20 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Introduction

Reward Models

• Infinite Horizon (most commonly used): The rewards
are geometrically reduced according to a discount
factor γ (0 ≤ γ < 1):

Gt = rt+1 + γrt+2 + γ2rt+3 + . . . =
∞∑

k=0

γk rt+k+1

and what we want to maximize is the total expected
reward:

E(
∞∑

k=0

γk rt+k+1)

(INAOE) Reinforcement Learning 21 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Introduction

Reward Models

• When γ < 1 the infinite summation has a finite value (if
the rewards are bounded)
• When γ = 0 the agent is myopic and only sees the

immediate rewards
• As γ increases towards 1 the future rewards are taken

more into account
• The returns can be related between them:

Gt = rt+1 + γrt+2 + γ2rt+3 + γ3rt+4 + . . .

= rt+1 + γ(rt+2 + γrt+3 + γ2rt+4 + . . .)
= rt+1 + γGt+1

(INAOE) Reinforcement Learning 22 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Introduction

Markovian Model

• RL assumes the Markovian property (the state
transitions only depend on the current state) where the
transition probabilities are given by:

Pa
ss′ = P(s′ | s,a)

The expected reward is:

Ra
ss′ = E{r | s,a, s′}

• We want to estimate the value function, i.e., how good
is to be in a state V (and take an action Q)
• The notion of “goodness” is defined in terms of

future/expected rewards

(INAOE) Reinforcement Learning 23 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Introduction

Value Functions

• The value of state s under policy π, denoted as Vπ(s),
is the total expected reward received at state s when
following policy π:

Vπ(s) = Eπ{Gt | st = s} = Eπ

{ ∞∑
k=o

γk rt+k+1 | st = s

}

• The value of state s when taking action a and then
following the policy π (Qπ(s,a)) is:

Qπ(s,a) = Eπ{Gt | st = s,at = a}
= Eπ

{∑∞
k=o γ

k rt+k+1 | st = s,at = a
}

(INAOE) Reinforcement Learning 24 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Introduction

Optimal Value Functions

• The optimal value functions are defined as:

V ∗(s) = maxπVπ(s) and Q∗(s,a) = maxπQπ(s,a)

• Which can be expressed by the Bellman optimality
equations:

V ∗(s) = maxa
∑
s′
Pa

ss′ [R
a
ss′ + γV ∗(s′)]

Q∗(s,a) =
∑
s′
Pa

ss′ [R
a
ss′ + γV ∗(s′)]

Q∗(s,a) =
∑
s′
Pa

ss′ [R
a
ss′ + γmaxa′Q∗(s′,a′)]

(INAOE) Reinforcement Learning 25 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Introduction

Optimal Value Functions

V ∗(s) = maxa∈A(s)Q∗(s,a)
= maxaE[Gt |st = s,at = a]
= maxaE[rt+1 + γGt+1|st = s,at = a]
= maxaE[rt+1 + γV ∗(st+1)|st = s,at = a]
= maxa

∑
s′,r p(s′, r |s,a)[r + γV ∗(s′)]

Likewise:

Q∗(s,a) = E[r + γmaxa′Q∗(s′,a′)|s,a]
=
∑

s′,r p(s′, r |s,a)[r + γmaxa′Q∗(s′,a′)]

(INAOE) Reinforcement Learning 26 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

Solution Methods

• Interacting with the environment to know how to behave
is a wide and ambitious goal
• Solution methods are normally based on

decompositions or elements that can help to solve the
problem
• In general there are three options (which can be

combined):
1 Learn value functions (predict how good I will do in the

future)
2 Learn policies (tell me which actions to take on each

state)
3 Learn models (tell me how the environment behaves)

• We are going to see first the classic methods for solving
MDPs

(INAOE) Reinforcement Learning 27 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

Solution Methods

There are three main methods for solving MDPs:
1 Dynamic Programming
2 Monte Carlo methods
3 Temporal Differences

(INAOE) Reinforcement Learning 28 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

Dynamic Programming

• If the model of the environment is known, i.e., the
state-transition function (Pa

ss′) and the reward function
(Ra

ss′), the Bellman optimality equations represent a
system with |S| equations and |S| unknowns
• However, in general, it is not always possible to find an

optimal solution, for instance, due to large spaces (e.g.,,
Chess, Go), the dynamics of the environment is
unknown, the Markov property is not valid, etc.
• We will first see how to evaluate a value function Vπ

given an arbitrarily policy π

(INAOE) Reinforcement Learning 29 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

Value Function given a Policy

Vπ(s) = Eπ{Gt | st = s}
= Eπ

{
rt+1 + γrt+2 + γ2rt+3 + . . . | st = s

}
= Eπ {rt+1 + γVπ(st+1) | st = s}
=

∑
a π(a|s)

∑
s′ Pa

ss′ [R
a
ss′ + γVπ(s′)]

where π(a|s) is the probability of taking action a in state s
using policy π

(INAOE) Reinforcement Learning 30 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

Value Function for a Policy

(INAOE) Reinforcement Learning 31 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

Value Function for a Policy

• We can do successive approximations, evaluating
Vk+1(s) in terms of Vk (s).

Vk+1(s) =
∑

a

π(a|s)
∑
s′
Pa

ss′ [R
a
ss′ + γVk (s′)]

• We can then define an algorithm of policy iteration

(INAOE) Reinforcement Learning 32 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

Value Function for a Policy

Initialize V (s) = 0 for all s ∈ S
Repeat

∆← 0
For each s ∈ S

v ← V (s)
V (s)←

∑
a π(a|s)

∑
s′ Pa

ss′ [R
a
ss′ + γV (s′)]

∆← max(∆, |v − V (s)|)
Until ∆ < θ (small positive number)
Return V ≈ Vπ

(INAOE) Reinforcement Learning 33 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

Policy Iteration

• We evaluate the value function for a policy with the aim
of finding better policies
• Given a value function, we can try an action a 6= π(s)

and test if its V (s) is better or worst than Vπ(s)

• Instead of changing one state and see its results, we
can consider changes in all the states considering all
the actions on each state, selecting the action that is
better according to a greedy policy
• We can then evaluate the new policy
π′(s) = argmaxaQπ(s,a) and continue until there are no
improvements (changes)

(INAOE) Reinforcement Learning 34 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

Policy Iteration

• This suggests to start with a policy (π0), evaluate the
value function (Vπ0), and with this find a better policy
(π1) and continue until convergence towards π∗ and V ∗

• This procedure is called Policy Iteration

(INAOE) Reinforcement Learning 35 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

Policy Iteration

V (s) ∈ R and π(s) ∈ A(s) arbitrarily
∀s ∈ S (Initialize)
Repeat (Policy Evaluation)

∆← 0
For each s ∈ S

v ← V (s)

V (s)←
∑

s′ P
π(s)
ss′ [Rπ(s)

ss′ + γV (s′)]
∆← max(∆, |v − V (s)|)

Until ∆ < θ (small positive number)
stable-policy← true (Policy Improvement)
For each s ∈ S:

b ← π(s)
π(s)← argmaxa

∑
s′ Pa

ss′ [R
a
ss′ + γV (s′)]

if b 6= π, then stable-policy← false
If stable-policy, then stop, else evaluate new policy

(INAOE) Reinforcement Learning 36 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

Value Iteration

• Policy Iteration on each iteration evaluates the policy
and needs to visit all the states several times
• We can prune the policy evaluation without giving up

convergence guarantees after visiting once all the
states
• This form is called Value Iteration and can be expressed

combining the improvement on the policy and the
pruned evaluation policy as follows:

Vk+1(s) = maxa
∑
s′
Pa

ss′ [R
a
ss′ + γVk (s′)]

• It can be see as expressing the Bellman equation in an
updating rule

(INAOE) Reinforcement Learning 37 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

Value Iteration

Initialize V (s) = 0 for all s ∈ S
Repeat

∆← 0
For each s ∈ S

v ← V (s)

V (s)← maxa
∑

s′ Pa
ss′ [R

a
ss′ + γV (s′)]

∆← max(∆, |v − V (s)|)
Until ∆ < θ (small positive number)
Return a deterministic policy such that:

π(s) = argmaxa
∑

s′ Pa
ss′ [R

a
ss′ + γV (s′)]

(INAOE) Reinforcement Learning 38 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

Monte Carlo

• The Monte Carlo methods only require experience and
the updates are performed after each episode, instead
of at each step
• The state value is the expected reward that can be

obtained from this state
• To estimate Vπ and Qπ we can gather statistics making

an average of the obtained rewards
• Several simulations can be done in parallel

(INAOE) Reinforcement Learning 39 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

Monte Carlo to estimate V π

Repeat
Generate an episode using π
For each state s in the episode:

G← accumulated reward after the
first occurrence of s

Add G to return(s)
V (s)← average(return(s))

(INAOE) Reinforcement Learning 40 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

Monte Carlo

• To estimate the state-action pair values (Qπ) there is a
risk of not visiting all the pairs, so we must maintain
exploration
• Normally only stochastic policies, which have a non

zero probability of selecting all the actions, are
considered in Monte Carlo approaches

(INAOE) Reinforcement Learning 41 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

Monte Carlo for Policy Improvement

• With Monte Carlo we can alternate between evaluation
and improvement on each episode
• The idea is to use the observed rewards of each

episode, to evaluate the policy, and improve the policy
in all the visited states of the episode

(INAOE) Reinforcement Learning 42 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

Monte Carlo for Policy Improvement

Repeat
Generate an episode using π with exploration
For each pair (s,a) in the episode:

G← accumulated reward after the first
occurrence of (s,a)

Add G to return(s,a)
Q(s,a)← average(return(s,a))

For each s in episode:
π(s)← argmaxaQ(s,a)

(INAOE) Reinforcement Learning 43 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

Monte Carlo for Policy Improvement

• The previous algorithm assumes that we can start at
every state-action pair and that we have an exploratory
policy
• What we can do is to maintain exploration with an
ε−greedy policy in the last step:

a∗ ← argmaxaQ(s,a)

For each action a ∈ A(s):

π(a|s)←
{

1− ε if a = a∗
ε

|A(s)| if a 6= a∗

(INAOE) Reinforcement Learning 44 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

Temporal Differences

• Temporal Difference (TD) methods combine the
advantages of the previous methods: (i) Allow
bootstrapping - estimate values using other estimates -
(as in DP) and (ii) do not require a model of the
environment (as in MC).
• TD methods only need to wait for the next step
• TD uses the error or difference between successive

predictions to learn (instead of the error between the
prediction and the final outcome)

(INAOE) Reinforcement Learning 45 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

Exploration Schemes

• TD methods require an exploration strategy
• ε−greedy: Most of the time the action with the largest

estimate value is selected, but with probability ε a
random action is selected. ε can be fixed or reduced
over time
• softmax: The probability of selecting an action depends

on its estimated value. The most common approach
follows a Boltzmann or Gibbs distribution, and selects
an action with the following probability:

eQt (s,a)/τ∑n
b=1 eQt (s,b)/τ

where τ is a positive parameter (temperature)

(INAOE) Reinforcement Learning 46 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

“On” and “Off-policy” Algorithms

• On-policy algorithms: Estimate the value of the policy
while it is used for control. Try to improve the policy that
is used to take decisions
• Off-policy algorithms: Use the policy and control in a

separate form. The estimation of the policy could be, for
instance, greedy, while the behavior policy could be
ε-greedy
• There is a policy to generate the behavior (b behavior

policy) and a policy that you want to learn (π target
policy), which is what Q-learning does

(INAOE) Reinforcement Learning 47 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

Temporal Differences

• The algorithms are incremental and easy to evaluate
• They update the value functions using the error between

its estimate and the summation of the immediate reward
and the estimate value of the next state
• With Monte Carlo:

V (st)← V (st) + α [Gt − V (st)]

• The simplest TD update, TD(0), is:

V (st)← V (st) + α [rt+1 + γV (st+1)− V (st)]

(INAOE) Reinforcement Learning 48 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

Temporal Differences

• The algorithms are incremental and easy to evaluate
• They update the value functions using the error between

its estimate and the summation of the immediate reward
and the estimate value of the next state
• With Monte Carlo:

V (st)← V (st) + α [Gt − V (st)]

• The simplest TD update, TD(0), is:

V (st)← V (st) + α

 estimate︷ ︸︸ ︷
rt+1 + γV (st+1)−V (st)


︸ ︷︷ ︸

TD−error

(INAOE) Reinforcement Learning 49 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

TD(0) Algorithm

Initialize V (s) arbitrarily and π to the policy to evaluate
Repeat (for each episode):

Initialize s
Repeat (for each step in the episode):

a← action given by π for s
Take action a; observe reward r and next state s′

V (s)← V (s) + α [r + γV (s′)− V (s)]
s ← s′

Until s is terminal

(INAOE) Reinforcement Learning 50 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

SARSA

• For learning policies, we change the value function Q
• The updates of values considering the action are:

Q(st ,at)← Q(st ,at)+α[rt+1 +γQ(st+1,at+1)−Q(st ,at)]

• We estimate Qπ for policy π, and at the same time, we
change π with respect to Q
• The algorithm is almost the same and it is called

SARSA (state-action-reward-state’-action’)

(INAOE) Reinforcement Learning 51 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

SARSA Algorithm

Initialize Q(s,a) arbitrarily
Repeat (for each episode):

Initialize s
Select action a from s using the policy

given by Q (e.g., ε–greedy)
Repeat (for each step in the episode):

Take action a, observe r , s′

Choose a′ from s′ using the policy derived from Q
Q(s,a)← Q(s,a) + α [r + γQ(s′,a′)−Q(s,a)]
s ← s′; a← a′;

Until s is terminal

(INAOE) Reinforcement Learning 52 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

Q-Learning

• One of the most relevant developments in
Reinforcement Learning was an off-policy algorithm
known as Q-learning
• The main idea is to update the value function as follows

(Watkins, 1989):

Q(st ,at)← Q(st ,at)+α[rt+1+γmaxaQ(st+1,at+1)−Q(st ,at)]

• In this case, the idea is to directly learn Q∗

independently of the policy that is followed

(INAOE) Reinforcement Learning 53 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

Q-Learning Algorithm

Initialize Q(s,a) arbitrarily
Repeat (for each episode):

Initialize s
Repeat (for each step in the episode):

Select an a from s using the policy derived from Q
(e.g., ε–greedy)
Take action a, observe r , s′

Q(s,a)← Q(s,a) + α [r + γmaxa′Q(s′,a′)−Q(s,a)]
s ← s′;

Until s is terminal

(INAOE) Reinforcement Learning 54 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

Expected SARSA

• By updating with the maximum value, Q-learning can
sometimes over-estimate
• Instead we could update with the expected value:

Q(st ,at) ← Q(st ,at) + α[rt+1+
γE[Q(st+1,at+1|st+1)]−Q(st ,at)]

← Q(st ,at) + α[rt+1+
γ
∑

a π(a|st+1)Q(st+1,at+1)−Q(st ,at)]

(INAOE) Reinforcement Learning 55 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

Double Q-Learning

• Another possibility is to use two parallel estimates and
update each one with the other one (Double
Q-Learning)
• The changes to the algorithm are:

1 Select a using an ε−greedy policy in Q1 + Q2
2 With 0.5 probability

Q1(s,a)←
Q1(s,a) + α [r + γQ2(s′,argmaxa(Q1(s′,a))−Q1(s,a)]

3 Otherwise:
Q2(s,a)←
Q2(s,a) + α [r + γQ1(s′,argmaxa(Q2(s′,a))−Q2(s,a)]

(INAOE) Reinforcement Learning 56 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

Between Monte Carlo and TD

• Monte Carlo methods update values considering the
complete sequence of observed rewards
• TD methods update values considering the immediate

reward
• The idea of n−step methods and eligibility traces is to

consider rewards from n subsequent states (or affecting
n previous states)

(INAOE) Reinforcement Learning 57 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

Between Monte Carlo and TD

• As seen before:

Gt = rt+1 + γrt+2 + γ2rt+3 + . . .+ γT−t−1rT

• What TD uses is:

Gt :t+1 = rt+1 + γVt (st+1)

where Vt (st+1) replace the next terms (rt+2 + γrt+3 . . .)
• However, it also makes sense to do:

Gt :t+2 = rt+1 + γrt+2 + γ2Vt (st+2)

and, in general, for n steps in the future

(INAOE) Reinforcement Learning 58 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

n−step TD

• An n−step update would be:

Vt+n(st) = Vt+n−1(st) + α[Gt :t+n − Vt+n−1(st)]

• To learn, we can define it in terms of state-action pairs
for n−steps (n−steps SARSA):

Gt :t+n = rt+1+γrt+2+. . .+γn−1rt+n+γnQt+n+1(st+n,at+n)

• In the algorithm, the updating would be:

Qt+n(st ,at) = Qt+n−1(st ,at) + α[Gt :t+n −Qt+n−1(st ,at)]

• We need to store at each episode the rewards from
every state and action and update all the Q (state-action
pairs in the episode) with the Gs up to that state

(INAOE) Reinforcement Learning 59 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

Other Cases
• In the case of expected SARSA:

Gt :t+n = rt+1 + γrt+2 + . . .+ γn−1rt+n + γnV t+n+1(st+n)

where: V t (s) =
∑

a π(a|s)Qt (s,a)

• In the case of an off-policy algorithm, you multiply the
error by the importance sampling ratio (ratio between
the target policy π and the behavior policy b), the rest is
the same:

ρt :h =

min(h,T−1)∏
k=t

π(ak |sk)

b(ak |sk)

• There are other schemes like n−step without
importance sampling and n−step Q(σ)

(INAOE) Reinforcement Learning 60 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

Importance Sampling

• With importance sampling we can estimate a policy
function from trajectories sampled from a different
behavior policy
• Importance sampling can be formulated as follows:

Ex∼p(x)[f (x)] =
∫

p(x)f (x)dx
=
∫ q(x)

q(x)p(x)f (x)dx

=
∫

q(x) p(x)
q(x) f (x)dx

= Ex∼q(x)

[
p(x)
q(x) f (x)

]

(INAOE) Reinforcement Learning 61 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

Eligibility Traces

• The advantages with respect to the n−step methods is
that they (almost) do no need to store information
• In practice, instead of waiting n steps to update (forward

view), it is performed backwards (backward view). It can
be proved that both approaches are equivalent
• Information about the visited states is stored and the

errors are updated backwards (discounted by their
distance)
• Each state or state-action pair is associated with an

extra variable, representing its eligibility trace that we
will denote as et (s) or et (s,a)

• This value decays with the length of the trace created
on each episode

(INAOE) Reinforcement Learning 62 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

SARSA(λ)

Initialize Q(s,a) arbitrarily and e(s,a) = 0 ∀s,a
Repeat (for each episode)

Initialize s
Repeat (for each step in the episode)

Select a from s using a policy derived from Q
(e.g., ε−greedy) and observe r , s′

Select a′ from s′ using a policy derived from Q
δ ← r + γQ(s′,a′)−Q(s,a) ; TD-error
e(s,a)← e(s,a) + 1
For all visited s,a

Q(s,a)← Q(s,a) + αδe(s,a)
e(s,a)← γλe(s,a)

s ← s′; a← a′

Until s is terminal

(INAOE) Reinforcement Learning 63 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

Q(λ)

• For Q-learning since the selection of actions is done, for
instance, following an ε−greedy policy, we need to be
careful as some movement may be exploratory
• We do not want to propagate negative errors caused by

exploratory actions
• You can keep the history of the trace until the first

exploratory movement, ignore the exploratory actions,
or follow a more sophisticated scheme that considers all
the possible actions at each state

(INAOE) Reinforcement Learning 64 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

Summary

• For learning incrementally a function f , it is common to
use the difference between the target value of a
function and the estimated value produced by the
function that we are trying to learn:

fnew ← fold + α(ftarget − fold)

where α is a learning rate.
• In Temporal Difference methods the difference between

ftarget and fold is referred to as the TD-error.
• One of the main challenges in RL, which differs from

classification methods, is that ftarget is unknown and we
have to estimate it.

(INAOE) Reinforcement Learning 65 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

Summary

• For instance, if we are trying to learn the Q value
function, a one-step update takes the following form:

Q(s,a)← Q(s,a) + α(Q(s,a)target −Q(s,a))

• Different forms have been taken (depending on the used
algorithm) to replace Q(s,a)target among which are:
• SARSA: rt+1 + γQ(st+1,at+1)
• Q-learning: rt+1 + γmaxat+1Q(st+1,at+1)
• Monte Carlo: Gt
• n−step RL:

rt+1 + γrt+2 + γ2rt+3 + . . .+ γt+n−1Q(st+n,at+n)
• . . .

(INAOE) Reinforcement Learning 66 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

Learning Models (between DP and TD)

• With a model we can predict the next state and the
reward given a state and action
• The prediction could be a set of possible states with

their associated probability or it could be a state
sampled according to the probability distribution of the
resulting states
• What is interesting is that we can use the simulated

states and actions to learn. The learning mechanism
does not care if the state-action pairs come from
experience or from simulation

(INAOE) Reinforcement Learning 67 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

Dyna-Q

• Given a model of the environment, one can randomly
select a state-action pair, use the model to predict the
next state, obtain a reward and update the Q value.
This can be repeated until convergence to Q∗

• The Dyna-Q algorithm combines experience with
planning to learn faster an optimal policy
• The idea is to learn from experience, but at the same

time learn and use a model to simulate additional
experience to learn faster

(INAOE) Reinforcement Learning 68 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

Dyna-Q Algorithm

Initialize Q(s,a) and Model(s,a) ∀s ∈ S,a ∈ A
DO forever

s ← current state
a← ε−greedy(s,a)
take action a observe s′ and r
Q(s,a)← Q(s,a) + α[r + γmaxa′Q(s′,a′)−Q(s,a)]
Model(s,a)← s′, r
Repeat N times:

s ← previous state randomly selected
a← random action taken in s
s′, r ← Model(s,a)
Q(s,a)← Q(s,a) + α[r + γmaxa′Q(s′,a′)−Q(s,a)]

(INAOE) Reinforcement Learning 69 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

Prioritized Sweeping

• Dyna-Q randomly selects state-action pairs from
previous pairs, however, better planning can be
achieved if it is focused on specific state-action pairs
• For instance, focus on the goals and move backwards

or, in general, go backwards from any state that
significantly changes its value
• This process can be repeated in succession, however,

the candidates can be ordered, and only change those
that are above a threshold value
• This algorithm is called prioritized sweeping

(INAOE) Reinforcement Learning 70 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

Prioritized Sweeping Algorithm

Initialize Q(s,a) and Model(s,a) ∀s ∈ S,a ∈ A and PQueue = ∅
DO forever

s ← current state
a← ε−greedy(s,a)
take action a observe s′ and r
Model(s,a)← s′, r
p ←| r + γmaxa′Q(s′,a′)−Q(s,a) |
if p > θ, then add (s,a) to PQueue with priority p
Repeat N times, while PQueue 6= ∅:

s,a← first(PQueue)
s′, r ← Model(s,a)
Q(s,a)← Q(s,a) + α[r + γmaxa′Q(s′,a′)−Q(s,a)]
Repeat ∀s,a that are predicted to reach s:

r ← predicted reward
p ←| r + γmaxaQ(s,a)−Q(s,a) |
if p > θ, then add s,a to PQueue with priority p

(INAOE) Reinforcement Learning 71 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

PILCO

• PILCO: Probabililstic Inference for Learning Control
• PILCO’s goal is to find the optimal parameters for a

policy π which minimize the expected cost:

min
Θ

Jπ(Θ) = min
Θ

T∑
t=1

E[c(~xt)|Θ]

• To evaluate the expected long-term cost:

E[c(~xt)|Θ] =

∫
c(~xt)N (~xt |µt ,Σt)d~xt

(INAOE) Reinforcement Learning 72 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

PILCO Algorithm

• The probabilistic dynamics model (p(~xt |~xt−1, ~at−i)) is
implemented as a GP (Gaussian Process)
• Training inputs: (~xt−1, ~at−i)

• Training outputs: ∆t = ~xt − ~xt−1 + ε, ε ∼ N
• The policy can be evaluated using the GP dynamics

model by predicting the state evolution

(INAOE) Reinforcement Learning 73 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

Gaussian Process

(INAOE) Reinforcement Learning 74 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

PILCO Algorithm

1

1P. Brunzema (2021). Review on Data-Efficient Learning for Physical
Systems using Gaussian Processes.

(INAOE) Reinforcement Learning 75 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

PILCO Algorithm

2

2P. Brunzema (2021). Review on Data-Efficient Learning for Physical
Systems using Gaussian Processes.

(INAOE) Reinforcement Learning 76 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

Computing the successor state
distribution for policy evaluation

(INAOE) Reinforcement Learning 77 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

Moment Matching evaluation

(INAOE) Reinforcement Learning 78 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

PILCO

• Its solution implies inverting a symmetric matrix which
size is the number of examples, and solving an
optimization process to evaluate the hyper-parameters
• Some options include reducing the examples to the

most informative data points
• Other approach, DeepPILCO adapts PILCO to use a

Bayesian deep dynamics model instead of a GP, where
the gradients of the cost function cannot be derived
analytically and stochastic optimization is used
• Another extension include state constraints for safe

exploration (SafePILCO)

(INAOE) Reinforcement Learning 79 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

Roll-out Policies

• Contrary to Monte Carlo methods that want to estimate
the value function of all the state-action pairs, roll-out
methods use a Monte Carlo estimation to decide which
action to take in the current state
• The objective is to improve the current policy
• Parallel simulations can be employed and even cut if

they are not producing good results

(INAOE) Reinforcement Learning 80 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

MCTS (Monte Carlo Tree Search)

• MCTS finds optimal decisions using random samples
and building a search tree according to the results
• Recently it gained relevance given the results obtained

in the game of Go
• Idea: Analyze the most promising movements

expanding the search tree through random sampling

(INAOE) Reinforcement Learning 81 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

MCTS

On each round MCTS consists of four steps:
1 Selection: Starting with the root node, select the child

nodes until reaching a leaf node (see below on how to
select)

2 Expansion: Unless the leaf node ends the game, create
child nodes and select one of them

3 Simulation: Start a random game from that node
(random play-out) - in a play-out the game is played,
randomly selecting actions, until the end

4 Retro-propagation: Using the play-out information,
update the information in the nodes from the path
between the root node to the node where the simulation
started

(INAOE) Reinforcement Learning 82 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

MCTS

(INAOE) Reinforcement Learning 83 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

UCT (Upper Confidence Bound applied
to Trees)

• A key aspect in MCTS is how to balance exploration
and exploitation
• Balance between exploitation of deep variants after

movements with high average values and the
exploration of movements with few simulations
• A selective sampling can produce big computational

savings
• The idea of UCT is to apply the multi-armed bandit

strategy (UCB1) to guide how to exploit/explore the tree

(INAOE) Reinforcement Learning 84 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

UCT

The main equation in UCT is how to select, at each node in
the tree, the movement which has the maximum value:

argmaxv ′∈children(v)

Q(v ′)
N(v ′)

+ c

√
ln N(v)

N(v ′)
where:
• Q(v ′): Total rewards (how many wins after the i-th.

mov.)
• N(v ′): Number of i-th. movements (simulations)
• N(v): Number of simulations in the node (sum of

N(v ′)’s)
• c: Exploration parameter, in theory equal to

√
2, but in

practice it is empirically selected

(INAOE) Reinforcement Learning 85 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

UCT

Advantages:
• Does not require of an evaluation function (it is not

always easy to define one)
• The game tree grows asymmetrically, as it concentrates

in the more promising areas, which goes well with
games with large branching factors
• MCTS can be stopped at any time (any-time algorithm)

(INAOE) Reinforcement Learning 86 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

UCT

• The play-outs can be “light” (using random movements)
or “heavy” (using heuristics to select the actions)
• For the statistics we can consider pieces of games that

are repeated
• For instance, in Go, some plays/positions can be

repeated several times during the game and are
relatively isolated from the rest, so their statistics can be
used

(INAOE) Reinforcement Learning 87 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Solution Methods for MDPs

UCT

There are several parallel versions:
• Paralleling the leaves: Execute several play-outs in

parallel
• Paralleling the root: Build several trees in parallel and

make moves based on the branches of all the trees
• Paralleling the tree: Build in parallel the tree taking into

account possible conflicts

(INAOE) Reinforcement Learning 88 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Approximate Solutions

Approximate Solutions

• One of the main problems with RL is its applicability to
large spaces (a large number of states and actions)
• Even if the algorithms have convergence guarantees, in

practice they can take unacceptable times
• What we need is how to make a subset of the space

useful as a good approximation to the whole space
• Several strategies have been proposed:

1 Use abstractions and hierarchies
2 Incorporate additional help/knowledge
3 Use function approximations

(INAOE) Reinforcement Learning 89 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Approximate Solutions

Abstractions and Hierarchies

• State aggregation: Several “similar” states are grouped
and they are all assigned the same value, reducing the
state space. For instance: tile-coding, coarse coding,
radial basis functions, Kanerva coding, and soft-state
aggregation
• Abstractions based on state machines: RL is used to

decide which machine to use (e.g., HAM and PHAM)

(INAOE) Reinforcement Learning 90 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Approximate Solutions

Abstractions and Hierarchies

• Definition of hierarchies: The space is divided in
sub-problems, policies are learned at the low levels
which are then used to solve problems at higher levels
(e.g., MAXQ, HEXQ)
• A similar approach is used with Macros and Options,

where policies of sub-spaces are learned and used to
solve larger problems
• Other researchers have used relational representations

in what it called Relational Reinforcement Learning
(RRL), either to represent value functions or states and
actions

(INAOE) Reinforcement Learning 91 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Approximate Solutions

Relational Representation

• > 150,000 (positions) states
• up to 22 actions per state

(INAOE) Reinforcement Learning 92 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Approximate Solutions

Equivalent States

• State: kings in oppos(S) and not threatened(S) and ...
• Action: If kings in oppos(S1) and not threatened(S1)

and ... Then move(rook,S1,S2) and check(S2) and
L-shaped-pattern(S2)

(INAOE) Reinforcement Learning 93 / 94

Reinforcement
Learning

Introduction

Solution
Methods for
MDPs

Approximate
Solutions

Approximate Solutions

Incorporating Additional Information

• In its traditional form, RL hardly uses any domain
knowledge
• One way to help RL to converge faster is to use

additional knowledge:
1 The idea behind reward shaping is to incorporate

additional information in the reward function
2 It is also common to include known solutions as guides

or traces that can be used to learn faster value functions
or policies

3 Recently researchers have been looking on how to
incorporate causal models into RL

(INAOE) Reinforcement Learning 94 / 94

	Introduction
	Solution Methods for MDPs
	Approximate Solutions

