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Abstract

This work presents novel multipliers for Montgomery multiplication defined on binary fields GF(2m).

Different to state of the art Montgomery multipliers, this work uses a Linear Feedback Shift Register

(LFSR) as the main building block. We studied different architectures for bit-serial and digit-serial Mont-

gomery multipliers using the LFSR and the Montgomery factors xm and xm−1. The proposed multipliers

are for different classes of irreducible polynomials: general, all one polynomials (AOP), pentanomials and

trinomials. The results show that the use of LFSRs simplifies the design of the multipliers architecture

reducing area resources and retaining high performance compared to related works.

1 Introduction

The theory of finite fields is a branch of modern algebra that has come to the fore in recent years mainly

due to their importance in several areas such as information theory, algebraic coding theory, number theory,

and cryptography, particularly Public key cryptography [1]. Most of the cryptographic algorithms used

for ensuring information security services like integrity and confidentiality are based on arithmetic in finite

fields. The efficient implementation of this arithmetic impacts directly on efficiency of these cryptographic

algorithms.

The finite field GF(2m) is predominantly used because a field addition operation can be readily im-

plemented with a logic gate. However, field multiplication is more time demanding and usually it is the

bottleneck of cryptographic algorithms. This fact has motivated its efficient implementation either in soft-

ware or hardware. In 1985, Peter L. Montgomery published a method well suited for multiplication in prime
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University, Patras, Greece

1



field GF(p) that avoided division by p [2]. Later, Montgomery’s method was extended for field multiplication

in GF(2m) [3].

Different Montgomery multipliers have been constructed using different implementation techniques, like

systolic or semi-systolic arrays [4, 5]. An important feature for optimizing a Montgomery multiplier in

GF(2m) is the type of the irreducible polynomial used, which could be an all one polynomial (AOP), a

trinomial or a pentanomial. Montgomery algorithms have been implemented in three different versions:

bit-serial, digit-serial and bit-parallel. Bit-serial multipliers have the smallest area requirements but they

are the slowest implementations. On the contrary, bit-parallel multipliers are the fastest circuits but they

have the highest area requirements. Digit-serial multipliers allow to explore area-performance trade-offs by

processing more than one bit per clock cycle.

Different to the approaches previously addressed in the literature [4], [5], [6], [7], [8], [9], [10], [11], this

work describes hardware architectures of new Montgomery multipliers for arbitrary finite fields of the form

GF(2m) where the main component is a Linear Feedback Shift Register (LFSR) [12]. The objective of using

an LFSR is to reduce the time complexity of Montgomery multiplier, improving both the latency and the

critical path delay. The LFSR allows to design digit-serial multipliers for exploring area-performance trade-

offs, it is identified from a new formulation of Montgomery multiplication. First, we study a new bit-serial

algorithm and its hardware architecture, which has many differences from the work reported in [6]. Then,

generalizing the idea of the LFSR, we design a parallel linear feedback shift register (PLFSR), that processes

D bits at a time and allows to implement a new digit-serial multiplication architecture which is different

from the architectures previously proposed in [5, 11]. This digit-serial multiplier architecture can be used

to implement a new GF(2m) bit-parallel multiplier using D = m.

The bit-serial and digit-serial architectures are designed for general irreducible polynomials f(x) and

optimized for special classes like AOP, trinomials and pentanomials. The results presented in this article

show that the use of LFSR for constructing multipliers results in efficient architectures of Montgomery

multiplication.

The rest of this paper is organized as follows: next section overviews Montgomery algorithm and linear

feedback shift registers, sections 3 and 4 describe the design of the new bit-serial and digit-serial Montgomery

multipliers respectively. The results and comparison of the proposed Montgomery multipliers in terms of

area usage and critical path delay are presented and discussed in section 5. Finally, the conclusions are

pointed out at section 6.
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Algorithm 1 Montgomery Algorithm for GF(2m) multiplication

Require: A(x), B(x), R(x), f̃(x) ∈ GF(2m), f(x) an irreducible m-grade polynomial
Ensure: C(x) = A(x)B(x)R−1(x) mod f(x)
1: T (x) = A(x)B(x)
2: U(x) = T (x)f̃(x) mod R(x)

3: C(x) =
(T (x) + U(x)f(x))

R(x)
mod f(x)

2 Preliminaries

2.1 GF (2m) Montgomery Multiplication

The arithmetic operations in GF(2m) are well suited to be implemented in hardware using polynomial basis.

In such a representation, each element e ∈ GF(2m) corresponds to a binary polynomial e(x) of degree less

than m, that is, e(x) = em−1x
m−1 + · · ·+ e1x + e0 with ei ∈ {1, 0}. The element e is usually denoted by the

bit-vector (em−1, em−2, · · · , e1, e0) of length m.

The GF(2m) Montgomery multiplication [3] of A(x) and B(x) (see algorithm 1) is defined as A(x) ×
B(x) × R−1(x) mod f(x), where f(x) is an irreducible polynomial that generates the field GF(2m) and

R(x) is a fixed field element in GF(2m). The field element R−1(x) denotes the multiplicative inverse of the

element R(x) ∈ GF(2m). Efficient Montgomery multipliers over GF(2m) can be obtained if R(x) is selected

as R(x) = xm (in case of prime fields GF(p), R = 2n, where n is the size in bits of the prime p) [3]. Recent

work [6] has shown that better multipliers could be obtained using R(x) = xm−1 as Montgomery factor.

Based on the fact that f(x) and R(x) are relatively prime, two polynomials R−1(x) and f̃(x) exist with

the characteristic that R(x)R−1(x) + f̃(x)f(x) = 1. Polynomials R−1(x) and f̃(x) can be computed using

the Extended Euclidean Algorithm [3].

In algorithm 1, the computation of C(x) involves a regular multiplication in step 1, a modulo R(x)

multiplication in step 2, and finally a regular multiplication and a division by R(x) operation in step 3.

The modular multiplication and division operations in steps 2 and 3 are intrinsically fast operations since

R(x) = xm:

1. The remainder operation in modular multiplication using modulus xm is accomplished by simply

ignoring the terms which have powers of x larger than or equal to m.

2. Division of an arbitrary polynomial by xm is accomplished by shifting the polynomial to the right by

m places.

The computing of f̃(x) constitutes an overhead for computing C(x). The computation of f̃(x) can be

avoided if the coefficients of A(x) are scanned one bit at a time. In case that A(x) is parsed by words (in a
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digit-serial implementation), it would be only necessary to compute the least significant word f̃0(x) instead

of the whole f̃(x) [3].

2.2 Linear feedback shift register

An LFSR [12] is an n-bit shift register that pseudo-randomly scrolls between 2n-1 states at high speed, due

to the minimal combinational logic involved, to generate binary sequences. Once all the states are reached,

the output sequence is repeated, entering in a repeating cycle.

An LFSR of length n has n memory cells which together form the initial state (s0, s1, · · · sn−1) of the

shift register. The input bit for the LFSR is a linear function of its current (or previous) state, and as the

only linear function of single bits is XOR and inverse-XOR, so, the shift register is driven by the XOR of

some bits of the overall shift register value. The selection of those bits are represented by a polynomial or

characteristic polynomial over {0,1}. That is, if the input bit for the LFSR is a linear function of bits s0, s1

and sn−1, then the characteristic polynomial of LFSR is f(x) = 1 + x + xn−1. That is why any LFSR can

be represented as a polynomial of variable x. In finite fields, this polynomial must be irreducible, that is, all

its coefficients are relatively prime.

LFSRs perform fast in hardware, mainly in VLSI implementations. Also, LFSRs designed to work in par-

allel can be used for applications that include generating pseudo-random numbers, pseudo-noise sequences,

fast digital counters, and whitening sequences. In this work, we use Type-II LFSR [13] to perform Mont-

gomery Multiplication.

3 New bit-serial Montgomery multiplier

Consider the field elements A(x), B(x), C(x) ∈ GF(2m). Using the definition of a GF(2m) field element, we

have that:

A(x) =
m−1∑

i=0

aix
i = (am−1, am−2, · · · , a1, a0) (1)

B(x) =
m−1∑

i=0

bix
i = (bm−1, bm−2, · · · , b1, b0) (2)

C(x) =
m−1∑

i=0

cix
i = (cm−1, cm−2, · · · , c1, c0) (3)

The irreducible polynomial f(x) generating GF(2m) is:
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f(x) = xm +
m−1∑

i=0

fix
i = (1, fm−1, fm−2, · · · , f1, 1) (4)

Then, the operation C(x) = A(x)×B(x)×R−1(x) mod f(x), using factor R(x) = xm can be expressed

as follows:

C(x) = A(x)×B(x)×R−1(x) mod f(x)

= x−m

m−1∑

i=0

aix
iB(x) mod f(x)

= x−m × [
am−1x

m−1 + · · ·+ a1x + a0

]×B(x)

=
[
am−1x

−1 + · · ·+ a1x
−m+1 + a0x

−m
]×B(x)

= am−1
B(x)

x
mod f(x) + · · ·

· · ·+ a1
B(x)
xm−1

mod f(x) + a0
B(x)
xm

mod f(x)

(5)

Let B(x)(0) = B(x), and B(x)(i) =
B(x)(i−1)

x
mod f(x), for 1≤i≤m. Then C(x) = A(x)B(x)x−m mod

f(x) becomes equation 6:

C(x) = A(x)×B(x)× x−m mod f(x)

= am−1B(x)(1) + am−2B(x)(2) + · · ·
· · ·+ a1B(x)(m−1) + a0B(x)(m)

(6)

If the factor R(x) = xm−1 is used, then R−1(x) = x−m+1 = x−mx. The Mongomery multiplication using

this factor becomes C(x) = A(x)B(x)x−mx mod f(x), that implies a multiplication of each term of equation

5 by x. Using the notation B(x)(i), the resulting expression is as shown in equation 7:

C(x) = A(x)×B(x)× x−mx mod f(x)

= am−1B(x)(0) + am−2B(x)(1) + · · ·
· · ·+ a1B(x)(m−2) + a0B(x)(m−1)

(7)

Equation 7 uses the initial value B(x)(0) and Equation 6 does not. Equation 6 needs to compute

B(x)(m) and equation 7 does not. At first glance, it seems that equation 7 requires one less iteration, but

it is not true because all the bits from A(x) are parsed and used in both equations. This means that the

time complexity is the same for both equations.

The term
B(x)

x
mod f(x) represents a division modulo f(x) of polynomial B(x) by x. If b0 = 0, B(x)

is divisible by x and
B(x)

x
mod f(x) is interpreted as a decreasing of the degree of polynomial B(x) by one
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Table 1: Montgomery multiplication using LFSR and factors R(x) = xm and R(x) = xm−1

Clock R(x) = xm−1 R(x) = xm

cycle LFSR C(x) C(x) C(x)
0 B(x)(0) 0 0 0
1 B(x)(1) C(x) + am−1B(x)(0) C(x) + am−1B(x)(0)/x 0
2 B(x)(2) C(x) + am−2B(x)(1) C(x) + am−2B(x)(1)/x C(x) + am−1B(x)(1)

· · · · · · · · · · · · · · ·
m B(x)(m) C(x) + a0B(x)(m−1) C(x) + a0B(x)(m−1)/x C(x) + a1B(x)(m−1)

m + 1 B(x)(m+1) − - C(x) + a0B(x)(m)

[14]. This results in a simple shift to right operation of B(x) by one position. In case b0 = 1, division is

performed modulo f(x), that is,
[B(x) + f(x)]

x
is computed instead of

B(x)
x

. The resulting field element

[B(x) + f(x)] = (1, bm−1⊕ fm−1, ..., b1⊕ f1, b0⊕ f0) is now divisible by x because f0 = 1 and b0 = 1. So, the

division operation of a polynomial B(x) by x modulo f(x) is defined as (0, bm−1, bm−2, · · · , b2, b1) if b0 = 0

or (1, bm−1 ⊕ fm−1, bm−2 ⊕ fm−2, · · · , b2 ⊕ f2, b1 ⊕ f1) if b0 = 1.

The operation
B(x)

x
mod f(x) can be generalized taking into account the value of b0, that is:

B(x)
x

mod f(x) = (b0, bm−1 ⊕ b0fm−1, · · · , b1 ⊕ b0f1) (8)

Equation 8 is well modeled by a Linear Feedback Shift Register (LFSR) B with m bits [15]. The

definition of such LFSR B (in binary representation: bm−1, bm−2, · · · , b1, b0) is:

bm−1(i + 1) = b0(i)

bj(i + 1) = bj+1(i)⊕ b0(i)fj

where bj(i) denotes the content of the bit j of B at clock cycle i.

A general diagram of this LFSR with all taps (XOR) and switches in order to configure the characteristic

polynomial f(x) is shown in figure 1 a). In most cases, the characteristic polynomial f(x) is a trinomial or

a pentanomial, so most of the AND gates in figure 1 could not be needed.

In figure 1, from the current state of the LFSR B(x)(i) stored in bi 1-bit registers, the next state B(x)(i+1)

is computed by the AND and XOR gates. By separating this combinatorial logic from the sequential logic,

the LFSR could be re-arranged as it is shown in figure 1 b).

According to equations 6 and 7, table 1 shows the realization of Montgomery multipliers using factor

R(x) = xm−1 and R(x) = xm using the LFSR in figure 1. The main difference in these multipliers is where

the output of the LFSR is taken from. This output could be taken from the registers bi (B(x)(i)) or from the
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interconnection matrix (B(x)(i)/x). This last choice is slower because the critical path is increased due the

combinatorial logic of the interconnection matrix. This implies that the best implementation of the bit-serial

Montgomery multiplier is using factor R(x) = xm−1. The circuit of this multiplier is shown in figure 2. The

LFSR B is initialized with B(x) = B(x)(0) what implies a parallel write for all bits of B. At each iteration i

(1 ≤ i ≤ m), the LFSR computes B(x)(i) = B(x)(i−1)/x and a bit from A(x) (am−i) is read for computing

C(x) = C(x) + aiB(x)(i−1). After m clock cycles, the multiplication A(x)B(x)x−(m−1) mod f(x) is finally

performed. As it is shown in figure 2, the critical path in the circuit is TX + TA, being TX the time delay

of an XOR gate and TA the time delay of an AND gate.

The circuit in figure 1 could implement the Montgomery multiplier using factor xm by just delaying the

multiplication one clock cycle (clock cycle no. 1), as it is shown in the fifth column of table 1. The resulting

area complexity and critical path is the same but the latency increases to m+1. Finally, the same circuit in

figure 1 could implement the Montgomery multiplier using factor xm with latency of m clock cycles if the

output of the LFSR is taken from the interconnection matrix (from XOR’s of the LFSR in figure 1). The

area complexity will be exactly the same but the critical path will increase to 2(TX + TA).

The latency for computing a Montgomery multiplication could be reduced if a word Ai(x) from A(x)

is processed at each clock cycle instead of a single bit ai. Next section discusses the design of a digit-

serial Montgomery multiplier, that processes D bits from A(x) per clock cycle and reduces the latency of

multiplication to dm/De at the cost of more hardware resources.

4 Digit-serial Montgomery Multiplier

The main idea in a digit-serial multiplier (word level) is to process a group of D bits from A(x) instead of

one bit at each clock cycle. The word level description of the polynomial A(x) = am−1x
m−1 + am−2x

m−2 +

· · ·+ a1x + a0 implies a partition of A(x) into blocks of equal length. Let D be the size of these blocks such

that A(x) has s blocks, s = dm/De. Thus, A(x) = A0(x) + A1(x) + · · · + As−2(x) + As−1(x), where each

Ai(x) is of length D and defined as in equation 9.

Ai(x) = am−iD−1x
m−iD−1

+ am−iD−2x
m−iD−2

+ . . .

+ am−iD−D−1x
m−iD−D−1

+ am−iD−Dxm−iD−D

(9)

Using the word level representation of A(x), we can express C(x) = A(x)×B(x)×R−1(x) mod f(x) as
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C(x) =
s−1∑

i=0

Ai(x)×B(x)×R−1(x) mod f(x) (10)

Let Ci(x) = Ai(x)B(x)R−1(x) mod f(x) and R(x) = xm. Equation 11 defines Ci(x):

Ci(x) =
am−iD−1x

m−iD−1B(x)
xm

+
am−iD−2x

m−iD−2B(x)
xm

+ . . .

+
am−iD−Dxm−iD−DB(x)

xm

= am−iD−1
B(x)
xiD+1

+ am−iD−2
B(x)
xiD+2

+ . . .

+ am−iD−D
B(x)

xiD+D

= am−iD−1B(x)(iD+1)

+ am−iD−2B(x)(iD+1)

+ . . .

+ am−iD−DB(x)(iD+D)

(11)

According to the last expression of Ai(x) × B(x) × x−m mod f(x) in equation 11, j (1 ≤ j ≤ D)

consecutive outputs of the LFSR are processed instead of a single one. Each output B(x)(iD+j) is multiplied

by the bit am−iD−j from Ai(x). As in the serial implementation, this multiplication is implemented by

ANDing each bit value of polynomial B(x)(iD+j) with the bit am−iD−j . At each clock cycle i (0 ≤ i ≤
s− 1) j multiplications am−iD−jB(x)(iD+j) are performed in parallel and added all together to get Ci(x) =

Ai(x)B(x)x−m mod f(x).

If the factor R(x) = xm−1 is used, then the definition of Ci(x) is:
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Ci(x) =
am−iD−1x

m−iD−1B(x)
x(m−1)

+
am−iD−2x

m−iD−2B(x)
x(m−1)

+ . . .

+
am−iD−Dxm−iD−DB(x)

x(m−1)

= am−iD−1
B(x)
xiD

+ am−iD−2
B(x)
xiD+1

+ . . .

+ am−iD−D
B(x)

xiD+D−1

= am−iD−1B(x)(iD)

+ am−iD−2B(x)(iD+1)

+ . . .

+ am−iD−DB(x)(iD+D−1)

(12)

Again, as in the case of the bit-serial multiplier, the use of factor R(x) = x(m−1) implies to take the

first output B(x)(iD) in equation 12 from the register B instead of the first output B(x)(iD+1) from the

interconnection matrix.

The hardware architecture of the digit-serial Montgomery multiplier is built using the circuit b) of LFSR

in figure 1. The interconnection matrix computes B(x)(i+1) from B(x)(i). By replicating this logic, and

connecting the output B(x)(i+1) to it, it could be obtained B(x)(i+2) in the same clock cycle. Generalizing

this idea, D consecutive outputs of the LFSR could be obtained in one clock cycle by connecting in cascade D

consecutive interconnection matrix modules. Figure 3 shows the block diagram of digit-serial Montgomery

multipliers using R(x) = xm and R(x) = xm−1. The word Ai(x) = (am−iD−1, am−iD−2, · · · , am−iD−D)

could be obtained by a D-bit shift register. Each bit am−iD−j is multiplied by the corresponding polynomial

B(x)(i+j), (1 ≤ j ≤ D) and all these partial multiplications are added to get Ci(x). After s = dm/De clock

cycles the whole multiplication A(x)×B(x)×R−1(x) mod f(x) is finally computed.

From figure 3, it is clear that both architectures for digit-serial Montgomery multiplication have exactly

the same area complexity. The critical path is shorter when R(x) = xm−1 because the last interconnection

matrix is not used in the accumulative sum of Ci(x). The path delay of the digit-serial multiplier is the

one obtained by adding the delay of the replicating logic of the interconnection matrix and the delay of the

logic for the accumulative multiplicative-adding operation of each B(x)(iD+j) together with the bit-value

am−iD+j (1 ≤ j ≤ D).
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Table 2: Area and time complexity of bit-serial Montgomery multiplier

f(x) General AOP Pentanomial Trinomial
Factor xm xm−1 xm xm−1 xm xm−1 xm xm−1

1-bit FF 2m 2m 2m 2m 2m 2m 2m 2m
2-in AND 2m-1 2m-1 m m m m m m
2-in XOR 2m-1 2m-1 2m-1 2m-1 m + 3 m + 3 m + 1 m + 1
Latency m + 1 m m + 1 m m + 1 m m + 1 m

[m] [m] [m] [m]
Delay TA + TX TA + TX TA+TX TA + TX TA+TX TA + TX TA + TX TA + TX

[2(TA + TX)] [TA + 2TX ] [TA + 2TX ] [TA + 2TX ]
TX : Time delay of an XOR gate
TA: Time delay of an AND gate

Table 3: Area and time complexity of digit-serial Montgomery multiplier

f(x) General AOP Trinomials
Factor xm xm−1 xm xm−1 xm xm−1

1-bit FF 2m 2m 2m 2m 2m 2m
2-in AND D(2m− 1) D(2m− 1) Dm Dm Dm Dm
2-in XOR D(2m− 1) D(2m− 1) D(2m− 1) D(2m− 1) D(m + 1) D(m + 1)
Latency dm/De dm/De dm/De dm/De dm/De dm/De
Delay (D + 1)TA+ DTA+ TA+ TA+ TA+ TA+

[D + P ] TX [(D − 1) + P ] TX [D + P ] TX [(D − 1) + P ] TX [1 + P ] TX [1 + P ] TX

TX : Time delay of an XOR gate
TA: Time delay of an AND gate
P : Depth of a binary tree of D XOR gates = log(D)

5 Results

Tables 2 and 3 summarize the time and area complexity of bit-serial and digit-serial multiplier discussed

in previous sections using four kinds of irreducible polynomials: general, AOP, trinomials and pentanomials.

These results are for both factors R(x) = xm and R(x) = xm−1.

For general irreducible polynomials, the circuit of bit-serial multiplier is the same for both factors xm

and xm−1. The only difference is that it takes one more clock cycle for factor xm. By just taking the output

of the LFSR from the interconnection matrix instead of the registers, the multiplier could be implemented

for factor xm using exactly the same area resources and latency equal to the multiplier with factor xm−1 but

with an increased critical path from (TA + TX) to 2(TA + TX).

The advantage of using AOP instead of general irreducible polynomial is the reduction of AND gates

from 2m−1 to m. AOP improves the critical path of the multiplier for factor xm taking the output of LFSR

from the interconnection matrix. The use of trinomials or pentanomials reduces the number of ANDs and
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XORs. The latency and critical path remains the same as in case of general and AOP polynomials.

In case of the digit-serial multiplier, the improvement in latency is achieved at the expense of higher

area resources and an increased critical path. For general and AOP irreducible polynomials, the use of

factor xm−1 outperforms the multiplier using the factor xm by decreasing the critical path. But in case of

trinomials, there is no difference and both multipliers have the same area and time complexities. Compared

to general irreducible polynomials, the use of AOP and trinomials has the effect of reducing area, latency

and critical path. In all cases, the critical path of the digit-serial multiplier is obtained by adding the

delay of the replicating logic of the interconnection matrix and the delay of the logic for the accumulative

multiplicative-adding operation of each Ci(x).

5.1 Comparison

Table 4 shows comparisons of our proposed bit-serial Montgomery multiplier against the best multipliers

previously reported in the literature.

Table 4: Bit-serial Montgomery multipliers comparison

Work Technique Size #AND #XOR #FF Latency R(x) Critical path delay

f(x) = xm + fm−1xm−1 + · · ·+ f1x + 1 (General polynomial)
[6] MSB first m 2m− 1 2m− 1 2m m xm−1 TA + TX

m + 1 xm TA + TX

[7] Unified m - - - m + 2 xm TA + 2TX + 2TMUX + TADDER

[8] Unified m - - - m + 2 xm TA + 4TX + 3TMUX

LSB first m 2m− 1 2m− 1 2m m + 1 xm TA + 2TX

[16] PCA m 3m− 1 3m− 1 - m xm 2TA + 2TX

[17] Systolic m 2m2 + 3m m2 + m 3m2 + 4m m + 1 xm 2TA + 2TX + TLATCH

This LFSR m 2m− 1 2m− 1 2m m xm−1 TA + TX

m + 1 xm TA + TX

m 2m− 1 2m− 1 2m m xm TA + 2TX

f(x) = xm + xk + 1 (Trinomials)
[4] Systolic m m2 1.5m2 + m 4m2 + m m + 1 xk TA + TX

[5] Systolic m m2 m2 + m− 1 2m2 2m− 1 xm TA + TX + TLATCH

[18] Systolic m m2 m2 + m 3.5m2 + 3m m + 2 xk -
This LFSR m m m + 1 2m m xm−1 TA + TX

f(x) = xm + xm−1 + · · ·+ x + 1 (AOP)
[4] Systolic m (m + 1)2 (m + 1)2 3(m + 1)2 m + 1 - TA + TX

[9] LFSR m m + 1 m + 1 2m + 4 2m + 1 - TA + mTX

[19] PCA m m/6 2m− 1 3m m - TSWITCH + 2TX

This LFSR m m 2m− 1 2m m xm−1 TA + TX

In case of general irreducible polynomials, our multiplier outperforms the multipliers reported in [7], [8],

[16] and [17], where techniques used have not considered LFSR. Our results could be equally comparable

to that presented by [6]. However, there are some important differences to remark: i) we conceive the

operation B(x)(i) as an LFSR, they conceive it just like an arithmetic operation, ii) before starting the

Montgomery multiplication, they require the precomputed value A(x)x−1 in one register A′ when using factor
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xm. Contrary, we do not need a precomputed value when using xm, saving one clock cycle, iii) our multiplier

based on LFSR can operate for both factors xm and xm−1 without any changes in the architecture, they use

two different architectures for each one of these factors, iv) our bit-serial multiplier based on LFSR is easily

adapted for designing digit-serial multipliers and exploring area-time trade-offs. They do not consider digits

and, v) our approach for digit-serial implementation allows to implement bit-parallel multipliers considering

m as the digit size.

For trinomials, in [8] authors proposed an unified multiplier for both GF(p) and GF(2m) at the costs

of higher area requirements and an increased critical path. In [5] and [18], the systolic approach for

constructing Montgomery multipliers required more area resources and additional clock cycles.

In [9], authors have used bit-serial LFSR and AOP but their latency is greater as well as the area

resources (additionally, (m + 3)MUX). The work in [4] uses AOP but also the area resources are high,

regarding the critical path it is the same as the work presented here. Although the multiplier reported in

[19] stated to use only m/6 AND gates it uses m additional flip flops and the critical path is greater.

Table 5: Digit-serial and Bit-parallel Montgomery multipliers comparison

Work Size #AND #XOR #FF R(x) Critical path delay

Digit-serial multipliers using Trinomials f(x) = xm + xk + 1

[5] m D2 D2 + 3D − 1 2D2 + 5dm/DeD− xm TA + TX + TL

2dm/De+ D

[11] m (m + k + 1)D+ (m + k)D+ 2m + D + k xk TA + [log(D + 1)] TX

(k + 1)(D − 1) (k + 1)(D − 1)

This m Dm D(m + 1) 2m xm TA + [log(D) + 1] TX

Bit-parallel multipliers using Trinomials f(x) = xm + xk + 1

[6] m m2 m2 − 1 - xk TA + [log(m + k)] TX

[10] m m2 m2 − 1 3m xk TA + [log(m− 2) + 2] TX

This m m2 m2 + m 2m xm−1 TA + [log(m) + 1] TX

Bit-parallel multipliers using AOP f(x) = xm + xm−1 + · · ·+ x + 1

[4] m (m + 1)2 (m + 1)2 3(m + 1)2 - (m + 1)(TA + TX)

[20] m m2 m2 + m− 2 - - TA + [log(m− 1) + m] TX

[21] m m2 + 2m + 1 m2 + 2m - - TA + [log(2m) + log(m + 2)] TX

[22] m m2 m2 − 1 - - TA + [log(m− 1) + 2] TX

This m m2 2m2 −m 2m xm−1 TA + [log(m) + m− 1] TX

Table 5 shows comparisons of our proposed digit-serial Montgomery multiplier against representative

works. We designed hardware architectures for different kinds of irreducible multipliers. However, in the

literature most of the Montgomery multipliers are designed and optimized mainly for trinomials or AOP. For

this reason our comparison is limited to these kinds of multipliers. Our digit-serial multiplier has a better

area usage compared to the work reported in [5] and [11].

The digit-serial multiplier reported in this work can implement bit-parallel Montgomery multipliers using

12



D = m, performing a Montgomery multiplication in just one clock cycle. Table 5 compares our design against

several bit-parallel multipliers. In case of trinomials, we achieve better critical path than the multipliers

reported in [6] and [10] at cost of m + 1 additional XOR gates. In the case of multipliers defined for AOP,

our design exhibits better critical path than [20] and [21], and uses fewer resources than [4].

According to the previous comparisons, the digit-serial Montgomery multiplier presented in this work is

the best reported in the literature.

6 Concluding remarks

In this paper, we have presented a new way to realize bit-serial, digit-serial and bit-parallel Montgomery

multipliers over GF(2m) based on Linear Feedback Shift Registers. The proposed multipliers are for several

kinds of irreducible polynomials and both Montgomery factors xm and xm−1. Our designs outperform

previous approaches due the low complexity and high performance of the LFSR, which is the main building

block in the design. Further, the LFSR allowed to construct digit-serial Montgomery multipliers that could

implement bit-parallel multipliers. Our architectures are well suited to VLSI systems because of their regular

and modular structures and fully inherent parallelism, and are suitable for many applications, such as Elliptic

Curve Cryptography.
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