SLAM

Dr José Martinez Carranza carranza@inaoep.mx

Coordinación de Ciencias Computacionales, INAOE

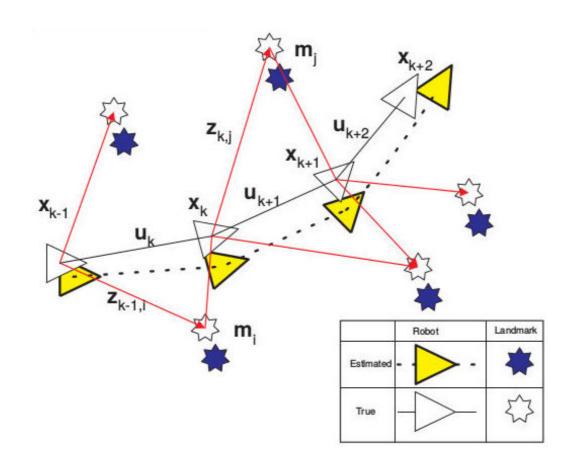
Localización y Mapeo Simultaneos

- SLAM por sus siglas en ingles: Simultaneous Localisation And Mapping.
- ICRA-1986: Métodos probabilísticos comienzan a ser considerados para resovler el problema de localización y mapeo.
- ISRR-1995: Se inventa el término SLAM.
- ISRR-1999: Primer sesión acerca de SLAM.
- ICRA-2000: Taller sobre SLAM (15 investigadores).
- ICRA-2001: Taller sobre SLAM (150 investigadores).
- Escuela de verano sobre SLAM 2002, KTH Royal Institue of Technology in Stockholm: reuinó a todos los investigadores claves en el área y 50 estudiantes de doctorado de varios lugares del mundo.
- Actualmente se organizan hasta 2 sesiones de SLAM en ICRA, IROS, RSS.

SLAM

Problema del huevo y la gallina

SLAM



SLAM Probabilistico

Modelo probabilistico del estado del sistema:

$$P(\vec{x}_t, \vec{m} | \vec{Z}_{0:t}, \vec{U}_{0:t}, \vec{x}_0)$$

Modelo Bayesiano Recursivo:

$$P(\vec{x}_t, \vec{m} | \vec{Z}_{0:t-1}, \vec{U}_{0:t}, \vec{x}_0) = \int P(\vec{x}_t | \vec{u}_t, \vec{x}_{t-1}) P(\vec{x}_{t-1}, \vec{m} | \vec{Z}_{0:t-1}, \vec{U}_{0:t-1}) d\vec{x}_{t-1}$$

$$P(ec{x}_t, ec{m} | ec{Z}_{0:t}, ec{U}_{0:t}, ec{x}_0) = rac{P(ec{z}_t | ec{x}_t, ec{m}) P(ec{x}_t, ec{m} | ec{Z}_{0:t-1}, ec{U}_{0:t}, ec{x}_0)}{P(ec{z}_t | ec{Z}_{0:t-1}, ec{U}_{0:t})}$$

- ●El problema se modela como la estimación de estado de un sistema dinámico.
- El estado no se puede observar de manera directa.
- Sin embargo, se cuenta con mediciones que reflejan de manera indirecta el estado del sistema

Model dinámico del sistema

$$P(\mathbf{x}_k \mid \mathbf{x}_{k-1}, \mathbf{u}_k) \Longleftrightarrow \mathbf{x}_k = \mathbf{f}(\mathbf{x}_{k-1}, \mathbf{u}_k) + \mathbf{w}_k,$$

Modelo de observación (medición) del sistema

$$P(\mathbf{z}_k \mid \mathbf{x}_k, \mathbf{m}) \iff \mathbf{z}(k) = \mathbf{h}(\mathbf{x}_k, \mathbf{m}) + \mathbf{v}_k,$$

Sistema dinámico como un sistema multivariable con distribución probabilistica conjunta:

$$P(\mathbf{x}_k, \mathbf{m} \mid \mathbf{Z}_{0:k}, \mathbf{U}_{0:k}, \mathbf{x}_0)$$

Distribución normal con media:

y co-varianza:
$$\begin{bmatrix} \hat{\mathbf{x}}_{k|k} \\ \hat{\mathbf{m}}_k \end{bmatrix} = \mathrm{E} \begin{bmatrix} \mathbf{x}_k \\ \mathbf{m} \end{bmatrix} \mathbf{z}_{0:k}$$
,

$$\mathbf{P}_{k|k} = \begin{bmatrix} \mathbf{P}_{xx} & \mathbf{P}_{xm} \\ \mathbf{P}_{xm}^T & \mathbf{P}_{mm} \end{bmatrix}_{k|k}$$

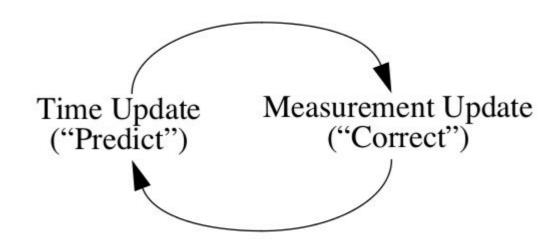
$$= \mathbf{E} \begin{bmatrix} \left(\mathbf{x}_k - \hat{\mathbf{x}}_k \\ \mathbf{m} - \hat{\mathbf{m}}_k \right) \left(\mathbf{x}_k - \hat{\mathbf{x}}_k \\ \mathbf{m} - \hat{\mathbf{m}}_k \right)^T \mid \mathbf{Z}_{0:k} \end{bmatrix}$$

lacktriangle Sistema dinámico como un sistema multivariable con distribución probabilistica conjunta con media $\hat{\mathbf{x}}$ y covarianza $\hat{\mathbf{P}}$

$$p(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^N |\mathbf{P}|^2}} exp\{-\frac{1}{2}[\mathbf{x} - \hat{\mathbf{x}}]^\top \mathbf{P}^{-1}[\mathbf{x} - \hat{\mathbf{x}}]\}$$

$$\hat{\mathbf{x}} = \begin{bmatrix} \hat{\mathbf{x}}_c \\ \hat{\mathbf{m}}_1 \\ \hat{\mathbf{m}}_2 \\ \vdots \\ \hat{\mathbf{m}}_n \end{bmatrix} \qquad \mathbf{P} = \begin{bmatrix} \mathbf{P}_{\mathbf{x}_c \mathbf{x}_c} & \mathbf{P}_{\mathbf{x}_c \mathbf{m}_1} & \mathbf{P}_{\mathbf{x}_c \mathbf{m}_2} & \dots & \mathbf{P}_{\mathbf{x}_c \mathbf{m}_n} \\ \mathbf{P}_{\mathbf{m}_1 \mathbf{x}_c} & \mathbf{P}_{\mathbf{m}_1 \mathbf{m}_1} & \mathbf{P}_{\mathbf{m}_1 \mathbf{m}_2} & \dots & \mathbf{P}_{\mathbf{m}_1 \mathbf{m}_n} \\ \mathbf{P}_{\mathbf{m}_2 \mathbf{x}_c} & \mathbf{P}_{\mathbf{m}_2 \mathbf{m}_2} & \mathbf{P}_{\mathbf{m}_2 \mathbf{m}_2} & \dots & \mathbf{P}_{\mathbf{m}_2 \mathbf{m}_n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{P}_{\mathbf{m}_n \mathbf{x}_c} & \mathbf{P}_{\mathbf{m}_n \mathbf{m}_n} & \mathbf{P}_{\mathbf{m}_n \mathbf{m}_2} & \dots & \mathbf{P}_{\mathbf{m}_n \mathbf{m}_n} \end{bmatrix}$$

El Filtro de Kalman (KF)



El Filtro de Kalman (KF)

Time Update ("Predict")

(1) Project the state ahead

$$\hat{x}_k = A\hat{x}_{k-1} + Bu_k$$

(2) Project the error covariance ahead

$$P_k = AP_{k-1}A^T + Q$$

Measurement Update ("Correct")

(1) Compute the Kalman gain

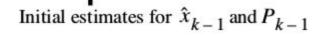
$$K_k = P_k^{\mathsf{T}} H^T (H P_k^{\mathsf{T}} H^T + R)^{-1}$$

(2) Update estimate with measurement z_k

$$\hat{x}_k = \hat{x}_k + K_k(z_k - H\hat{x}_k)$$

(3) Update the error covariance

$$P_k = (I - K_k H) P_k$$



El Filtro de Kalman Extendido (EKF)

Time Update ("Predict")

(1) Project the state ahead

$$\hat{x}_{k} = f(\hat{x}_{k-1}, u_{k}, 0)$$

(2) Project the error covariance ahead

$$P_{k}^{-} = A_{k}P_{k-1}A_{k}^{T} + W_{k}Q_{k-1}W_{k}^{T}$$

(1) Compute the Kalman gain

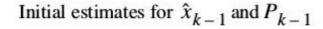
$$K_{k} = P_{k}^{T} H_{k}^{T} (H_{k} P_{k}^{T} H_{k}^{T} + V_{k} R_{k} V_{k}^{T})^{-1}$$

(2) Update estimate with measurement z_k

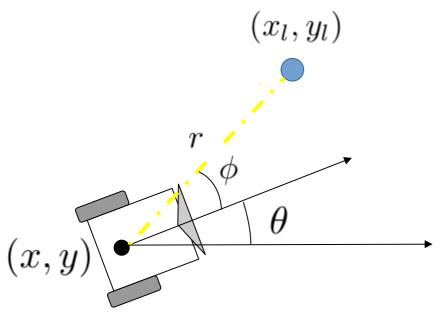
$$\hat{x}_k = \hat{x}_k + K_k(z_k - h(\hat{x}_k, 0))$$

(3) Update the error covariance

$$P_k = (I - K_k H_k) P_k$$



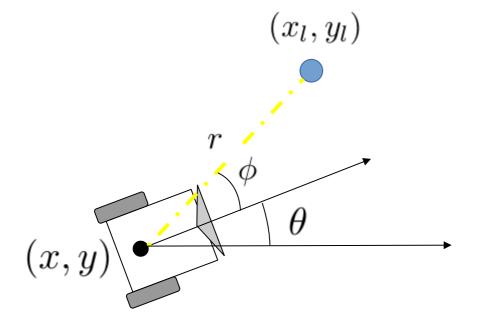
(basado en el EKF)



$$p' = f(x, y, \theta, \Delta s_r, \Delta s_l) = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix} + \begin{bmatrix} \frac{\Delta s_r + \Delta s_l}{2} \cos\left(\theta + \frac{\Delta s_r - \Delta s_l}{2b}\right) \\ \frac{\Delta s_r + \Delta s_l}{2} \sin\left(\theta + \frac{\Delta s_r - \Delta s_l}{2b}\right) \\ \frac{\Delta s_r - \Delta s_l}{b} \end{bmatrix}$$

Sensor: mide ángulo (con respecto al eje del robot) y distancia del componente del mapa

(basado en el EKF)

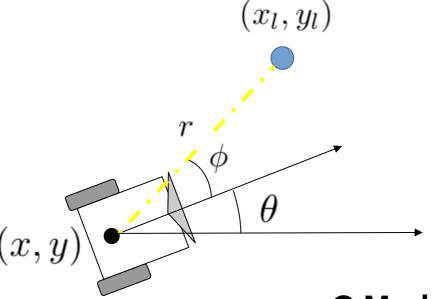


 Estado, posición del robot y componente del mapa.

$$\mathbf{x} = \left[egin{array}{c} x \ y \ heta \ x_l \ y_l \end{array}
ight]$$

Sensor: mide ángulo (con respecto al eje del robot) y distancia del componente del mapa.

(basado en el EKF)

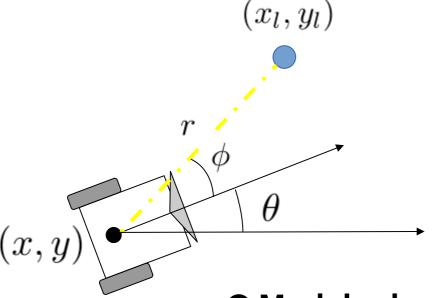


Sensor: mide ángulo (con respecto al eje del robot) y distancia del componente del mapa.

Modelo dinámico

$$\begin{bmatrix} \hat{x}_{(k+1)} \\ \hat{y}_{(k+1)} \\ \hat{\theta}_{(k+1)} \\ \hat{x}_{l(k+1)} \\ \hat{y}_{l(k+1)} \end{bmatrix} = f(\hat{x}_k, \hat{y}_k, \hat{\theta}_k, \hat{x}_{l(k)}, \hat{y}_{l(k)}) = \begin{bmatrix} \hat{x}_k + \frac{\triangle s_r + \triangle s_l}{2} \cos(\hat{\theta}_k + \frac{\triangle s_r - \triangle s_l}{2b}) \\ \hat{y}_k + \frac{\triangle s_r + \triangle s_l}{2} \sin(\hat{\theta}_k + \frac{\triangle s_r - \triangle s_l}{2b}) \\ \hat{\theta}_k + \frac{\triangle s_r - \triangle s_l}{2b} \\ \hat{x}_{l(k)} \\ \hat{y}_{l(k)} \end{bmatrix}$$

(basado en el EKF)



Sensor: mide ángulo (con respecto al eje del robot) y distancia del componente del mapa.

■ Modelo de observación/medición

$$\begin{bmatrix} \hat{r} \\ \hat{\phi} \end{bmatrix} = h(\hat{x}_k, \hat{y}_k, \hat{\theta}_k, \hat{x}_{l(k)}, \hat{y}_{l(k)}) = \begin{bmatrix} \sqrt{(\hat{x}_{l(k+1)} - \hat{x}_{(k+1)})^2 + (\hat{y}_{l(k+1)} - \hat{y}_{(k+1)})^2} \\ tan^{-1} \left(\frac{\hat{y}_{l(k+1)} - \hat{y}_{(k+1)}}{\hat{x}_{l(k+1)} - \hat{x}_{(k+1)}} \right) - \hat{\theta}_{(k+1)} \end{bmatrix}$$

$$\begin{bmatrix} \hat{x}_{(k+1)} \\ \hat{y}_{(k+1)} \\ \hat{\theta}_{(k+1)} \\ \hat{x}_{l(k+1)} \\ \hat{y}_{l(k+1)} \end{bmatrix} = f(\hat{x}_k, \hat{y}_k, \hat{\theta}_k, \hat{x}_{l(k)}, \hat{y}_{l(k)}) = \begin{bmatrix} \hat{x}_k + \frac{\triangle s_r + \triangle s_l}{2} \cos(\hat{\theta}_k + \frac{\triangle s_r - \triangle s_l}{2b}) \\ \hat{y}_k + \frac{\triangle s_r + \triangle s_l}{2} \sin(\hat{\theta}_k + \frac{\triangle s_r - \triangle s_l}{2b}) \\ \hat{\theta}_k + \frac{\triangle s_r - \triangle s_l}{2b} \\ \hat{x}_{l(k)} \\ \hat{y}_{l(k)} \end{bmatrix}$$

$$\begin{bmatrix} \hat{r} \\ \hat{\phi} \end{bmatrix} = h(\hat{x}_k, \hat{y}_k, \hat{\theta}_k, \hat{x}_{l(k)}, \hat{y}_{l(k)}) = \begin{bmatrix} \sqrt{(\hat{x}_{l(k+1)} - \hat{x}_{(k+1)})^2 + (\hat{y}_{l(k+1)} - \hat{y}_{(k+1)})^2} \\ tan^{-1} \left(\frac{\hat{y}_{l(k+1)} - \hat{y}_{(k+1)}}{\hat{x}_{l(k+1)} - \hat{x}_{(k+1)}} \right) - \hat{\theta}_{(k+1)} \end{bmatrix}$$

Filtro de Kalman Extendido (EKF)

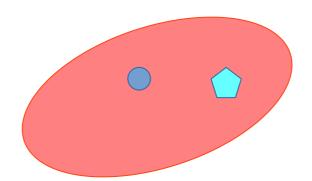
Predicción

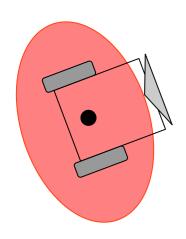
$$\begin{split} \hat{\mathbf{x}}_{k|k-1} &= \mathbf{f}(\hat{\mathbf{x}}_{k-1}, \mathbf{u}_k, 0) \\ \mathbf{P}_{k|k-1} &= \nabla \mathbf{f}_{\mathbf{x}} \mathbf{P}_{k-1} \nabla \mathbf{f}_{\mathbf{x}}^{\top} + \nabla \mathbf{f}_{\mathbf{w}} \mathbf{Q} \nabla \mathbf{f}_{\mathbf{w}}^{\top} \\ \hat{\mathbf{z}}_k &= \mathbf{h}(\hat{\mathbf{x}}_{k|k-1}, 0) \\ \mathbf{S}_k &= \nabla \mathbf{h}_{\mathbf{x}} \mathbf{P}_{k-1} \nabla \mathbf{h}_{\mathbf{x}}^{\top} + \nabla \mathbf{h}_{\mathbf{v}} \mathbf{R} \nabla \mathbf{h}_{\mathbf{h}}^{\top} \end{split}$$

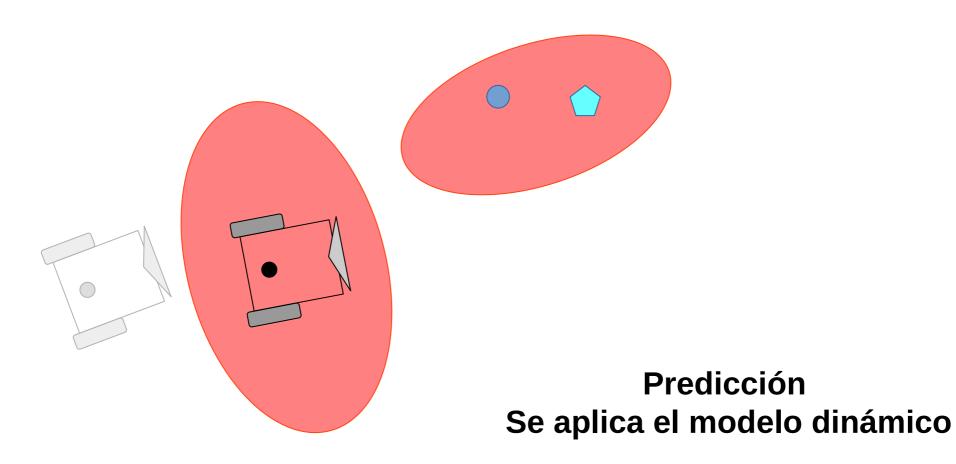
Corrección

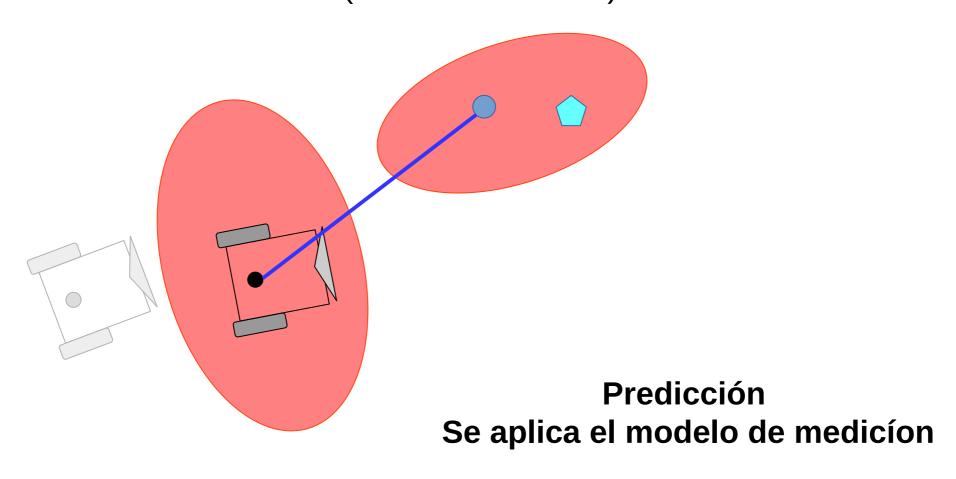
$$egin{aligned} \mathbf{y}_k &= \mathbf{z}_k - \hat{\mathbf{z}}_k \ \mathbf{K}_k &= \mathbf{P}_{k|k-1}
abla \mathbf{h}_{\mathbf{x}}^ op \mathbf{S}^{-1} \ \hat{\mathbf{x}}_k &= \hat{\mathbf{x}}_{k|k-1} + \mathbf{K}_k \mathbf{y}_k \ \mathbf{P}_k &= \mathbf{P}_{k|k-1} - \mathbf{K}_k
abla \mathbf{h}_{\mathbf{x}} \mathbf{P}_{k|k-1} \end{aligned}$$

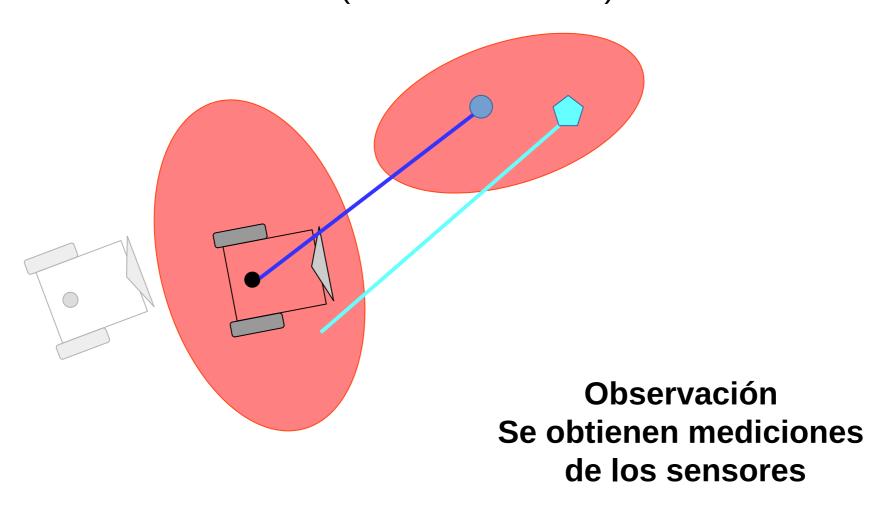
$$\left. \nabla \mathbf{f}_{\mathbf{x}} = \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \right|_{\mathbf{x} = \hat{\mathbf{x}}_{k-1}}, \quad \nabla \mathbf{f}_{\mathbf{w}} = \frac{\partial \mathbf{f}}{\partial \mathbf{w}} \right|_{\mathbf{x} = \hat{\mathbf{x}}_{k-1}}, \quad \nabla \mathbf{h}_{\mathbf{x}} = \frac{\partial \mathbf{h}}{\partial \mathbf{x}} \right|_{\mathbf{x} = \hat{\mathbf{x}}_{k|k-1}}, \quad \nabla \mathbf{h}_{\mathbf{v}} = \frac{\partial \mathbf{h}}{\partial \mathbf{v}} \right|_{\mathbf{x} = \hat{\mathbf{x}}_{k|k-1}}$$

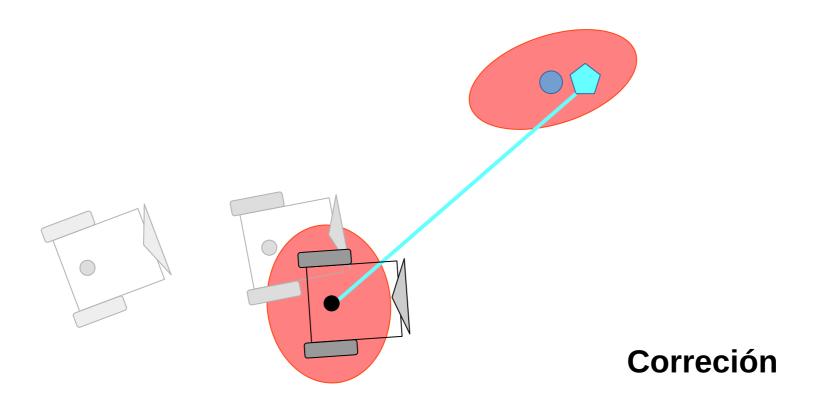


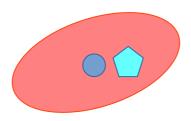


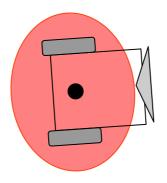










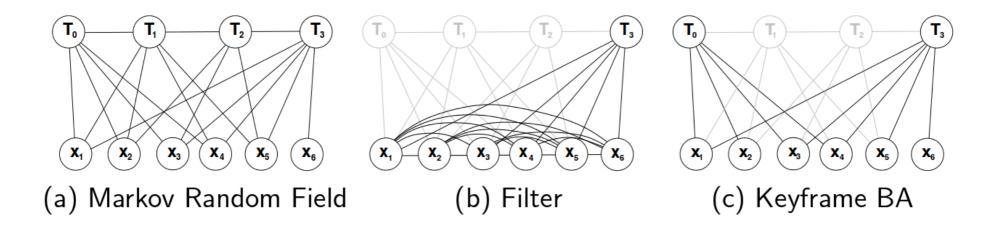


Se empieza otra vez

Componentes en SLAM

- Modelo dinámico.
- Modelo de medición.
- Asociación de datos.
- Mantenimiento del mapa.
 - Creación de nuevos componentes.
 - Eliminacion de nuevos components.
- •Cierre de bucle.

SLAM



SLAM Monocular (Visual SLAM)

- MonoSLAM: Primer sistema que utilizó el marco teórico de SLAM en el dominio de visión computacional puro.
- Localización y Mapeo Simultaneo con una cámara con movimiento libre (6D), sin controlador, sin marcas en el ambiente.
- Desarrollado y publicado en 2003 por Andrew Davison (actualmente Proffesor en Imperial College) (Davison, 2003). A la fecha este paper cuenta con 5,513 citas.
- Su trabajo en general cuenta con 49,695 citas. Fuente: google scholar.
- En 2010 publico un paper titulado "¿Por qué el filtro?", con el que argumenta que el filtro (EKF) no es la mejor opción (Davison,2010).

SLAM Monocular

Modelo dinámico de la cámara (velocidad constante):

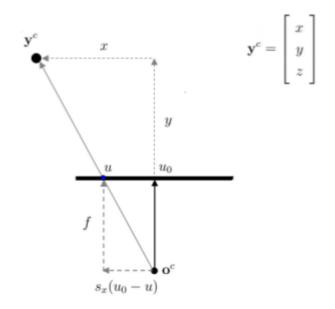
$$\mathbf{x}_{c_{k+1}} = \begin{bmatrix} \mathbf{r}_{k+1}^w \\ \mathbf{q}_{k+1}^w \\ \mathbf{v}_{k+1}^w \\ \omega_{k+1}^c \end{bmatrix} = \mathbf{f}_c(\mathbf{x}_{c_k}, \mathbf{n}) = \begin{bmatrix} \mathbf{r}_k^w + (\mathbf{v}_k^w + \nu)\Delta t \\ \mathbf{q}_k^w \otimes \mathbf{q}((\omega_k^c + \Omega)\Delta t) \\ \mathbf{v}_k^w + \nu \\ \omega_k^c + \Omega \end{bmatrix}$$

$$\mathbf{n} = \left[\begin{array}{c} \nu \\ \Omega \end{array} \right] = \left[\begin{array}{c} \eta \Delta t \\ \alpha \Delta t \end{array} \right]$$

SLAM Monocular

Modelo de medición (pin-hole):

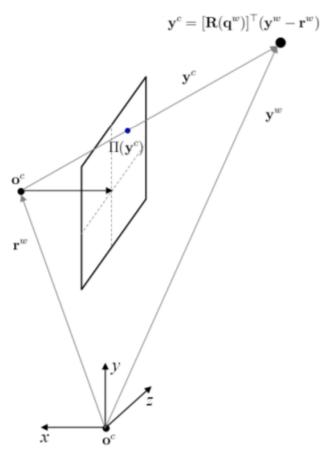




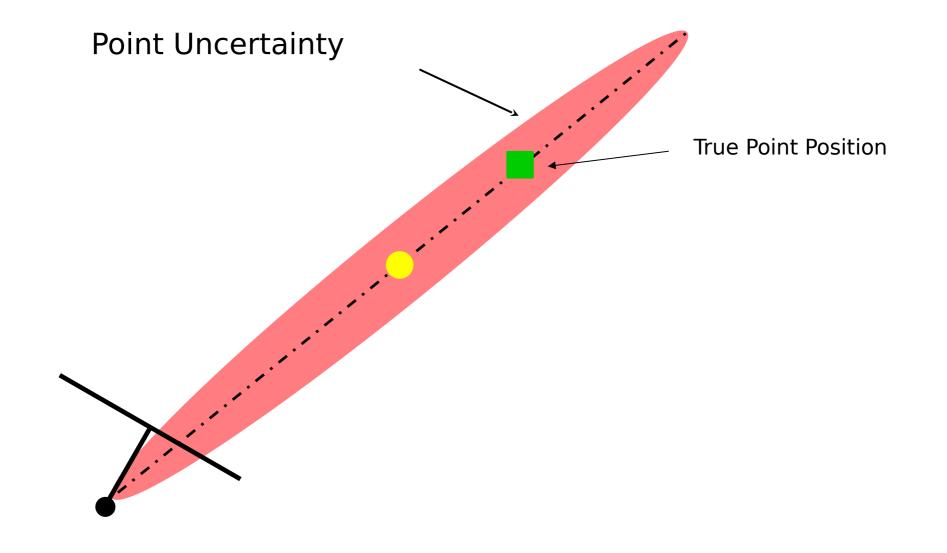
$$\begin{bmatrix} u \\ v \end{bmatrix} = \Pi(\mathbf{y}^c) = \begin{bmatrix} u_0 - \frac{fx}{s_x z} \\ v_0 - \frac{fy}{s_y z} \end{bmatrix}$$

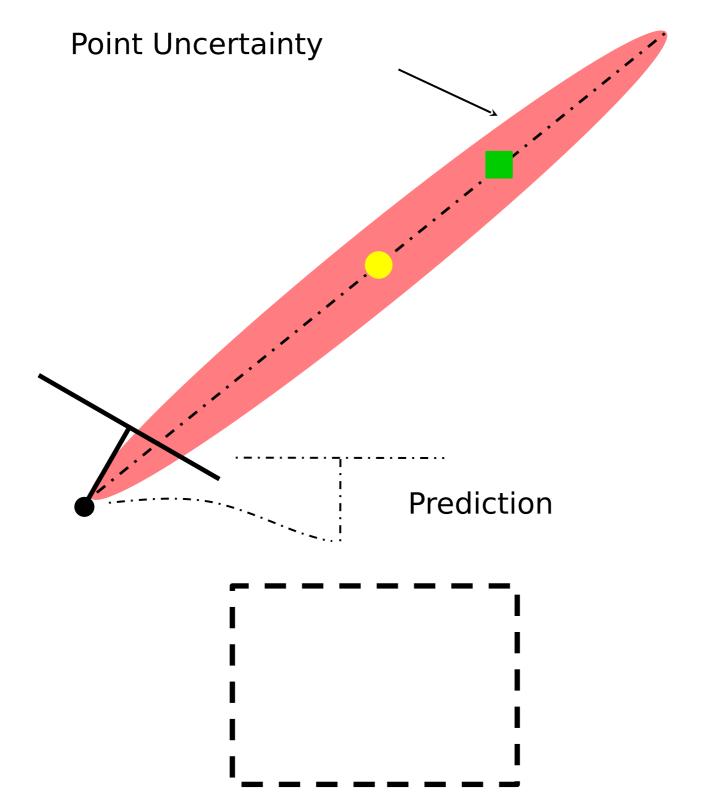
SLAM Monocular

Modelo de medición (pin-hole):

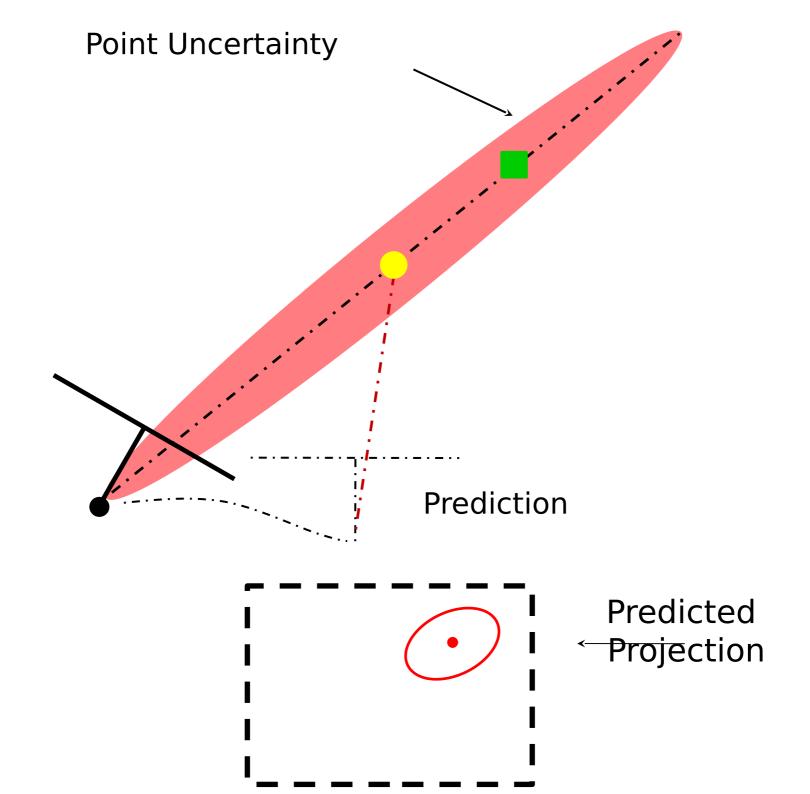


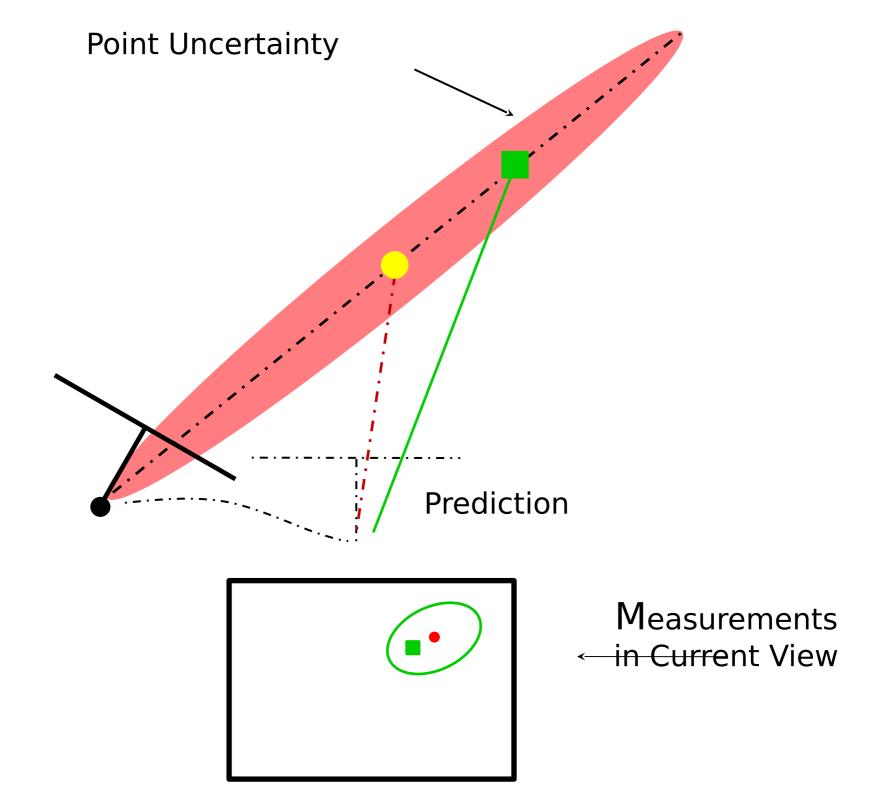
$$\begin{bmatrix} u \\ v \end{bmatrix} = \Pi(\mathbf{y}^c) = \begin{bmatrix} u_0 - \frac{fx}{s_x z} \\ v_0 - \frac{fy}{s_y z} \end{bmatrix}$$

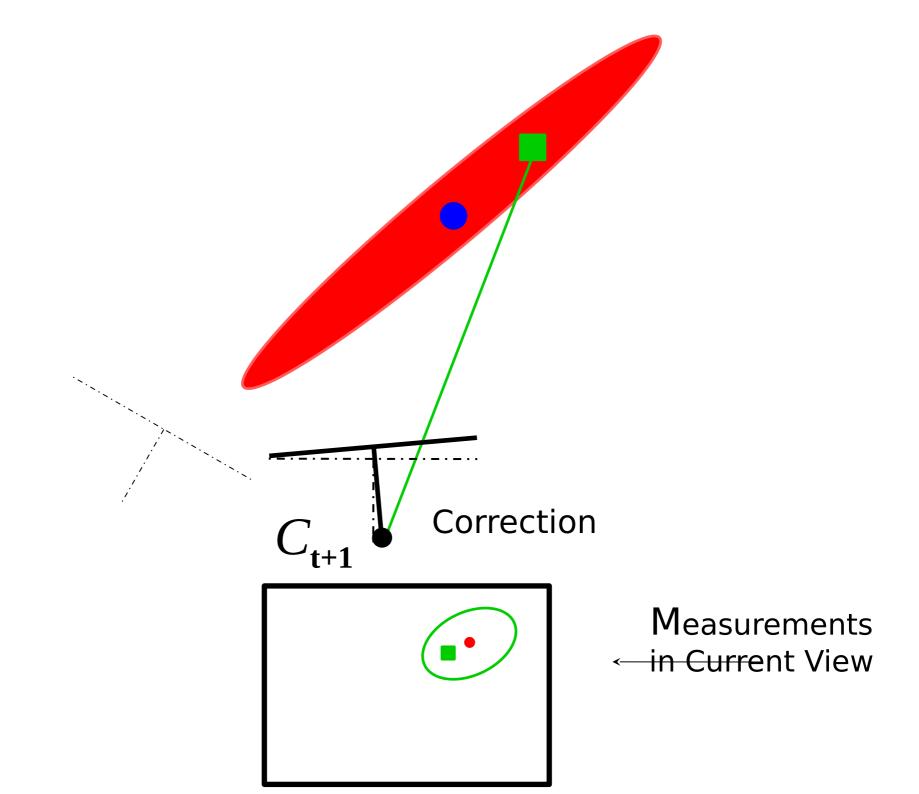


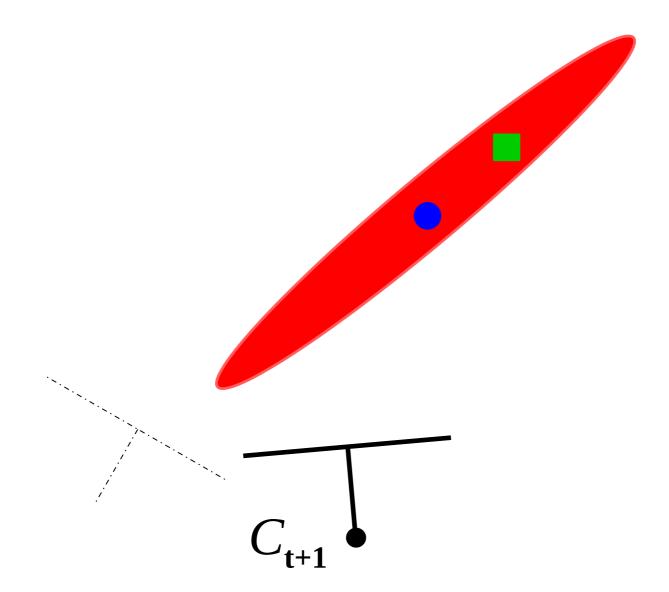






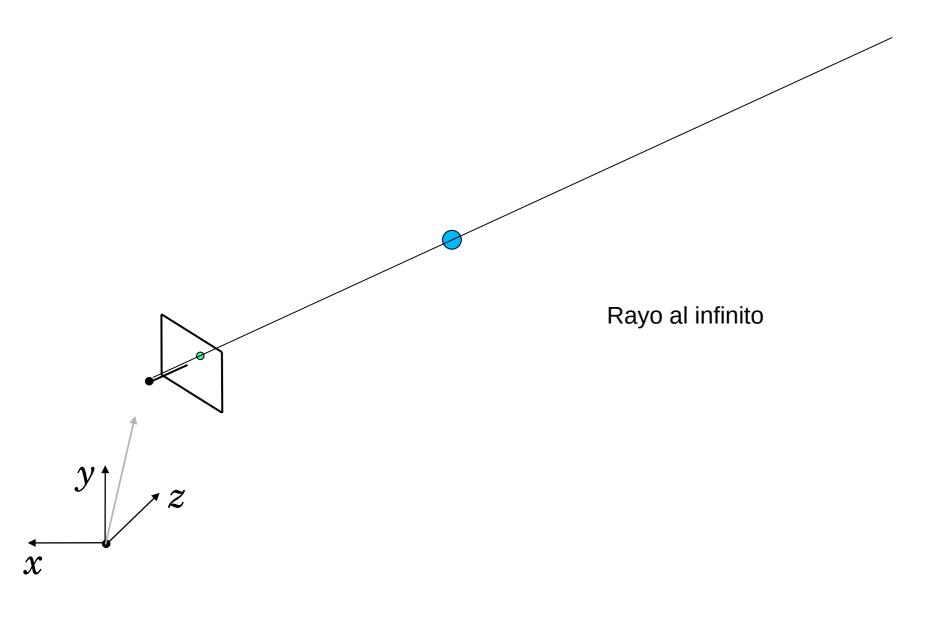


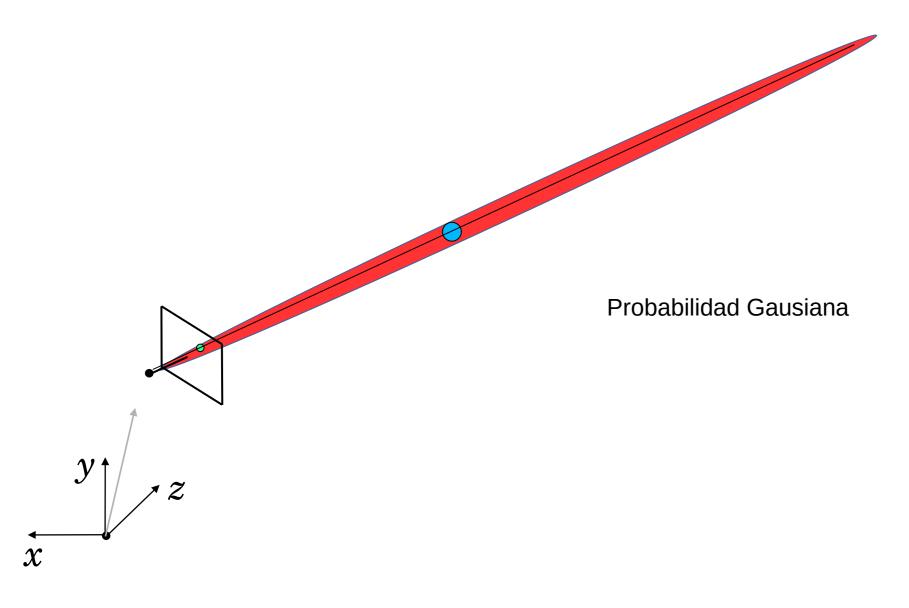


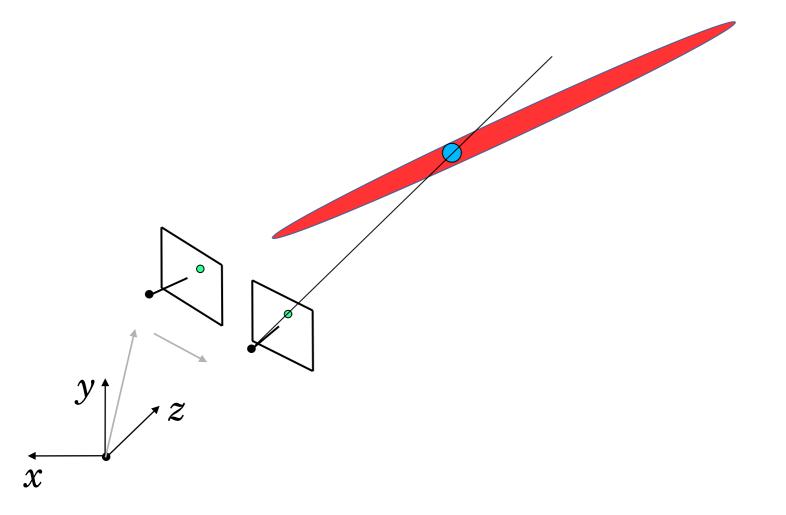


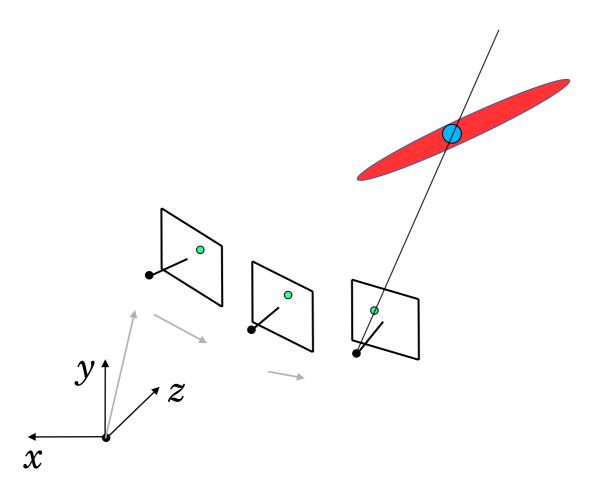
Agregando un nuevo punto 3D al mapa

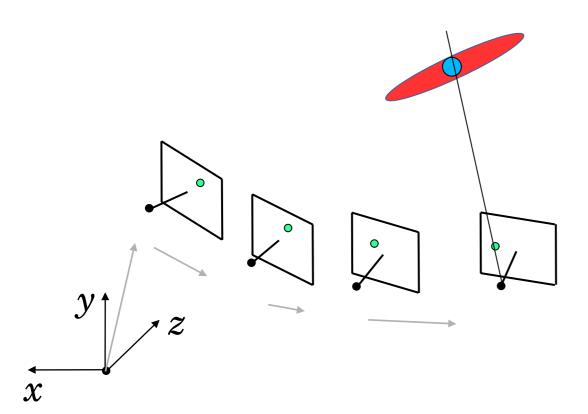
Parameterización de profundidad inversa (Civera, 2008),

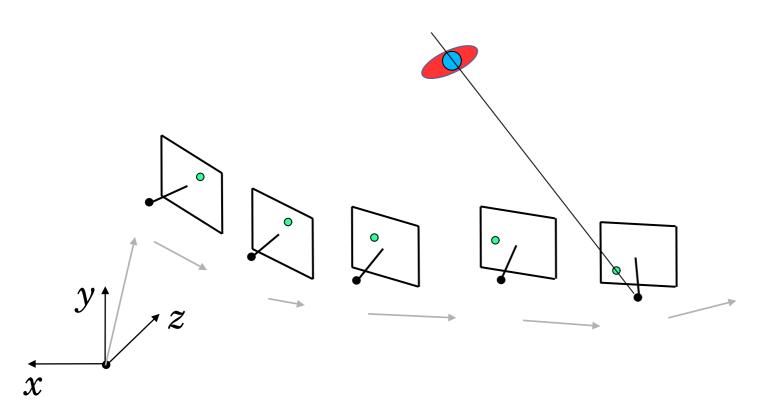






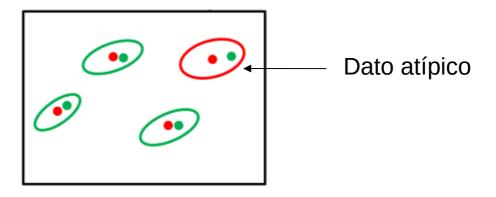






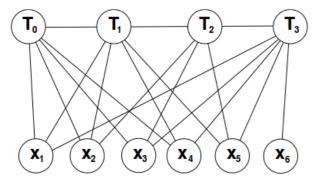
Asociación de datos en Visual SLAM

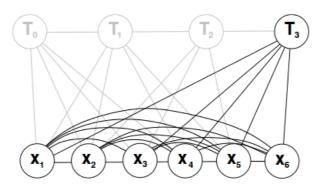
- 1 Point RANSAC (Civera, 2009).
- Joint Compatibility Branch and Bound Test (Neira, 2001).



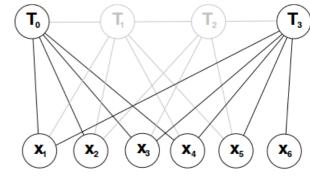
Visual SLAM

$$\chi^{2}(\mathbf{y}) = \sum_{\mathbf{z}_{i,j} \in \mathcal{Z}_{0:i}} (\mathbf{z}_{i,j} - \hat{\mathbf{z}}(\mathbf{T}_{i}, \mathbf{x}_{j}))^{2}$$





(b) Filter



(c) Keyframe BA

Referencias

- Durrant-Whyte, H. and Bailey, T. Simultaneous Localisation and Mapping (SLAM): Part I The Essential Algorithms. IEEE ROBOTICS AND AUTOMATION MAGAZINE, 2006.
- Bailey, T. and Durrant-Whyte, H. "Simultaneous localization and mapping (SLAM): Part II." IEEE Robotics & Automation Magazine 13.3 (2006): 108-117.
- Welch, G., & Bishop, G. An introduction to the kalman filter. Proceedings of the Siggraph Course, Los Angeles. 2001.
- S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2005.
- Davison, A. Real-Time Simultaneous Localisation and Mapping with a Single Camera. International Conference in Computer Visión, 2003.
- Javier Civera, Óscar G. Grasa, Andrew J. Davison, J. M. M. Montiel
- Civera, J. 1-Point RANSAC for EKF-Based Structure from Motion. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS2009), 2009.
- Neira, J. Tardos, J.D. Data association in stochastic mapping using the joint compatibility test, Robotics and Automation, IEEE Transactions, 2001.
- Civera, J. Davison, A. and Montiel, J. M. M. Inverse Depth Parametrization for Monocular SLAM. IEEE Transactions on Robotics, 2008.
- Strasdat, H. Montiel, J.M.M. and Davison, A. Why Filter? International Conference on Robotics and Automation, 2010.
- Meilland, M., & Comport, A. I. On unifying key-frame and voxel-based dense visual SLAM at large scales. In Intelligent Robots and Systems (IROS), 2013.

