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What do you see?	


What we see depends on our previous knowledge 
(model) of the world and the information (data) form 

the images  Bayesian framework	
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Outline	
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•  Bayesian Networks 	
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•  Temporal Bayesian Networks  
•  Predicting HIV mutations 

•  Markov Decision Processes 
•  User adaptation for rehabilitation 

•  Conclusions 
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What is Probability?	


Two main interpretations:	

•  Objective (classical, frequency, propensity) – 

probabilities exist in the real world and can be 
measured	


•  Epistemological (logical, subjective) –
probabilities have to do with human knowledge, 
degree of belief 	
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Justifications of Probability	


•  Dutch book argument	

	
If someone bets without following the axioms of 
probability, he can loose always against an opponent	


•  Logical deduction	

From a series of basic requirements we can deduce 
the axioms of probability theory	
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Kolmogorov Axioms	


•  0 <= P(A) <= 1	

•  P(S) = 1	

•  P(A ∪ B ∪ C … ) = P(A) + P(B) + P(C) + …	

	
 	
A, B, C  … mutually exclusive	
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Conditional Probability	


P(A | B) = P(A ∩ B) / P(B)	


•  Probability of an event given that another event 
occurs:	

•  What is the probability of obtaining a prime number in a 

die toss, given that it is a even number?	

•  If someone has a headache, what is the probability the 

she has flu?	




8 PGMs Biomedicine – L.E. Sucar	


Bayes Rule	


•  From the definition of conditional probability we 
can deduce Bayes Rule:	


	

P(B | A) = P(B) P(A | B) / P(A), P(A) > 0	


•  This allows us to “invert” the probabilities …	
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Independent Events	


•  Two events are independent if the occurrence of 
one event does not alter the probability of the 
other:	


P(A | B) = P(A) 	

P(B | A) = P(B)	


•  Which is the same as:	

P(A ∩ B) = P(A) P(B)	
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Conditional Independence	


•  A is conditionally independent of B given C, if 
knowing C makes A and B independent:	


P(A | B,C) = P(A | C)	


•  Example:	

•  A – water the garden	

•  B – weather prediction	

•  C – rain	
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Conditional Independence: ���
Graphical Representation	


•  We can represent conditional independence 
relations using (directed or undirected) graphs	


A	


C	


B	
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Bayesian Reasoning	


•  In the Bayesian approach we combine our 
previous knowledge (priors) with the evidence 
(likelihood) to arrive to conclusions (posterior):	


	

P ( H | E) α P ( H ) P (E | H )	
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Example: Bayesian perception	


•  The perception problem is characterized by two 
main aspects:	

•  The properties of the world that is observed (prior 

knowledge)	

•  The image data acquired by the observer (evidence)	


•  The Bayesian approach combines the two aspects 
which are characterized as probability distributions	
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Representation	


•  Scene properties – S	

•  Model of the world – prior probability distribution – P(S)	

•  Model of the image – probability distribution of the image 

given de scene (likelihood) – P(I|S)	

•  The scene (object) is characterized by the posterior 

probability distribution – P(S|I)	

•  By Bayes theorem:	

	
 	
P(S|I) = P(S) P(I|S) / P(I)	


•  The denominator can be consider as a normalizing 
constant:	

	
 	
 P(S|I) = k P(S) P(I|S) 	
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Example	
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Example	


•  Prior distribution of objects – P(O)	

•  Cube 	
 	
0.2	

•  Cylinder	
 	
0.3	

•  Sphere 	
 	
0.1	

•  Prism 	
 	
0.4	




17 PGMs Biomedicine – L.E. Sucar	


Example	


•  Likelihood function P(Silhouette|Object) – P(S|O)	

	
 	
 	
Cube 	
 	
Cylinder 	
Sphere	
 	
Prism 	
	


Square 	
   1.0 	
 	
0.6 	
 	
0.0 	
 	
0.4	

Circle 	
   0.0 	
 	
0.4 	
 	
1.0 	
 	
0.0	

Trapezoid 	
   0.0 	
 	
0.0 	
 	
0.0 	
 	
0.6	
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Example	


•  Posterior distribution P(Object|Silhouette) – P(O|S)	

•  Bayes rule:	

	
 	
P(O|S) = k P(O) P(S|O)	


•  For example, given S=square	

	
P(Cube | square)= k 0.2 * 1 = k 0.2 = 0.37	

	
P(Cylinder | square)= k 0.3 * 0.6 = k 0.18 = 0.33	

	
P(Sphere | square)= k 0.1 * 0 = 0	

	
P(Prism | square)= k 0.4 * 0.4 = k 0.16 = 0.30	
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Probabilistic Graphical Models	


•  If we apply the Bayesian approach in naive way 
its complexity grows exponentially on the size 
(number of variables) of the model	


•  Probabilistic graphical models take advantage of 
the independence relations among the variables in 
a domain to develop more efficient representations 
as well as inference and learning techniques	
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Graphical Model	

•  We can represent the dependence relation in this 

simple example graphically, with 2 variables and 
an arc	


O	


S	


P(O) 

P(S|O) 
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Probabilistic Graphical Models	


•  Given a set of (discrete) random variables,	

X = X1, X2, …, XN	


•  The joint probability distribution,	

P(X1, X2, …, XN)	


•  specifies the probability for each combination of 
values (the joint space). From it, we can obtain the 
probability of a variable(s) (marginal), and of a 
variable(s) given the other variables (conditional)	
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Probabilistic Graphical Models	


•  A Probabilistic Graphical Model is a compact 
representation of a joint probability distribution, from 
which we can obtain marginal and conditional probabilities	


•  It has several advantages over a “flat” representation:	

•  It is generally much more compact (space)	

•  It is generally much more efficient (time)	

•  It is easier to understand and communicate	

•  It is easier to build (from experts) or learn (from data)	
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Probabilistic Graphical Models	


•  A graphical model is specified by two aspects:	

•  A Graph, G(V,E), that defines the structure of the 

model	

•  A set of  local functions, f(Yi), that defines the 

parameters (probabilities), where Yi is a subset of X	

•  The joint probability is defined by the product of 

the local functions:	


 )f(Y )X , ,X ,P(X
n

1i

iN21 !
=

=…
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Probabilistic Graphical Models	


•  This representation in terms of a graph and a set of local 
functions (called potentials) is the basis for inference and 
learning in PGMs	

•  Inference: obtain the marginal or conditional 

probabilities of any subset of variables Z given any 
other subset Y	


•  Learning: given a set of data values for X (that can be 
incomplete) estimate the structure (graph) and 
parameters (local function) of the model	
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Probabilistic Graphical Models	


•  We can classify graphical models according to 3 
dimensions:	

•  Directed vs. Undirected	

•  Static vs. Dynamic	

•  Probability vs. Decision	
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Probabilistic Graphical Models	


•  Directed	
 •  Undirected	


1 

3 2 

4 5 

1 

3 2 

4 5 
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Probabilistic Graphical Models	


•  Static	
 •  Dynamic	


St	
 St+1	
 St+2	
 St+3	


E	
 E	
 E	
 E	


C	


H	


E	
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Probabilistic Graphical Models	

•  Only random variables	
 •  Considers decisions and 

utilities	


1 

3 2 

4 5 

A	


B	
 C	


D	


U	


D 
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Types of PGMs	


•  There are different classes of PGMs:	

•  Bayesian classifiers	

•  Bayesian networks	

•  Hidden Markov models	

•  Dynamic Bayesian networks	

•  Temporal Bayesian networks	

•  Markov Random Fields	

•  Influence diagramas	

•  Markov decision processes	
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Bayesian Networks	


•  Bayesian networks (BN) are a graphical 
representation of dependencies between a set of 
random variables. A Bayesian net is a Directed 
Acyclic Graph (DAG) in which:	

•  Node: Propositional variable. 	

•  Arcs: Probabilistic dependencies. 	


•  An arc between two variables represents a direct 
dependency, usually interpreted as a causal 
relation.	
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An example of a BN 

Drunk 

Thirsty Headache 

Wine 

•  Represents (in a compact way) the joint probability distribution:	


P(W,D,T,H) = P(W) P(D|W) P(T|D) P(H|D) 	
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Structure	


•  The topology of the network represents the 
dependencies (and independencies) between the 
variables	


•  Conditional  independence relations between 
variables or sets of variables are obtained by a 
criteria called D-separation	
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Parameters	


	
Conditional probabilities of each node given its 
parents.	


•  Root nodes: vector of prior probabilities	


•  Other nodes: matrix of conditional probabilities 	
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Drunk 

Thirsty Headache 

Wine 

P(T|D) 
0.9  0.5 
0.1  0.5 

P(H|D) 
0.7  0.4 
0.3  0.6 

P(D|W) 
0.9  0.7 
0.1  0.3 

P(W) 
0.8  0.2 

For the example 
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Inference	


C	


H	


E	


Given certain evidence, E,	

estimate the posterior 
probaililty of the other	

variables, H, C	
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Inference	


There are several inference algorithms:	

•  Variable elimination	

•  Message passing (Pearl’s algorithm)	

•  Junction Tree	

•  Stochastic simulation	

•  …	


•  In the worst case it an NP-Hard problem, however 
given a sparse graph the state of the art algorithms 
are very efficient	
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Each node stores the vectors,  π and λ, and the 
conditional probability matrix P 
 

Propagation Algorithm 

Probability propagation is done through a 
message passing mechanism in which each 
node sends messages to its parents and sons 
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• Message to parent (upwards) -- node B 
to A: 

• Message to sons (downwards) -- 
node B to son Sk :  
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Bottom-up���
(λ)	


A	


D	


C	


F	
 G	


B	


E	


H	


I	


λΙ(H)	


λE(B)	


λG(D)	
λF(D)	


λC(A)	


λD(B)	


λB(A)	


λA(H)	
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Top-down���
(π)	


A	


D	


C	


F	
 G	


B	


E	


H	


I	


πΗ(I)	


πB(E)	


πD(G)	
πD(F)	


πA(C)	


πB(D)	


πA(B)	


πH(A)	
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Example	


Drunk	


Thirsty	
 Headache	


Wine	


P(F|E)	

0.9  0.5	

0.1  0.5	


P(D|E)	

0.7  0.4	

0.3  0.6	


P(E|C)	

0.9  0.7	

0.1  0.3	


P(C)	

0.8  0.2	
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Example	


Drunk	


Thirsty	
 Headache	


Wine	


T=true	

λ=[1,0]	
 λ=[1,1]	




43 PGMs Biomedicine – L.E. Sucar	


Example	


Drunk	


Thirsty	
 Headache	


Wine	
λF= [1,0] * 	

       [.9 .5 |	

         .1 .5]	

    = [.9 .5]	


λD= [1,1] * 	

       [.7 .4 |	

         .3 .6]	

    = [1  1]	


P(D|E)	

0.7  0.4	

0.3  0.6	


P(F|E)	

0.9  0.5	

0.1  0.5	
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Example	


Drunk	


Thirsty	
 Headache	


Wine	


λ(E) = [.9 .5] * [1  1]	

        = [.9 .5]	


P(D|E)	

0.7  0.4	

0.3  0.6	


P(F|E)	

0.9  0.5	

0.1  0.5	


λ(C) = [.9 .5] * [.9  .7|	

                           .1  .3]	


        = [.86  .78]	
 P(E|C)	

0.9  0.7	

0.1  0.3	
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Example	


Drunk	


Thirsty	
 Headache	


Wine	

π(E) = [.8 .2] * [.9 .7|	

                           .1 .3]	


        = [.86  .14]	


P(D|E)	

0.7  0.4	

0.3  0.6	


P(F|E)	

0.9  0.5	

0.1  0.5	


π(C) = [.8  .2]	


P(E|C)	

0.9  0.7	

0.1  0.3	
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Example	


Drunk	


Thirsty	
 Headache	


Wine	


π(E) = [.86  .14]	


P(D|E)	

0.7  0.4	

0.3  0.6	


π(C) = [.8  .2]	


π(D) = [.86 .14] * [.9  .5]	

            [.7 .4|	

             .3 .6]	


         = [.5698  .2742]	
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Example	


Drunk	


Thirsty	
 Headache	


Wine	
π(E) = [.86  .14]	

π(C) = [.8  .2]	


π(D) = [.57  .27]	


λ(D)=[1,1]	


λ(E) = [.9 .5]	

λ(C)  = [.86  .78]	


P(C)=α[.688  .156]	

P(C)=   [.815  .185]	
P(E)=α[.774  .070]	


P(E)=   [.917  .083]	


P(D)=α[.57    .27]	

P(D)=   [.67    .33]	
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Learning	

•  Learning in Bayesian networks can be divided into 

two aspects:	

•  Structure Learning	

•  Parameter Learning	


Drunk 

Thirsty Headache 

Wine P(W)	


P(D|W)	


P(H|D)	
P(T|D)	




49 PGMs Biomedicine – L.E. Sucar	


Structure Learning	


Two general schemes:	

	


Independence tests 

Search and score 
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Structural Improvement	


•  Learning techniques require a large amount of data to 
obtain good models; an alternative is to combine expert 
knowledge and data	


•  We propose a method that starts from a subjective 
structure (given by an expert) and then improves it with 
data	


•  Assuming a tree structure, the conditional independence of 
child nodes given its parent are verified; if they are not 
independent there are 3 alternatives:	

•  Node elimination	

•  Node combination	

•  Node insertion	
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Structural improvement	


Y X 

Z 

X 

Z 

XY 

Z W 

Z 

Y X 
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Algorithm	


1.  Build an initial BN structure based on expert knowledge	

2.  Repeat until the model can not be improved (based on the 

MDL principle):	

a.  Eliminate redundant attributes	

b.  Eliminate/Join dependant attributes	

c.  Improve discretization of continuous attributes	


3.  Test on different data (cross validation) 	
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Endoscopy	


•  Endoscopy is a tool for direct observation of the human 
digestive system	


•  Navigating an endoscope is difficult due to the variability 
and dynamics of the human colon	


•  Thus, it is desirable to build a semi-automatic system that 
can assist an endoscopist	


•  The main challenge is to recognize the “objects” in 
endoscopy images which can be confused, such as “lumen” 
& “diverticula”	


•  The low-level vision algorithms can fail so we propose a 
Bayesian network that combines the information and 
arrives to final decisions 	
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Colon Image	
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Low level features – dark region	
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Low level 
features – shape 

from shading ���
(pq histogram)	
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Model Construction	


•  The structure of the BN was built with the help of 
an expert endoscopist	


•  Later it was improved based on the structural 
improvement technique	


•  Parameters were learned from videos of real 
colonoscopy sessions	
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BN for endoscopy (partial)	
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Semi-automatic Endoscope 	
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Endoscope navigation system: example 1	
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Endoscope navigation system: example 2	
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St	
 St+1	
 St+2	
 St+3	


Dynamic Bayesian Networks	


E	
 E	
 E	
 E	


T T+1 T+2 T+3 

Xt	
 Xt+1	
 Xt+2	
 Xt+3	
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Temporal Nodes Bayesian Networks 
(RBNT)	


An	  alterna)ve	  to	  Dynamic	  Bayesian	  Networks	  to	  model	  
dynamic	  processes	  with	  uncertainty	  

Temporal	  informa)on	  is	  within	  the	  nodes	  in	  the	  model,	  
which	  represent	  the	  )me	  of	  occurrance	  of	  certain	  
events	  

The	  links	  represent	  temporal-‐causal	  rela)on	  

Adequate	  for	  applica)ons	  in	  which	  there	  are	  few	  state	  
changes	  in	  the	  temporal	  range	  	  
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Example 
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Learning TNBN 
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Learning Algorithm	


1.  Define initial intervals for the temporal nodes	

2.  Learn the structure and parameters using standard 

techniques	

3.  Improve the temporal intervals using on 

clustering; selection based on predictions on 
validation data (Brier score)	


Steps 2 and 3 can be repeated until convergance	
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HIV	


•  HIV among fastest evolving organisms	

•  The HIV evolves (among other pressures) in response 

to antiretroviral therapy	

•  Although mutations conferring drug resistance are 

mostly known, the dynamics of the appearance chain 
of mutations remains poorly understood	


•  We use TNBN for modeling the relationships 
between antiretroviral drugs and HIV mutations, in 
order to analyze temporal occurrence of specific 
mutations in HIV that may lead to drug resistance. 	
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Mutational Networks	


•  Mutational networks are “drug-associated mutational 
pathways in the protease gene, revealing the co-
occurrence of mutations and its temporal relationships”	


•  If we could predict the most likely evolution of the virus 
in any host, then it would be plausible to select an 
appropriate antiretroviral regimen that prevents the 
appearance of mutations, effectively increasing HIV 
control.	
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Antiretrovirals	


Antiretroviral therapy (ART) generally consists of well-defined 
combinations of three or four ARV drugs in order to reduce the 
possibility of development of drug resistance mutations.	


http://us.viramune.com/consumer/hiv-treatment 
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Experiments	


•  Data and preprocessing	

•  HIV Stanford database (HIVDB) - HIV Drug Resistance 

Database	

•  2373 patients with subtype B was retrieved	

•  Data retrieved contains a history consisting of a variable number 

of studies.	

Patient	
 Initial Treatment	
 List of Mutations	
 Weeks	

P1	
 LPV, FPV, RTV	
 L63P, L10I,	


V77I,	

I62V	


15	

30	

10	


P2	
 NFV, RTV, SQV	
 L10I	

V77I	


25	

45	
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Defining target mutations	


• Model 1: 
Assessment of 

TNBN to capture 
known relations.	
 • Uncovering more 

common mutational 
networks	
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Results: Model 1	


Known 
relationships are 

appropiately 
captured	


Role of RTV is 
often used in 

conjunction with 
other drugd 
(boosting)	
Link between 

SQV and 
L10I	


DRV isolation: 
New drug is 

hardly ever given 
as a first treatment	
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Model 2	


•  Use expert’s information to select a 
subset of mutations and drugs of special 
importance.	


•  We used the Major HIV Drug 
Resistance Mutations and four drugs 
highly used in the past and nowadays.	




74 PGMs Biomedicine – L.E. Sucar	


LPV : M46I/L, I54V/T/A/S and V82T/F/S 
(Kempf et al., 2001) , 	

IDV: V82A/T/F/S/M, M46I/L, I54V/T/A, 
I84V and L90M (Bélec et al., 2000; 
Descamps et al., 2005)	


• The model was 
able to capture 
some mutational 
pathways already 
known (obtained 
by clinical 
experimentation).  

Results	
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Markov Decision Processes	


User Adaptation for Rehabilitation	
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Markov decision processes (MDPs)	


•  Ideal framework for planning under uncertainty.	

•  Main features: 	


•  Considers the uncertainty in the actions 	

•  Considers the utility of the plan 	

•  It allows to obtain optimal solutions	

•  Considers uncertainty in the 

observations (POMDP)	
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MDP	


•  Formally, a discrete MDP is defined by:	

• A finite set of states, S	

• A finite set of actions, A	

• A transition model, P (s’ | s, a)	

• A reward function for each state-action, r(s, a)	
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POMDP	


•  Besides the MDP model, a POMDP has:	


• An observation probability distribution, P(O|S)	

• An initial probability distribution, P(S)	
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Uncertainty in the actions	
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Uncertainty in the state	
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St	
 St+1	
 St+2	
 St+3	


Dt-1	
 U	


A POMDP as a Dynamic Decision Network	


E	
 E	
 E	
 E	


Dt	
 Dt+1	
 Dt+2	
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Basic solution techniques	


•  There are two main classes of algorithms:	

• Dynamic programming techniques: consider 

a known model (transition and reward 
functions) which is solved to obtain the 
optimal policy	


• Montecarlo and reinforcement learning: the 
model is not known, so the optimal policy is 
obtained by exploring the environment	
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Optimal policy	


Initial position	
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Value function	

	

•  A policy for an MDP is an association π:S→A 

(action for each state).	

•  Given a policy, the value for finite horizon is   

Vn
π: S → ℜ	


Vπ(s) = R(s, a) + Σ P(s’ | s,a) V(s’)	

•  For infinite horizon, a discount factor is usually 

considered, 0<γ<1:	


Vπ(s) = R(s, a) + γΣ P(s’ | s,a) V(s’)	
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Optimal policy	


•  The solution for an MDP gives the optimal policy.	

•  That is, the policy that maximizes Bellman’s 

equation :	


V*(s) = maxa { R(s,a) + γ Σs’ P(s’ | s, a) V*(s’) }	

•  Obtaining the optimal policy:	


π*(s) = arg maxa { R(s,a) + γ Σs’ P(s’ | s, a) V*(s’) }	
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Value iteration	


•  For infinite horizon, we can obtain the utility and 
optimal policy with an iterative algorithm	


•  In each iteration (i+1), the utility of each state is 
estimated given the value in the previous stage (i): 
Vi+1(s) = R(s) + maxa Σj P(s’ | s,a) Vi(s’)	


•  When i  inf, the values converge and we obtain 
the optimal policy	
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Value iteration	


Algorithm:	


•  Initialization: Vt = Vt+1 = R	

•  Repeat:	


•  Vt=Vt+1	


•  Vt+1(s) = R(s) + maxa γ Σj P(s’ | s,a) Vt(s’)	


•  Until: | Vt-Vt+1 | < ε	
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Example – utilities	


0.812	


0.762	


0.868	
 0.912	


0.660	


0.611	
0.705	
 0.338	
0.655	
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Example – optimal policy	


• Inicio	
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Factored MDPs	


The state is decomposed in a set 
of factors or state variable:	

	


X = {x1, x2, x3, x4, x5}	

	

So the transition function is 
represented as a two-stage DBN 
per action	


x2	


x3	


x4	


x5	


x1	


x2’	


x3’	


x4’	


x5’	


x1’	


t	
 t+1	
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Gesture Therapy	

•  Many people suffer strokes (15 million worldwide per 

year)	

•  80% lose arm and hand movement skills	

•  Physical and occupational therapy can help, but:	


•  Expensive (requires a therapist)	

•  Usually not enough	

•  Patients loose motivation	


•  Robotic systems are too expensive for use at home or 
small clinics	


•  Develop low-cost technology that allows stroke 
patients to practice intensive movement training at 
home without the need of an always present therapist	
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Gesture Therapy	

•  Simulated environment	

•  Monocular tracker	

•  Gripper	

•  Trunk compensation detection	

•  Adaptation to the patient	


GAMES

Visual/Sensor
tracking

scripts

Shared memory

Torque Game Engine (C/C++)

Adaptation Tools 
(C++|Java)

Data 
Archival

Communication
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Gesture Therapy System	


• 12/01/14	
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Visual Tracking System	


Tracking	  (2Dbased	  on	  par)cle	  filters	  

Orientación	  y	  textura	   Plano	  H-‐S	  de	  HSV	  

Compensa)on	  detec)on	  based	  on	  face	  recogni)on	  

Gripper	  
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Virtual Environment	

•  Serious games designed for stroke rehabilitation:	


•  Simulate activities of daily leaving	

•  Tailored for specific movements	

•  Motivating	
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Prototype of the system at the ���
INNN rehabilitation unit	
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Adptation to the patient	

The	  system	  es)mates	  the	  pa)ent	  “state”	  based	  on	  
observing	  its	  performance	  in	  the	  game	  (speed,	  
control)	  and	  decides	  the	  game	  difficulty	  accordingly	  	  
according	  to	  the	  policy	  dictated	  by	  an	  MDP	  

Perform
ance

Obs: 
duration

Obs: 
coordina

tion

difficulty

Perform
ance

Actions

Obs: 
duration

Obs: 
coordina

tion

difficulty
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Policy adaptation	


 The POMDP model could be wrong so the 
policy is not necessarily “optimal”	


 Also, the best policy could depend on the 
patient	


 We developed a policy adaptation 
algorithm based on RL+ reward shaping 
which improves an initial policy based on 
the therapist feedback	
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Initial results	


 Simulated 
therapist – 
feedback based 
on the optimal 
policy	
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Adaptation at different levels	


Withing game Therapy planning 
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Conclusions	


•  The Bayesian approach combines prior knowledge (a 
priori probability) with evidence (likelihood) based 
on Bayes theorem	


•  Graphical models allow for an efficient and clear 
representation of probability distributions based on 
dependency & independency relations	


•  PGMs provide a set of techniques which can be 
applied to solve complex problems which require to 
model uncertainty, time and cost/utilities	
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Current and Future Work	


•  HIV	

•  Data analysis for Mexico and Central American	

•  Consider genetic factors of the population	


•  Rehabilitation	

•  Automatic evaluation – clinical scales	

•  Analysis of affective/emotional aspects – consider in the 

adaptation process	
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Automatic Evaluation	

Based on HMMs: measure of similarity against a “gold” standard 
using different metrics – comparision with clinical scales	
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Additional information …	

•  Gesture Therapy Blog: http://robotic.inaoep.mx/~foe/blog/ 
•  L.E. Sucar, E. Morales, J. Hoey, Decision Theory Models for 
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Solutions, IGI-Global, 2012	
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Applications,  Springer-Verlag, 2014 (forthcoming)	
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http://ccc.inaoep.mx/~esucar/Clases-mgp/mgp.html	
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