
A UML 2.0 Profile to Model Block Cipher
Algorithms

Tomás Balderas-Contreras, Gustavo Rodriguez-Gomez, and René Cumplido

National Institute of Astrophysics, Optics and Electronics
Computer Science Department

Luis Enrique Erro 1, 72840 Santa Maŕıa Tonantzintla, Puebla, Mexico
{balderas,grodrig,rcumplido}@inaoep.mx

http://ccc.inaoep.mx

Abstract. Current mobile digital communication systems must imple-
ment rigorous operations to guarantee high levels of confidentiality and
integrity during transmission of critical information. To achieve higher
performance, the security algorithms are usually implemented as dedi-
cated hardware functional units attached to the main processing units
of the embedded communication system. To save hardware resources,
the designer usually performs a number of manipulations in the cipher
algorithm lying at the core of the confidentiality and integrity operations
to implement a simplified version of it that is suitable to be efficiently
used in an embedded environment. This paper describes an extension
to UML 2.0 to model the structure of contemporary block cipher al-
gorithms, with the ultimate goal of synthesizing representations in a
hardware description language from these models according to a model-
driven development principle. This automated process should alleviate
design complexity and increase the productivity of the developer during
experimentation with different design alternatives.

Key words: Block cipher algorithm, UML 2.0 profile.

1 Introduction

A computer-based system is a combination of hardware and software that im-
plements a set of algorithms to automate the solution to a number of problems.
Computer design technology transforms the designers ideas and objectives into
a number of representations describing software modules and hardware com-
ponents that can be tested and manufactured [11]. The design process is not
straightforward; the developers always deal with the problem of alleviating the
complexity of their designs to develop high-quality products within rigid time
constraints. This problem arose as a consequence of the steady evolution of
technology and the constant demand for new functionality.

Computer-based systems are not becoming easier to design as time goes
by; on the contrary, the advancement of development and manufacturing tech-
nologies, and the need to meet new usage demand encourage the development



2 A UML 2.0 Profile to Model Block Cipher Algorithms

of devices incorporating more and more functionality. There are a number of
functionality aspects that have demanded attention from hardware/software en-
gineers during the last years: communication, security, power management, mul-
timedia processing, and fault tolerance.

When designing the digital hardware of a computer-based system the devel-
opers must deal with the challenge of making a trade-off between a number of
design requirements, that can not be optimized all at the same time, while im-
plementing the desired functionality. The digital hardware system must usually
achieve a high level of performance, its operation should be efficient in terms
of power consumption, and, when a large number of hardware resources is not
available, its circuitry must be small and reutilize a component iteratively until
operation completion. It is not possible to stop the evolution of technology or
to prevent computer-based systems from implementing more and more function-
ality over time and becoming more complex. Hardware and software engineers
are condemned to face the challenge of designing products that implement lots
of functionality, while meeting difficult constraints, in shorter periods of time.
In this document we focus our attention on the process of developing the digital
hardware sub-system of a whole computer-based system.

1.1 Productivity gap

In spite of having more resources to design with, design complexity imposes se-
rious limits to the ability of hardware designers to develop high quality products
that fully meet their requirements in a short period of time; that is, to their
productivity. The productivity gap is the challenge that arises when the number
of available transistors grows faster than the ability to meaningfully design with
them [11]. Flynn, et al. [6] illustrates the considerable separation between the
exponential increase in the number of transistors per chip along the last 28 years
and the increase in design productivity along the same period of time.

1.2 Abstraction levels

An effective way to alleviate design complexity and to reduce the productivity
gap during the design of digital hardware systems is to raise the level of abstrac-
tion at which developers carry out their activities. The goal is to design correct
systems faster by making it easier to check for, identify, and correct errors.

The raise in the level of abstraction has been done many times in the past
for both software and hardware development. The first solid-state computers
were built using discrete transistors and other electronic components, consumed
several kilowatts of power, and became more complex to design as advanced ar-
chitectural techniques to increase performance arose. Medium-Scale Integration
(MSI) and Large-Scale Integration (LSI) integrated circuits that encapsulated
whole computer modules within single dies allowed to design digital hardware
systems as a set of schematics specifying the interconnection of a number of in-
tegrated circuits. Later, the behavior of a circuit started to be defined in terms
of a flow of signals (data transference) between hardware registers and the logical



A UML 2.0 Profile to Model Block Cipher Algorithms 3

operations performed on those signals using hardware description languages like
VHDL and Verilog. This representation was transformed into a description of
the electronic components that made up the system and the interconnections
between them (netlist), which could be implemented in a Very Large Scale In-
tegration (VLSI) silicon platform like an Application-Specific Integrated Circuit
(ASIC) or a Field Programmable Gate Array (FPGA). The current Electronic
System Level (ESL) design trend proposes the use of high level languages, de-
rived from languages like C and Java for instance, to describe the functionality
of a digital hardware system and tools to automate the implementation process
[2]; thus achieving a higher degree of comprehension and reutilization of the
functional descriptions.

1.3 ESL and UML

At the ESL there are lots of similarities between the process of describing the
functionality of digital hardware systems and the process of developing software.
A research effort is needed to determine if we can take advantage of the recent
advances in software engineering, like the Model-Driven Engineering (MDE)
paradigm [7], to raise the level of abstraction even further, increase productiv-
ity, alleviate design complexity, exploit reuse of existing designs, and automate
the production of representations of digital hardware systems at lower levels of
abstraction.

Riccobene, et al. [10] propose a UML 2.0 profile containing the constructs of
the SystemC language to allow the designer to build diagrams instead of writing
code. Björklund, et al. [3] describe the use of an intermediate representation
called SMDL to transform general-purpose state machine diagrams to VHDL.
While these two proposals synthesize hardware description language code from
UML, they do not customize UML to an application domain to allow the devel-
oper to describe a system in terms of the concepts he/she knows instead of the
concepts of the implementation language or hardware platform.

This paper describes an extension to UML 2.0 [8] that includes abstractions
to model the structure of block cipher algorithms with the purpose of them being
implemented in hardware. The profile should allow the designer to modify the
structure of the algorithm, without altering its operation, to design a hardware
implementation that meets the required trade-offs between performance and re-
source consumption. For instance, an area-efficient hardware implementation of
a block cipher algorithm for 3G cellular communications that reuses a basic func-
tion block iteratively until completion is able to encrypt information at a rate
of 164.45 Mbps. [4], whereas a high-performance implementation of the same
algorithm that requires 8.05 times more hardware resources (slices in a Virtex-E
FPGA) has a performance of 5.32 Gbps [5]. This profile will be a crucial compo-
nent of a model-based design flow that will transform a high level description in
UML to a lower level VHDL representation that could be implemented in either
an ASIC or a FPGA platform.



4 A UML 2.0 Profile to Model Block Cipher Algorithms

This document is organized as follows: section 2 documents the proposed
profile to model block cipher algorithms, section 3 illustrates the application of
the profile in a practical case of study, and section 4 concludes.

2 The Block Cipher Profile

Current versions of UML include a formal definition of the language’s constructs
and abstract syntax that is called meta-model (a model of a model). The meta-
model contains a set of meta-classes that define the UML modeling elements, and
describes the relationships between meta-classes that indicate how the modeling
elements are assembled together by the user to build the UML models of a
system. A profile is an extension mechanism for UML, a kind of dialect that
customizes the language for particular platforms or application domains. Profiles
are made up of stereotypes that extend particular meta-classes; tagged values
that define additional attributes for the stereotype; and restrictions that specify
rules, pre- and post-conditions for the extended modeling elements.

2.1 Block ciphers

A block cipher is an algorithm that unvaryingly transforms a fixed-length group
of bits, called plaintext block, into a different group of bits, called ciphertext
block, under the control of a symmetrical secret key. The algorithm carries out
the inverse process when it receives both the ciphertext block and the secret key
as inputs.

Most block ciphers employ simple operations like bitwise logical operations
(and, or, xor), shifts and rotations, n-bit substitution functions (referred to as
S-Boxes), arithmetic operations, and permutations in an iterative manner until
completion. The structure of these algorithms is usually shown as an iterative
Feistel network, an structure whose iterations are called rounds and perform an
internal round function.

As an example consider the KASUMI block cipher, illustrated in the block
diagrams in Figure 1, used nowadays to implement security functions, like con-
fidentiality and integrity, in modern 3G cellular communication networks [1].
Each of the eight rounds of KASUMI’s Feistel network carries out a pair of op-
erations called FL and FO, where FO is, in turn, a Feistel network with three
rounds, each performing a function called FI that is made up of two seven-bit
input S-Boxes (S7) and two nine-bit input S-Boxes (S9). The informal block
diagram notation frequently used to describe this kind of algorithms does not
represent either a digital circuit schematic or an UML diagram.

2.2 Defining the Block Cipher Profile

The UML Activity Diagram is used to describe procedural logic, business pro-
cesses, and work flows. This diagram is conceptually similar to a flowchart, but



A UML 2.0 Profile to Model Block Cipher Algorithms 5

(a) Main Feis-
tel network

(b) FO func-
tion

(c) FI function (d) FL function

Fig. 1. The components and full structure of the KASUMI block cipher (from [1]).

differs from it in its ability to describe parallel behavior and model both con-
trol and data flows; these two distinctions make this kind of diagram the most
adequate one to model the data flows and the operations required to fulfill the
block cipher algorithms in a correct manner.

The Activity Diagram’s modeling elements include: actions representing be-
havior execution, input/output pins working as parameters for the actions, edges
indicating the flow of either data or control, decision elements to choose one
out of several paths, fork nodes to initiate parallel paths, asynchronous signal-
ing mechanisms, and constructions to elaborate a hierarchy of sub-activity dia-
grams. Our profile’s stereotypes extend the meta-classes of the existing modeling
elements to derive specialized modeling constructs representing the operations
required by block ciphers.

Figure 2 illustrates the hierarchy of meta-classes from which we derive our
profile’s stereotypes, which are indicated by the shaded class boxes. A stereotype
is a meta-class labeled with the keyword �stereotype�that is derived from an
existing meta-class with the intention of extending its behavior and defining a
new modeling element. The stereotype’s attributes shown in Figure 2 are called
tagged values and define properties for the new modeling construct that are
additional to the ones it inherits from its parent meta-class.

Our profile is encapsulated within a package that extends the package UML::-
Activities::IntermediateActivities and uses the package UML::Actions::Basic-
Actions in the Superstructure of UML [8]. IntermediateActivities was chosen



6 A UML 2.0 Profile to Model Block Cipher Algorithms

because it defines all the necessary meta-classes to base the new modeling ele-
ments on and is not polluted with other complex meta-classes. The profile derives
several stereotypes from the Action meta-class to model the bitwise operations
that are common to the block ciphers, as well as the S-Box components; it also
derives a stereotype from the meta-class ObjectFlow to model edges transmit-
ting bit-blocks; and it also derives a stereotype from the meta-class ForkNode
to either distribute a bit-block along two or more different paths, or to parti-
tion a n-bit block into several bit-blocks of different lengths. An UML Activity
Diagram built using this profile is called a Block Cipher Diagram.

Fig. 2. Fragment of the UML 2.0 meta-model for Activity Diagrams extended with
the stereotypes that make up the Block Cipher Profile.

Tables 1, 2, and 3 describe three stereotypes included in the Block Cipher
Profile. Due to space limitations, it is not possible to describe all of the stereo-
types that make up the profile in this document.

3 Applying the Block Cipher Profile

The hardware implementation of the KASUMI block cipher in its full structure is
prohibitive for some embedded applications because it requires lots of hardware



A UML 2.0 Profile to Model Block Cipher Algorithms 7

Table 1. Definition of the z ext stereotype in the Block Cipher Profile.

Name: z ext.
Generalizations: Action.

Description: An action that zero-extends the incoming bit-block.
Attributes: n. An integer attribute indicating the length in bits of the incoming bit-block.

Its default value is 32.
m. An integer attribute indicating the length in bits of the outgoing bit-block.
Its default value is 64.

Associations: input: InputPin. A pin connected to the action that holds input bit-blocks
to be consumed by the action.
output: OutputPin. A pin connected to the action that holds output bit-
blocks produced by the action.

Constraints: n ≤ m.
There must be exactly two pins connected to this action; one of them must
be an instance of the InputPin meta-class, whereas the other must be an
instance of the OutputPin meta-class.
The input pin must be attached to an edge that is an instance of the dl meta-
class.
The output pin must be attached to an edge that is an instance of the dl
meta-class.
The length of the bit-block in the incoming edge attached to the input pin
must be equal to the n attribute.
The length of the bit-block in the outgoing edge attached to the output pin
must be equal to the m attribute.

Semantics: Instances of z ext are actions in a Block Cipher Diagram that receive an n-bit
block as input and produces a m-bit block as output, with n ≤ m. The output
block’s n least significant bits are set to the input block, and its (m−n) most
significant bits are all set to zero.

Table 2. Definition of the dl stereotype in the Block Cipher Profile.

Name: dl.
Generalization: ObjectFlow.

Description: An edge that models the flow of bit-blocks between nodes.
Attributes: length. An integer attribute indicating the length, in bits, of the block flowing

along the edge.
Associations: source: ActivityNode. The node the edge departs from.

target: ActivityNode. The node the edge arrives to.
Constraints: 1 ≤ length ≤ 128.

The edge must be attached to an instance of either the Pin meta-class or the
Action meta-class or the ForkNode meta-class. See Figure 2.
If the edge is attached to two pins then one of those pins must be an instance
of the InputPin meta-class, the other must be an instance of the OutputPin
meta-class.

Semantics: Instances of dl (data line) are special edges intended to model transferences
of bit-blocks between nodes in a Block Cipher Diagram. Data lines transfer
bit-blocks whose length is greater than zero but less than or equal to 128 bits.
When a dl instance’s length attribute is set to 1 then the edge transfers a
signal.



8 A UML 2.0 Profile to Model Block Cipher Algorithms

Table 3. Definition of the sf stereotype in the Block Cipher Profile.

Name: sf.
Generalization: ForkNode.

Description: Splits an incoming bit-block into n bit-blocks of different lengths.
Attributes: n. An integer attribute indicating the number of bit blocks outgoing the fork

node.
Associations: incoming: ActivityEdge. Edge that has the fork node as target.

outgoing: ActivityEdge. Edges that have the fork node as source.
Constraints: There must be exactly n outgoing edges, where n is the fork node’s attribute.

The incoming edge and all of the outgoing edges must be instances of the dl
meta-class.
The sum of the length attributes of each of the outgoing edges must be equal
to the length attribute of the incoming edge.

Semantics: Instances of sf (split fork) are special fork nodes that partition the bit-block in
the incoming edge into n bit-blocks, and issue each of these bit-blocks through
an independent outgoing edge. All of the outgoing edges are concurrent. The
length of the incoming bit-block is indicated by the length attribute of the
incoming edge. Similarly, the length of each of the outgoing bit-blocks is
indicated by the length attribute of the corresponding outgoing edge. The sum
of the length attributes for the outgoing edges must be equal to the length of
the incoming edge.

components. In cases like this the designers usually manipulate the structure of
the algorithm to obtain a representation that uses a minimal number of com-
ponents. After a fixed number of successive iterations over this small set of
components, by feeding back the result of the current iteration to the input of
the design, the algorithm completes its task. Figure 3 illustrates the final result
of a simplification process that is described in detail by Balderas, et al. in [4].

The simplified design combines two instances of the FI function into a single
module that accepts two 16-bit inputs; see Figure 3(a). The four S-boxes internal
to this dual-input FI function can be implemented either as combinational blocks
that perform boolean functions over their inputs to generate their outputs, or
as memories that store the correct value for each of the possible inputs. This
dual-input FI function block is used by the simplified version of the FO function
twice per round; see Figure 3(b). Therefore, the simplified KASUMI structure
in Figure 3(c) requires two times eight equals sixteen iterations, as well as 16
clock cycles, to cipher a 64-bit block and has a throughput of 164.45 Mbps in a
Virtex-E FPGA.

The profile is able to model the simplified structure of the KASUMI algo-
rithm, as shown in the diagrams in Figure 4. The diagrams’ modeling elements
are labeled with a keyword containing the name of the stereotype they are in-
stances of. For example, all of the edges in the diagrams are labeled with the
keyword �dl�to indicate that they are instances of the dl stereotype and, there-
fore, model the flow of bit-blocks. The profile is suitable to allow the designer
to explore multiple design alternatives in a shorter period of time. The main
idea is that the developer builds an initial model of the structure of the block
cipher according to his/her architectural strategies, automatically synthesizes
VHDL code from it, tests this code using a number of standard test benches,
and computes the parameters of interest (performance, power consumption or
area) to validate the design. If something goes wrong, or if the designer con-
ceives a different architecture for the block cipher, it is always possible to directly



A UML 2.0 Profile to Model Block Cipher Algorithms 9

(a) Dual-input FI function (b) Simplified FO function (c) Simplified KASUMI
structure

Fig. 3. The simplified structure of the KASUMI block cipher (from [4]).

manipulate the UML model to correct errors or to reorganize the architecture
of the model, and then perform the test cycle again. The expectation is that
handling domain-specific UML modeling elements and having a complete view
of the design will be more productive than sketching the design and then writing
the corresponding code in an implementation language like VHDL [9].

The models for the simplified FI and FO components, and for the simplified
main Feistel structure, are self-contained and enclosed within an activity mod-
eling element so that each can be subsequently reused by another model. This
is the case of the activity containing the dual-input FI function, see Figure 4(a),
which is used by the activity modeling the simplified FO function, as shown in
Figure 4(b). The dual-input FI sub-activity within the simplified FO activity,
denoted by the rake symbol (t), receives parameters and returns values through
its input and output pins. The control signals expected by the activities in the
models can be generated by state machine modeling constructs in UML 2.0.

It is important that the designer assigns correct values to the attributes of
the modeling elements in the Block Cipher Diagrams. These attributes provide
important information about the configuration of the modeling elements to a
code synthesizer to produce correct VHDL code. Depending on the UML mod-
eling tool, the attributes and the values assigned to them might be shown next
to each modeling element, as tagged values, or not.



10 A UML 2.0 Profile to Model Block Cipher Algorithms

(a
)

D
u
a
l-in

p
u
t

F
I

fu
n
ctio

n

F
ig

.
4
.

B
lo

ck
C

ip
h

er
D

ia
g
ra

m
fo

r
th

e
sim

p
lifi

ed
K

A
S

U
M

I
stru

ctu
re.



A UML 2.0 Profile to Model Block Cipher Algorithms 11

(b) Simplified FO function (c) Simplified KASUMI structure

Fig. 4. Block Cipher Diagram for the simplified KASUMI structure (cont.)



12 A UML 2.0 Profile to Model Block Cipher Algorithms

4 Conclusions

This paper has discussed the convenience of being able to describe the function-
ality of digital hardware systems at higher levels of abstraction and let a number
of transformation tools to synthesize an specific implementation from such de-
scriptions, according to the model-driven engineering principle. This paradigm
should have a positive impact on the alleviation of design complexity and the
increase of the productivity of the developer.

The Block Cipher Profile described in this document is the first step towards
the implementation of a design flow that will allow us to specify the structure
and behavior of a digital communications system by means of UML 2.0 models,
and derive a hardware implementation from the diagrams. One of the principles
behind this design flow is the definition of domain-specific modeling languages
that provide constructs and abstractions that are closer to the application do-
main than to the implementation technologies. Due to the extension capabilities
of UML 2.0, as well as its graphical nature, we chose this modeling language as
the base language for our domain-specific languages.

References

1. 3rd Generation Partnership Program: Universal Mobile Telecommunications Sys-
tem (UMTS), Specification of the 3GPP confidentiality and integrity algorithms,
Document 2: Kasumi specification (3GPP TS 35.202 version 7.0.0 Release 7) (2007)

2. Bailey, B., Martin, G., Piziali, A.: ESL Design and Verification. A Prescription for
Electronic System-Level Methodology. Morgan Kaufmann, San Francisco (2007)

3. Björklund, D., Lilius, J.: From UML Behavioral Descriptions to Efficient Synthe-
sizable VHDL. In: 20th IEEE Norchip Conference, IEEE, Copenhagen (2002)

4. Balderas-Contreras, T., Cumplido, R.: An Efficient FPGA Architecture for Block
Ciphering in Third Generation Cellular Network. In: Technical Conference of The
International Embedded Solutions Event, Santa Clara, California (2004)

5. Balderas-Contreras, T., Cumplido, R.: High Performance Encryption Cores for 3G
Networks. In: 42nd Annual ACM IEEE Design Automation Conference, pp. 240–
243. ACM, New York (2005)

6. Flynn, M.J., Hung, P.: Microprocessor Design Issues: Thoughts on the Road Ahead.
IEEE Micro 25(3), 16–31 (2005)

7. Kent, S.: Model Driven Engineering; In Butler, M., Petre, L., Sere, K. (eds.) IFM
2002. LNCS vol. 2335, pp. 286–298. Springer, Heidelberg (2002)

8. Object Management Group: OMG Unified Modeling Language (OMG UML) Su-
perstructure V2.1.2. OMG Document Number: formal/2007-11-02 (2007)

9. Picek, R., Strahonja, V.: Model Driven Development - Future or Failure of Software
Development? In: Conference on Information and Intelligent Systems, Croatia
(2007)

10. Riccobene, E., Scandura, P., Rosti, A., Bocchio, S.: A UML 2.0 Profile for Sys-
temC. Technical report, ST Microelectronics (2005)

11. Semiconductor Industry Association: International Technology Roadmap for Semi-
conductors. Design Chapter. (2007)


