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a b s t r a c t

An ensemble of multiple classifiers is widely considered to be an effective technique for improving

accuracy and stability of a single classifier. This paper proposes a framework of sparse ensembles and

deals with new linear weighted combination methods for sparse ensembles. Sparse ensemble is to

sparsely combine the outputs of multiple classifiers by using a sparse weight vector. When the

continuous outputs of multiple classifiers are provided in our methods, the problem of solving sparse

weight vector can be formulated as linear programming problems in which the hinge loss or/and the

1-norm regularization are exploited. Both the hinge loss and the 1-norm regularization are techniques

inducing sparsity used in machine learning. We only ensemble classifiers with nonzero weight

coefficients. In these LP-based methods, the ensemble training error is minimized while the weight

vector of ensemble learning is controlled, which can be thought as implementing the structure risk

minimization rule and naturally explains good performance of these methods. The promising

experimental results over UCI data sets and the radar high-resolution range profile data are presented.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, combining multiple classifiers has been a very active
research technique. It is widely accepted that combining multiple
classifiers can achieve better classification performance than a
single (best) classifier, supported by experimental results [1–3].
An ensemble means combining multiple versions of a single
classifier or multiple various classifiers. One classifier used in an
ensemble is called an individual or component classifier. There
are two important issues in combining multiple classifiers. One is
that an ensemble of classifiers must be both diverse and accurate
in order to get better performance. Diversity can ensure that all
the individual classifiers make uncorrelated errors. If classifiers
get the same errors which will be propagated to the ensemble, no
improvement can be achieved in combining multiple classifiers.
In ensemble learning, there are two schemes to implement
diversity [4]. One scheme is to seek diversity explicitly (i.e., to
define a diversity measure and optimize it), and the other is to
seek diversity implicitly. Here we consider the scheme of seeking
diversity implicitly. One common way is to train individual
classifiers by using different (randomly selected) training sets
[5–7]. Bagging [5] and Boosting [6] are well known examples of
successfully iterative methods for reducing a generalization error.
The other way is to train multiple classifiers by using different
ll rights reserved.

.

feature sets [8,9]. In addition, accuracy of individual classifiers is
also important, since too many poor classifiers can suppress
correct predictions of good classifiers.

The other issue is about combination rules or fusion rules,
which is regarding how to combine the outputs of individual
classifiers. So far, many combination rules have been proposed
[10–16]. If the labels are available, a simple (majority) voting (SV)
rule can be used [10]. If the continuous outputs like posteriori
probabilities are supplied, an average, linear or nonlinear
combination rules can be employed [10,12,16]. Linear weighted
voting is the most frequently used rule [11,12,15]. Work on
weighted voting have addressed the problem of weights estima-
tion, in a regression setting [11,14,15], or in a classification setting
[12,17,18]. A linear weighted voting based on the minimum
classification error (WV-MCE) criterion is presented in [12], which
is solved by using gradient descent methods. In [17], a genetic
algorithm (GA) is used to select the best subset of classifiers and
the corresponding weight coefficients in neural network ensem-
bles. Grove et al. [18] suggest that we should make the minimum
margin of learned ensembles as large as possible by minimizing
training set error. They propose the LP-Adaboost method to find
the sparse weight vector.

The LP-Adaboost method in [18] and the GA-based method in
[17] are the beginning of sparse ensembles. By sparse ensembles,
we mean combining the outputs of all classifiers by a sparse
weight vector. Each classifier model has its own weight value,
zero or nonzero. Only classifiers corresponding to nonzero
coefficients play a role in the ensemble. As it is known, a sparse
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Fig. 1. Framework of classifier ensembles.
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model representation in machine learning is expected to improve
the generalization performance and computational efficiency
[19–21]. The mechanism to maximize the sparseness of a model
representation can be thought of as an approximative form of the
minimizing description length principle which can be used to
improve the generalization performance [7]. The sparsity in
machine learning can be measured by the number of nonzero
coefficients in a decision function.

The above combination rules except LP-Adaboost and GA-based
methods are to try to combine all classifiers in an ensemble. In
general classifier ensembles, it is necessary to combine all
individual classifiers to ensure good performance. It results in a
large memory requirement and a slow classification speed [22].
Selective ensembles, also called pruned ensembles, are designed
to remedy the drawbacks of general classifier ensembles. Only a
fraction of individual classifiers is selected and combined by using
simple or weighted voting in selective ensembles. In [22], some
methods are introduced for selecting a subset of individual
classifiers, and the performance of these methods are compared
in several benchmark classification tasks. The problem of
selecting the optimal subset of classifiers is a combinatorial
search assuming that the generalization performance can be
estimated in terms of some quantity measured on the training set
[22]. Recently, global optimization methods, e.g., GA [23] and
semi-definite programming [24] are used to solve the combina-
torial search problem. Since the global methods cost a lot, some
suboptimal ensemble pruning methods based on ordered aggre-
gation are proposed, including reduce-error pruning [25], margin
distance minimization (MDM) [26], orientation ordering [27],
boosting-based ordering [28], expectation propagation [29], and
so on. Among the pruning techniques, MDM and boosting-based
ordering methods provide similar or better classification perfor-
mance [22]. Actually the concept of pruned ensembles is identical
with that of sparse ensembles. In pruned ensemble, the
coefficients of selected classifiers are nonzero, and unselected
are zero, which generates a sparse weight vector. Generally,
pruned ensembles use simple voting or weighted voting. The
nonzero coefficients take the value one in simple voting [22], and
a value proportional to the classification accuracy of the
corresponding classifier [30,31], or found by some optimization
methods [23,24,29] in weighted voting.

This paper gives a framework of sparse ensemble learning, and
proposes new weighted combination methods for sparse ensem-
bles. The key problem in sparse ensembles is to find a sparse
weight vector. Grove and Schuurmans use a linear programming
method to find a sparse weight vector. The objective function of
LP-Adaboost is to minimize maximum margin in [18]. Here, our
goal is to find a sparse weight vector by minimizing the ensemble
training error and simultaneously controlling the weight vector of
ensemble learning, which can be taken as implementing the
structural risk minimization rule from the view of machine
learning. In our methods, the continuous outputs (estimated
posteriori probabilities or discriminant function values) of
individual classifier are required. This learning problem can also
be formulated as linear programming problems in which sparse-
ness techniques the hinge loss or/and the 1-norm regularization
are used. In our experiments, we consider the k NN classifier as an
individual classifier and apply the new linear weighted combina-
tion rule to combine the multiple k NN classifiers.

The rest of this paper is organized as follows. In Section 2, we
propose the framework of sparse ensembles and review the
related work including some classical combination rules.
Section 3 presents new linear weighted voting based on LP.
We compare our methods with the single k NN classifier and
the k NN ensemble classifiers based on other seven combination

rules on the UCI data sets and the radar high-resolution
range profile (HRRP) data in Section 4. Section 5 concludes this
paper.
2. Sparse ensembles and other related work

In this section, we firstly propose the framework of classifier
sparse ensembles and then introduce some other combination
methods used in our experiments.

2.1. Framework of sparse ensembles

Sparse ensembles mean that we combine the outputs of all
classifiers using a sparse weight vector. Each classifier model has
its own weight value, zero or nonzero. Only classifiers corre-
sponding to nonzero coefficients play a role in the ensemble.
To reduce memory demand and improve test speed, it is required
to select an optimal sub-ensemble (or a subset of classifiers) in
pruned (or selective) ensembles [22,30–32]. Actually the concept
of pruned ensembles is identical with that of sparse ensembles. In
pruned ensemble, the coefficients of selected classifiers are
nonzero, and unselected are zero, which creates a sparse weight
vector.

Now consider a multi-class classification problem. Let a
training sample set be X ¼ fðxi,yiÞjxiARD, yiA f1,2, . . . ,cg, i¼ 1,
2, . . . ,‘g, where yi are labels of xi, D is the dimensionality of the
sample space (or the number of sample features), c is the number
of classes, and ‘ is the total number of training samples. Hereafter
we use om to denote class m, m¼1,y,c. If xiAom, then yi¼m.
The framework of sparse ensembles is shown in Fig. 1. The whole
ensemble process is divided into two phases: training phase and
test phase. In training phase, X1,X2,y,XN are the training sets of N

individual classifiers, respectively. In this phase, we need to find
the sparse weight vector a¼ ½a1,a2, . . . ,aN�

T ARN by using some
methods, such as LP-Adaboost. In the test phase, the goal is to
estimate the label of a given test sample x. Assume the j-th
classifier would generate an output vector f j ¼ ½fj1ðxÞ,fj2ðxÞ, . . . ,
fjcðxÞ�

T ARc , where fjm(x) are the output of the j-th classifier for the
sample x associated with class om, which could be posteriori
probabilities or just only discriminant values normalized to the
interval [0,1]. The ensemble output of x for class om is

f �m ¼
XN

j ¼ 1

ajfjmðxÞ ð1Þ
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The estimated label for x can be estimated by

ŷ ¼ arg max
m ¼ 1,...,c

f �m ð2Þ

2.1.1. Diversity of individual classifiers

In sparse ensembles, we first consider about the diversity of
individual classifiers, or generating different classification out-
puts. There are two schemes to implement diversity [4], we only
adopt the scheme of seeking diversity implicitly for its simpleness
and popularity.
�
 Using different individual classifiers and the same training set,
such as k NN, decision tree, neural networks, etc. [30,31]. Here,
Xi¼X, i¼1,y,N.

�
 Using randomness or different parameters of some algorithms,

e.g., initialization for neural networks [12].

�
 Using different data subsets and the same individual classifier,

such as bootstrap samples [5–7], and feature subsets [8,9].

2.1.2. Weighed voting

In sparse ensembles, the combination rule adopts weighted
voting. The key is how to find a sparse weight vector, not just a
weight vector. There are many methods for finding a weight
vector [11,12,14,15,18]; most of them would get a nonsparse
weight vector except that in [18]. Pruned ensembles can result in
sparse weight vector [22–24,29–31]. From (2) and (1), the
weighted voting can be described as follows [12]:

assign x�!oq if f �q ¼ max
m ¼ 1,...,c

XN

j ¼ 1

ajfjmðxÞ ð3Þ

In (1), if all weight coefficients aj ¼ 1=N, j¼1,y,N, then simple
weighted voting (SWV) (also called simple averaging) is resulted.

Another weighted combination formula is presented in [12].

fmðxÞ ¼
XN

j ¼ 1

ajmfjmðxÞ ð4Þ

where ajm is the weight coefficient of the jth classifier for class
om. Ref. [12] shows that weighted voting based on the MCE
criterion using the combination formula (4) has the best
performance in his experimental comparison. However, a prob-
abilistic descent method is used to minimize the MCE criterion. As
it is known, gradient descent methods often run into local
minima.

2.2. Other combination methods

In the following, we briefly review some classical classifier
combination methods including the naive Bayes combination
methods and simple voting.

2.2.1. Naive Bayes combination methods

In these rules, assume that individual classifiers are mutually
independent; hence the name ‘‘naive’’ [1,10]. Now the outputs of
all individual classifiers should be posterior probabilities or their
estimates, or fjmðxÞ ¼ PjðomjxÞwhich is the posterior probability of
the test sample x belonging to class om obtained from the j-th
classifier. Obviously, these outputs 0r fjmðxÞr1. Two naive Bayes
combination rules are given as follows. The interested reader
should refer to [10] for detailed information.
�
 Product rule

assign x�!oq
if ½PðoqÞ�
�ðN�1Þ

YN
j ¼ 1

fjqðxÞ ¼ max
m ¼ 1,...,c

½PðomÞ�
�ðN�1Þ

YN
j ¼ 1

fjmðxÞ ð5Þ

where PðomÞ are priori probabilities for class om.

�
 Sum rule

assign x�!oq

if ð1�NÞPðoqÞþ
XN

j ¼ 1

fjqðxÞ ¼ max
m ¼ 1,...,c

ð1�NÞPðomÞþ
XN

j ¼ 1

fjmðxÞ

2
4

3
5
ð6Þ
2.2.2. Simple voting

The output vectors fj of models should be c-dimensional binary
vectors

½fj1ðxÞ,fj2ðxÞ, . . . ,fjcðxÞ�
T Af0,1gc , j¼ 1, . . . ,N

where fjm(x)¼1 if and only if x is classified as class om by using
the j-th classifier, and fjm(x)¼0 otherwise. Thus the SV method
can be described as

assign x�!oq if
XN

j ¼ 1

fjqðxÞ ¼ max
m ¼ 1,...,c

XN

j ¼ 1

fjmðxÞ ð7Þ

In pruned ensembles, SV is also a common combination method
[22,26,27].
3. New weighted combination methods based on linear
programming

In this section, we propose new weighted combination
methods based on LP to yield the sparse weight coefficients for
sparse ensembles.

Suppose there are c class samples and a training sample set
X ¼ fðxi,yiÞg

‘
i ¼ 1, where xiARD, yiAf1,2, . . . ,cg. Let om denote class

m, and N the ensemble size. XjDRd is the training set utilized in
the j-th classifier, where drD is the dimensionality of the
training set Xj. We only consider the simple linear combination
formula (1). If a training sample xiAoq, (3) can be expressed as
the following constraint

fqðxiÞ4 fmðxiÞ, m¼ 1, . . . ,c, maq ð8Þ

where fq(xi) is the ensemble output of sample xi on class oq.
Substituting (1) into (8), we obtain

XN

j ¼ 1

ajfjqðxiÞ4
XN

j ¼ 1

ajfjmðxiÞ, m¼ 1, . . . ,c, maq ð9Þ

When the output fjq are regarded as class posterior probabilities or
their estimates, the inequality (9) can be explained from the view
of Bayesian theory. If xi belongs to class oq, the weighted
posterior probability (or ensemble output) on class oq should be
the largest, otherwise xi would be misclassified. Obviously, the
better the classifier performance should be obtained, the larger
the term

PN
j ¼ 1 ajfjqðxiÞ in the left hand of (9) compared with that

in the right hand is. Thus, we introduce a positive constant e and
have

XN

j ¼ 1

ajfjqðxiÞ�
XN

j ¼ 1

ajfjmðxiÞZe, m¼ 1, . . . ,c, maq ð10Þ

Since these class posterior probabilities or discriminant function
values are obtained from the training results of multiple
classifiers, they might not be so accurate. We relax this inequality
constraint by introducing positive slack variables xq

im, and we
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rewritten (10) as

XN

j ¼ 1

ajfjqðxiÞ�
XN

j ¼ 1

ajfjmðxiÞZe�xq
im, xq

imZ0, m¼ 1, . . . ,c, maq

ð11Þ

If only xq
im4e, the sample xi is misclassified. Thus, it is required to

minimize the sum of xq
im to reduce the ensemble training error.

For this problem, we would obtain three different LP formulations
based on ways of controlling weight vector.

3.1. LP1 method

Similar to the way of processing weight vector in LP-Adaboost,
we first formulate the above problem as the following LP
problem:

LP1 : min
a,n

X‘
i ¼ 1

Xc

m ¼ 1,
m a q

xq
im

s:t:
XN

j ¼ 1

aj ¼ 1

1ðxiAoqÞ
XN

j ¼ 1

ajfjqðxiÞ�
XN

j ¼ 1

ajfjmðxiÞ

2
4

3
5Ze�xq

im,

ajZ0, xq
imZ0, maq, m¼ 1, . . . ,c, i¼ 1, . . . ,‘ ð12Þ

where eZ0 is a constant chosen by users, a¼ ½a1,a2, . . . ,aN�
T , n is

the column vector spanned by xq
im, i¼ 1, . . . ,‘, m¼ 1, . . . ,c, maq,

and the function 1ðxiAoqÞ is defined as

1ðxiAoqÞ ¼
1 if xiAoq

0 otherwise

�
ð13Þ

In LP1 (12), the objective function can be regarded as the hinge
loss. Namely if 1ðxiAoqÞ ¼ 1, then slack variables xq

im ¼maxf0,eþ
ðfmðxiÞ�fqðxiÞÞg, maq. The hinge loss has a zero-valued interval of
½e,þ1Þ, on which the loss takes zero value. In other words, if
fqðxÞi�fmðxÞiZe, then xq

im ¼ 0, which means n would be sparse. A
typical example of implementing the hinge loss to get a sparse
model representation is SVMs for classification [33,34]. The
learned models in SVMs exhibit obvious sparseness [35,36], the
decision function is only dependent on support vectors. At
the same time, a in the optimal solution is also sparse as the
case of LP-Adaboost. Note that aj is the weight coefficient of the
j-th individual classifier. If and only if aj40, the corresponding
individual classifier is selected to be one effective individual
classifier. Thus we implement sparse ensembles by combining
classifiers with only positive weight coefficients.

Now we make a comparison between LP-Adaboost and LP1. As
mentioned before, LP-Adaboost is also a combination method
based on LP for sparse ensembles [18]. But the goal of
LP-Adaboost is to minimize maximum margin in [18], which is
different from ours. In [18], the margin of the training sample xi

is defined as gi ¼
PN

j ¼ 1 ajzij ¼ aT zi, where zij¼1 if hj(xi)¼yi and
zij¼�1 if hjðxiÞayi, and hj(xi) are the classification results of the
j-th classifier on xi. LP-Adaboost is to maximize g, subject to
aT ziZg,

PN
j ¼ 1 aj ¼ 1 and ajZ0, j¼1,y,N. The margin gi can be

regarded as a measurement for classification performance of all
classifiers on xi. Thus, LP-Adaboost is to find the weight vector by
maximizing the classification performance of the hardest sample.
In LP1, we put focus on the total ensemble training error instead
of the classification performance of individual classifiers. For each
training sample, its ensemble output on its own class should be
the largest among the ensemble outputs on all classes. Thus, the
weight vector is adjusted to get good ensemble outputs for
training samples.
3.2. LP2 method

If we put weights aj into the objective function and delete the
equality constraint in LP1, we can obtain another LP formula as
follows:

LP2 : min
a,n

XN

j ¼ 1

ajþC
X‘
i ¼ 1

Xc

m ¼ 1,
m a q

xq
im

s:t: 1ðxiAoqÞ
XN

j ¼ 1

ajfjqðxiÞ�
XN

j ¼ 1

ajfjmðxiÞ

2
4

3
5Ze�xq

im

ajZ0, xq
imZ0, maq, m¼ 1, . . . ,c, i¼ 1, . . . ,‘ ð14Þ

where C40 is the penalty factor and e40 is any constant.
In LP2 (14), the first term

PN
j ¼ 1 aj is the 1-norm regularization

and the second term
P‘

i ¼ 1

Pc
m ¼ 1, maq x

q
im is the hinge loss. Both

of them are sparseness techniques. In fact, the 0-norm regular-
ization is the desirable one to obtain sparseness, but the 0-norm
regularization is so discontinuous that it is difficult to optimize
the objective function. As an approximation of the 0-norm
regularization, the 1-norm regularization can also induce sparse-
ness and is segment-wise differentiable to make the optimization
possible. A good example of using both two sparseness techniques
to implement a sparse model representation is 1-norm SVMs
[37–42]. It has been shown that 1-norm SVMs have better
sparseness than SVMs due to the adoption of two sparseness
techniques [21]. Clearly, the solution of LP2 (14) is sparse. We can
also implement sparse ensembles by combining the individual
classifiers with positive weight coefficients (or aj40).

When we employ LP2 (14) to find the coefficients of N

individual classifiers, we have the following theorem about the
selection of the constant e.

Theorem 1. When e takes two positive constants, say e140 and

e240, LP2 (14) gives two optimal solutions ððaÞ�1,ðnÞ�1Þ and ððaÞ�2,ðnÞ�2Þ,
respectively, then ððaÞ�1,ðnÞ�1Þ and ððaÞ�2,ðnÞ�2Þ are rescalings of the same

optimal solution.

The proof of Theorem 1 is given in Appendix A. Theorem 1
shows that the various values of e have no effect on the
classification results. An unseen sample x, for example, is assigned
to class oq if the optimal solution ðaÞ�1 is taken as the coefficients
of individual classifiers. This sample is also assigned to the same
class oq if ðaÞ�2 is adopted to combining N individual classifiers.
3.3. LP3 method

While in LP problems (12) and (14), weights are constrained to
be nonnegative. In ensemble learning, it is required that
individual classifiers are good weak ones whose performance is
better than that of random guess. Poor weak classifiers do not
perform better than random guess and affect the performance of
ensemble learning. In order to avoid this, we expect the
coefficients of poor individual classifiers to be negative. In doing
so, poor individual classifiers would play a positive role in
ensembles. Hence, we construct a LP formula in which weights
are unrestricted in sign. Let aj ¼ bþj �b

�

j . Then we can get

LP3 : min
a,n

XN

j ¼ 1

ðbþj þb
�

j ÞþC
X‘
i ¼ 1

Xc

m ¼ 1,
m a q

xq
im

s:t: 1ðxiAoqÞ
XN

j ¼ 1

ðbþj �b
�

j ÞfjqðxiÞ�
XN

j ¼ 1

ðbþj �b
�

j ÞfjmðxiÞ

2
4

3
5Ze�xq

im
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bþj Z0, b�j Z0, xq
imZ0, maq, m¼ 1, . . . ,c, i¼ 1, . . . ,‘

ð15Þ

In LP3 (15), the first term is also the 1-norm regularization
term and the second term is the hinge loss. Similar to LP2, LP3 also
uses two sparseness techniques. In LP3, however, weight
coefficients may be negative. Thus individual classifiers with
nonzero weight coefficients (or aja0) are considered in the
ensemble. We have the similar theorem about the constant e in
LP3 (15).

Theorem 2. When e takes two positive constants, say e140
and e240, LP3 (15) gives two optimal solutions ððbþ Þ�1,ðb�Þ�1,ðnÞ�1Þ
and ððbþ Þ�2,ðb�Þ�2,ðnÞ�2Þ, respectively, then ððbþ Þ�1,ðb�Þ�1,ðnÞ�1Þ and

ððbþ Þ�2,ðb�Þ�2,ðnÞ�2Þ are rescalings of the same optimal solution.

The proof of Theorem 2 is similar to that of Theorem 1, so it is
omitted. However, it is argued whether the unrestricted weights
can result good performance. In theory, it could be better using
unrestricted in sign, but the weights cannot be reliably estimated
in most cases [16]. We will see in Section 4, the experimental
results of LP3 is not so good as we expected.

From the three LP problems (12), (14) and (15), we can see the
ensemble training error is minimized while simultaneously the
capacity of ensemble learning (or the weight vector) is controlled.
Therefore, these methods can be roughly thought as implement-
ing the structure risk minimization rule. LP1 (12), LP2 (14) and
LP3 (15) can be solved by classical methods such as Newton
method, the column generation algorithm, and the simplex
method [43]. We will not develop this topic further here.
Interested readers may refer to [43] for details.
4. Simulation

In order to validate the performance of our linear weighted
combination methods, experiments on UCI data sets [44] and
radar target images [45,46] are performed. All numerical experi-
ments are performed on the personal computer with a 1.8 GHz
Pentium III and 1 G bytes of memory. This computer runs on
Windows XP, with Matlab 7.1 installed.

4.1. Individual classifier and combination methods

The k NN classifier which employs the Euclidean distance as a
distance measurement is considered as an individual classifier in
the ensemble. It turns out that sampling the training set is not
effective in k NN classifier ensembles [5,6]. However, the k NN
methods are sensitive to input features [9], and to the chosen
distance metric [47,48]. Bay [9] proposes an efficient way to
combining k NN classifiers through multiple feature subsets
(MFS). Here, we use MFS to get the diversity of k NN classifiers.
Moreover, experimental results in [9] showed that both sampling
with replacement and sampling without replacement have the
similar performance. In our experiments, the random subset of
features Xj are selected by sampling with replacement from the
original set X, all dj, j¼1,y,N are equal to each other, and smaller
than or equal to D. Namely k NN classifiers share the same value
of d. Define the outputs of the jth individual k NN classifier to be

fjmðxÞ ¼
km

k
, m¼ 1, . . . ,c ð16Þ

where k is the number of nearest neighbors, km is the number of
nearest neighbors belonging to the class om, and

Pc
m ¼ 1 km ¼ k.

Actually, the expression km/k can also be regarded as the
discriminant function. To adopt the SV rule, we have

fjqðxÞ ¼
1 if kq ¼ max

m ¼ 1,...,c
km

0 otherwise

(
ð17Þ

We compare the accuracy of linear weighted averaging
methods based on LP1 (12) (WV-LP1), LP2 (14) (WV-LP2) and
LP3 (15) (WV-LP3) with the following methods.
1.
 Single k NN method with parameter k. There is no combination
rule used in this method. So we call this method ‘‘None’’ in
terms of combination rules.
2.
 Ensembles with two naive Bayes combination rules including
the product rule (5) and the sum rule (6), with parameters N, k

and d.

3.
 Ensembles with SV (7) with parameters N, k and d.

4.
 Ensembles with two linear combination rules, including SWA

with parameters N, k and d, and the MCE criterion ([12]) with
parameters N, k, d, Z and z.
5.
 Sparse ensemble with LP-Adaboost [18] in which N, k and d are
parameters.
6.
 Pruned ensemble with MDM [26] in which parameters are N, k

and d.

WV-LP1 has parameters N, k, d, and e, while both WV-LP2 and
WV-LP3 have parameters N, k, d, and C.

For all ensembles in our experiments, the number of classifiers
is set to N¼100 as a reasonable trade-off between computational
complexity and accuracy [9]. Other parameters, such as the size of
the feature subsets and the value of k are selected by the cross-
validation method on the training set [7]. The setting of other
parameters is given in the following.
1.
 The value of k is selected from {1, 4, 7, 10, 13, 16, 19}.

2.
 In the classifier ensembles, the size of the feature subsets are

closely related to the dimension of data. Let the size of original
features be D. The size of feature subsets is selected from
fb0:1ðD�1Þc,b0:2ðD�1Þc, . . . ,b0:9ðD�1Þc,ðD�1Þg, where b�c is a
floor function.
3.
 In WV-MCE, the parameter Z is selected from {2�3,2�2,y,23}
and z is selected from {10,20,30,40,50,60}.
4.
 In the WV-LP1 method, e is selected from {2�9,2�8,y,20}.

5.
 For LP2 and LP3 methods, penalty factor C is selected from

{2�5,2�4,y,24}.

Theorems 1 and 2 tell us that the value of e in LP2 and LP3 is not
so important. Thus we take e¼ 0:1 in our experiments.

4.2. Experiments on UCI data sets

We use 14 data sets from the UCI database [44]. The second
column in Table 1 presents some attribute of these data sets,
where ‘ is the number of samples, D is the feature number of
samples, and c is the number of classes. These data sets are
normalized so that continuous features ranged in the interval
[0,1]. For each data set, we run 10 trials where the training set
contains 2

3 of samples (randomly selected) of each class, and the
test set contains the remaining 1

3. In each trial, the 10-fold cross-
validation method is applied to the training set to choose optimal
parameters. Although we have the optimal parameter d*, we do
not know which features should be chosen. Hence we randomly
select d* features for both training and test set in each trial and
perform 10 random selection.

Table 1 also gives the average ensemble classifiers numbers of
all ensemble methods. Note that the ensemble size N¼100. We
can see that the first five methods use all 100 classifiers in the
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ensemble. Moreover, the WV-MCE method uses c�N nonzero
weight coefficients in the ensemble. The other methods LP-
Adaboost, MDM, and our three methods get much smaller
numbers of nonzero weights than 100. These methods only
utilize a small part of classifiers in the ensemble. From the index
of the total average, the LP-Adaboost method has the best sparsity
among them, followed by our LP methods.

The mean and standard deviation of classification error rates
on test sets are reported in Table 2. The WV-LP1 method has the
best performance on all sets except Liver, Pima, Wdbc and Wine
data sets. The WV-LP2 has the best performance on Liver and
Pima sets, and WV-MCE on the Wdbc and Wine sets. Fig. 2 shows
the average classification errors on all 14 data sets. From this
figure, we can see that the best average performance is obtained
by the WV-LP1 method, followed by WV-MCE and WV-LP2
Table 1
Comparison of ensemble classifier numbers.

Data set ‘=D=c Product LP-Adaboost

Sum

SV

SWA

WV-MCE

Breast 699/9/2 100 1.05

Glass 213/9/6 100 3.88

Heart-Cleveland 303/13/2 100 8.46

Hepatitis 155/19/2 100 12.70

Ionosphere 351/32/2 100 6.28

Liver 345/6/2 100 2.70

Musk 476/166/2 100 19.65

Pima 768/8/2 100 5.93

Sonar 208/60/2 100 12.16

Vehicle 846/18/4 100 22.71

Vote 435/16/2 100 2.28

Wdbc 569/30/2 100 1.34

Wine 178/13/3 100 9.84

Wpbc 198/33/2 100 1.00

Total average 100 7.86

Note: ‘ is the number of total training sample, D is the dimensionality of sample space

Table 2
Mean and standard deviation of classification error rates (%) on test sets of UCI databa

Combination rule Breast Glass Heart-Cleveland

None 3.4971.03 30.2975.40 22.0073.53

Product 7.9673.36 35.9176.85 33.05716.38

Sum 3.1070.78 30.7475.86 17.8374.03

SV 3.2870.94 35.4576.98 22.7779.08

SWA 3.1570.81 30.6275.70 18.0373.91

WV-MCE 3.1271.23 21.9175.52 18.3073.30

LP-Adaboost 5.7974.18 43.09711.26 22.9673.17

MDM 3.3371.37 20.7074.03 19.7373.10

WV-LP1 2.9071.02 18.3573.73 16.7873.65

WV-LP2 3.9371.23 20.6174.45 17.7873.97

WA-LP3 3.8271.32 22.4574.47 19.7373.18

Pima Sonar Vehicle

None 26.2771.91 15.2272.75 31.4672.16

Product 24.6572.42 50.13723.47 32.4074.86

Sum 25.7173.04 16.0474.60 29.4472.90

SV 25.8772.66 19.4275.96 30.9372.54

SWA 25.9573.34 15.8874.26 29.5072.99

WA-MCE 25.5072.17 13.7874.00 28.0371.56

LP-Adaboost 27.8773.11 18.8676.05 39.22710.89

MDM 24.7672.16 14.7773.87 27.2071.45

WV-LP1 24.6271.98 10.8873.07 25.3872.09

WV-LP2 24.2071.60 14.0773.45 27.4970.84

WV-LP3 25.1071.58 15.7573.68 27.4372.09
methods. By observing the classification results of three LP
methods, we can see that WA-LP1 is the best. Originally, we
expected WA-LP3 would be a good one because weight
coefficients are not constrained to be positive. However,
empirical results show it is unreliable.

Linear weighted averaging methods in both sparse or non-
sparse ensembles need time to find the weight coefficients, and
pruned ensembles also need additional time to select optimal
sub-ensembles. As we stated before, pruned ensembles can be
taken as a special sparse ensemble in which the weight
coefficients of selected classifiers have the value one. Thus, for
the sake of convenience, the additional time is called time for
finding the weight coefficients. Table 3 reports the additional time
for some methods in our experiments. WV-MCE has good
performance, but we can see it takes a long time to find weight
MDM WV-LP1 WV-LP2 WV-LP3

55.31 5.49 9.87 12.29

40.33 17.61 16.81 17.33

19.44 13.11 13.16 20.47

17.09 14.64 7.54 5.12

20.37 14.64 19.93 28.87

43.59 8.90 6.00 4.85

22.00 22.49 23.20 34.56

21.61 11.61 5.66 8.85

25.85 16.74 16.33 28.76

15.94 23.59 17.81 65.61

9.52 8.93 8.81 13.63

8.26 7.27 8.78 20.21

14.46 5.95 7.38 8.47

9.34 4.56 7.26 20.05

23.08 12.54 12.04 20.65

, and c is the class number.

se.

Hepatitis Ionosphere Liver Musk

37.6577.44 14.5372.58 38.5173.11 14.6273.61

36.6377.38 19.0973.70 36.8474.90 28.9777.19

36.8677.34 13.1972.65 36.9374.31 10.4673.78

36.4977.58 13.5872.61 38.2471.692 10.5474.02

37.1477.43 13.1872.53 37.0474.39 10.4373.80

34.8675.58 6.1071.44 34.1074.17 9.9773.41

36.2476.68 13.6172.60 38.1373.43 10.9272.24

37.5573.90 6.6271.92 33.1872.18 9.2372.21

34.7877.90 5.7171.24 32.9973.40 7.8573.42

35.9275.26 7.5671.30 32.2273.77 9.4472.45

34.8476.79 8.7472.57 32.9574.00 12.2572.22

Vote Wdbc Wine Wpbc

7.3171.27 3.0271.39 2.2471.42 22.4672.83

8.7471.74 5.9774.31 2.9372.38 25.0979.18

19.68714.25 3.4471.16 2.3171.41 21.0973.73

13.94713.14 3.5271.72 2.5771.26 21.8074.28

19.63714.31 3.5371.12 2.2871.40 21.1873.63

6.7071.65 2.3471.45 0.9371.16 19.4372.38

15.48710.68 4.5971.41 3.3872.09 27.0673.85

6.2371.22 2.9871.29 1.9071.44 19.6371.17

5.2371.55 2.3871.31 2.1972.08 16.6571.11

5.8670.59 2.7971.10 2.3172.51 20.9571.69

6.0871.58 3.0271.41 2.3472.69 22.8972.85
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Fig. 2. Average classification error on all 14 UCI data sets.

Table 3
Comparison of average time for finding weight coefficients.

Data set WV-MCE LP-Adaboost MDM WV-LP1 WV-LP2 WV-LP3

Breast 18.46 0.019 0.46 0.53 0.53 0.67

Glass 49.15 0.0095 0.28 1.33 1.35 1.56

Heart-Cleveland 12.71 0.016 0.21 0.26 0.25 0.37

Hepatitis 0.85 0.0092 0.041 0.034 0.020 0.02

Ionosphere 4.65 0.041 0.36 0.12 0.15 0.49

Liver 3.83 0.032 0.11 0.087 0.066 0.10

Musk 9.29 0.076 0.43 0.24 0.34 0.52

Pima 14.05 0.097 0.37 0.32 0.21 0.36

Sonar 3.53 0.027 0.15 0.066 0.061 0.13

Vehicle 85.56 0.19 0.23 5.75 4.04 10.42

Vote 1.91 0.048 0.051 0.14 0.11 0.24

Wdbc 7.07 0.058 0.26 0.18 0.19 0.53

Wine 1.52 0.015 0.17 0.11 0.13 0.30

Wpbc 3.66 0.017 0.083 0.046 0.041 0.081

Table 4
Parameters of planes and radar in the inverse synthetic aperture radar experiment.

Radar parameters Center frequency 5520 MHz

Bandwidth 400 HMz

Planes Length (m) Width (m) Height (m)

Yark-42 36.38 34.88 9.83

An-26 23.80 29.20 9.83

Cessna citation S/II 14.40 15.90
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coefficients. LP-Adaboost is fast, but its performance is bad. Other
methods, MDM, WV-LP1, WV-LP2, and WV-LP3 take a time
between LP-Adaboost and WV-MCE for finding weight
coefficients. For instance, WV-LP1 has a slower speed and a
better performance than LP-Adaboost, and has a faster speed than
WV-MCE on UCI data sets.
4.3. Experiments on radar high-resolution range profile data

High-resolution range profile (HRRP) is the amplitude of the
coherent summations of the complex time returns from target
scatterers in each range cell, which represents the projection of
the complex returned echoes from the target scattering centers
onto the radar line-of-sight (LOS) [45,46]. HRRP contains the
target structure signatures, including target size, scatterer
distribution, etc. Here, the HRRP data is measured airplane data
as in [45,46]. There are three airplanes including Yark-42, An-26
and Cessna Citation S/II. The parameters of three airplanes and
radar are presented in Table 4, and the projections of airplane
trajectories onto ground plane are shown in Fig. 3 from which we
can know that the measured data is segmented, and can estimate
the aspect angle of an airplane according to its relative position to
radar. Training samples and test samples are selected from
different data segments. The selection scheme is the same as
that in [45,46]. The training samples are from the second and fifth
segments of the Yark-42, the fifth and sixth segments of the
An-26, and the sixth and seventh segments of the Cessna Citation
S/II. The remaining data segments are taken as the test samples.
The training samples cover almost all of the target-aspect angles,
but their elevation angles are different from those of the test data.

In the training process, we adopt the 10-fold cross-validation
method to choose the optimal parameters. These resulting
optimal parameters are applied to the test procedure. In the
same way, we randomly select d features in both training and
test sets and perform 10 random runs. The results (the average
test error rate over these 10 runs, the number of ensemble
classifiers and the time for finding weight coefficients) are given
in Table 5. The observation on Table 5 indicates that the WV-LP1
has the best classification performance, followed by WV-LP2 and
WV-LP3. Our methods are comparable to other two methods in
sparsity. The time for finding weight coefficients is about one
second in this experiment.
5. Conclusions

This paper deals with linear weighted combination methods
based on LP, which are applied to sparse ensembles. In ensembles,
we consider minimizing the ensemble training error in terms of
all learned individual classifiers. The problem can be cast into
linear programming problems in which the hinge loss or/and the
1-norm regularization are adapted. Both techniques can induce a
sparse solution. The optimization goal of these LP-based methods



Fig. 3. Projections of three plane trajectories onto ground plane: (a) Yark-42, (b) An-26, and (c) Cessna Citation S/II.

Table 5
Comparison of average ensemble classifier numbers.

Combination

rule

Test error rate

(%)

] Ensemble

classifier

Time for

finding weight

coefficients (s)

None 36.0870.00 – –

Product 83.1670.43 100.00 –

Sum 18.7170.81 100.00 –

SV 18.8070.75 100.00 –

SWA 18.7970.57 100.00 –

WV-MCE 18.7670.55 100.00 4.1184

LP-Adaboost 22.3372.72 17.40 0.0546

MDM 15.6371.68 8.10 0.0172

WV-LP1 14.5671.08 14.10 0.7472

WV-LP2 14.9671.08 17.30 0.7847

WV-LP3 15.2771.97 17.10 1.2199
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is to minimize the ensemble training error and to control the
weight vector of ensemble learning, which accounts for their good
performance. Our combination rules can be applied to the
ensemble of any classifiers if posterior probabilities or discrimi-
nant values of these classifiers can be obtained. In experiments,
we compare our methods with other methods by ensembling
k NN classifiers. Experimental results on UCI data sets and the
radar high-resolution range profile data confirm the validity of
our rules. Our methods have a promising sparseness and
generalization performance. Especially the WV-LP1 method
behaves very well in the most of data sets investigated here.
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Appendix A. The proof of Theorem 1
Proof. Assume that ððaÞ�1,ðnÞ�1Þ is the optimal solution of the
following LP for e¼ e1.

min LððaÞ1,ðnÞ1Þ ¼
XN

j ¼ 1

ðajÞ1þC
X‘
i ¼ 1

Xc

m ¼ 1, maq

ðxq
imÞ1

s:t: 1ðxiAoqÞ
XN

j ¼ 1

ðajÞ1PjðoqjðxiÞ
j
Þ�
XN

j ¼ 1

ðajÞ1PjðomjðxiÞ
j
Þ

2
4

3
5Ze1�ðx

q
imÞ1

ðajÞ1Z0, ðxq
imÞ1Z0, maq, m¼ 1, . . . ,c, i¼ 1, . . . ,‘ ð18Þ

where ðajÞ1 and ðxq
imÞ1 are components of ðaÞ1 and ðnÞ1,

respectively.

For e¼ e2, LP2 can be rewritten as

min LððaÞ2,ðnÞ2Þ ¼
XN

j ¼ 1

ðajÞ2þC
X‘
i ¼ 1

Xc

m ¼ 1, maq

ðxq
imÞ2

s:t: 1ðxiAoqÞ
XN

j ¼ 1

ðajÞ2PjðoqjðxiÞ
j
Þ�
XN

j ¼ 1

ðajÞ2PjðomjðxiÞ
j
Þ

2
4

3
5Ze2�ðx

q
imÞ2

ðajÞ2Z0, ðxq
imÞ2Z0, maq, m¼ 1, . . . ,c, i¼ 1, . . . ,‘ ð19Þ

Now we multiply two sides of inequality constraints of (19) by

e1=e2, and multiply the objective function of (19) by e1e2=e2e1.
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There get

min LððaÞ2,ðnÞ2Þ ¼
e2

e1

XN

j ¼ 1

e1

e2
ðajÞ2þC

X‘
i ¼ 1

Xc

m ¼ 1, maq

e1

e2
ðxq

imÞ2

0
@

1
A

s:t: ðxiAoqÞ
XN

j ¼ 1

e1

e2
ðajÞ2PjðoqjðxiÞ

j
Þ�
XN

j ¼ 1

e1

e2
ðajÞ2PjðomjðxiÞ

j
Þ

2
4

3
5

Ze1�
e1

e2
ðxq

imÞ2 ðajÞ2Z0,

ðxq
imÞ2ÞZ0, maq, m¼ 1, . . . ,c, i¼ 1, . . . ,‘ ð20Þ

Observing LPs (18) and (20), we get the optimal solution of (20)

e1

e2
ðajÞ
�
2 ¼ ðajÞ

�
1, j¼ 1, . . . ,N ð21Þ

and

e1

e2
ðxq

imÞ
�
2 ¼ ðx

q
imÞ
�
1, maq, m¼ 1, . . . ,c, i¼ 1, . . . ,‘, ð22Þ

That is,

ðaÞ�2 ¼
e2

e1
ðaÞ�2 ð23Þ

and

ðnÞ�2 ¼
e2

e1
ðnÞ�1 ð24Þ

where ððaÞ�2,ðnÞ�2Þ is the optimal solution of (19) in matrix form.

Hence ððaÞ�1,ðnÞ�1Þ and ððaÞ�2,ðnÞ�2Þ are rescalings of the same optimal

solution.

In addition the optimal objective function value

LððaÞ�2,ðnÞ�2Þ ¼
e2

e1
LððaÞ�1,ðnÞ�1Þ ð25Þ

This completes the proof of Theorem 1. &
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