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a b s t r a c t 

Rough set theory has been extensively discussed in machine learning and pattern recognition. It provides 

us another important theoretical tool for feature selection. In this paper, we construct a novel rough set 

model for feature subset selection. First, we define the fuzzy decision of a sample by using the concept 

of fuzzy neighborhood. A parameterized fuzzy relation is introduced to characterize fuzzy information 

granules for analysis of real-valued data. Then, we use the relationship between fuzzy neighborhood and 

fuzzy decision to construct a new rough set model: fuzzy neighborhood rough set model. Based on this 

model, the definitions of upper and lower approximation, boundary region and positive region are given, 

and the effects of parameters on these concepts are discussed. To make the new model tolerate noises 

in data, we introduce a variable-precision fuzzy neighborhood rough set model. This model can decrease 

the possibility that a sample is classified into a wrong category. Finally, we define the dependency be- 

tween fuzzy decision and condition attributes and employ the dependency to evaluate the significance of 

a candidate feature, using which a greedy feature subset selection algorithm is designed. The proposed al- 

gorithm is compared with some classical algorithms. The experiments show that the proposed algorithm 

gets higher classification performance and the numbers of selected features are relatively small. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Nowadays, databases expand quickly, more and more attributes

re obtained in production practice. Some of attributes may be re-

undant or irrelevant to a classification task, they need to be re-

oved before any further data processing can be carried out. Fea-

ure selection or attribute reduction is a technique for reducing

eatures. Its aim is to find an optimal feature subset to predict

ample categories. Feature subset selection can also facilitate data

isualization and data understanding [11] . In recent years, much

ttention has been paid to feature selection in machine learning,

ata analysis and pattern recognition. 

There is a key issue in feature selection process: feature eval-

ation. How to construct an effective evaluation function is one

f the most important steps. It directly affects the performance

f a classifier. A lots of feature evaluation measures, such as

nformation entropy [8,12] , dependency [3,9–11] , correlation [7] ,

nd consistency [4] , have been proposed for feature selection

ntil now. In general, different evaluation measures may lead to
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ifferent optimal feature subsets. However, every measure is aimed

o determine the discriminating ability of a subset of features. 

The classical rough set theory [17] has been proven to be an

ffective tool for feature selection. It employs a dependency func-

ion to evaluate the classification quality of a subset of attributes.

owever, this model is just applicable to nominal data. In practi-

al problems, it is most often the case that the values of attributes

ay be both crisp and real-valued. The real-valued features need

o be discretized before the dependency is calculated. The inherent

rror that exists in discretization process is of major concern. This

s where the traditional rough set theory encounters a problem. 

Some generalizations of the model were proposed to deal with

his problem [5,6,13–16,19–25] . Neighborhood rough set and fuzzy

ough set are considered two important models. Lin generalized

he classical rough set with neighborhood operators and intro-

uced a neighborhood rough set model [14] . Dubois and Prade

efined fuzzy rough approximation operators by combining rough

ets and fuzzy sets and proposed a fuzzy rough set model [5] . Re-

ently, some feature selection algorithms based on the generalized

odels have been proposed [1–3,8–11,18,20,26] . 

As we know, the core idea of rough set theory is based on gran-

lation and approximation. In a neighborhood rough set, neighbor-

ood similarity classes are used to approximately characterize de-

ision equivalence classes. The limitation of this model is that it
ed on fuzzy neighborhood rough sets, Knowledge-Based Systems 

http://dx.doi.org/10.1016/j.knosys.2016.08.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/knosys
mailto:changzhongwang@126.com
http://dx.doi.org/10.1016/j.knosys.2016.08.009
http://dx.doi.org/10.1016/j.knosys.2016.08.009


2 C. Wang et al. / Knowledge-Based Systems 0 0 0 (2016) 1–7 

ARTICLE IN PRESS 

JID: KNOSYS [m5G; August 11, 2016;13:4 ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f  

t  

t  

d  

f  

p  

r  

r  

s  

a  

r  

t  

t  

t  

[  

i  

i  

w  

t  

d  

a  

Z  

s  

s  

p  

l  

f  

b  

s  

3

 

c  

i  

p  

t  

a  

a  

t  

g

 

d  

r

(  

 

d  

d

D  

.  

∈

D

w  

o  

i

cannot describe the fuzziness of samples in fuzzy background. In

classical fuzzy rough set model, fuzzy information granules are the

elemental granules. The membership degrees of a sample to dif-

ferent decision classes are computed by min-max operations. That

is to say, the decision of a sample is based on a nearest sample.

However, there may be some risks in computation of fuzzy lower

approximations when a data set has noise. Data noise can destroy

the accuracy of calculation of membership degrees and lead to an

increase in classification error rate. To better describe sample deci-

sions by using fuzzy information granules, a new rough set model,

named fuzzy neighborhood rough set model, is introduced in this

paper. 

We first define the fuzzy decision of a sample and employ a

parameterized fuzzy relation to characterize its fuzzy information

granule. We then use the inclusion relation of them to decide

whether the sample is classified into one of decision classes. Be-

cause this way of decision-making fully utilizes the classification

information of multiple samples, it overcomes the disadvantage of

fuzzy rough set model by using a nearest neighbor to determine

the membership degree of a sample to different decision classes.

The proposed model is a nature generalization of neighborhood

rough sets. This is the main difference from the classical fuzzy

rough set theory. As the proposed model is too strict to tolerate

noise in data, a variable precision fuzzy neighborhood rough set

model is introduced. This model is more effective to process the

fuzzy or uncertain knowledge because it can decrease the possibil-

ity that a sample is classified into a wrong class. Finally, we de-

fine the dependency between features and decision and design a

feature selection algorithm. Numerical experiments show that the

proposed algorithm yields better performance. 

The paper is organized as follows. In Section 2 , we review some

relevant literature about neighborhood rough sets and fuzzy rough

sets. In Section 3 , we develop a new model: fuzzy neighborhood

rough set model. In Section 4 , we design a heuristic algorithm

of attribute reduction. In Section 5 , we verify the feasibility and

stability of the proposed algorithm. Section 6 concludes the paper. 

2. Literature reviews 

Neighborhood is one of important concepts in classification

learning and reasoning with uncertainty. A neighborhood rela-

tion can be used to generate a family of neighborhood granules

characterized with numerical features [15] . In 1997, Lin pointed

out that neighborhoods are more general information granules

than equivalence classes and introduced neighborhood relations

into rough set methodology [14] . Based on this observation, a

neighborhood rough set model was constructed. Then, Wu and

Zhang studied some properties of neighborhood approximation

spaces [22] . Yao discussed the relationship between neighborhood

operators and rough approximation operators and presented the

axiomatic properties of this model [23] . In 2008, Hu employed

the neighborhood rough set model to deal with feature subset

selection in real-valued sample space [9] . In fact, the neighbor-

hood model is a natural generalization of classical rough sets. The

model can be used to deal with mixed numerical and categorical

data within a uniform framework and overcomes the drawback of

discretization of data in classical rough sets. However, it cannot

describe the fuzziness of samples in fuzzy background. 

Fuzzy rough sets, as proposed by Dubois and Prade [5] , can

also deal with numerical or continuous data sets directly. Numeri-

cal attribute values are no longer needed for discretization. In this

model, a fuzzy similarity relation is defined to measure the sim-

ilarity between samples. The fuzzy upper and lower approxima-

tions of a decision are then defined by using the fuzzy similarity

relation. The fuzzy positive region is defined as the union of the

fuzzy lower approximations of decision equivalence classes. As the
Please cite this article as: C. Wang et al., Feature subset selection bas
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uzziness is introduced into the rough set theory, more informa-

ion of continuous attribute values is easily kept. So, feature selec-

ion with fuzzy rough sets becomes another important tool in han-

ling dataset with real-valued attributes. In recent years, a series of

eature selection algorithms based on fuzzy rough sets have been

roposed. Jensen introduced the dependency function in classical

ough sets into fuzzy rough sets and proposed an a greedy algo-

ithm for reducing redundant attributes [11] . Bhatt and Gopal pre-

ented the concept of compact computational domain for Jensen’s

lgorithm to improve computational efficiency [1] . Chen used fuzzy

ough sets to define fuzzy discernibility matrix by which all at-

ribute reducts are computed [2] . For data-based attribute selec-

ion, Cornelis generalized the classical rough set model using fuzzy

olerance relations within the context of fuzzy rough set theory

3] . Hu et al. employed kernel functions to define fuzzy similar-

ty relations and constructed a greedy algorithm for dimensional-

ty reduction [10] . Meanwhile, the classical fuzzy rough set model

as improved to analyze noisy data. Mieszkowicz Rolka introduced

he model of variable precision fuzzy rough sets to deal with noisy

ata [19] , where the fuzzy memberships of a sample to the lower

nd upper approximations were computed with fuzzy inclusion.

hao et al. defined the concept of fuzzy variable precision rough

ets to handle noise of misclassification and perturbation [26] . To

olve the problem of data fitting in classical fuzzy rough sets, Wang

roposed a fitting fuzzy rough set model to conduct feature se-

ection [20] . However, in all kinds of fuzzy rough set models, the

uzzy upper and lower approximations of a decision is computed

y using a nearest sample, there may be some risks when a data

et has noise. This is the main drawback of fuzzy rough set models.

. Fuzzy neighborhood rough set model 

Let 〈 U, A, D 〉 be a decision table, where U = { x 1 , x 2 , . . . , x n } is

alled a sample space, A is a set of attributes or features character-

zing samples and D is a decision attribute. Assume that the sam-

les are partitioned into r mutually exclusive decision classes by D ,

hat is, U/ D = { D 1 , D 2 , . . . , D r } . In this section, the fuzzy decision of

 sample is defined and parameterized fuzzy information granules

ssociated with samples are introduced. The task is to approximate

he fuzzy decision classes with parameterized fuzzy information

ranules. 

Let B ⊆ A be a subset of attributes on U , and then B can in-

uce a fuzzy binary relation R B on U. R B is called a fuzzy similarity

elation if it satisfies 

1) Reflectivity: R B (x, x ) = 1 , ∀ x ∈ U ; (2) Symmetry: R B (x, y ) =
R B (y, x ) , ∀ x, y ∈ U . 

Let a ∈ B and R a be a fuzzy similarity relation induced by a , we

enote R B = 

⋂ 

a ∈ B R a . For any x ∈ U , the fuzzy neighborhood of x is

efined as [ x ] B (y ) = R B (x, y ) , y ∈ U . 

efinition 1. Given a decision table 〈 U, A, D 〉 , U/D = { D 1 , D 2 ,

 . . D r } . R A is the fuzzy similarity relation on U induced by A , ∀ x

 U , the fuzzy decision of x is defined as follows. 

˜ 
 i ( x ) = 

∣∣[ x ] A ∩ D i 

∣∣∣∣[ x ] 
A 

∣∣ , i = 1 , 2 , . . . , r, 

here ˜ D i is a fuzzy set and 

˜ D i (x ) indicates the membership degree

f x to D i . We call { ̃  D 1 , ˜ D 2 , . . . ˜ D r } the fuzzy decisions of samples

nduced by D . 
ed on fuzzy neighborhood rough sets, Knowledge-Based Systems 
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xample 1. Given a decision table 〈 U, A, D 〉 , where U = { x 1 , x 2 ,
 . . , x 5 } . R A is the fuzzy similarity relation induced by A and 

 A = 

⎡ 

⎢ ⎢ ⎣ 

1 0 . 5 0 . 7 0 0 

0 . 5 1 0 . 7 0 . 2 0 . 6 

0 . 7 0 . 7 1 0 . 1 0 . 5 

0 0 . 2 0 . 1 1 0 . 7 

0 0 . 6 0 . 5 0 . 7 1 

⎤ 

⎥ ⎥ ⎦ 

. 

Suppose that U/ D = { D 1 , D 2 } such that D 1 = { x 1 , x 2 , x 3 } and D 2 =
 x 4 , x 5 } , then 

˜ 
 1 = 

1 

x 1 
+ 

0 . 73 

x 2 
+ 

0 . 8 

x 3 
+ 

0 . 15 

x 4 
+ 

0 . 39 

x 5 
, 

˜ 
 2 = 

0 

x 1 
+ 

0 . 27 

x 2 
+ 

0 . 2 

x 3 
+ 

0 . 85 

x 4 
+ 

0 . 61 

x 5 

So, we get the fuzzy decisions { ̃  D 1 , ˜ D 2 } of samples. 

To analyze a classification task under different information

ranularity, we need to introduce a parameter λ to characterize

he similarity of samples. Let B ⊆ A , R B is the fuzzy similarity

elation on U induced by B . For any x ∈ U , a parameterized fuzzy

nformation granule associated with x is constructed as follows. 

 x ] λB (y ) = 

{
0 , R B (x, y ) < λ;
R A (x, y ) , R B (x, y ) ≥ λ. 

We call λ the radius of the fuzzy neighborhood of samples.

here are two factors λ and B that impact on the membership de-

rees. Obviously, the following properties hold. 

(1) R A ⊆ R B for B ⊆ A, (2)[ x ] λ2 

B 
⊆ [ x ] λ1 

B 
for λ1 ≤ λ2 and any x ∈ U.

In the following, we use the relationship between fuzzy infor-

ation granule and fuzzy decision to define the fuzzy lower and

pper approximations of a decision. 

efinition 2. Given a decision table 〈 U, A, D 〉 , B ⊆ A , U/D = { D 1 ,

 2 , . . . D r } and a neighborhood radius λ. { ̃  D 1 , ˜ D 2 , . . . ˜ D r } are the

uzzy decisions of samples induced by D , R B is the fuzzy similarity

elation on U induced by B , the lower and upper approximations of

 with respect to B are defined as 

 

λ
B ( D ) = 

{
R 

λ
B ( ̃  D 1 ) , R 

λ
B ( ̃  D 2 ) , . . . R 

λ
B ( ̃  D r ) 

}
, 

 

λ

B ( D ) = 

{ 

R 

λ

B ( ̃  D 1 ) , R 

λ

B ( ̃  D 2 ) , . . . R 

λ

B ( ̃  D r ) 
} 

. 

here 

 

λ
B 

(
˜ D i 

)
= 

{
x i ∈ D i | [ x i ] λB ⊆ ˜ D i 

}
, R 

λ

B 

(
˜ D i 

)
= 

{
x i ∈ D i | [ x i ] λB ∩ 

˜ D i � = ∅ 
}
. 

 

λ
B ( ̃  D i ) and R 

λ
B ( ̃  D i ) are called the fuzzy neighborhood lower approx-

mation and upper approximation, respectively. 

They share the same idea of approximating a decision class as

he classical rough set model. Whether a sample can be correctly

lassified into its own category depends on the relationship be-

ween its fuzzy similarity class and decision class. If the fuzzy sim-

larity class is completely contained in its decision class, then the

ample can be classified into its own category with certainty. If

he fuzzy similarity class is partly included in the decision class,

hen the sample probably belongs to its own category. Obviously,

 

λ
B ( ̃  D i ) is a set of samples which definitely belong to D i . R 

λ
B ( ̃  D i ) is

 set of samples which possibly belong to D i . The fuzzy neighbor-

ood lower approximation of D i is also called fuzzy positive region

f D i . 

If the fuzzy neighborhoods and fuzzy decisions respectively de-

rade to similarity classes and equivalence classes, the proposed

pproximations degenerate to the corresponding ones in neighbor-

ood rough set model. Thus, the proposed model is a generaliza-

ion of neighborhood rough sets [8] . 
Please cite this article as: C. Wang et al., Feature subset selection bas
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In classical fuzzy rough set model, fuzzy neighborhoods and

uzzy decisions can also be used to construct the fuzzy rough

pproximations of a decision [5] , but the model determines the

embership degree of each sample to different decision classes

ased on a nearest sample. In our proposed model, the decision

f a sample is made by the relationship between its fuzzy deci-

ion and fuzzy neighborhood. This is the point where the proposed

odel is different. 

efinition 3. Given a neighborhood radius λ, B ⊆ A , and fuzzy

ecision { ̃  D 1 , ˜ D 2 , . . . ˜ D r } induced by D , R B is the fuzzy similarity

elation on U induced by B . The positive and boundary regions of

 with respect to B are defined as follows, respectively. 

 OS λB ( D ) = 

r ⋃ 

i =1 

R 

λ
B 

(
˜ D i 

)
, BN 

λ
B ( D ) = U − P OS λB ( D ) . 

The size of the positive region P OS λ
B 
(D ) reflects the classifica-

ion ability of B . 

efinition 4. Given a neighborhood radius λ and B ⊆ A , the de-

endency degree of D upon B is defined as ∂ λ
B 
(D ) = 

| POS λ
B 
(D ) | 

| U| . 

The dependency function is defined as the ratio of the sizes of

he positive region over all samples. It is used to determine the

elevance between decision and conditional attributes. 

The sizes of neighborhood radius and feature subset have great

mpacts on the positive region and dependency function. 

heorem 1. Given a neighborhood radius λ, if B 1 ⊆ B 2 ⊆ A, then

 OS λ
B 1 

(D ) ⊆ P OS λ
B 2 

(D ) . 

roof. Since B 1 ⊆ B 2 , we have R 
B 2 

⊆ R 
B 1 

, which implies that [ x ] λ
B 2 

⊆
 x ] λ

B 1 
for any x ∈ U . It follows from Definition 2 that R λB 1 ( D i ) ⊆

 

λ
B 2 

( D i ) for any D i ∈ U / D . Hence, P OS λ
B 1 

(D ) ⊆ P OS λ
B 2 

(D ) . �

heorem 2. Given B ⊆ A, if λ1 ≤ λ2 , then P OS 
λ1 
B 

(D ) ⊆ P OS 
λ2 
B 

(D ) . 

roof. Since λ1 ≤ λ2 , we have [ x ] 
λ2 
B 

⊆ [ x ] 
λ1 
B 

for any x ∈ U . By the

efinition of lower approximation, we have R 
λ1 
B 

( D i ) ⊆ R 
λ2 
B 

( D i ) for

ny D i ∈ U / D . Hence, P OS 
λ1 
B 

(D ) ⊆ P OS 
λ2 
B 

(D ) . �

According to Theorems 1 and 2 , we easily get the following

roperties. 

heorem 3. If B 1 ⊆ B 2 ⊆ ��� ⊆ B m 

⊆ A, then ∂ λB 1 
(D ) ≤ ∂ λB 2 

(D ) ≤
· · ≤ ∂ λ

B m 
(D ) . 

heorem 4. Given B ⊆ A, if λ1 ≤ λ2 ≤ ��� ≤ λm 

, then ∂ 
λ1 
B 

(D ) ≤
 

λ2 
B 

(D ) ≤ · · · ≤ ∂ λm 
B 

(D ) . 

efinition 5. Given a neighborhood radius λ and B ⊆ A , for any a

 B , if ∂ λ
B −a 

(D ) � = ∂ λ
B 
(D ) , we say attribute a is indispensable in B .

therwise, we say a is redundant in B . 

A redundant attribute not only cannot provide more classifica-

ion information, but also will cut down the classification accuracy

f a decision table. Therefore, it must be deleted from the attribute

et before classification learning. 

efinition 6. Given a neighborhood radius λ and B ⊆ A , we say B

s a reduct of A if it satisfies 

∂ λ
B 
(D ) = ∂ λ

A 
(D ) , (2) ∀ a ∈ B, ∂ λ

B −a 
(D ) < ∂ λ

B 
(D ) . 

The first condition means that a reduct has the same classifi-

ation ability as the whole attribute set. The second one ensures

here is no redundant attribute in the reduct. 

In practice, the above definitions of lower and upper approxi-

ations are too strict to tolerate noise in data. In the following,
ed on fuzzy neighborhood rough sets, Knowledge-Based Systems 
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Algorithm Heuristic algorithm based on fuzzy neighborhood rough sets (FNRS). 

Input: Decision table 〈 U, A, D 〉 , parameters λ and α, // λ controls the size of 

radius of fuzzy neighborhood, α is the threshold for computing inclusion 

degree. 

Output: one reduct red . 

1: ∀ a ∈ A , compute the relation matrix R λa ; 

2: Compute the fuzzy decision ˜ D = { ̃ D 1 , ̃  D 2 , . . . ̃  D r } ; 
3: Initialize: red = ∅ , B = A − red, start = 1; // red is the pool to contain the 

selected attributes and B is for the left attributes. 

4: while start 

5: for each a i ∈ B 
6: Compute the fuzzy similarity relation R λ

red∪{ a i } . 
7: for each x j ∈ U , suppose x j ∈ D i ; 
8: Compute the lower approximation function R λ,α

red∪{ a i } ( ̃
 D i ) . 

9: end for 

10: ∂ λ,α
red∪{ a i } (D ) = | ⋃ 

D i ∈ U/D R 
λ,α
red∪{ a i } ( ̃

 D i ) | / | U| ; 
11: end for 

12: Find attribute a k with maximum value ∂ λ,α
red∪{ a k } (D ) . 

13: Compute SI G λ,α ( a k , red, D ) = ∂ λ,α
red∪{ a k } (D ) − ∂ λ,α

red 
(D ) . 

14: if SIG λ, α( a k , red, D ) > 0 

15: red ← red ∪ a k ; 
16: B ← B − red; 

17: else 

18: start = 0; 

19: end if 

20: end while 

21 : return red . 

Table 1 

Description of data sets. 

No Data sets Sample Attributes Classes 

1 Wine 178 13 3 

2 Glass 214 10 6 

3 Cancer 683 9 2 

4 Ionos 351 33 2 

5 CT 221 36 2 

6 Wdbc 569 30 2 

7 Colon 62 1225 2 

8 Wpbc 198 32 2 

Table 2 

Numbers of selected features with four reduction algorithms. 

Data sets Raw data FCMRS FISEN FNRS FRSINT 

Wine 13 5 5 9 8 

Glass 10 8 4 5 6 

Cancer 9 7 5 5 6 

Ionos 33 10 7 8 9 

CT 36 7 7 9 8 

Wdbc 30 9 16 18 19 

Colon 1225 4 10 3 26 

Wpbc 32 7 6 8 8 

Avaerage 173 .5 7 .13 7 .5 8 .13 11 .25 

D  

A  

S

 

o  

i  

d  

W  

w

 

a  

I  

t  

s  
we introduce a variable precision fuzzy neighborhood rough set

model. 

Definition 7. Let A and B be two fuzzy sets on U , the inclusion I ( A,

B ) is defined as 

I(A, B ) = 

| A ⊆ B | 
| U| , 

where | A ⊆ B | denotes the number of samples whose membership

degrees to A are not greater than those to B . We call I ( A, B ) the

inclusion degree of A in B . 

Example 2. Given a set X = { x 1 , x 2 , . . . , x 10 } , A and B are two fuzzy

sets defined on X , where 

A = 

0 . 3 

x 1 
+ 

0 

x 2 
+ 

0 . 8 

x 3 
+ 

0 . 7 

x 4 
+ 

0 

x 5 
+ 

0 . 6 

x 6 
+ 

0 

x 7 
+ 

1 

x 8 
+ 

0 . 2 

x 9 
+ 

0 . 5 

x 10 

, 

B = 

0 . 2 

x 1 
+ 

0 

x 2 
+ 

1 

x 3 
+ 

0 . 5 

x 4 
+ 

0 . 4 

x 5 
+ 

0 . 9 

x 6 
+ 

0 . 1 

x 7 
+ 

1 

x 8 
+ 

0 . 3 

x 9 
+ 

0 . 2 

x 10 

. 

Then, we can get | A ⊆ B | = 7 and | B ⊆ A | = 5 . Thus, I(A, B ) = 0 . 7

and I(B, A ) = 0 . 5 . 

Definition 8. Given a neighborhood radius λ, B ⊆ A , and the fuzzy

decision { ̃  D 1 , ˜ D 2 , . . . ˜ D r } induced by D . R 
B 

is the fuzzy similarity

relation on U induced by B . Then the variable precision lower and

upper approximations of D with respect to B are defined as follows,

respectively. 

R 

λ,α
B ( D ) = 

{
R 

λ,α
B ( ̃  D 1 ) , R 

λ,α
B ( ̃  D 2 ) , . . . R 

λ,α
B ( ̃  D r ) 

}
R 

λ,β

B ( D ) = 

{ 

R 

λ,β

B ( ̃  D 1 ) , R 

λ,β

B ( ̃  D 2 ) , . . . R 

λ,β

B ( ̃  D r ) 
} 

, 

where 

R 

λ,α
B ( ̃  D i ) = { x i ∈ D i | I([ x i ] 

λ
B , 

˜ D i ) ≥ α} , 0 . 5 ≤ α ≤ 1 

R 

λ,β

B ( ̃  D i ) = { x i ∈ D i | I([ x i ] 
λ
B , 

˜ D i ) > β} , 0 ≤ β < 0 . 5 . 

Obviously, R λ,α
B 

( ̃  D i ) ⊆ R 
λ,β
B ( ̃  D i ) for any α, β and decision equiv-

alence class D i ∈ U / D . The variable precision boundary region of D

with respect to B is defined as 

BN 

λ,αβ
B 

(D ) = R 

λ,β

B (D ) − R 

λ,a 
B (D ) , 

where R 
λ,β
B (D ) = 

⋃ r 
i =1 R 

λ,β
B ( ̃  D i ) and R λ,α

B 
(D ) = 

⋃ r 
i =1 R 

λ,α
B 

( ̃  D i ) . Here,

R λ,α
B 

(D ) are also called variable precision positive region of D with

respect to B , denoted as P OS λ,α
B 

(D ) . 

Definition 9. The variable precision dependency of D on B is de-

fined as 

∂ λ,α
B 

(D ) = 

∣∣P OS λ,α
B 

(D ) 
∣∣

| U| . 

Similarly, we also have the following theorem as to monotonic-

ity. 

Theorem 5. For given parameters λ and α, if B 1 ⊆ B 2 ⊆ A, then we

have 

(1) P OS λ,α
B 1 

(D ) ⊆ P OS λ,α
B 2 

(D ) , (2) ∂ λ,α
B 1 

(D ) ≤ ∂ λ,α
B 2 

(D ) . 

Definition 10. Given a neighborhood radius λ, and B ⊆ A . We say

B is a variable precision reduct, if it satisfies (1) ∂ λ,α
B 

(D ) = ∂ λ,α
A 

(D ) ,

(2) ∀ a ∈ B , ∂ λ,α
B −a 

(D ) < ∂ λ,α
B 

(D ) . 

4. Attribute reduction algorithm based on fuzzy neighborhood 

rough set model 

As discussed above, the dependency function reflects the clas-

sification power of an attribute subset. It can be used to measure

the significance of a candidate attribute. 
Please cite this article as: C. Wang et al., Feature subset selection bas
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efinition 11. Given a neighborhood radius λ, B ⊆ A , and a ∈
 − B , the significance of a with respect to B is defined as

I G 

λ,α(a, B, D ) = ∂ λ,α
B ∪{ a } (D ) − ∂ λ,α

B 
(D ) . 

The objective of attribute reduction is to find a minimal subset

f attributes which has the same discriminating power as the orig-

nal data. Although there are usually multiple reducts for a given

ecision table, it is enough to find one in most of applications.

ith the proposed measure of attribute significance, a greedy for-

ard Algorithm can be formally designed as follows. 

As described above, this algorithm stops when the addition of

ny left feature does not make the dependency ∂ λ,α
B 

(D ) increase.

f there are n samples and m condition features, the computa-

ional complexity for a fuzzy similarity relation is 1 
2 n 

2 , the worst

earch time for a reduct will bring about m 

2 evaluations of the
ed on fuzzy neighborhood rough sets, Knowledge-Based Systems 
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Table 3 

Comparison of classification accuracies of reduced data with SVM. 

Data sets Raw data FCMRS FISEN FNRS FRSINT 

wine 97.44 ± 3.43 94.86 ± 2.75 97.71 ± 3.96 97.22 ± 4.72 96.60 ± 3.51 

glass 93.49 ± 5.05 92.53 ± 3.27 94.29 ± 5.85 94.29 ± 3.01 92.06 ± 7.30 

cancer 95.83 ± 2.14 97.06 ± 2.68 96.93 ± 2.97 96.79 ± 2.82 97.21 ± 1.83 

Ionos 90.42 ± 4.93 94.59 ± 3.91 94.31 ± 3.09 94.31 ± 3.54 93.17 ± 3.15 

CT 87.78 ± 6.59 89.13 ± 6.51 90.49 ± 7.86 92.79 ± 5.86 91.82 ± 6.05 

wdbc 96.77 ± 2.17 96.49 ± 2.34 97.01 ± 2.62 97.36 ± 2.23 97.18 ± 2.09 

colon 76.10 ± 17.57 82.92 ± 14.22 82.92 ± 11.86 85.00 ± 16.57 80.42 ± 10.77 

wpbc 77.35 ± 8.78 78.33 ± 8.05 80.28 ± 7.30 82.83 ± 7.86 79.78 ± 14.53 

Avaerage 89.40 ± 6.33 90.73 ± 5.47 91.74 ± 5.69 92.57 ± 5.83 91.03 ± 6.15 

d  

p

5

 

m  

c  

b  

(  

w  

s  

o  

p  

2  

2

 

a  

p  

K  

t  

e  

i  

T  

i  

t  

s

r

H  

r  

r  

s

 

a  

c  

f

a  

b  

o  

d  

v  

r  

c  

f  

r

 

e  

F  

c  

c  

a  

s  

e

 

d  

i  

d  

t  

l  

i  

c  

o  

F  

r  

F  

r

 

n  

o  

t  

a  

o

 

F  

c

 

f  
ependency function. Therefore, the overall computational com-

lexity of the proposed algorithm is about O ( 1 2 n 
2 m + m 

2 ) . 

. Experimental analysis 

In this section, we evaluate the performance of the proposed

ethod by comparing it with existing methods. These methods are

lassical rough set based algorithm (FCMRS) [17] , fuzzy entropy

ased algorithm (FISEN) [8] and fuzzy rough set based algorithm

FRINT)[11]. We first compare the numbers of selected features

ith different algorithms. Then, we present the comparative re-

ults of classification accuracies. Finally, we discuss the influences

f the parameters λ and α on classification performance with our

roposed algorithm. All of the algorithms are performed in Matlab

007 and run in the hardware environment with Pentium (R) Core

, CPU E5200, 2.50 GHz and 2.0GB RAM. 

Two classification learning algorithms are introduced to evalu-

te the performance of different algorithms. The classifiers are sup-

ort vector machine (RBF-SVM) and k -nearest neighbor rule (K-NN,

 = 3). To compute the classification accuracy of different classifiers,

he 10-fold cross validation is used. Eight data sets are used in the

xperimental analysis. They are selected from UCI Machine Learn-

ng Repository. The information of these data sets is outlined in

able 1 . All the numerical attributes are first normalized into the

nterval [0, 1] with the formula a ′ = ( a − a min ) / a max . The value of

he fuzzy similarity degree r ij between objects x i and x j with re-

pect to an attribute a is computed as 

 i j = 

{
ρ ∗ (1 − | x i − x j | ) , | x i − x j | ≤ 1 − λ;
0 | x i − x j | > 1 − λ. 

ere, ρ is an adjustable constant coefficient and 0 < ρ ≤ 1. As r i j =
 ji and 0 ≤ r ij < 1, the matrix M 

λ
a = ( r i j ) n ×n is a fuzzy similarity

elation. To make more samples fall into the positive region, we

et ρ = 0 . 5 in the following series of experiments. 

Since the classical rough set considers only categorical data,

 fuzzy C-means clustering (FCM) technique is employed to dis-

retize numerical data. The numeric attributes are discretized into

our intervals. In the FNRS algorithm, there are two parameters λ
nd α. The parameter λ is used to control the size of fuzzy neigh-

orhood. We set the value of λ to vary from 0.1 to 0.5 with a step
Table 4 

Comparison of classification accuracies of reduced data 

Data sets Raw data FCMRS FISE

Wine 96.52 ± 4.33 93.82 ± 4.09 97.7

glass 90.73 ± 6.72 90.63 ± 5.52 92.

cancer 96.95 ± 1.89 96.62 ± 2.31 96.6

Ionos 85.57 ± 6.41 87.77 ± 4.72 89.4

CT 89.47 ± 6.58 88.68 ± 6.53 90.0

wdbc 96.83 ± 2.57 94.91 ± 2.40 96.8

colon 76.25 ± 16.39 86.25 ± 13.90 86.2

wpbc 74.84 ± 9.79 70.61 ± 10.87 77.7

Avaerage 88.40 ± 6.84 88.79 ± 6.29 90.8
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f 0.05. The parameter α is introduced to compute the inclusion

egree and variable precision lower approximation. We set α to

ary from 0.5 to 1 with a step of 0.05. As different learning algo-

ithms may require different feature subsets to produce the best

lassification accuracy, all the experimental results reported in the

ollowing tables are presented at the highest classification accu-

acy. 

From Table 2 , we can find that these reduction methods can

ffectively reduce attributes. The numbers of selected features with

CMRS are fewer compared to the other algorithms in most of the

ases. The reason for this result may be due to the information loss

aused by data discretization, because the resulting classification

ccuracies are lower as shown in Tables 3 and 4 . The numbers of

elected features with FISEN, FRDMA and FRSINT are comparable

xcept for Colon data set. 

Tables 3 and 4 show the classification accuracies of the raw

ata and the reduced data sets, where the underlined symbols

ndicate the highest classification accuracies among the reduced

ata sets. From the results of Tables 3 and 4 , it is easily seen that

he classification accuracies based on FCMRS method are obviously

ower than the other methods. Out of 16 cases of 10-fold cross val-

dation, the FNRS and FISEN methods achieve the highest classifi-

ation accuracy in 9 and 5 cases, respectively. The FRSINT method

btains it in 2 cases, while FCMRS attains it for only once. For the

NRS algorithm, there are 14 cases higher than the FCMRS algo-

ithm. There are 9 cases higher than and 2 cases the same as the

ISEN algorithm. There are 13 cases higher than the FRSINT algo-

ithm. 

The classification performances are improved for all the origi-

al data sets. As to SVM, FNRS outperforms the raw data 7 times

ver the 8 classification tasks. In the same time, FNRS outperforms

he raw data 6 times with respect to 3NN. Moreover, the average

ccuracy of FNRS outperforms that of any other algorithm in terms

f SVM and 3NN. 

The feature subsets with the greatest accuracies, selected by

ISEN and FNRS according to SVM, are shown in Table 5 . The last

olumn shows the corresponding values of λ and α in FNRS. 

From Table 5 , we can find that most of the best features

or FISEN and FNRS are the same in most cases, especially for
with 3NN. 

N FNRS FRSINT 

1 ± 2.97 98.33 ± 2.69 97.78 ± 2.93 

53 92.38 ± 4.60 89.83 ± 7.12 

2 ± 2.87 96.64 ± 3.31 95.75 ± 1.72 

6 ± 4.72 90.89 ± 4.41 91.44 ± 4.72 

4 ± 4.90 89.17 ± 4.76 89.15 ± 5.22 

4 ± 1.99 97.37 ± 1.24 96.62 ± 2.61 

5 ± 13.90 86.67 ± 15.32 73.92 ± 19.76 

2 ± 7.33 75.72 ± 7.47 76.72 ± 14.53 

9 ± 5.77 90.90 ± 5.48 88.90 ± 7.33 
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Table 5 

The best feature subsets of FISEN and FNRS algorithm. 

Data sets FISEN FNRS ( λ, α) 

Wine 12, 13, 1,7, 10 1, 12, 8, 2, 10, 13, 7, 9, 11 (0.15,0.6) 

Glass 1, 4, 7, 9 1, 10, 4, 7, 9 (0.1,0.6) 

Cancer 6, 2, 8, 3, 1 6, 2, 8, 1, 3 (0.35,0.75) 

Ionos 4, 5, 33, 28, 7, 22, 2 4, 23, 14, 32, 2, 7, 6, 16 (0.3,0.6) 

CT 31, 33, 32, 30, 20, 4, 29 31, 33, 20, 29, 35, 3, 30, 5 (0.2,1) 

Wdbc 28, 21, 22, 11, 7, 29, 16, 12, 8, 26, 21, 28, 22, 7, 16, 29, 5, 

19, 9, 2, 27, 26, 5, 8, 23 10, 6, 5, 11, 19, 18, 27, 2, 4 (0.3,0.95) 

Colon 1224, 1173, 329, 951, 1084, 500, 1205, 1224, 4 (0.4,0.95) 

1050, 1216, 1208, 121 

Wpbc 1, 13, 24, 16, 12, 32 5, 32, 20, 12, 1, 13, 9, 24 (0.2,0.55) 
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Fig. 1. The accuracy varying with thresholds λ and α (Wine). 
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Fig. 2. The accuracy varying with thresholds λ and α (Glass). 
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Fig. 3. The accuracy varying with thresholds λ and α (Cancer). 
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Fig. 5. The accuracy varying with thresholds λ and α (CT). 
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Fig. 6. The accuracy varying with thresholds λ and α (Wdbc). 

s  

T
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m  

fi  

s  

t  
Wine, Glass, Cancer, CT data sets. Comparing their classification

accuracies shown in Tables 3 and 4 , we can say that the proposed

method can be comparable to fuzzy entropy based method. 

The thresholds λ and α play an important role in FNRS algo-

rithm. λ is considered as a parameter to control the size of fuzzy

neighborhood radius, the parameter α is used to control the inclu-

sion degree and overcome the bad affects caused by noises in data.

Figs. 1 –8 show classification accuracies of SVM varying with λ and

α. We can select the suitable value of λ and α for each data set

according to these figures. The experimental results obtained using

3KNN are roughly consistent with SVM. From the Figs. 1 –8 , we can
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ee that most of data sets achieve higher precision in a larger area.

hus, the FNRS algorithm is of feasibility and stability. 

. Conclusions and future works 

Reducing redundant features can improve classification perfor-

ance and decrease the cost of classification. In this paper, we

rst introduced a new rough set model: fuzzy neighborhood rough

et. As the model is too strict to tolerate noise in the data, we

hen proposed the variable precision model. This model overcomes
ed on fuzzy neighborhood rough sets, Knowledge-Based Systems 
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he possibility that a sample belongs to several classes. Finally, we

efine the dependency between fuzzy decision and condition at-

ributes and employ the dependency to evaluate the significance of

 candidate feature, using which a greedy feature subset selection

lgorithm is designed. The experimental results show that the al-

orithm can find a small and effective subset of features and obtain

igh classification accuracy. We also find that the two parameters

ave great impact on the performance of the proposed attribute

eduction algorithm. We should select the suitable values of pa-

ameters for each data set according to the numbers of selected

eatures and classification accuracies. 

Future works may include 1) How can the proposed model be

pplied to the fields of classification learning and reasoning with

ncertainty? 2) In the proposed model, the two parameters have

mportant impact on the performance of the proposed algorithm.

hey need to be set by users in advance. How to automatically set

he optimal solutions of two parameters for each data set is also

n interesting work. 
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