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a b s t r a c t

Classification is a data mining technique which is utilized to predict the future by using available data

and aims to discover hidden relationships between variables and classes. Since the cost component is

crucial in most real life classification problems and most traditional classification methods work for the

purpose of correct classification, developing cost-sensitive classifiers which minimize the total misclassi-

fication cost remains a subject of much interest. The purpose of this study is to present an effective solu-

tion method that configurates and evaluates learning systems from previous experiences, thus aiming to

obtain decisions and predictions. Since most real life problems are cost-sensitive and developing effective

direct methods for cost-sensitive multi-class classification is still an attractive area, a cost-sensitive classi-

fication method, the BEE-Miner algorithm, is proposed by utilizing the recently developed Bees Algorithm

(BA). The main advantages of BEE-Miner are its capability to handle both binary and multi-class problems

and to incorporate misclassification cost into the algorithm via generating neighbor solutions and evalu-

ating the quality of the solutions. An extensive computational study is also performed on cost-insensitive

and cost-sensitive versions of the proposed BEE-Miner algorithm and effective results on different types

of problems are obtained with high test accuracy and low misclassification cost.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

As a result of the rapid development of information technol-

gy and data collection resources, some difficulties are experienced

n revealing meaningful and useful information from large sized

atasets. Unfortunately, traditional statistical methods are insuffi-

ient to resolve these kinds of data. Data mining (DM), which is a

onvenient method for handling this type of data, can be defined

s the acquisition of valid, enforceable, and previously unknown

nformation from large sized databases and its effective use in the

ecision process. On the other hand, classification, which is the

ost widely used DM technique, is utilized to predict the future

y using the available data and aims to discover hidden relation-

hips between variables and classes when given a set of samples

ith known output classes.

Moreover most traditional classification methods, which are

eferred to as cost-insensitive classifiers, work for the purpose

f correct classification. These methods aim to minimize the

ercentage of false predicted class labels, namely misclassification

rrors, and assume the presence of symmetric classification costs

all misclassification costs are equal to each other) by ignoring the
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ifference between misclassification errors. However, the cost is

ot a discardable component and in many real life classification

roblems the cost difference between the misclassification errors

an be quite high. For example, in a cancer diagnosis database

ith positive and negative classes representing having cancer or

ot, respectively, classifying a positive patient as negative will

ave a much greater cost than classifying a negative patient as

ositive. In other words, classifying a patient with cancer as

ealthy is much more serious than classifying a healthy patient

s having cancer, since the wrong diagnosis may cause a delay

n treatment or the death of the patient. In fact, it is possible to

btain low misclassification costs by utilizing effective traditional

lassifiers for solving such problems, but the cost component must

e handled during the classification process. The area of machine

earning dealing with such problems with non-uniform costs is

nown as cost-sensitive learning. Cost-sensitive learning, which

ims at minimizing the cost of misclassified cases, has an effec-

ive structure that can be used for solving real life classification

roblems by removing the shortcomings of traditional classifiers.

Cost-sensitive learning is generally utilized on datasets that

ave imbalanced class distribution, such as encountered in many

eal life applications. To classify such a dataset with binary classes

y cost-insensitive classifiers will give rise to major problems since

lmost all samples will be classified as negative. Under this circum-

tance, cost-sensitive classification is an effective method for the

http://dx.doi.org/10.1016/j.knosys.2015.12.010
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classification of this kind of dataset. For this reason, the number

of studies on cost-sensitive classification has gained momentum in

recent years. These studies are generally divided into two groups:

studies on developing direct cost-sensitive learning algorithms (di-

rect methods) and studies on converting a cost-insensitive learning

algorithm into a cost-sensitive one (meta-learning methods). Direct

methods involve cost-sensitive classifiers that include the misclas-

sification costs in the learning algorithm whereas meta-learning

methods perform a pre-processing stage in order to accommo-

date training data for cost-sensitive learning or a post-processing

stage on the outcomes of the cost-insensitive learning algorithm.

On the other hand, the studies on cost-sensitive learning gener-

ally focus on developing meta-learning approaches and solving bi-

nary classification problems. Nowadays, the development of di-

rect cost-sensitive classifiers, especially the handling of multi-class

problems is an area that must be analyzed both theoretically and

practically.

The purpose of this study is to present an effective solution

method that configurates and evaluates learning systems from pre-

vious experiences and aims to obtain decisions and predictions.

Since most real life problems are cost-sensitive and the scientific

literature on direct cost-sensitive classifiers still requires new ap-

proaches, the BEE-Miner is proposed by utilizing the recently de-

veloped Bees Algorithm (BA). The performance of different dis-

cretization methods is also analyzed and complex neighborhood

structures based on entropy and misclassification costs are devel-

oped. Since the BEE-Miner has a multi-rule structure, to find the

best rule combination among the rule pool, which consist of the

rules covering all samples in the training set, the genetic algorithm

is used. The main advantages of the BEE-Miner are its capability

to handle both binary and multi-class problems and to incorpo-

rate misclassification costs into the algorithm’s operation princi-

ples rather than updating input or output. The stages that include

the cost component are generating neighbor solutions and evalu-

ating the quality of the solutions by using the fitness function. The

remainder of the paper is organized as follows. Sections 2 and 3

clarify cost-sensitive classification and the Bees Algorithm, respec-

tively. Section 4 presents the cost-insensitive and cost-sensitive

BEE-Miner algorithm, Section 5 gives computational studies and

Section 6 concludes the paper.

2. Cost-sensitive classification

The main distinction of cost-sensitive learning from cost-

insensitive learning is that the former considers misclassification

costs, in other words, it focuses on minimizing expected misclas-

sification cost instead of minimizing expected misclassification er-

rors. When we analyze the cost matrices of both cases, there is no

difference between misclassification costs for the cost-insensitive

case. On the other hand, to predict a sample of a certain class as a

different class differs according to the predicted class for the cost-

sensitive case. Consequently, cost-insensitive classification is a spe-

cial form of cost-sensitive classification.

Elkan [1] and Zadrozny and Elkan [2] present the general struc-

ture of cost-sensitive learning for a binary class and describe the

role of misclassification cost on different cost-sensitive learning al-

gorithms in detail. An example of a cost matrix for binary classi-

fication including two classes, named as negative (0) and positive

(1), is given as follows:

where

TN number of samples that are actual negative and also pre-

dicted as negative;

FN number of samples that are actual positive but predicted

as negative;

FP number of samples that are actual negative but predicted

as positive;
P number of samples that are actual positive and also pre-

dicted as positive;

(i, j) cost of predicting a sample of class i as class j;

(i, i) samples that are predicted truly and characterized as

benefit.

In cost-sensitive learning, such a matrix is assumed to be

nown and the rows and columns can be easily expanded for

ulti-class classification. Depending on the cost matrix, the sam-

les are classified according to the minimum expected cost

alues.

.1. Literature review of cost-sensitive classification

Cost-sensitive classification algorithms are analyzed in two

roups as direct methods, which have been studied rarely in

he literature, and meta-learning techniques that are divided into

hresholding and sampling.

One of the direct methods, Inexpensive Classification with Ex-

ensive Tests (ICET), is a hybrid combination of the genetic algo-

ithm and the decision tree induction algorithm and is based on

he inclusion of test cost as well as misclassification cost in the fit-

ess function of the genetic algorithm [3]. On the other hand, the

ost-sensitive Decision Tree (CSTree) includes the misclassification

ost in the tree generation process, directly. In other words, the

STree selects the best attribute according to the total misclassifi-

ation cost [4,6]. Drummond and Holte [4] investigate the effect of

isclassification cost on splitting and pruning methods in decision

ree learning algorithms. Ling et al. [5] propose a simple splitting

riterion that minimizes the sum of misclassification and test costs

or attribute selection during the generation of decision trees. Ling

t al. [6] deal with two-class problems and estimate the probability

f the positive class using the relative cost of both classes and use

his to calculate the expected cost. Ling et al. [7] propose a lazy de-

ision tree learning algorithm that minimizes the sum of attribute

nd misclassification costs. Since it is hard to minimize misclassi-

cation cost or test cost simultaneously, Qin et al. [8] aim to min-

mize one kind of cost and control the other in a given budget.

heng and Ling [9] propose a hybrid cost-sensitive decision tree

omposed of decision trees and Naive Bayes that benefits from the

dvantages of both techniques.

On the other hand, AdaCost presented by Fan et al. [10] is

he cost-sensitive binary class version of AdaBoost which acts as

meta-learning technique. In AdaCost, the weight updating rule

ncreases the weights of costly wrong classifications more ag-

ressively, but decreases the weights of costly correct classifica-

ions more conservatively. Under this updating rule, the weights

or expensive samples are higher and the weights for inex-

ensive samples are comparatively lower. Moreover, Margineantu

11] presents two multi-class versions of cost-sensitive bagging

nd shows that these versions can reduce the cost for some

atasets. Tu [12] and Tu and Lin [13] utilize one-sided support

ector regression for solving multi-class cost-sensitive learning

roblems.

Furthermore, from the metaheuristic’s perspective, Li et al.

14], Ashfaq et al. [15], and Song et al. [16] utilized the genetic

rogramming, the ant colony algorithm, and the genetic algorithm,

espectively, in order to solve cost-sensitive classification problems

n recent years.

When the studies on cost-sensitive classification in the litera-

ure are analyzed, it can be concluded that studies on binary class

ave attained a certain level but those on multi-class still going

n. In conclusion, developing effective direct methods for cost

ensitive multi-class classification is still an attractive area for DM

esearchers.
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1. Initialize population with random solutions

2. Evaluate fitness of the population

3. While (stopping criterion not met) // Forming new population
4. Select sites for neighborhood search

5. Recruit bees for selected sites (more bees for best e sites) and evaluate fitnesses

6. Select the fittest bee from each patch
7. Assign remaining bees to search randomly and evaluate their fitnesses

8. End While

Fig. 1. The pseudo-code for BA.
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. Bees algorithm

The BA presented by Pham et al. [17] forms the basis of the

EE-Miner and is one of the metaheuristic methods based on

warm intelligence that models the foraging behavior of bees.

lthough the BA was developed especially for solving function

ptimization problems, in later years it was also utilized for both

unctional and combinatorial optimization problems [18–20]. The

eneral structure of the BA is presented in Fig. 1.

The food foraging process in nature starts with scout bees se-

ecting random food sources. Also during the food foraging process,

certain percentage of the population remains as scout bees. Sim-

larly, the BA starts with the scout bees (n) being placed randomly

n the search space. In step 2, the fitnesses of the sites visited by

he scout bees are evaluated. In principle, food sources that have a

igh nectar amount and can be consumed with less effort will be

isited by more bees. Based on this fact, in step 4, bees that have

he highest fitnesses are chosen as “selected bees” (m) and the

ites visited by them are chosen for neighborhood search. Then,

n step 5, the algorithm conducts searches in the neighborhood of

he selected sites, assigning more bees to search the area near the

est e sites. Searches in the neighborhood of the best e sites which

epresent more promising solutions are made in a more detailed

ay by recruiting more bees to follow them than the other se-

ected bees. Together with scouting, this differential recruitment is

key operation of the BA. However, in step 6, for each patch only

he bee with the highest fitness will be selected to form the next

ee population. In step 7, the remaining bees (n-m) in the popu-

ation are assigned randomly around the search space to scout for

ew potential solutions. These steps are repeated until a stopping

riterion is met. At the end of each iteration, the colony will have

wo parts to construct the new population: those that were the

ttest representatives from a patch and those that were sent out

andomly.

. Bee-Miner

Since the BEE-Miner is developed as a direct method, it is based

n incorporating misclassification cost into the algorithm’s oper-

tion principles rather than updating input or output. The stages

hat include the cost component are generating neighbor solutions

nd evaluating the quality of the solutions using the fitness func-

ion. However, firstly the cost-insensitive BEE-Miner is developed

n order to exhibit the effectiveness of the algorithm and the ob-

ained results are compared with the results of algorithms pre-

ented in the literature.

.1. Cost-insensitive BEE-Miner

The BEE-Miner algorithm starts with the pre-processing stage

hat completes the missing values and discretizes the continu-

us attributes. Afterwards, the initial solutions are generated and

he fitness function values of these solutions are evaluated. Then

he Bees Algorithm is utilized to form the new population and,

nally, the rule set is generated via the genetic algorithm. The
owchart of the BEE-Miner algorithm is presented in Fig. 2 and the

etails of the proposed algorithm are described in the following

ections.

.1.1. Generating initial solutions

Due to the high number of attributes in real life data, it is not

ffective to use the binary form or original attribute values at the

olution string. In this context, the binary and discrete attribute

alues are split as “=”, “�=”, “null” and continuous attribute val-

es are split as “≤”, “≥”, “null”, where the operator of an attribute

onsidered as “null” indicates that such an attribute does not have

ny effect on the rule generation stage. An example of the solution

tring for the BEE-Miner is illustrated in Fig. 3.

In Fig. 3, attributes 1–3 are continuous, attributes 4–6 are dis-

rete, and attributes 7–9 are binary. The length of the solution

tring is “# of attributes+1” depending on all attributes and the

lass label. In this structure, each attribute is connected by the

ND logical operator to generate a rule. The classification rule

emonstrated in Fig. 3 is as follows:

If A1≤5.25 AND A2≥12.50 AND A4=6 AND A5 �=7 AND A7=1

ND A8 �=1 then Class 1.

The initial solutions are generated by selecting an operator-

alue combination for each attribute among possible alternatives,

andomly. Table 1.

On the other hand, at the discretization stage the equal-

idth discretization (EWD) [21], equal-frequency discretization

EFD) [21], fixed-frequency discretization (FFD) [22], multi-interval-

ntropy-minimization discretization (MIEMD) [23], ChiMerge [24]

nd InfoMerge [25] discretization methods are evaluated. While

iscretizing a quantitative attribute, EWD predefines the number

f intervals (k) and then divides the number line between vmin and

max into k intervals of equal width, where vmin is the minimum

bserved value and vmax is the maximum observed value. On the

ther hand, EFD predefines the number of intervals (k) and then

ivides the sorted values into k intervals so that each interval con-

ains approximately the same number of training instances. Note

hat training instances with identical values must be placed in the

ame interval. In consequence it is not always possible to gener-

te k equal-frequency intervals. While discretizing a quantitative

ttribute, FFD predefines a sufficient interval frequency k and dis-

retizes the sorted values into intervals so that each interval has

pproximately the same number k of training instances with adja-

ent (possibly identical) values. To discretize an attribute, MIEMD

valuates as a candidate cut point the midpoint between each suc-

essive pair of sorted values. For evaluating each candidate cut

oint, the data are discretized into two intervals and the resulting

lass information entropy is calculated. The binary discretization is

pplied recursively, always selecting the best cut point. ChiMerge

iscretization uses the χ2 statistic to determine if the relative class

requencies of adjacent intervals are distinctly different or if they

re similar enough to justify merging them into a single interval.

erging continues until all pairs of intervals have χ2 values ex-

eeding a predefined χ2 threshold. This threshold is determined

s 0.95 significance level, as recommended by Yang et al. [26]. In-

oMerge uses information loss, which is calculated as the amount
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Fig. 2. Flowchart of BEE-Miner.

c

b

r

t

of information necessary to identify the class of an instance after

merging and the amount of information before merging, to direct

the merge procedure [26].

In order to determine the discretization method that will be

used in later computational studies, 3 different datasets with
ontinuous attributes are selected. These datasets consist of both

inary and multi-class cases and the characteristics are summa-

ized in Table 2.

In order to obtain an accurate comparison, the parameters of

he discretizaton methods are adjusted as having 4 cut points for
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Fig. 3. Example for the structure of solution string.

Table 1

An example of a cost matrix for binary classification.

Predicted

Negative Positive

Actual Negative C(0, 0) TN C(1, 0) FP

Positive C(0, 1) FN C(1, 1) TP

Table 2

The selected datasets for comparing discretization methods.

Dataset # of # of categoric # of continuous # of

samples attributes attributes classes

Heart disease (Statlog) 270 7 6 2

Wisconsin breast cancer 699 – 9 2

Wine 178 – 13 3

e

d

t

d

t

t

i

n

t

t

i

e

o

C

p

p

C

H

c

4

n

Table 4

p values of t-test for the comparison of discretization methods.

Dataset Heart disease Wisconsin Wine

(Statlog) breast cancer

EWD-EFD 0.421 0.255 0.210

EWD-FFD 0.002 0.042 0.349

EWD-MIEMD – 0.344 0.85

EWD-ChiMerge 0.205 0.191 0.392

EWD-InfoMerge 0.333 0.396 0.187

EFD-FFD 0.180 0.354 0.030

EFD-MIEMD – 0.047 0.220

EFD-ChiMerge 0.951 0.314 0.876

EFD-InfoMerge 0.195 0.594 0.874

FFD-MIEMD – 0.003 0.285

FFD-ChiMerge 0.034 0.407 0.162

FFD-InfoMerge 0.000 0.183 0.015

MIEMD-ChiMerge – 0.122 0.467

MIEMD-InfoMerge – 0.109 0.212

ChiMerge-InfoMerge 0.037 0.260 0.768

b
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t
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T

ach method and each dataset. Each dataset is executed for each

iscretization method for 30 times by using 10-fold cross valida-

ion and any case having a missing value is removed from the

ataset. The average test accuracies, the number of rules, and CPU

ime in seconds are summarized in Table 3. In addition, since ob-

aining a cut point for two attributes of the heart disease dataset is

mpossible by the MIEMD method, the heart disease dataset could

ot be discretized by the MIEMD method.

To compare the discretization methods, the t-test is applied to

he average test accuracy results for each dataset by assuming that

he significance level is 0.05. The obtained p-values are presented

n Table 4 and indicate that there are statistically significant differ-

nces between 9 comparisons.

The obtained p-values indicate that EWD outperformed FFD

n the Wisconsin breast cancer dataset. FFD outperformed EWD,

hiMerge, and InfoMerge on the heart disease dataset; it also out-

erformed EFD and InfoMerge on the wine dataset. MIEMD out-

erformed EFD and FFD on the Wisconsin breast cancer dataset.

hiMerge outperformed InfoMerge on the heart disease dataset.

ence, FFD is determined as the discretization method for later

omputational study.

.1.2. Neighborhood structures

The solutions that have the best fitness value are selected for

eighborhood search. The algorithm searches for more promising
able 3

he comparison of discretization methods.

EWD EFD

Heart disease (Statlog) Test accuracy 71.60 ± 8.82 73.08 ± 8.07

# of rules 3.13 ± 0.86 3.33 ± 0.66

CPU 56.53 ± 3.43 42.26 ± 2.33

Wisconsin breast cancer Test accuracy 94.32 ± 2.84 93.75 ± 3.12

# of rules 4.33 ± 0.88 3.83 ± 1.01

CPU 53.93 ± 2.54 58.70 ± 3.01

Wine Test accuracy 95.33 ± 4.40 94.01 ± 4.87

# of rules 3.16 ± 0.37 3.80 ± 0.48

CPU 35.23 ± 1.10 34.4 ± 1.16
est e solutions which are more detailed than the other selected

olutions. Afterwards, each solution is updated and only the solu-

ion with the best fitness is selected to form the next bee popula-

ion. At the stage of generating neighbor solutions that correspond

o the position update of the bees, a structure based on changing

he operator-value combination of a certain attribute on the so-

ution string is utilized. This structure is based on entropy which

s the underlying essence of the ID3 and C4.5 algorithms. Assume

hat the samples on the S database are distinguished as negative

nd positive. According to this binary classification, the entropy of

he database is calculated by Eq. (1).

ntropy(S) = −p⊕log2 p⊕ − p�log2 p� (1)

here p⊕ represents the positive samples and p� represents the

egative samples. Under the assumption of having multi-class, the

ntropy of the database is calculated by Eq. (2).

ntropy(S) =
c∑

i=1

−pilog2 pi (2)

here pi represents the portion of the database belonging to class i

nd c represents the number of classes. On the other hand, the in-

ormation gain of an attribute is the expected reduction in entropy

aused by partitioning the samples according to this attribute, i.e.,
FFD MIEMD ChiMerge InfoMerge

75.67 ± 7.06 – 73.20 ± 8.17 70.00 ± 8.21

3.56 ± 0.56 – 3.26 ± 0.58 2.80 ± 0.71

42.3 ± 2.49 – 39.16 ± 2.47 44.30 ± 2.21

93.42 ± 2.96 94.80 ± 3.32 91.84 ± 10.14 93.99 ± 2.66

3.66 ± 0.88 4.76 ± 1.10 4.33 ± 1.26 3.53 ± 0.97

55.50 ± 2.88 49.13 ± 2.84 63.06 ± 3.56 56.63 ± 2.78

96.08 ± 4.42 95.16 ± 4.78 94.23 ± 6.27 93.85 ± 5.12

3.13 ± 0.34 3.3 ± 0.53 3.13 ± 0.34 3.33 ± 0.47

32.86 ± 1.43 37.16 ± 2.13 35.8 ± 1.27 33.43 ± 1.69
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Table 5

Lenses dataset.

A1 A2 A3 A4 C A1 A2 A3 A4 C

1 1 1 1 1 3 13 2 2 1 1 3

2 1 1 1 2 2 14 2 2 1 2 2

3 1 1 2 1 3 15 2 2 2 1 3

4 1 1 2 2 1 16 2 2 2 2 3

5 1 2 1 1 3 17 3 1 1 1 3

6 1 2 1 2 2 18 3 1 1 2 3

7 1 2 2 1 3 19 3 1 2 1 3

8 1 2 2 2 1 20 3 1 2 2 1

9 2 1 1 1 3 21 3 2 1 1 3

10 2 1 1 2 2 22 3 2 1 2 2

11 2 1 2 1 3 23 3 2 2 1 3

12 2 1 2 2 1 24 3 2 2 2 3

Table 6

The implementation of neighborhood structures for cost-insensitive

BEE-miner.

Insertion

A1 A2 A3 A4 C

= �= = 1

3 1 2

Current solution string Probability vector [0.38, 1]

Random number = 0.52

Inserted attribute is A4

Extraction

A1 A2 A3 A4 C A1 A2 A3 A4 C

= �= 1 = 1

3 1 3

Probability vector [0.03, 1]

Random number = 0.62

Removed attribute is A3

Alteration

A1 A2 A3 A4 C

= �= 1

1 1

Randomnumber1 = 1 (the attribute

that will be changed is A1)

Randomnumber2 = 2 (value change)
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o
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information gain determines the effectiveness of an attribute dur-

ing the classification of training data and is calculated by Eq. (3).

In f ormationGain(S, A) = Entropy(S) −
∑

vεV (A)

|Sv|
|S| Entropy(Sv) (3)

where V(A) is the set of all possible values for attribute A; Sv is

the dataset where attribute A takes the value of v. The first part of

the information gain is the entropy of the database and the second

part is the expected value of entropy when the database is parti-

tioned according to attribute A [27].

The neighborhood structures utilized in BEE-Miner and the us-

age of information gain in these neighborhood structures are as

follows. The proposed algorithm uses 3 types of neighborhood

structures as insertion, extraction, and alteration. Having derived

a neighbor solution, one of these neighborhood structures is se-

lected randomly. The insertion neighborhood structure is based on

the inclusion of an attribute that does not take place in the current

solution string; similarly, the extraction neighborhood structure is

based on removing an attribute that takes place in the current so-

lution string. The selection of the attribute that will be inserted or

extracted is carried on the information gain value. By using a prob-

abilistic structure, the insertion probability of the attributes with

high information gain value will be high for the insertion neighbor-

hood and the extraction probability of the attributes with low in-

formation gain value will be high for the extraction neighborhood.

On the other hand, the alteration neighborhood structure is based

on selecting an attribute on the current solution string and chang-

ing the operator or value information. These 3 neighborhood struc-

tures are visually explained on the Lenses dataset with 3 classes,

as presented in Table 5.

The entropy of the Lenses dataset is calculated by Eq. (2)

as 1.32. The information gains of all attributes are calculated by

Eq. (3) as 0.83, 0.39, 0.03, and 0.63, respectively. Afterwards, the

probability vector is constructed according to information gain val-

ues. The implementation of neighborhood structures on a solution

string is presented in Table 6.

The current solution string is composed of attributes 1 and 3.

According to the possible attributes that can be inserted into the

solution string, the probability vector is constructed for attributes 2

and 4 by using information gain values such as 0.39/(0.39 + 0.63) =
0.38 and 0.38 + 0.63/(0.39 + 0.63) = 1, respectively. The probability

of inserting attribute 4 is higher than that of attribute 2, since the

information gain of attribute 4 is higher than that of attribute 2.

After the implementation of the insertion neighborhood, attribute

4 is added to the solution string according to the reflection of the

generated random number on the probability vector. Similarly, the

attributes that can be extracted from the current solution string

are attributes 1 and 3. The implementation of the extraction neigh-

borhood is achieved by only utilizing attribute 1. Eventually, for the
lteration neighborhood, two different random numbers are gener-

ted to decide which attribute will be changed and whether the

perator or the value of this attribute will be altered, respectively.

or the example in Table 6, the first random number indicates that

he operator or the value of attribute 1 will be changed and the

econd random number indicates that the value of this attribute

ill be randomly altered through possible values.

.1.3. Fitness function

The fitness function of the algorithm is constructed by maxi-

izing the product of sensitivity and specificity as in Eq. (4),

f it = Se ∗ Sp = TP

TP + FN
∗ TN

TN + FP
(4)

here Se and Sp denote the sensitivity and specificity measure-

ents representing the proportion of positive and negative sam-

les that are classified truly, respectively.

.1.4. Generating the rule set

BEE-Miner is an algorithm that uses a multi-rule structure, op-

rated separately for each class, so that at least one rule is ob-

ained for each class. The rules are generated starting with the

lasses that have fewer samples in the training set and are col-

ected in a rule pool. There, before a pre-processing stage is ap-

lied to the original rules in order to avoid conflicts between rules,

amely rules that are exactly the same as other rules in the rule

ool and those that are covered by another rule are not taken into

he pool. In the formation of the rule pool, in other words to find

he best rule combination covering all samples in the training set,

he BEE-Miner utilizes the genetic algorithm. A gene is composed

f 0 and 1 values that indicate whether the relevant rule is in-

luded in the rule pool or not, respectively. In addition, accuracy is

sed in calculating the fitness value of each chromosome and the

hromosome length of the genetic algorithm states the number of

ules in the rule pool.

After giving the details of the cost-insensitive BEE-Miner, the

elated pseudo-code with the notations used in the rest of the pa-

er are presented in Table 7 and Fig. 4, respectively Table 8.
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Table 7

The notations.

Ps Population size of genetic algorithm

Cp Crossover probability

Mp Mutation probability

Pc Percentage of chromosome that will be protected

maxin Maximum iteration number of genetic algorithm

S Number of scout bees (s = 1,…,S)

P Number of employed bees (p = 1,…,P)

e Number of best employed bees

nep Number of onlooker bees assigned to best e employed bees

nsp Number of onlooker bees assigned to remaining P-e employed bees

(nsp<nep)

MaxIter Maximum iteration number of Bees Algorithm

C Number of classes

σ p Solution of pth employed bee

σ neighbor A neighbor solution obtained by local search

σ best Best solution

fit(σ p) Fitness function value of pth employed bee solution

4

a

d

4

M

i

t

Table 8

The cost matrix of the Lenses dataset.

Predicted

Class 1 Class 2 Class 3

Actual Class 1 0 5 10

Class 2 15 0 5

Class 3 5 20 0

a

E

A

w

d
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c

c
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.2. Cost-sensitive BEE-Miner

The main stages of the cost-sensitive BEE-Miner are the same

s those of the cost-insensitive BEE-Miner except for the following

etails.

.2.1. Neighborhood structures

The neighborhood structure used in the cost-sensitive BEE-

iner is similar to the cost-insensitive case but cost information

s also included in the neighborhood mechanism. According to

his structure, the entropy of a database is calculated by Eqs. (5)
t=0

Do 
Generate S number of scout bee solutions, ra

Evaluate the fitness of scout bee solutions

I=0

Do

Sort s=1…..S fit(σs) in descending order and
Select best e employed bees

Assign nep number of onlooker bees to e

Assign nsp number of onlooker bees to e
k=0

Do

For each neighbor solution obtained v
If fit(σneighbor) > fit(σp) then σp= σneighbo

If fit(σneighbor) = fit(σp) then σp=min# of 

Update the best solution
Ifmax p=1….p fit(σp) > fit(σbest) then σbes

k=k+1

While (k<P )
Generate S-P number of new scout bee so

I=I+1

While (I<MaxIter )
Sort s=1…..S fit(σs) in descending order

t=t+1

While (t < C)
// Genetic algorithm

Generate the initial population

r=0
Do

Generate a new population from the prev

Evaluate the fitness of new population an
r=r+1

While (r<maxin)

Select the best chromosome
Simplify the obtained rules and make linguistic

Fig. 4. The pseudo-code of cos
nd (6).

ntropy(CS) =
C∑

i=1

−Ai pilog2 pi (5)

i =
C∑

j=1

ci j (6)

here cij is the misclassification cost of a sample of class i pre-

icted as class j. On the other hand, the information gain of an

ttribute is calculated based on the rule, unlike the case of the

ost-insensitive BEE-Miner. Since corresponding misclassification

osts depend on actual and predicted classes, the information gain

ust be calculated within this context by (Eq. (7)),

n f ormationGain(CS, A, K) = Entropy(CS)

−
∑

v∈V (A)

|Sv|
|S|

(
C∑

i=1

−ciK pilog2 pi

)
(7)

here K represents the class of the current solution string.
ndomly

 select best P solutions as employed bees

ach best e employed bees

ach remaining P-e employed bees

ia entropy
r

rules(σp, σneighbor)

t=σp

lutions, randomly

ious population (crossover and mutation)

d select the best chromosome

t-insensitive BEE-Miner.
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Table 9

The implementation of neighborhood structures for cost-sensitive BEE-miner.

Insertion

A1 A2 A3 A4 C

= = �= 1

2 1 2

Probability vector [0.49, 1]

Random number = 0.12

Inserted attribute is A1

The possible values for A1

A1=1, A1=2, A1=3, A1 �=1, A1 �=2, A1 �=3

MCSR 0.44, 0.42, 0.47, 0.22, 0.24, 0.20

Probability vector

[0.22, 0.43, 0.67, 0.78, 0.90, 1]

Random number = 0.25

Current solution string A1 = 2

A1 A2 A3 A4 C Extraction

= �= 1 A1 A2 A3 A4 C

1 2 �= 1

2

Probability vector [0.52, 1]

Random number = 0.41

Removed attribute is A2

Alteration

A1 A2 A3 A4 C

�= �= 1

1 2

Randomnumber1 = 1 (the attribute

that will be changed is A2)

The possible values for A2

A2=2, A2 �=1, A2 �=2

MCSR 0.72, 0.72, 0.55

Probability vector [0.30, 0.60, 1]

Random number = 0.51

A2 �=1

1
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The cost-sensitive BEE-Miner uses the same neighborhood

structures as the cost-insensitive case, however, since the objec-

tive is mainly to minimize the misclassification cost, the attribute

is selected from among the attributes with low cost information

value during insertion and from among the attributes with high

cost information value during extraction according to a proba-

bilistic choice. Moreover, after determining the attribute that will

be inserted or altered, the relevant operator-value combination is

again selected probabilistically depending on the misclassification

cost ratio rather than selecting randomly. The mentioned misclas-

sification cost ratio is calculated by Eq. (8) [28].

MCSRak,s,i
=

∑
∀(x,y)∈S Cy,i∑

∀(x,y)∈S Cy,i+
(∑C

j=1

∑
∀(x,y)∈S∈y=i Cy,i

)
∗ 1

C−1

(8)

Let MCSRak,s,i be the misclassification cost ratio caused by clas-

sifying all the records in the sth bin of attribute ak as class i whose

real class is not actually class i, where (x, y) represents the at-

tribute and class information of a sample in the training set, re-

spectively. The denominator of Eq. (8) represents the potential mis-

classification cost caused by classifying all the records in the given

interval as class i whose class is not actually i. The numerator of

Eq. (8) represents the potential misclassification cost caused by not

classifying all of the records in the given interval to their true class.

The insertion, extraction, and alteration neighborhood struc-

tures are again visualized on the Lenses dataset within the follow-

ing cost matrix.

The entropy of the Lenses dataset is calculated by Eq. (5) as

26.48. The information gain values of attributes depending on Class

1 are calculated by Eq. (7) as 20.20, 18.81, 20.33, and 20.76, respec-

tively. After implementation of the neighborhood structures to the

current solution string, the obtained solutions are as given below.

The current solution string is composed of attributes 2 and 3.

Almost similar to the cost-insensitive case, attribute 1 is selected

to be added to the solution string. However, unlike to the cost-

insensitive case, the operator-value combination is determined by

utilizing MCSR values instead of random assignation. The probabil-

ity vector is constructed in accordance with the MCSR values of the

possible operator-value combinations. By reflecting the generated

random number on the probability vector, ‘A1 = 2’ is added to the

solution string. The implementation of extraction neighborhood is

the same as in the cost-insensitive case except for the calculation

of information gain values. For the example in Table 9, the prob-

ability of extracting attribute 2 is higher than that of attribute 3,

since the cost information (based on the class of the rule) of at-

tribute 2 is lower than that of attribute 3. For the alteration neigh-

borhood, the difference from the cost-insensitive case lies in again

using MCSR values for determining the operator-value combination

of the altered attribute.

4.2.2. Fitness function

The performance of a classifier using k number of class labels

is measured by the k∗k confusion matrix (CoM). The rows and

columns of CoM represent actual and predicted class labels, re-

spectively. CoMij is the number of samples that are classified as

j, but are actually i. Cost-sensitive classifiers can be tested by a

cost-weighted sum of misclassifications divided by the number of

classified instances based on one-to-one multiplication of the con-

fusion matrix and cost matrix [29]. For the fitness function of the

cost-sensitive BEE-Miner, Eq. (9) is used according to the men-

tioned structure.

f it =
∑k

i=1

∑k
j=1 (CoMi jci j)∑k

i=1

∑k
j=1 CoMi j

(9)

However, there are some difficulties in determining the confu-

sion matrix of the multi-class case. Suppose that the dataset con-

tains 3 classes and the rule that will be evaluated belongs to class
. The number of samples that satisfy both the rule part and class

art of the evaluated rule will be multiplied with the C11 entry of

he cost matrix, while the number of samples that satisfy the rule

art but don’t satisfy the class part will be multiplied one-to-one

ith the Ci1 entries of the cost matrix according to the actual class

i) to which the sample belongs. However, even though the actual

lasses of the samples that satisfy the class part but don’t satisfy

he rule part of the evaluated rule are known in advance, the pre-

icted classes of these samples are not known. A different situation

rises here, since it is uncertain whether the number of this type

f samples will be multiplied by C12 or C13. In order to overcome

his problem the expected cost is utilized for these samples.

xpectedCosti =
k∑

j=1

i �= j

P( j)ci j (10)

here P(j) denotes the occurrence probability of class j. By adding

he value obtained by Eq. (10) to the one-to-one multiplications

ith the cost matrix and dividing them by the total number of

amples, the adjustment to Eq. (9) is achieved. On the other hand,

he samples that don’t satisfy both the rule part and class part

f the evaluated rule are not considered since these samples are

ot classified by the evaluated rule. These samples represent TN

nd with the general rationality, the misclassification cost of these

amples is equal to 0.

. Computational study

.1. The datasets

In order to evaluate the performance of BEE-Miner, the datasets

btained from the UCI machine learning repository are used. The

haracteristics of the datasets are summarized in Table 10 [30].
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Table 10

The characteristics of datasets used in the evaluation of BEE-miner.

Dataset # of # of categoric # of continuous # of

samples attributes attributes classes

Credit approval 690 9 6 2

Pima Indians diabetes 768 – 8 2

Echocardiogram 132 1 6 2

Heart disease (Statlog) 270 7 6 2

Hepatitis 155 13 6 2

Horse colic 368 15 7 2

Congressional voting records 435 16 – 2

Wisconsin breast cancer 699 – 9 2

Iris 150 – 4 3

Lymphography 148 18 – 4

Wine 178 – 13 3

Zoo 101 16 – 7

Table 11

The performance of different parameter sets for BEE-miner.

Dataset Parameter Test accuracy # of rules CPU time

set

Credit approval I 84.73 ± 6.01 2.80 ± 0.84 108.53 ± 13.14

II 84.83 ± 6.11 3.43 ± 0.93 276.70 ± 14.94

III 84.30 ± 6.43 3.66 ± 1.24 1369.93 ± 8.09

Zoo I 92.42 ± 8.07 7.00 ± 0.00 35.46 ± 0.62

II 91.09 ± 8.37 7.00 ± 0.00 153.73 ± 2.75

III 90.42 ± 8.43 7.03 ± 0.18 745.46 ± 9.43

Iris I 94.66 ± 6.16 3.86 ± 0.43 17.06 ± 0.90

II 96.00 ± 5.42 3.90 ± 0.30 57.50 ± 1.25

III 89.55 ± 13.17 4.13 ± 0.68 265.73 ± 24.92

Table 12

The p values of t-test for the comparison of different parame-

ter values.

Dataset Parameter Parameter Parameter

sets (I–II) sets (I–III) sets (II–III)

Credit approval 0.601 0.009 0.069

Zoo 0.203 0.078 0.536

Iris 0.056 0.035 0.006
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The selected datasets are composed of 8 binary and 4 multi-

lass datasets; 4 of them contain only continuous attributes, 3 of

hem contain only categoric attributes and 5 of them contain both

ypes of attributes with different sizes.

.2. BEE-Miner parameter setting

In order to determine the parameters of the algorithm, different

arameter sets are generated and the set that has the best perfor-

ance is selected. {S, P, e, nep, nsp, MaksIter} = I {30,20,10,8,4,250},

I {50,40,20,10,5,500}, and III {70,50,25,20,10,1000} sets are formed

y considering that the number of iterations is not greater than

he number of bees in the algorithm. The representatives of the

inary and multi-class datasets with different sizes are determined

s credit approval, zoo, and iris. The average test accuracy, the

umber of rules, and CPU time in seconds are given in Table 11

ith standard deviations for each dataset.

In order to compare the parameter sets statistically, each pair of

arameter sets is evaluated in terms of average test accuracy. The

btained p-values of the t-test based on average test accuracy are

resented in Table 12.

The t-test results indicate that there is a statistically significant

ifference between the 3 comparisons. The parameter set I outper-

ormed set III on the credit approval and iris datasets; the parame-

er set II outperformed set III on the iris dataset. Consequently, pa-

ameter set I {30,20,10,8,4,250} is selected for later computational
tudies. Additionally the parameters of the genetic algorithm are

etermined as {ps, cp, mp, pc, maxin} = {40, 0.8, 0.2, 0.2, 100}.

On the other hand, cost matrices are generated within the algo-

ithm for each dataset specifically. Because of the absence of cost

atrices for all of the datasets in the literature, the cost matrix

eneration technique of MetaCost [31], one of the studies used in

he comparisons, is utilized. According to this technique, the cij

alues are calculated by 1000P(j)/P(i) and the cii values are de-

ermined as 0 for the multi-class case, where P(i) and P(j) de-

ote the occurrence probability of class i and j in the training set.

ence, high cost values will emerge in the misclassification of the

inority class. This situation also reflects the real life problems

nd reveals the importance of correct classification of the minority

lasses. On the other hand, for the binary class case, the misclassi-

cation cost values are determined as c11 = c22 = 0, c12 = 5000, c21

1000 where 1 and 2 denote the minority and majority classes,

espectively.

.3. Comparison results for cost-insensitive BEE-Miner

The selected datasets are executed 30 times by using 10-fold

ross validation and the cost-insensitive BEE-Miner is compared

ith the results in the literature in terms of average test accu-

acy and average number of rules as presented in Table 13. How-

ver, since the horse colic dataset has an original distinction in the

raining and test sets, this dataset does not use 10-fold cross val-

dation. Also, in order to establish a correlation between test ac-

uracy and the number of rules, the Minimum Deviation Method

MDM) is used as in Eq. (11) and the comparisons are based on

his calculation [32]. Moreover, the missing values in the datasets

re replaced with the average value of the class to which they be-

ong for continuous attributes and with the frequent value of the

lass to which they belong for categoric attributes.

DMi = test accuracymax − test accuracyi

test accuracymax − test accuracymin

+ # of rulesi − # of rulesmin

# of rulesmax − # of rulesmin

(11)

According to the results summarized in Table 13, the cost-

nsensitive BEE-Miner has an above-average performance in terms

f test accuracy and the number of rules. In addition to less test

ccuracy being yielded for some of the datasets, comparable results

re obtained with fewer rules. Even though the ranking on MDM

s low, the test accuracy is close to the other results and the num-

er of rules is much better than the compared results, such as for

he credit approval dataset. Furthermore, the test accuracy values

btained by BEE-Miner are better than the results that have a sim-

lar number of rules, such as for the echocardiogram dataset. It is

fact that test accuracy is more crucial than the number of rules.

owever, obtaining a solution that has similar test accuracy with

lower number of rules is also important. Among the compared

tudies, BEE-Miner is the best for the wine, hepatitis, horse colic,

nd voting datasets. On the other hand, for the lymphography and

oo datasets, BEE-Miner ranked as 2 and 4 among 13 studies.

Moreover, BEE-Miner achieves the first rank for the horse colic,

epatitis, voting, and wine datasets which have the highest num-

er of attributes. For the lymphography and zoo datasets, which

lso have a high number of attributes, BEE-Miner achieves the sec-

nd and fourth rank, respectively. Therefore, it can be concluded

hat the performance of the cost-insensitive BEE-Miner is more ef-

ective on datasets with a high number of attributes.

.4. Comparison results for cost-sensitive BEE-Miner

The same benchmark problems are executed with the

ost-sensitive BEE-Miner for 30 times by using 10-fold cross
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Table 13

The comparison results of cost-insensitive BEE-miner.

Compared algorithms Test accuracy # of rules MDM

Credit approval cAnt-Miner [33] 85.30 ± 0.93 7.07 ± 0.19 0.74 (3)

μcAnt-Miner [34] 86.70 ± 0.84 17.42 ± 0.31 0.50 (1)

Jrip [35] 85.51 ± 1.46 4.10 ± 0.64 0.55 (2)

PART [36] 84.35 ± 1.08 31.90 ± 2.93 2.00 (7)

ATM [37] 85.90 ± 0.10 29.60 ± 0.20 1.26 (6)

cAnt-MinerPB [38] 85.70 ± 0.10 12.30 ± 0.10 0.75 (4)

BEE-Miner 84.87 ± 6.47 2.66 ± 0.92 0.77 (5)

Pima Indians diabetes Ant Miner [39] 70.99 12.20 0.97 (5)

Ant Miner with Imp. Quick Red. [39] 76.58 11.30 0.74 (3)

RCA [40] 81.00 153.00 1.06 (7)

EBA [41] 76.00 285.00 1.73 (10)

GA [42] 73.00 228.00 1.65 (9)

Johnson [42] 80.00 81.00 0.84 (4)

Holte 1R [42] 71.00 42.00 1.07 (8)

EDGAR [43] 94.00 ± 0.17 128.00 ± 9.34 0.44 (2)

REGAL [44] 94.00 ± 0.17 127.00 ± 9.49 0.43 (1)

BEE-Miner 69.53 ± 5.53 2.96 ± 1.06 1.00 (6)

Echocardiogram RCA [40] 92.00 143.00 0.60 (5)

EBA [41] 91.00 376.00 1.26 (11)

GA [42] 92.00 241.00 0.87 (8)

Johnson [42] 91.00 19.00 0.30 (3)

Holte1R [42] 100.00 44.00 0.11 (1)

NBTree [45] 67.45 2.30 0.94 (9)

Decision Table [46] 65.48 3.30 1.00 (10)

PART [36] 71.39 4.00 0.83 (6)

C4.5 [47] 70.17 3.20 0.86 (7)

Rule extraction from adaptive ANN using AIS [48] 94.59 24.00 0.21 (2)

BEE-Miner 84.67 ± 9.68 2.46 ± 0.73 0.44 (4)

Heart disease (Statlog) ATM [37] 77.30 ± 0.30 18.10 ± 0.20 1.26 (7)

cAnt-MinerPB [38] 77.00 ± 0.40 8.60 ± 0.10 0.99 (3)

C4.5 [47] 81.29 2.00 0.00 (1)

RIPPER [35] 78.23 2.00 0.54 (2)

CBA [49] 79.20 22.00 1.06 (6)

MCAR [50] 81.14 31.00 1.02 (4)

BEE-Miner 75.67 ± 7.06 3.56 ± 0.56 1.05 (5)

Hepatitis cAnt-Miner [33] 76.84 ± 3.13 4.91 ± 0.11 0.83 (10)

μcAnt-Miner [34] 80.27 ± 2.04 7.80 ± 0.36 0.72 (6)

Jrip [35] 78.13 ± 2.66 2.70 ± 0.21 0.74 (7)

PART [36] 83.25 ± 3.47 8.40 ± 0.34 0.59 (2)

ATM [37] 82.50 ± 0.30 7.50 ± 0.10 0.61 (3)

cAnt-MinerPB [38] 80.10 ± 0.50 7.60 ± 0.10 0.72 (5)

C4.5Rules [47] 79.33 ± 9.47 6.30 ± 1.42 0.74 (8)

RIPPER [35] 72.21 ± 14.18 7.90 ± 1.73 1.08 (13)

BNGE [51] 82.54 ± 4.55 37.90 ± 2.81 1.07 (12)

RISE [52] 83.88 ± 6.95 50.80 ± 3.49 1.20 (14)

INNER [53] 79.38 ± 2.38 14.70 ± 1.95 0.86 (11)

SIA [54] 76.88 ± 9.47 69.40 ± 6.90 1.79 (15)

EHS-CHC [55] 79.38 ± 2.38 7.50 ± 1.35 0.75 (9)

Filtered EHS-CHC [55] 79.38 ± 2.38 4.40 ± 1.26 0.71 (4)

BEE-Miner 94.62 ± 5.35 2.23 ± 0.43 0.00 (1)

Horse colic cAnt-Miner [33] 80.45 ± 2.58 7.27 ± 0.21 0.91 (3)

μcAnt-Miner [34] 70.23 ± 2.16 14.57 ± 0.82 2.00 (7)

Jrip [35] 83.54 ± 1.87 3.70 ± 0.34 0.46 (2)

PART [36] 82.39 ± 2.10 9.60 ± 0.45 1.02 (5)

ATM [37] 83.80 ± 0.10 10.20 ± 0.10 1.01 (4)

cAnt-MinerPB [38] 83.50 ± 0.30 10.80 ± 0.20 1.08 (6)

BEE-Miner 92.66 ± 3.97 3.06 ± 0.52 0.00 (1)

Voting ATM [37] 94.90 ± 0.10 6.10 ± 0.00 0.74 (3)

cAnt-MinerPB [38] 93.30 ± 0.20 6.40 ± 0.10 1.19 (5)

EDGAR [43] 97.00 ± 0.21 24.00 ± 7.13 1.00 (4)

REGAL [44] 96.00 ± 4.42 8.00 ± 9.36 0.53 (2)

BEE-Miner 96.45 ± 3.16 2.16 ± 0.37 0.14 (1)

Wisconsin breast cancer EDGAR [43] 98.00 ± 0.56 25.00 ± 4.10 1.30 (14)

REGAL [44] 100.00 ± 0.26 25.00 ± 3.63 1.00 (12)

MPPSONf1f2 [56] 97.66 ± 1.66 5.80 ± 2.50 0.52 (6)

MPPSONf1-f3 [56] 97.81 ± 1.24 5.10 ± 1.50 0.46 (4)

MEPGANf1f2 [56] 96.78 ± 1.49 6.60 ± 3.60 0.68 (10)

MEPGANf1-f3 [56] 97.80 ± 1.23 5.40 ± 2.80 0.48 (5)

MEPDENf1f2 [56] 96.93 ± 1.86 3.40 ± 1.30 0.52 (7)

MEPDENf1-f3 [56] 97.66 ± 1.01 3.80 ± 0.90 0.43 (3)

(continued on next page)
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Table 13 (continued)

Compared algorithms Test accuracy # of rules MDM

MPANN [57] 98.10 4.10 0.38 (2)

HMOEN_L2 [58] 96.26 4.70 0.68 (11)

HMOEN_HN [58] 96.82 4.80 0.60 (9)

MSCC [59] 97.60 2.00 0.36 (1)

RBFN-TVMOPSO [60] 96.53 2.00 0.52 (8)

BEE-Miner 93.42 ± 2.96 3.66 ± 0.88 1.07 (13)

Iris cAnt-Miner [33] 94.21 ± 0.99 4.00 ± 0.00 0.55 (8)

μcAnt-Miner [34] 95.65 ± 3.27 8.40 ± 0.61 0.52 (7)

Jrip [35] 93.50 ± 3.84 3.58 ± 0.31 0.62 (10)

PART [36] 93.02 ± 3.55 3.79 ± 1.20 0.68 (13)

ATM [37] 96.20 ± 0.10 4.20 ± 0.00 0.33 (4)

cAnt-MinerPB [38] 93.20 ± 0.20 4.80 ± 0.00 0.69 (14)

C4.5Rules [47] 96.67 ± 4.71 5.00 ± 0.00 0.30 (3)

RIPPER [35] 96.00 ± 3.44 6.20 ± 0.79 0.41 (5)

BNGE [51] 96.00 ± 4.66 12.20 ± 1.32 0.59 (9)

RISE [52] 94.00 ± 4.92 37.10 ± 11.21 1.56 (17)

INNER [53] 96.00 ± 3.44 8.20 ± 1.23 0.47 (6)

SIA [54] 94.67 ± 4.22 13.90 ± 1.79 0.80 (15)

EHS-CHC [55] 94.00 ± 3.78 6.20 ± 0.79 0.64 (11)

Filtered EHS-CHC [55] 96.67 ± 4.71 5.00 ± 0.00 0.30 (2)

EDGAR [43] 96.00 ± 0.38 14.00 ± 5.55 0.65 (12)

REGAL [44] 99.00 ± 0.17 11.00 ± 2.55 0.22 (1)

BEE-Miner 90.22 ± 7.57 5.76 ± 1.07 1.06 (16)

Lymphography DEREx [61] 80.79 ± 1.66 5.00 0.17 (3)

OneR [62] 75.41 ± 0.57 4.00 0.36 (4)

PART [36] 85.14 ± 0.00 12.00 0.10 (1)

Ridor [63] 77.84 ± 3.77 14.00 0.40 (6)

C4.5Rules [47] 74.27 ± 11.75 11.50 ± 1.18 0.50 (9)

RIPPER [35] 75.80 ± 8.97 13.60 ± 1.65 0.47 (8)

BNGE [51] 80.06 ± 9.66 29.20 ± 2.35 0.51 (10)

RISE [52] 76.12 ± 9.93 81.00 ± 10.35 1.33 (13)

INNER [53] 58.26 ± 14.65 8.30 ± 1.83 1.05 (12)

SIA [54] 81.30 ± 7.52 33.30 ± 1.70 0.52 (11)

EHS-CHC [55] 77.33 ± 9.11 13.40 ± 1.35 0.41 (7)

Filtered EHS-CHC [55] 75.77 ± 9.49 7.70 ± 1.57 0.39 (5)

BEE-Miner 80.82 ± 9.28 5.23 ± 0.67 0.17 (2)

Wine cAnt-Miner [33] 91.38 ± 1.72 4.01 ± 0.01 0.51 (15)

μcAnt-Miner [34] 93.82 ± 1.69 4.07 ± 0.25 0.29 (7)

Jrip [35] 92.19 ± 2.22 4.00 ± 0.15 0.43 (13)

PART [36] 92.75 ± 1.44 4.60 ± 0.16 0.39 (11)

ATM [37] 96.20 ± 0.10 5.60 ± 0.00 0.08 (2)

cAnt-MinerPB [38] 93.60 ± 0.30 5.40 ± 0.10 0.32 (8)

C4.5Rules [47] 94.90 ± 6.19 5.00 ± 0.00 0.20 (5)

RIPPER [35] 92.16 ± 5.34 5.60 ± 1.07 0.45 (14)

BNGE [51] 96.60 ± 2.93 10.10 ± 0.99 0.08 (3)

RISE [52] 94.38 ± 5.24 29.70 ± 10.78 0.40 (12)

INNER [53] 85.92 ± 6.18 6.20 ± 1.03 1.01 (16)

SIA [54] 94.38 ± 5.24 160.20 ± 0.42 1.23 (17)

EHS-CHC [55] 94.31 ± 6.61 9.80 ± 1.81 0.28 (6)

Filtered EHS-CHC [55] 95.42 ± 5.38 7.60 ± 0.97 0.17 (4)

EDGAR [43] 97.00 ± 0.31 57.00 ± 13.51 0.34 (9)

REGAL [44] 97.00 ± 0.31 60.00 ± 14.52 0.36 (10)

BEE-Miner 96.08 ± 4.42 3.13 ± 0.34 0.08 (1)

Zoo ATM [37] 88.20 ± 0.20 10.70 ± 0.00 0.51 (9)

cAnt-MinerPB [38] 78.60 ± 0.90 6.00 ± 0.00 0.57 (10)

C4.5Rules [47] 92.81 ± 6.92 8.70 ± 0.48 0.26 (7)

RIPPER [35] 94.08 ± 7.03 8.70 ± 0.48 0.22 (5)

BNGE [51] 96.83 ± 5.24 9.00 ± 0.47 0.15 (2)

RISE [52] 96.83 ± 5.24 25.60 ± 3.75 1.00 (11)

INNER [53] 87.61 ± 6.64 8.90 ± 0.88 0.43 (8)

SIA [54] 96.17 ± 6.85 10.10 ± 0.74 0.22 (6)

EHS-CHC [55] 95.00 ± 6.71 7.00 ± 0.00 0.10 (1)

Filtered EHS-CHC [55] 91.31 ± 8.02 6.30 ± 0.67 0.18 (3)

EDGAR [43] 69.00 ± 3.14 9.00 ± 5.035 1.02 (13)

REGAL [44] 65.00 ± 3.11 6.00 ± 4.097 1.00 (12)

BEE-Miner 91.42 ± 8.38 7.00 ± 0.00 0.22 (4)
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alidation and the results are summarized in Table 14, which rep-

esents the average and standard deviations of test accuracy, the

umber of rules, and misclassification cost. The computational re-

ults of the cost-sensitive BEE-Miner are compared with 2 popu-

ar cost-sensitive meta-learning algorithms, namely MetaCost and
ostSensitiveClassifier, in WEKA 3.6.11 data mining software with

he same training set, testing set and cost matrices. While exe-

uting the compared meta-learning algorithms, 5 cost-insensitive

lassifiers are taken into consideration. These algorithms are PART,

4.5, SimpleCART, RIPPER and DecisionTable. However, since the
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Table 14

The comparison results of cost-sensitive BEE-Miner.

Datasets Credit Pima Echocardiogram Heart Hepatitis Horse Congressional Wisconsin Iris Lymphography Wine Zoo

approval Indians disease colic voting breast

diabetes (Statlog) records cancer

MetaCost DecisionTable Test acc. 83.91 73.56 68.91 76.66 80.64 81.60 94.94 94.13 93.33 75.67 84.83 60.39

# of rules 18 32 1 44 1 49 3 34 8 49 34 2

Cost 208.69 294.27 337.83 288.88 200.00 224.00 80.45 71.53 66.66 193.43 141.38 90.31

PART Test acc. 83.91 76.04 70.27 81.48 81.29 80.80 96.32 95.13 93.33 78.37 91.57 83.16

# of rules 23 9 3 17 7 3 9 11 4 8 4 6

Cost 221.73 298.17 418.91 259.25 258.06 248.00 55.17 77.25 66.66 157.54 81.50 144.41

C4.5 Test acc. 85.65 74.47 71.62 79.25 81.93 80.00 95.86 94.84 92.66 80.40 91.01 82.17

# of rules 15 22 7 23 4 5 7 11 5 20 5 6

Cost 194.20 324.21 351.35 270.37 200.00 288.00 62.06 75.82 73.33 157.64 86.08 150.60

SimpleCART Test acc. 85.07 75.39 68.91 80.00 81.29 81.60 95.63 94.56 94.66 81.75 88.20 83.16

# of rules 4 7 7 8 3 20 6 9 5 3 8 9

Cost 215.94 304.68 405.40 259.25 212.90 240.00 62.06 77.25 53.33 131.99 123.52 88.17

RIPPER Test acc. 85.50 74.86 62.16 80.00 82.58 82.40 95.63 95.56 94.66 74.32 91.01 87.12

# of rules 6 5 3 4 3 3 2 4 4 6 4 5

Cost 195.65 289.06 486.48 266.66 200.00 240.00 73.56 67.23 53.33 199.83 86.80 33.17

CostSensitiveClassifier DecisionTable Test acc. 85.50 73.17 67.56 78.88 74.19 79.20 94.02 94.13 93.33 74.32 91.57 91.08

# of rules 38 8 7 12 28 62 68 23 3 14 18 10

Cost 186.95 303.38 364.86 274.07 335.48 256.00 80.45 77.25 66.66 203.33 81.36 71.32

PART Test acc. 84.63 74.73 62.16 80.37 80.64 82.40 94.48 94.56 94.66 81.08 89.88 82.17

# of rules 18 6 4 9 7 4 9 13 3 10 5 5

Cost 192.75 289.06 527.02 251.85 219.35 232.00 73.56 75.82 53.33 168.25 91.33 117.02

C4.5 Test acc. 84.92 74.08 62.16 76.66 83.22 82.40 96.78 94.84 95.33 78.37 89.88 82.17

# of rules 8 6 6 19 3 4 5 8 5 11 9 5

Cost 191.30 309.89 513.51 296.29 187.09 232.00 45.97 74.39 46.66 173.07 98.04 117.02

SimpleCART Test acc. 82.75 71.87 67.56 78.51 81.29 76.00 92.41 94.99 94.00 70.27 85.39 85.14

# of rules 23 43 11 9 1 13 10 15 5 13 9 5

Cost 223.18 367.18 405.40 262.96 225.80 320.00 105.74 70.10 60.00 269.31 138.12 127.81

RIPPER Test acc. 85.07 73.43 64.86 78.14 80.64 82.40 95.86 95.85 95.33 78.37 90.44 83.16

# of rules 4 3 1 4 2 2 3 6 3 4 5 4

Cost 189.85 325.52 445.94 259.25 219.35 232.00 68.96 67.23 46.66 153.54 91.61 51.91

Cost-sensitive BEE-Miner Test acc. 86.67 ± 79.03 ± 4.63 87.50 ± 84.07 ± 98.04 ± 94.64 ± 98.14 ± 98.27 ± 96.66 ± 89.19 ± 99.44 ± 99.00 ±
Test acc. 6.72 4.63 12.47 5.25 3.15 1.15 2.13 1.89 4.71 5.64 1.75 3.16

# of rules 4.10 ± 6.20 ± 6.10 ± 3.90 ± 4.30 ± 3.33 ± 2.10 ± 5.60 ± 5.30 ± 5.00 ± 3.00 ± 8.60 ±
1.10 1.68 0.73 1.19 1.15 0.66 0.31 1.17 0.82 0.00 0.00 0.51

Cost 181.15 ± 290.90 ± 84.61 ± 218.51 ± 25.00 ± 88.26 ± 29.54 ± 25.71 ± 33.33 ± 84.39 ± 6.68 ± 1.21 ±
91.97 82.41 76.49 74.99 43.70 23.53 41.56 29.19 47.14 66.07 21.14 3.85
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Fig. 5. The demonstration of misclassification cost values of each algorithm.

Table 15

The effect of cost-based mechanisms on cost-sensitive BEE-miner.

Cost-insensitive Cost-insensitive Cost-sensitive

BEE-Miner with BEE-Miner with BEE-Miner

cost-based cost-based

neighborhood fitness function

Credit approval 255.07 ± 127.80 244.44 ± 125.87 242.99 ± 121.53

Pima Indians diabetes 467.96 ± 117.72 357.57 ± 85.24 355.84 ± 90.40

Echocardiogram 289.74 ± 154.74 266.66 ± 156.12 200.00 ± 125.50

Heart disease (Statlog) 450.61 ± 155.34 343.20 ± 109.14 316.04 ± 112.89

Hepatitis 243.75 ± 171.63 120.83 ± 97.00 83.33 ± 88.89

Horse colic 262.40 ± 52.11 93.86 ± 20.89 88.26 ± 23.53

Congressional voting records 111.36 ± 60.67 81.06 ± 69.26 81.06 ± 66.64

Wisconsin breast cancer 89.04 ± 44.81 87.61 ± 49.73 81.42 ± 60.27

Iris 77.77 ± 70.21 77.77 ± 70.21 75.55 ± 69.44

Lymphography 338.80 ± 231.11 335.53 ± 511.41 178.48 ± 120.08

Wine 121.64 ± 102.65 42.26 ± 52.42 35.58 ± 44.44

Zoo 117.58 ± 199.85 91.12 ± 189.45 45.82 ± 42.69
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orse colic dataset has an original distinction in the training and

est sets, this dataset does not use 10-fold cross validation. Similar

o the cost-insensitive case, the missing values are replaced with

he average value of the class to which they belong for continuous

ttributes and the frequent value of the class to which they belong

or categoric attributes.

The cost-sensitive BEE-Miner yields lower misclassification cost

alues for 11 out of 12 of the datasets which are marked in

old in Table 14. Also for the remaining dataset (Pima Indians

iabetes) the BEE-Miner attained a comparable result with only

.6% increase in misclassification cost. The reason behind the high

tandard deviations of test accuracy and especially misclassifica-

ion cost values is due to the variation in the test and train-

ng sets of each fold. Therefore, it can be concluded that the

ost-sensitive BEE-Miner algorithm attains high test accuracy with

ow misclassification cost. Furthermore, the effect of the neighbor-

ood structure and fitness function on the proposed BEE-Miner

lgorithm is also obvious on the obtained results. The misclas-

ification cost values of each algorithm are also illustrated in

ig. 5.

The performance of the BEE-Miner is also analyzed considering

he attribute numbers of datasets. In this respect, the average of

he difference between the misclassification cost value of the BEE-

iner and compared algorithms is calculated. It is observed that
2% of the decrease in misclassification cost value belongs to the

atasets with more than 15 attributes. The average of the differ-

nce between the test accuracy value of the BEE-Miner and the

ompared algorithms is also calculated and it is also observed that

8% of the increase in test accuracy value belongs to the datasets

ith more than 15 attributes. Therefore, it can be concluded that

he performance of the cost-sensitive BEE-Miner is more effective

n datasets with a high number of attributes.

.5. The effect of cost-based components on cost-sensitive BEE-Miner

The effect of the cost-based neighborhood mechanism and

ost-based fitness function on the cost-sensitive BEE-Miner is also

nalyzed. The average and standard deviation values of misclassi-

cation costs under 30 executions for the selected datasets, which

epresent the binary and multi-class datasets with different sizes

imilar to the determination of the parameter values stage, are

ummarized in Table 15.

It can be generally concluded that the effectiveness of the

ost-sensitive BEE-Miner relies mainly on the cost-based fitness

unction, because the single-handed cost-based neighborhood

echanism obtained higher misclassification costs than the

ingle-handed cost-based fitness function mechanism. However,

ecause the cost-sensitive BEE-Miner includes both the cost-based
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[

neighborhood and cost-based fitness function it has superior

performance, as expected.

6. Conclusion

In this study, a cost-sensitive classification algorithm is intro-

duced. The key feature of the BEE-Miner is that it is a direct

method rather than a meta-learning method, namely it incorpo-

rates the cost component into the operation principles of the

algorithm. Moreover, the developed algorithm is also capable of

classifying both binary and multi-class datasets. The effect of the

cost-sensitive BEE-Miner including misclassification cost to both

the neighborhood structures and fitness function is also provided.

The extensive computational study results indicate that the BEE-

Miner is able to classify datasets with high accuracy and low cost.

For future studies, a multi-objective approach that aims to maxi-

mize accuracy, minimize misclassification cost and the number of

rules at the same time will be beneficial to obtain more significant

results.
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[20] P. Tapkan, L. Özbakır, A. Baykasoğlu, Modeling and solving constrained two-
sided assembly line balancing problem via bee algorithms, Appl. Soft Comput.

12 (2012) 3343–3355.
[21] J. Catlett, On changing continuous attributes into ordered discrete attributes,
in: Proceedings of the European Working Session on Learning, 1991, pp. 164–

178.
[22] Y. Yang, G.I. Webb, Discretization for Naïve–Bayes learning: managing dis-

cretization bias and variance, Mach. Learn. 74 (2009) 39–74.
[23] U.M. Fayyad, K.B. Irani, Multi-interval discretization of continuous-valued at-

tributes for classification learning, in: Proceedings of the 13th International
Joint Conference on Artificial Intelligence, 1993, pp. 1022–1027.

[24] R. Kerber, Chimerge: discretization for numeric attributes, Nat. Conf. Artif. In-

tell. (1992) 123–128.
[25] A.A. Freitas, S.H. Lavington, Speeding up knowledge discovery in large rela-

tional databases by means of a new discretization algorithm, in: Proceedings
of the 14th British National Conference on Databases, 1996, pp. 124–133.

[26] Y. Yang, G.I. Webb, X. Wu, Discretization methods, Data Mining and Knowledge
Discovery Handbook, 2nd ed., Springer-Verlag, New York, 2010 pp. 101-116.

[27] T. Mitchell, Machine Learning, McGraw Hill, New York, USA, 1997.

[28] Y. Weiss, Y. Elovici, L. Rokach, The CASH algorithm-cost-sensitive attribute se-
lection using histograms, Inf. Sci. 222 (2013) 247–268.

[29] T. Pietraszek, Alert Classification to Reduce False Positives in Intrusion Detec-
tion, Comput. Sci, Univ. of Freiburg, Germany, 2006 Ph.D. dissertation.

[30] http://archive.ics.uci.edu/ml/datasets.html, last accessed date June 04. 2015.
[31] P. Domingos, MetaCost: a general method for making classifiers cost-sensitive,

in: Proceedings of the 5th International Conference on Knowledge Discovery

and Data Mining, 1999, pp. 155–164.
[32] M.T. Tabucanon, Multiple Criteria Based Decision Making in Industry, Elsevier,

New York, USA, 1988.
[33] F. Otero, A. Freitas, C.G. Johnson, cAnt-Miner: an ant colony classification algo-

rithm to cope with continuous attributes, LNCS 5217 (2008) 48–59.
[34] K.M. Salama, A.M. Abdelbar, F.E.B. Otero, A.A. Freitas, Utilizing multiple

pheromones in an ant-based algorithm for continuous attribute classification

rule discovery, Appl. Soft Comput. 13 (1) (2013) 667–675.
[35] W. Cohen, Fast effective rule induction, in: Proceedings of the 12th Interna-

tional Conference On Machine Learning, 1995, pp. 115–123.
[36] E. Frank, I.H. Witten, Generating accurate rule sets without global optimiza-

tion, in: Proceedings of the 15th International Conference On Machine Learn-
ing, 1998, pp. 144–151.

[37] F.E.B. Otero, A.A. Freitas, C.G. Johnson, Inducing decision trees with an ant

colony optimization algorithm, Appl. Soft Comput. 12 (11) (2012) 3615–3626.
[38] F.E.B. Otero, A.A. Freitas, C.G. Johnson, A new sequential covering strategy for

inducing classification rules with ant colony algorithms, IEEE Trans. Evol. Com-
put. 17 (1) (2013) 64–76.

[39] P. Jaganathan, K. Thangavel, A. Pethalakshmi, M. Karnan, Classification rule dis-
covery with ant colony optimization and improved quick reduct algorithm, Int.

J. Comput. Sci. 33 (1) (2007) 286–291.

[40] A.A. Bakar, Z.A. Othman, A.R. Hamdan, R. Yusof, R. Ismail, An agent model for
rough classifiers, Appl. Soft Comput. 11 (2) (2011) 2239–2245.

[41] Y. Hassan, E. Tazaki, Emergent rough set data analysis, LNCS 3135 (2006) 343–
361.

[42] A. Ohrn, J. Komorowski, ROSETTA-a rough set toolkit for analysis of data, in:
Proceedings of the 5th International Workshop on Rough Sets and Soft Com-

puting, 1997, pp. 403–407.
[43] M. Rodriguez, D.M. Escalante, A. Peregrin, Efficient distributed genetic algo-

rithm for rule extraction, Appl. Soft. Comput. 11 (1) (2011) 733–743.

44] A. Giordana, F. Neri, Search-intensive concept induction, Evol. Comput. 3 (4)
(1995) 375–416.

[45] G.H. John, P. Langley, Estimating continuous distributions in Bayesian classi-
fiers, in: Proceedings of the 11th Conference on Uncertainty in Artificial Intel-

ligence, 1995, pp. 338–345.
[46] R. Kohavi, The power of decision tables, in: Proceedings of the 8th European

Conference on Machine Learning, 1995, pp. 174–189.

[47] J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, San
Francisco, USA, 1993.

[48] H. Kahramanlı, N. Allahverdi, Rule extraction from trained adaptive neural net-
works using artificial immune systems, Expert Syst. Appl. 36 (2009) 1513–

1522.
[49] B. Liu, W. Hsu, Y. Ma, Integrating classification and association rule mining, in:

Proceedings of the Knowledge Discovery and Data Mining, 1998, pp. 80–86.

[50] F. Thabtah, P. Cowling, S. Hammoud, Improving rule sorting, predictive accu-
racy and training time in associative classification, Expert Syst. Appl. 31 (2)

(2006) 414–426.
[51] D. Wettschereck, T.G. Dietterich, An experimental comparison of the nearest-

neighbor and nearest-hyperrectangle algorithms, Mach. Learn. 19 (1995) 5–27.
[52] P. Domingos, Unifying instance-based and rule-based induction, Mach. Learn.

24 (1996) 141–168.

[53] O. Luaces, A. Bahamonde, Inflating examples to obtain rules, international ex-
amples to obtain rules, Int. J. Intell. Syst. 18 (11) (2003) 1113–1143.

[54] G.S.I.A. Venturing, A supervised inductive algorithm with genetic search for
learning attributes based concepts, LNCS 667 (1993) 280–296.

[55] S. Garcia, J. Derrac, J. Luengo, C.J. Carmona, F. Herrera, Evolutionary selection
of hyperrectangles in nested generalized exemplar learning, Appl. Soft Comput.

11 (3) (2011) 3032–3045.

[56] S.N. Qasem, S.M. Shamsuddin, A.M. Zain, Multi-objective hybrid evolutionary
algorithms for radial basis function neural network design, Knowl.-Based Syst.

27 (2012) 475–497.
[57] H.A. Abbass, Speed up backpropagation using multi-objective evolutionary al-

gorithms, Neural Comput. 15 (11) (2003) 2705–2726.

http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0001
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0001
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0002
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0002
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0002
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0003
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0003
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0004
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0004
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0004
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0005
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0005
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0005
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0005
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0005
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0006
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0006
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0006
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0006
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0006
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0007
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0007
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0007
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0007
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0008
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0008
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0008
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0008
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0009
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0009
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0009
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0010
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0010
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0010
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0010
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0010
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0011
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0011
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0012
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0012
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0013
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0013
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0013
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0014
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0014
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0014
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0014
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0015
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0015
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0015
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0015
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0016
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0016
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0016
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0016
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0016
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0017
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0017
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0017
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0017
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0017
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0017
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0017
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0018
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0018
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0018
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0018
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0019
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0019
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0019
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0020
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0020
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0020
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0020
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0021
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0021
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0022
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0022
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0022
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0023
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0023
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0023
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0024
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0024
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0025
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0025
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0025
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0026
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0026
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0026
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0026
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0027
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0027
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0028
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0028
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0028
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0028
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0029
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0029
http://archive.ics.uci.edu/ml/datasets.html
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0030
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0030
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0031
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0031
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0032
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0032
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0032
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0032
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0033
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0033
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0033
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0033
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0033
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0034
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0034
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0035
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0035
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0035
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0036
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0036
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0036
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0036
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0037
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0037
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0037
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0037
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0038
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0038
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0038
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0038
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0038
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0039
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0039
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0039
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0039
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0039
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0039
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0040
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0040
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0040
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0041
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0041
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0041
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0042
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0042
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0042
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0042
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0043
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0043
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0043
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0044
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0044
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0044
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0045
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0045
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0046
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0046
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0047
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0047
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0047
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0048
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0048
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0048
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0048
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0049
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0049
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0049
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0049
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0050
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0050
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0050
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0051
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0051
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0052
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0052
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0052
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0053
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0053
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0054
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0054
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0054
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0054
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0054
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0054
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0055
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0055
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0055
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0055
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0056
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0056


P. Tapkan et al. / Knowledge-Based Systems 95 (2016) 99–113 113

[

[

[

[

[

58] C. Goh, E. Teoh, K.C. Tan, Hybrid multi-objective evolutionary design for artifi-
cial neural networks, IEEE Trans. Neural Netw 19 (9) (2008) 1531–1548.

59] W. Cai, S. Chen, D. Zhang, A multi-objective simultaneous learning framework
for clustering and classification, IEEE Trans. Neural Netw 21 (2) (2010) 185–

200.
60] S.N. Qasem, S.M. Shamsuddin, Radial basis function network based on time

variant multi-objective particle swarm optimization for medical diseases diag-
nosis, Appl. Soft Comput. 11 (1) (2011) 1427–1438.
[61] I. De Falco, Differential evolution for automatic rule extraction from medical
databases, Appl. Soft Comput. 13 (2) (2013) 1265–1283.

62] R.C. Holte, Very simple classification rules perform well on most commonly
used datasets, Mach. Learn. 11 (1993) 63–91.

63] P. Compton, R. Jansen, Knowledge in context: a strategy for expert system
maintenance, LNCS 406 (1990) 292–306.

http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0057
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0057
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0057
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0057
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0058
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0058
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0058
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0058
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0059
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0059
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0059
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0060
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0060
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0061
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0061
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0062
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0062
http://refhub.elsevier.com/S0950-7051(15)00492-X/sbref0062

	A cost-sensitive classification algorithm: BEE-Miner
	1 Introduction
	2 Cost-sensitive classification
	2.1 Literature review of cost-sensitive classification

	3 Bees algorithm
	4 Bee-Miner
	4.1 Cost-insensitive BEE-Miner
	4.1.1 Generating initial solutions
	4.1.2 Neighborhood structures
	4.1.3 Fitness function
	4.1.4 Generating the rule set

	4.2 Cost-sensitive BEE-Miner
	4.2.1 Neighborhood structures
	4.2.2 Fitness function


	5 Computational study
	5.1 The datasets
	5.2 BEE-Miner parameter setting
	5.3 Comparison results for cost-insensitive BEE-Miner
	5.4 Comparison results for cost-sensitive BEE-Miner
	5.5 The effect of cost-based components on cost-sensitive BEE-Miner

	6 Conclusion
	 Acknowledgment
	 References


