
Expert Systems With Applications 54 (2016) 121–135

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

A consensus graph clustering algorithm for directed networks

Camila Pereira Santos, Desiree Maldonado Carvalho, Mariá C.V. Nascimento∗

Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo (UNIFESP), Av. Cesare M. G. Lattes, 1201, Eugênio de Mello, São José dos Campos, SP

12247-014, Brazil

a r t i c l e i n f o

Keywords:

Heuristic method

Community detection

Directed networks

a b s t r a c t

Finding groups of highly related vertices in undirected graphs has been widely investigated. Nevertheless,

a very few strategies are specially designed for dealing with directed networks. In particular, strategies

based on the maximization of the modularity adjusted to overcome the resolution limit for directed net-

works have not been developed. The analysis of the characteristics of the clusters produced by these

approaches is highly important since among the most used strategies for detecting communities in di-

rected networks are the modularity maximization-based algorithms for undirected graphs. Towards these

remarks, in this paper we propose a consensus-based strategy, named ConClus, for providing partitions

for directed networks guided by the adjusted modularity measure. In the computational experiments, we

compared ConClus with benchmark strategies, including Infomap and OSLOM, by using hundreds of LFR

networks. ConClus outperformed Infomap and was competitive with OSLOM even for graphs with high

mixture index and small-sized clusters, to which modularity-based algorithms have limitations. ConClus

outperformed all algorithms when considering the networks with the highest average and maximum in-

degrees among the networks used in the experiments.

© 2016 Elsevier Ltd. All rights reserved.

1

t

R

v

f

t

t

m

l

o

t

f

d

w

a

w

d

u

d

m

p

p

r

t

t

v

a

t

l

a

u

f

g

i

(

g

g

c

2

h

0

. Introduction

Detecting communities in networks, also known as graph clus-

ering, plays an important role in pattern recognition research area.

oughly, it enables the identification of groups of highly related

ertices in a graph, also known as clusters. It is a relevant issue,

or example, to look into the communities that represent the func-

ional activities of the brain, known as brain networks (Park & Fris-

on, 2013). One reason is that, in some surgeries, this knowledge

ight enable a better assessment about the areas of the brain re-

ated to motor skills. Regardless the distance between two regions

f the brain, they might be strongly related according to the func-

ional activities.

In spite of most community detection strategies being designed

or undirected networks, several applications to which community

etection is highly relevant are better modeled in directed net-

orks. We may cite, for example, social, informational, biological

nd neuroscience networks. For defining communities in these net-

orks, the most employed approach consists in ignoring the arc

irections of the networks to make use of strategies designed for

ndirected graphs.
∗ Corresponding author. Tel.:+55 12 33099595; fax.: +55 12 3309 9500.

E-mail addresses: camila.santos@unifesp.br (C.P. Santos),

mcarvalho@unifesp.br (D.M. Carvalho), mcv.nascimento@unifesp.br (M.C.V. Nasci-

ento).

p

2

t

g

b

ttp://dx.doi.org/10.1016/j.eswa.2016.01.026

957-4174/© 2016 Elsevier Ltd. All rights reserved.
However, Malliaros and Vazirgiannis (2013) point out that im-

ortant characteristics of the network might be lost with this ap-

roach, the reason why arc directions should be considered. One

eason is the non-existence of reciprocal relationship between ver-

ices, created after ignoring the arc directions. For example, in ci-

ation networks, networks of scientific papers, the links are ob-

iously directed and without symmetric arcs, since it is rare an

rticle to cite and to be cited by the same paper. Consequently,

o detect communities by ignoring the arcs directions could

ead to communities different from the expected for a correct

nalysis.

Additionally, the uncertainty about the clustering structure of

ndirected networks has led the proposal of many new algorithms

or detecting communities. Consequently, to determine which al-

orithm to adopt for general applications is hard, as pointed out

n Lancichinetti and Fortunato (2009). Lancichinetti and Fortunato

2009) assess the quality of a number of community detection al-

orithms for undirected networks to attest which of them have a

ood performance. They performed the experiments using artifi-

ial graphs, known as LFR networks (Lancichinetti, Fortunato, & F,

008), whose expected partitions are known. According to the ex-

eriments carried out by the authors, Infomap (Rosvall, Bergstrom,

010) appears as the best algorithm since it outperformed all

ested strategies, including the modularity maximization-based al-

orithms as, e.g., the Louvain method (Blondel, Guillaume, Lam-

iotte, & Lefebvre, 2008).

http://dx.doi.org/10.1016/j.eswa.2016.01.026
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2016.01.026&domain=pdf
mailto:camila.santos@unifesp.br
mailto:dmcarvalho@unifesp.br
mailto:mcv.nascimento@unifesp.br
http://dx.doi.org/10.1016/j.eswa.2016.01.026

122 C.P. Santos et al. / Expert Systems With Applications 54 (2016) 121–135

Fig. 1. A directed network composed by two natural communities.

2

b

e

v

v

t

o

d

t

v

t

a

b

a

t

t

t

t

q

l

w

G

g

2

o

d

l

I

v

l

t

g

t

e

t

t

p

a

d

E

p

o

m

r

It is worth to underline that modularity maximization-based

algorithms, extensively adopted for the task of providing cluster-

ings, are also known by their tendency to fail in detecting parti-

tions with numerous small-sized clusters. As a consequence, these

strategies tend to merge communities that represent individual

groups (Fortunato & Barthélemy, 2007). A promising alternative

for the modularity measure suggested in Reichardt and Bornholdt

(2006) is the target of the study of this paper. Reichardt and Born-

holdt (2006) proposed to fine-tune modularity through the inclu-

sion of a parameter, here called resolution parameter. In Carvalho,

Resende, and Nascimento (2014), the authors firmly establish the

connection between some graph characteristics and the resolution

parameter, for automatically adjusting it. For this, they proposed

the use of a neural network, trained according to the topology of

the graph. For each input graph, the output of the neural network

is an interval of values, expected to be the most suitable options

for defining the resolution parameter.

Among these algorithms for undirected networks, some already

have its adaptation to tackle directed networks as, e.g., Infomap.

More recently, Lancichinetti et al. (2011) proposed the Order Statis-

tics Local Optimization Method (OSLOM), that outperformed In-

fomap in both undirected and directed LFR networks.

Bearing in mind the discussion outlined, this paper presents:

• A robust consensus clustering, named ConClus, based on arc

contractions with a memory mechanism resulting in a strategy

that unifies both diversification and intensification paradigms

to detect communities in directed networks;
• A study about the performance of this modularity-based algo-

rithm with the resolution parameter adjusted by a neural net-

work trained according to the topology of a number of directed

LFR networks;
• An experimental analysis of ConClus using 600 LFR networks

with different sizes (from 1000 to 5000 nodes), mixture de-

grees (from 0.1 to 0.8), community sizes (small and large) and

average/maximum in-degrees (20/50 and 40/100);
• A comparative analysis of the results achieved by ConClus with

those obtained by the benchmark community detection algo-

rithms: OSLOM, Infomap and the Label Propagation (LP);
• The competitive results of ConClus considering directed LFR

networks with average/maximum in-degrees 20/50 in compari-

son to OSLOM and its better performance over Infomap and LP;
• The results indicating that ConClus outperformed all al-

gorithms considering directed LFR networks with aver-

age/maximum in-degrees 40/100;
• A case study with real networks showing that ConClus

achieved very accurate results for an undirected network and

a directed network.

The remaining of this paper is organized as follows. Section 2

shows a brief review of related works about community detection

algorithms in directed networks. Section 2.2.1 presents a compre-

hensive discussion about the modularity measure and the resolu-

tion limit focusing on directed networks. Section 3 presents the

proposed strategy. Section 4 shows the computational experiments

with real and artificial directed networks. To sum up, Section 5

presents the final remarks and directions of future works.

2. Related works

This section briefly reviews the main approaches for directed

networks. The reader interested in a detailed survey in this topic,

we indicate the reading of Malliaros and Vazirgiannis (2013). The

most recent references are underlined in this paper. Before going

into detail about the literature review, this section starts present-

ing some basic graph theory definitions to be used throughout the

paper.
.1. Basic terminology and background

In this paper, a directed graph G = (V (G), E(G)) is represented

y a set of vertices or nodes, V(G), and a set of arcs, E(G), where

ach arc e := (vi, vj) ∈ E(G) is associated with an ordered pair of

ertices of G. Additionally, a given arc (vi, vj) ∈ E(G) has as ends the

ertices vi and vj, where vi is called the tail, vj is called the head of

he arc and i, j ∈ {1, 2, . . . , |V (G)|}. The number of vertices and arcs

f G are denoted in this paper by n(G) and m(G), respectively. The

egree of a vertex vi from G, dG(vi), corresponds to the number of

imes vi is an end vertex. The in-degree and out-degree of a vertex

i from G, here called, respectively, d−
G
(vi) and d+

G
(vi), correspond

o the number of times that a vertex vi appears as an arc head and

rc tail in G. A graph induced by a set of vertices X⊆V is denoted

y G[X]. N−(vi) and N+(vi) are the sets of vertices where vi is an

rc head and tail, respectively. Let e′ ∩ e, where e and e′ ∈ E(G), be

he coincident end-vertices of the arcs e and e′.
The pattern recognition in graphs may be performed by iden-

ifying their groups of highly related vertices. For this, one way is

o find communities through graph clustering algorithms. Among

hem, we underline those guided by evaluation measures that

uantify the clustering quality. The definition of a clustering re-

ies on the k-way partition of the vertex set. Let C = {V1,V2, . . . ,Vk},
ith 1 ≤ k ≤ n, be a k-way partition of V(G). The induced graph

[C] = (V (G), E(G[C])), where E(G[C]) := ⋃k
i=1 E(G[Vi]) defines a

raph clustering.

.2. Community detection in directed networks

Malliaros and Vazirgiannis (2013) present in their survey a good

verview of the existing approaches for detecting communities in

irected networks. Although the relevance of the topic, they high-

ight the lack of a consensual general definition for this problem.

n interpreting the problem as detecting a group of highly related

ertices, what would be “highly related vertices”? What type of re-

ations are expected inside the communities? To formally answer

hese questions is the first challenge the authors point up as sug-

estions for future works.

Consequently, it is common to approach the community detec-

ion in directed networks by simply ignoring arc directions. How-

ver, there is a strong evidence that, depending on the networks,

his approach might fail in describing important characteristics of

he reciprocity of the network links. Figs. 1 and 2 display an exam-

le of a directed network that, if having its arc directions ignored,

lgorithms may produce incorrect communities. Fig. 1 presents the

irected network composed by two communities: {A, B, C} and {D,

, F}. However, in the network obtained by ignoring arc directions,

resented in Fig. 2, it is not clear whether there is one cluster

r the two original clusters, even being the expected communities

aximal cliques.

As an attempt to overcome this misinterpretation of the arc di-

ections, another approach for dealing with a directed network is

C.P. Santos et al. / Expert Systems With Applications 54 (2016) 121–135 123

Fig. 2. Network transformation to an undirected graph.

t

s

g

v

c

f

c

c

b

n

o

r

(

m

r

c

d

m

w

a

r

e

s

s

t

t

e

t

n

s

m

c

i

a

f

t

c

r

e

b

t

d

fi

N

c

p

m

2

fi

t

2

b

t

j

(

w

m

p

q

w

p

g

a

q

l

g

f

v

(

l

2

n

i

s

a

a

d

m

i

e

g

fi

a

m

w

g

t

t

t

b

c

p

t

c

T

B

c

t

m

b

t

o map its elements into XY-bipartite undirected graphs that pre-

erve the meaning of the orientation of the arcs (Malliaros & Vazir-

iannis, 2013). One of the groups of the bipartition must contain all

ertices with positive out-degree. The other group, then, must in-

lude all vertices with positive in-degree. It is very likely the need

or duplicating vertices to participate in both sets. Accordingly, a

ommunity detection algorithm for undirected bipartite networks

an be employed to find communities in the corresponding XY-

ipartite undirected graph. According to Malliaros and Vazirgian-

is (2013), however, it is not clear if the bipartite undirected graph

btained preserves all the characteristics of the corresponding di-

ected network.

The Infomap algorithm, introduced by Rosvall and Bergstrom

2007), is among the strategies specially proposed to detect com-

unities in directed networks. The key idea behind this strategy

elies on the premise of how a cartographer represents a map with

ompressed spatial information but keeping the most important

etails. As a consequence, the authors presented a measure, named

ap equation, that favors communities “compressed” into groups

hose information flow inside communities is more natural (rapid

nd regular). For such, the authors introduce a code to describe the

andom walking process within the network. Therefore, the inter-

sting duality between the community detection and the compres-

ion problem is approached by a greedy search combined with a

imulated annealing strategy and with a heat-bath algorithm.

Lancichinetti et al. (2011) developed the algorithm Order Statis-

ics Local Optimization Method (OSLOM) for detecting communi-

ies in both undirected and directed networks. OSLOM works by

valuating the statistical significance of the communities. The sta-

istical significance measures the probability of a vertex to have

eighbors in a given cluster. The order statistics relies on the inclu-

ion of vertices more strongly related to the vertices of the com-

unities. In the case of directed networks, the score of a vertex is

alculated according to the probability of it having outgoing arcs

ncident to vertices of the given cluster times the probability of

rcs from the cluster to have i as the head. The experiments per-

ormed by Lancichinetti et al. (2011) with directed networks show

hat OSLOM achieves better results than Infomap.

There are a very few community detection strategies to detect

ommunities in directed networks in the recent literature. More

elated to the proposed study, Romdhane, Chaabani, Zardi, Group

t al. (2013) introduced an intelligent system to perform this task

ased on ant colony optimization, called ACODIG. According to

heir experiments, ACODIG obtained better results than the a ran-

om walk method suggested in Kim, Son, and Jeong (2010), whose

tness function is based on the modularity measure (Girvan &

ewman, 2002) and the PageRank algorithm. These experiments

onsidered two LFR networks with a very low mixture degree.

The very popular evaluation measure modularity, originally pro-

osed for undirected networks, has been adapted to detect com-

unities in directed networks (Arenas, Duch, Fernández, & Gómez,

007; Leicht & Newman, 2008). Since a variant of modularity is the
tness function of ConClus, the next section goes into detail about

he modularity and existing strategies based on this measure.

.2.1. Modularity-based algorithms

It is well known that a substantial amount of studies has

een published on the graph clustering subject, primarily with

he purpose of refining the results of the existing algorithms. Ma-

or progress towards the topic started after Girvan and Newman

2002) developed a statistical mechanics study that resulted in the

idely employed measure known as modularity (Girvan & New-

an, 2002). Of the many ways for defining this measure, Eq. (1)

resents a formulation.

(C) = 1

m(G)

k∑
i=1

[m(G[Vi]) − p(G[Vi])] (1)

here p(G[Vi]) = ∑
∀vr 	=v j∈Vi

dG(vr)dG(v j)

2m(G)
+ ∑

∀vr∈Vi

dG(vr)
2

4m(G)
is the ex-

ected number of edges between vertices from Vi in a random

raph with the same degree sequence as G. This formula provides

n assessment measure that the higher its value, the better the

uality of the partition evaluated. Moreover, the maximum modu-

arity of a partition is 1, whereas the minimum is −1/2.

In the literature, it is noteworthy the significant number of al-

orithms guided by the modularity to provide graph clusterings

or undirected networks. As it has been proven that the decision

ersion of the modularity maximization problem is NP-complete

Brandes et al., 2008), heuristics are the best strategies to tackle

arge scale graphs (Blondel et al., 2008; Fortunato & Barthélemy,

007).

Leicht and Newman (2008) adapted this measure for directed

etworks by considering a directed random graph with the same

n-degree and out-degree sequences as G. In this case, the authors

et p(G[Vi]) = ∑
∀vr ,v j∈Vi

d−
G

(vr)d+
G

(v j)

m(G)
. This measure is referred here

s directed modularity. Leicht and Newman (2008) also proposed

heuristic based on spectral theory for the maximization of the

irected modularity.

Few strategies, however, followed the proposal of the directed

odularity. Fortunato and Barthélemy (2007) pointed out a scal-

ng problem in modularity, defined as the resolution limit problem

xplained next.

Resolution limit Despite the modularity maximization-based al-

orithms mostly obtain cohesive groups, these strategies do not

nd the expected clusterings for some types of graphs. Fortunato

nd Barthélemy (2007) performed a detailed investigation over the

odularity measure considering a particular graph topology for

hich modularity seems to benefit unexpected partitions. In these

raphs, the measure might lose important information with regard

o the structure of the communities of a given network. This means

here are cases in which a partition with a certain number of clus-

ers has a worse modularity than a partition with a smaller num-

er of communities even if the former clustering is that expected.

Consequently, there is the possibility of flaws in identifying

ommunities by modularity maximization-based algorithms de-

ending on the graph scale regarding the size of its natural clus-

ers (Fortunato & Barthélemy, 2007). This condition is the so-

alled resolution limit. Many studies (Ronhovde & Nussinov, 2010;

raag, Van Dooren, & Nesterov, 2011), in particular, Fortunato and

arthélemy (2007) discuss the issue thoroughly, pointing up the

onditions in which the modularity optimization may not provide

he expected clustering.

Reichardt and Bornholdt (2006) proposed a variation on the

odularity measure, based on the scaling of the expected num-

er of edges between pairs of vertices as an attempt to ensure

he detection of small-sized communities in the networks. Eq. (2)

124 C.P. Santos et al. / Expert Systems With Applications 54 (2016) 121–135

Fig. 3. Ring with three cliques.

t

v

a

t

q

i

m

d

3

s

f

m

t

t

w

s

i

t

n

c

e

c

g

g

e

t

l

M

t

a

g

s

s

m

t

t

j

p

f

i

i

(

a

u

o

v

A

e

w

t

c

r

r

a

E

presents a formula of this measure.

q′(C) = 1

m(G)

k∑
i=1

[m(G[Vi]) − λp(G[Vi])] (2)

For ease of understanding, consider a directed network made

up of a ring with three tournaments1, two of size r and another

s-sized, where s
 r. Only one of the vertices of each tourna-

ment is an arc head linking to another tournament. In this case,

even though the two smallest tournaments clearly represent sepa-

rate communities, they are regarded as a single community by the

modularity maximization problem. Consider d−
G
(Vi) = ∑

v∈Vi
d−

G
(v)

and d+
G
(Vi) = ∑

v∈Vi
d+

G
(v).

Additionally, it is possible to note that

∑
∀vr ,v j∈Vi

d−
G
(vr)d+

G
(v j)

m(G)
= 1

m(G)

(∑
vr∈Vi

d−
G (vr)d+

G (Vi)

)
.

As
∑

vr∈Vi
d−

G
(vr)d+

G
(Vi) = d−

G
(Vi)d+

G
(Vi), one can rewrite Eq. (1)

as the formulation presented in (3).

q′(C) =
k∑

i=1

[
m(G[Vi])

m(G)
− λ

d−
G
(Vi)d+

G
(Vi)

(m(G))2

]
(3)

Let C(1) denote the clustering in which each tournament rep-

resents a different community. Therefore, C(1) has 3 groups: two

r-sized and one with s vertices. Denote C(1) by {Vr1, Vr2, Vs}. Con-

sider C(2) = {V2r,Vs} to be the clustering where the two smallest

tournaments are considered a unique community and the s-sized

tournament a single community as well. Then, the second cluster-

ing possesses two groups: one with 2r vertices and another with

s vertices. The modularity of C(1) and C(2) are different only due

to their influence whether they are placed together or into sepa-

rated groups. As C(1) is the expected clustering, it is necessary that

q′(C(1)) > q′(C(2)). Then,

2

m(G)

(
m(G[Vr1]) − λ

d−
G
(Vr1)d+

G
(Vr1))

m(G)

)

>
1

m(G)

(
m(G[V2r]) − λ

d−
G
(V2r)d+

G
(V2r))

m(G)

)
As m(G[V2r] = 2m(G[Vr1]) + 1, d+

G
(V2r) = 2d+

G
(Vr1) and

d−
G
(V2r) = 2d−

G
(Vr1), then Eq. (4) holds.

m(G) < 2λd−
G (Vr1)d+

G (Vr1) (4)

By fixing the value r for the smallest tournaments, it is possible

to identify the size of the largest community for which Eq. (4) is

addressed. Accordingly, Fig. 3 displays an example following this

constraint. The network under consideration is a ring with three

tournaments, two of size 4 and one 20-sized.

Consider C(1) to be the clustering with three groups where each

tournament is a community, here denoted as C(1). Let C(2) to be
1 A tournament is an orientation of a complete undirected graph.

u

t

b

he clustering with two groups: one with the tournament with 20

ertices and another with the two 4-sized tournaments placed into

single community. By estimating the modularity of each clus-

ering, there is an undesirable result: q(C(1)) is 0.11495 whereas

(C(2)) is slightly higher than q(C(1)), 0.11750. However, by Eq. (4),

t is possible to achieve q′(C(1)) > q′(C(2)) by using the adjusted

odularity with λ > 2.1.

Bearing in mind this adjusted modularity, next section goes into

etail about the proposed strategy.

. The proposed solution method

The vast majority of the proposed solution methods for either

olving the modularity maximization problem in the optimality or

or heuristically approaching it requires a high computational cost,

ainly for large scale graphs. Additionally, if strictly guided by

he modularity measure, the resolution limit influences negatively

he quality of the communities with relatively small sizes. In line

ith this observation, we propose a strategy based on a coarsening

trategy, by carefully taking into account the data structures for its

mplementation and based on the adjusted modularity.

Multi-level algorithms are strategies initially proposed to tackle

he graph partitioning problem (Noack & Rotta, 2009). In its origi-

al form, a multi-level algorithm is composed by three phases: the

oarsening, the partitioning and the refinement. During the coars-

ning phase, the graph is successively contracted until it reaches a

ertain size. After that, a clustering is found for the most coarsened

raph, characterizing the initial solution for the problem. Since this

raph is much smaller than the original one, a low computational

ffort is required to achieve this solution. Even though the parti-

ioning phase is not mandatory, before the last phase of the multi-

evel strategy, the initial clustering must somehow be determined.

ainly for the community detection problem, some authors prefer

o define each vertex from the coarsened graph, the supernodes,

s a cluster. Finally, the refinement phase projects the coarsened

raph back to its original state and simultaneously applies a local

earch to the intermediary clusterings.

In this paper, we employ one of the phases of the multi-level

trategies, the coarsening, to introduce our framework. We do not

ake use of the refinement phase, because of the high computa-

ional cost it might have. Preliminary experiments indicated that

he local search was not able to significantly improve our solutions,

ust considerably raising the computational time. The coarsening

hase was adapted for directed graphs.

The main idea behind the method is, for each iteration, to find

or every end-vertex, the arc e that if contracted produces the best

ncrease in modularity, �(e). This arc e is inserted in a list S sorted

n a decreasing order of �(e). After that, a Restrict Candidates List

RCL) must be created with the α|S| first arcs. Then, from this RCL,

n arc is randomly chosen to be contracted. This process repeats

ntil the modularity of the clustering defined by the supernodes

f the most coarsened graph (projecting the same cluster to every

ertex that belongs to a supernode) cannot be further improved.

lgorithm 1 presents the proposed heuristic based on the coars-

ning proposed in this paper.

The input data of Algorithm 1 are the graph G, from which we

ill determine the communities; the maximum number of itera-

ions of the method, maxIter; a parameter to control when a step

alled permanent coarsening will happen, iterContr; and the pa-

ameter α to control the size of the RCL. Each iteration of the algo-

ithm produces a clustering after the function Coarsening Phase is

pplied to the graph G. Then, the set storing the best clusterings,

, set as empty in the beginning of the algorithm, is accordingly

pdated if it addresses the requirements. At each iterContr itera-

ions, the recurrent contractions are evaluated and considered to

ecome permanent coarsening.

C.P. Santos et al. / Expert Systems With Applications 54 (2016) 121–135 125

Algorithm 1: Proposed heuristic.

Data: graph G = (V, E), maxIter, iterContr, α
Result: clustering C
E ← ∅
for iter:=1 to maxIter do

C := Coarsening Phase(G,α)

updateEliteSet(E, C) if iter mod iterContr = 0 then
G := Permanent Coarsening(E)

end

end

t

3

r

m

t

a

D

G

n

{
{

t

v

o

o

t

c

t

s

a

E

b

a

c

m

a

w

a

a

n

g

2

s

t

G

b

N

g

m

v

f

c

v

a

a

i

i

s

w

e

i

A

u

D

n

t

t

t

t

O

s

s

d

A

a

o

s

n

a

c

t

T

c

n

t

t

T

a

v

s

w

In the next sections, each of the aforementioned functions of

he proposed heuristic is thoroughly explained.

.1. Coarsening clustering

Coarsening is a strategy applied to graphs with the purpose of

educing them to a more manageable size. Accordingly, the pri-

ary procedure to achieve this goal is the iterative arc contrac-

ions of the graph. Following, a definition of the arc contraction of

directed graph is presented.

efinition 1. The contraction of an arc e = (vi, v j) of a graph

n with n vertices, Gn/e, corresponds to producing a graph mi-

or of Gn, Gn−1 := (Vn−1, En−1) such that: Vn−1 := Vn\{vi, v j} ∪
vi, j} and En−1 := {e′ ∈ En : e′ ∩ e = ∅} ∪ {(vi, j, ve) : ∃(ve, u) ∈ En, u ∈
vi, v j}} ∪ {(ve, vi, j) : ∃(u, ve) ∈ En, u ∈ {vi, v j}}.

It is worth mentioning that, according to Definition 1, the ver-

ices vi and vj to be contracted will be replaced by a supernode

i, j.
2 This means that every vertex that is adjacent to the vertex vi

r vj is also adjacent to the supernode vi, j, respecting the direction

f the arc. If both vi and vj are the head (or tail) of an arc with ver-

ex vt as its tail (or head), then instead of adding multiple arcs, we

onsider a weight on the corresponding arc to measure the rela-

ionship between the supernode vi, j and vertex vt. For such, con-

ider the weight function w : E(G) → Z over the arcs of G. If G is

n unweighted graph, for contracting it, we relate to every arc of

(G) a unitary weight. Then, when an arc (vi, vj) is contracted and

oth vi and vj are tail (or head) of arcs with vt, the weight of this

rc will be w(vi, vt) + w(v j, vt) (or w(vt , vi) + w(vt , v j)) after the

ontraction of (vi, vj).

Bearing the arc contractions in mind, the coarsening phase of a

ulti-level algorithm consists in the successive arc contractions of

graph G producing a sequence of coarsened graphs. In this paper,

e denote this sequence as (Gn, Gn−1, Gn−2, . . . , Gk), whose graphs

re sorted with regard to their decreasing number of vertices and

rcs. This sequence starts from Gn, that is the original graph G with

vertices, and halts with the graph Gk that is known as the base

raph with k vertices/supernodes (Blum, Puchinger, Raidl, & Roli,

011). Apart from the first graph of the sequence, a graph of this

equence, suppose Gi, is the result from an arc contraction from

he immediate previous graph of the sequence, i.e., from the graph

i+1, k ≤ i ≤ n.

A strategy for the coarsening phase of a multi-level strategy

ased on the modularity maximization problem was proposed in

oack and Rotta (2009). In this strategy, designed for undirected

raphs, the authors suggest considering the gain with regard to the

odularity of the partition resulted by the inclusion of the pair of

ertices/supernodes to be contracted in the same cluster. There-

ore, initially, the starting clustering is the partition where every
2 A set of vertices that were contracted together (Dhillon, Guan, & Kulis, 2005) is

alled a supernode.

v

t

q

v

ertex is an isolated cluster. In line with this, the authors proposed

greedy strategy that for the contraction chooses the edge, among

ll existing edges of the graph, that produces the highest modular-

ty gain if contracted in that iteration. When the coarsening phase

s finished, instead of partitioning the base graph, the authors con-

ider each supernode/vertex of Gk as a cluster. This greedy strategy

orked very well in the experiments performed by the authors.

In this paper, we propose a coarsening based on the strat-

gy introduced in Noack and Rotta (2009) and adapted for be-

ng semi-greedy. A pseudocode of this algorithm is presented in

lgorithm 2.

Algorithm 2: Coarsening phase.

Data: graph Gn = (Vn, En), random seed α
Result: graph Gk = (Vk, Ek)

Q:=Modularity(Vn)

bestNeighbor := DefineBestNeighbors(Gn)

maxList := CreateMaxList(bestNeighbor)

G := Gn

while ∃e ∈ Maxlist do
(v j, vt) := ChooseContraction(maxList, α) Contract

Arc(G, v j, vt , Q) UpdateBestNeighbor(bestNeighbor,v j)

UpdateMaxList(maxList, v j)

end

return G

In Algorithm 2, the function Modularity(Vn) provides the mod-

larity of the singletons of Gn and requires O(n) time. The function

efineBestNeighbors(Gn) defines, for each vertex of Gn, the best

eighbor for contraction into a supernode in O(m) time. The func-

ion CreateMaxList(bestNeighbor) produces a list, the maxList, with

he arcs defined in bestNeighbor, decreasingly sorted according to

heir modularity gain. This list must contain only arcs whose con-

raction results in a positive modularity gain. This function requires

(n) time.

Then, an arc (vj, vt) from maxList restricted by a factor α is cho-

en to be contracted. The function Contract Arc(Gi, vj, vt, Q) is re-

ponsible for performing the arc contraction and all necessary up-

ates, in particular, of the modularity value Q. It is presented in

lgorithm 3. The functions UpdateBestNeighbor(bestNeighbor,vj)

nd UpdateMaxList(maxList, vj) are responsible for the updating

f the sets bestNeighbor and maxList, respectively. The employed

top criterion for the arc contractions is when the algorithm does

ot find any arc whose contraction (cluster merging) will provide

n increase in the modularity value.

Concerning the complexity of the whole coarsening process,

onsider that each arc contraction reduces the number vertices of

he graph by one, i.e., |V (Gi)| = |V (Gi+1)| − 1, for i = n, n − 1, ..., 2.

hus, the complexity of all the contractions performed during the

oarsening phase is given by the series T (n) = ∑n
i=2 ni log ni, where

i = V (Gi). Because ni = i, for i = n, n − 1, ..., 2, T(n) can be rewrit-

en as T (n) = ∑n
i=2(i log i). By considering that log n <

√
n asymp-

otically holds, it can be proved, by mathematical induction, that

(n) = O(n2). Therefore, the overall complexity of the coarsening

lgorithm is O(n2).

In Algorithm 3, we describe how the contraction of an arc (vj,

t) works. In our implementation, instead of explicitly creating a

upernode, the tail vertex vj is replaced by the supernode produced

ith the contraction of (vj, vt).

The modularity of the supernodes after the contraction of (vj,

t) and the in-/out-degree of vertex vj, which now will represent

he supernode, are updated (Update(G, Q)). These operations re-

uire O(1) time. The functions RemoveArc(vj, vt) and RemoveArc(vt,

j) are responsible for the removal of arc (vj, vt) and, possibly, arc

126 C.P. Santos et al. / Expert Systems With Applications 54 (2016) 121–135

Algorithm 3: Contract Arc.

Data: graph G = (V, E), arc (v j, vt), modularity Q

Result: graph G

Update(G,Q)

RemoveArc(v j, vt)

RemoveArc(vt , v j)

forall the k ∈ N+(vt) do

RemoveArc(vt , k)

if k ∈ N+(v j) then w(v j, k) := w(v j, k) + w(vt , k) ;

else InsertArc(v j, k, w(vt , k)) ;

end

forall the k ∈ N−(vt) do

RemoveArc(k, vt)

if k ∈ N−(v j) then w(k, v j) := w(k, v j) + w(k, vt) ;

else InsertArc(k, v j, w(k, vt)) ;

end

RemoveVertex(G, vt)

return G

t

b

t

e

i

n

p

s

m

t

n

[

d

g

t

M

e

L

W

a

t

v

e

t

s

t

t

p

4

o

p

p

n

n

t

C

T

w

a

a

2

s

s

b

m

(

i

a

t

r

r

t

o

4

t

c

(vt, vj) from E(G) and requires O(log n). Consequently, all arcs (vt, k),

for k ∈ N+(vt), are eliminated from the set N+(vt). Additionally, if

an arc (vj, k) 	∈E(G), it is created with weight w(vt, k) (InsertArc(vj, k,

w(vt, k)). If (vj, k) ∈ E(G), the value w(vj, k) is incremented by w(vt,

k). Similarly, analogous operations are performed concerning arcs

(k, vt), for k ∈ N−(vt). These last updates require O(nlog n) time.

Other updates involving the maxList also have to be addressed.

3.1.1. Permanent coarsening

In this paper, we introduce a permanent clustering strategy for

providing a memory mechanism for the proposed algorithm, as

well as to reduce the size of the original graph. Here, the main

goal of this strategy is to preserve the good components of the so-

lutions found along the iterations and diminishes the overall com-

putational time.

For the Permanent Coarsening (PC), we kept an elite set of solu-

tions, represented by E . This set contains the best clusterings found

up to the current iteration of the algorithm. Starting from a spe-

cific iteration of the consensus strategy, the PC algorithm is applied

to the graph at each certain number of iterations. The strategy is

considerably ease of understanding: it permanently coarsens into

a supernode those pairs of vertices that were grouped in the same

cluster in at least 50% of E .

Even though the PC strategy requires O(n2), it is worthy to high-

light that this strategy significantly decreases the overall complex-

ity of the proposed algorithm, since it diminishes the size of the

original graph.

3.2. Consensus strategy

Consensus clustering is a type of strategy which aggregates in-

formation of distinct solutions. In Topchy, Jain, and Punch (2005),

the authors mention that one way of performing this task is by

combining components of different clusterings obtained by a sin-

gle clustering algorithm. This strategy enables a consensus clus-

tering which suits better the community structure of a graph.

Lancichinetti and Fortunato (2012) employ a consensus strategy

to find robust partitions from a number of executions of a same

community detection technique. They considered benchmark algo-

rithms to perform the consensus analysis, as OSLOM, the Louvain

method, and Infomap algorithms. In experiments carried out by
he authors with benchmark networks, they attested a better ro-

ustness of the methods with the consensus strategy.

In line with this concept, this paper presents a consensus clus-

ering by generating different partitions with the introduced coars-

ning algorithm, but with different values of λ. For such, we spec-

fy a pool of values for λ using the results provided by the neural

etwork proposed in Carvalho et al. (2014). Carvalho et al. (2014)

resented a semi-supervised learning algorithm to define the most

uitable intervals of values for the parameter λ of the adjusted

odularity (Reichardt & Bornholdt, 2006). The multi-layer percep-

ron defines for a given network, appropriately trained with LFR

etworks, in which of 8 intervals of values λ belongs to: [1, 1.5],

1.6, 2], [2.1, 2.5], [2.6, 3], [3.1, 3.5], [3.6, 4], [4.1, 4.5] or [4.6, 5]. For

esigning the neural network, the topological traits of the input

raphs are considered by an analysis of the proportion between

he number of 4-sized motifs and the size of the network (Meira,

áximo, Fazenda, & Da Conceição, 2014).

Then, after finding the interval for a given graph, ConClus gen-

rates a set of partitions taking specific values within the interval.

et us consider [ai, bi] the interval provided by the neural network.

e select the following values for λ: ai, ai+0.1, ai+0.2, ai+0.3,ai+0.4

nd bi. Taking the set of clusterings into account, a consensus par-

ition is produced by the analysis of the pairwise relation of the

ertices with regard to the clustering set. In this case, ConClus

mploys the criterion of gathering into the same cluster those ver-

ices grouped together in, at least, 50% of the partitions from the

et of clusterings. Since a small number of clusterings are required

o perform the consensus clustering, the asymptotic complexity of

he method is O(n2).

In the next section, we show the computational experiments

erformed with ConClus.

. Computational experiments

This section presents the analysis of the experiments carried

ut to evaluate the performance of ConClus. After preliminary ex-

eriments to determine the parameters of the algorithm, we em-

loyed the following: the parameter α was 0.5; the maximum

umber of iterations of the algorithm (maxIter) was 30; and the

umber of iterations of the permanent clustering strategy evalua-

ions (iterContr) was 3. Moreover, this paper shows the results of

onClus with α is 0, i.e. when the coarsening algorithm is greedy.

his version of ConClus is referred as G-ConClus. All experiments

ere run in a machine with Intel Xeon E5-1620 3.7-GHz processor

nd 32GB of main memory.

In the first experiment, we used two real benchmark networks:

football (Girvan & Newman, 2002) and polBlogs (Adamic & Glance,

005). The second experiment was similar to the methodology de-

cribed in Lancichinetti et al. (2011). In both experiments, the re-

ults achieved by ConClus were compared with those obtained

y the Label Propagation (LP) algorithm (Raghavan, Albert, & Ku-

ara, 2007), Infomap (Rosvall & Bergstrom, 2007) and OSLOM

Lancichinetti et al., 2011). The only algorithm that does not take

nto account the arc directions is the LP algorithm. Roughly, LP is

neighborhood-based strategy that labels a given vertex according

o the majority of the labels of its neighborhood. The three algo-

ithms are extensively used for detecting communities in networks,

eportedly efficient in this task according to the most recent litera-

ure. Moreover, they are among the few available implementations

f algorithms that detect communities in directed networks.

.1. Experiment I

The first real dataset considered in this experiment con-

ains information about matches of the division I-A of American

ollege football teams occurred in 2000, fall season. The resulting

C.P. Santos et al. / Expert Systems With Applications 54 (2016) 121–135 127

1
2

3
4

1

4
3

5 5

1

4

6

7

3
7 3

1

8

7

9

8

55

1

6

2

7

8

6

9
9

7 3

2

7

9

10

2

7
3

4

1

7

7

11

2

12

3

11

12

6

5

4

12

7

9

8

11

10
10

3

7

8

10

3

8

11

12

5

6

8

7

4

12

4

11

8

559

9

4

9

12

4
7

11

8

12

2
6

11

11
1

9

8 8

10

4
7

3

9

4

2

1

2

3

4

5

2

12

5

11

8

12

Pajek

Fig. 4. The afootball benchmark graph with its vertices marked according to the communities found by ConClus. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article).

u

f

c

i

a

i

t

(

a

n

v

p

u

(

t

a

t

i

N

0

w

2

r

I

g

(

t

2

I

s

l

t

h

w

f

t

t

t

t

o

m

c

t

l

t

t

a

i

a

e

w

a

w

n

n

s

c

m

4

(

w

t

s

nweighted undirected network has its vertices representing the

ootball teams, whereas the existence of an edge between vertices

orresponds to whether or not the two teams faced each other

n the season. It is natural that the communities in this network

re in agreement with the 12 conferences of the season. Accord-

ngly, teams from the same conference are supposed to belong to

he same community. This data, compiled by Girvan and Newman

2002), is characterized by highly connected groups.

Fig. 4 illustrates afootball network using both different numbers

nd colors to identify the communities obtained by ConClus. The

eural network provided the interval [2.6, 3] to determine the λ
alue. ConClus found a partition with exactly 12 groups. To com-

are this partition with that resulting from the conferences, we

sed the measure known as Normalized Mutual Information (NMI)

Danon, Diaz-Guilera, Duch, & Arenas, 2005). NMI is an information

heory measure that assesses the correlation between two vari-

bles, in this case, the vertex partitions. The closer its value is to 1,

he stronger the correlation of the two variables. The correspond-

ng NMI value was 0.92419.

G-ConClus, LP, Infomap and OSLOM found communities whose

MI values in relation to the expected partition were, respectively,

.88580, 0.91085, 0.92419 and 0.91568. As this network is un-

eighted, we also considered the Louvain method (Blondel et al.,

008), a benchmark modularity maximization heuristic. The cor-

esponding NMI value was 0.89032. Therefore, both ConClus and

nfomap presented the highest NMI values. Infomap was the al-

orithm that, in the experiments in Lancichinetti and Fortunato

2009), outperformed a number of benchmark community detec-

ion algorithms.

The second real network, named polBlogs (Adamic & Glance,

005), represents blogs about US politics and their hyperlinks.

t is an unweighted directed network, where the vertices corre-

pond to the sites of the blogs whilst the arcs refer to the hyper-

inks between them. The blogs are separated into two categories,

he expected communities: liberal and conservative. This network

as 1490 vertices, 266 of which are unconnected that mean blogs

ithout hyperlinks pointing to and by them. They were removed
 c
rom the network to eliminate unnecessary noise. It is worth men-

ioning, however, that all algorithms in the experiment interpreted

hese blogs as isolated communities.

In this case, the neural network provided an overestimated in-

erval for λ, [1.0, 1.5]. The NMI between the expected partition and

hat from ConClus with this interval was 0.45763. As the number

f expected communities is low, this interval, perhaps, is not the

ost suitable for this network. For this reason, we ran ConClus

onsidering the interval [0.6, 1] and the NMI was significantly bet-

er, 0.66928. Fig. 5 displays the polBlogs network and its vertices

abeled according to the communities with the highest NMI ob-

ained by ConClus. As this network is large-sized, the communi-

ies are collapsed into supernodes for a better visualization. The di-

meters of the vertices are proportional to the number of vertices

n the communities. The thickness of the arcs corresponds to the

mount of arcs between vertices of different communities. How-

ver, they are not in real scale primarily due to those communities

ith very few vertices. The two largest communities (labeled as 1

nd 3) have most of the blogs correctly identified. The community

ith label 1 is mostly composed by liberal blogs, whereas commu-

ity 3, by conservative blogs.

Concerning the other strategies, the NMI values of the commu-

ities obtained by G-ConClus, OSLOM, Infomap and LP were, re-

pectively, 0.67888, 0.57208, 0.43547 and 0.38534. All NMI values

orrespond to the average of five independent executions.

In the next section, we present the results from the experi-

ents performed with artificial datasets.

.2. Experiment II

This experiment considers the software introduced in

Lancichinetti et al., 2008) to produce artificial directed net-

orks with communities of different sizes. It is worth mentioning

hat we consider networks with small-sized, named S, and large-

ized communities, referred as L. The key difference related to the

ommunity structure of the networks from the same set is the

128 C.P. Santos et al. / Expert Systems With Applications 54 (2016) 121–135

1
2

3
4

5
6

7

8

9

10

11

12

Fig. 5. The polBlogs benchmark network with its vertices marked according to the communities found by ConClus.

C

t

w

o

o

f

o

v

i

w

5

C

s

w

I

t

k

fi

n

n

w

n

m

d

a

m

t

a

a

C

h

5

d

i

r

c

n

mixing degree between communities, referred as μ. The higher its

value is, the more fused the communities are.

Both sets S and L include 5 subsets of 40 directed networks

each of which with 1000, 2000, 3000, 4000 and 5000 vertices, and

5 different networks for each μ totalizing 400 networks. Again, fol-

lowing the suggestions provided in Lancichinetti et al. (2011), the

values of the parameters average in-degree, maximum in-degree,

negative exponent for degree sequence and negative exponent for

the community size distribution of the generated networks have

the respective values: 20, 50, 2 and 1.

On the one hand, the remaining parameters of the networks in

the set S are: the minimum value for the community size, that is

10; and the maximum value for the community size, that is 50. On

the other hand, for the set L, the minimum community size is 20

and the maximum community size is 100.

The measure that assesses how close the communities acquired

by the algorithms are in relation to the expected partitions is,

again, the NMI (Danon et al., 2005). Figs. 6–15 summarize the re-

sults of the performed experiment for networks with small and

large-sized communities.

Each figure displays the average results of all algorithms consid-

ered in the experiment for a given set of networks (S or L) and a

given number of vertices. Accordingly, the left figures indicate the

average NMI values obtained by each μ. The reported NMI values

are the average of 5 independent executions, for all algorithms. For

Infomap, we considered 100 trials for each of the 5 independent

executions. This number was suggested by the authors of the algo-

rithm. The right figures indicate the average running times of the

algorithms in the independent executions. The only average run-

ning times not reported in the graphics are those from LP, whose

employed implementation is in R language. However, to be fair, we

can highlight that LP, so as Infomap, is estimated to be of the linear

time order.

The results of the experiments indicate that the algorithms

achieved the highest NMI values for low values of μ. This behav-

ior is expected since the network communities with higher μ are

weakly defined. On the one hand, according to the presented re-

sults, ConClus and OSLOM had a very consistent NMI curve con-

sidering the different mixture parameters. Even for μ = 0.8, one

may notice NMI values larger than 0.65. On the other hand, both

the communities provided by Infomap and LP had NMI 0.0 for net-

works with high mixture degrees. Both strategies placed all ver-

tices into a single community for most of the networks with high

mixture degree. In spite of that, Infomap is faster than both Con-

Clus and OSLOM. It is expected that the running time of LP is as

low as the computational time of Infomap.

C

For networks from the set S and with 1000 and 2000 vertices,

onClus achieved the highest NMI values in comparison to all

ested algorithms. However, in detecting communities in networks

ith 1000 vertices and μ equals to 0.8, from the set L, ConClus

btained a significantly higher NMI value in comparison to the

ther algorithms. Considering this set networks, OSLOM outper-

ormed the other algorithms for μ equals to 0.6 and 0.7. In most

f these instances, except for networks from the set S with 1000

ertices, ConClus is faster than OSLOM in detecting communities

n networks with μ ≤ 0.7, but slower in networks with μ = 0.8.

OSLOM achieved the highest average NMI values in networks

ith both small and large-sized communities of 3000, 4000 and

000 vertices. However, OSLOM was slightly better than Con-

lus in networks from the set S. G-ConClus obtained results

lightly worse than ConClus. However, its computational time

as significantly inferior, comparable to the running time of

nfomap.

It is worth to point out that for generating the networks using

he software proposed in Lancichinetti et al. (2011), we kept the

ey parameters (average in-degree and communities sizes) with

xed values, independently of the number of vertices. Therefore,

etworks with 1000 vertices have the same parameter values as

etworks with 5000 vertices. Consequently, the resulting networks

ith fewer vertices are denser than those generated with a higher

umber of vertices. In line with this, by the results of the experi-

ents, it is possible to observe that ConClus performs better with

ense networks. To empirically confirm this claim, we generated

nother set with denser directed networks with large-sized com-

unities. The difference in generating this set and the set L is on

he value of the parameters average and maximum in-degrees, set

s 40 and 100, respectively. Figs. 16–20 present the results of the

lgorithms using these networks.

The results with these 200 networks clearly indicate that Con-

lus outperformed all other algorithms, despite the significantly

igher computational time.

. Final remarks

This paper presents a study about the community detection in

irected networks. Even though the intense research interested in

dentifying communities in undirected networks, the subject for di-

ected networks remains a challenge. A few algorithms are spe-

ially designed to identify communities in these networks.

In line with this motivation, this paper presents a commu-

ity detection algorithm for directed networks, here named Con-

lus. Since the modularity measure is an outstanding measure for

C.P. Santos et al. / Expert Systems With Applications 54 (2016) 121–135 129

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

(a) NMI values by mixing parameter

0.0 0.2 0.4 0.6 0.8

0

20

40

60

80

100
ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

(b) Running times by mixing parameter

Fig. 6. Performance of ConClus in comparison to OSLOM, Infomap and LP using networks from the set S with 1000 vertices.

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

(a) NMI values by mixing parameter

0.0 0.2 0.4 0.6 0.8

0

50

100

150

200
ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

(b) Running times by mixing parameter

Fig. 7. Performance of ConClus in comparison to OSLOM, Infomap and LP using networks from the set L with 1000 vertices.

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

(a) NMI values by mixing parameter

0.0 0.2 0.4 0.6 0.8

0

50

100

150

200
ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

(b) Running times by mixing parameter

Fig. 8. Performance of ConClus in comparison to OSLOM, Infomap and LP using networks from the set S with 2000 vertices.

130 C.P. Santos et al. / Expert Systems With Applications 54 (2016) 121–135

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

(a) NMI values by mixing parameter

0.0 0.2 0.4 0.6 0.8

0

50

100

150

200
ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

(b) Running times by mixing parameter

Fig. 9. Performance of ConClus in comparison to OSLOM, Infomap and LP using networks from the set L with 2000 vertices.

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

(a) NMI values by mixing parameter

0.0 0.2 0.4 0.6 0.8

0

50

100

150

200

250

300
ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

(b) Running times by mixing parameter

Fig. 10. Performance of ConClus in comparison to OSLOM, Infomap and LP using networks from the set S with 3000 vertices.

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

(a) NMI values by mixing parameter

0.0 0.2 0.4 0.6 0.8

0

100

200

300

400
ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

(b) Running times by mixing parameter

Fig. 11. Performance of ConClus in comparison to OSLOM, Infomap and LP using networks from the set L with 3000 vertices.

C.P. Santos et al. / Expert Systems With Applications 54 (2016) 121–135 131

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

(a) NMI values by mixing parameter

0.0 0.2 0.4 0.6 0.8

0

100

200

300

400

500
ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

(b) Running times by mixing parameter

Fig. 12. Performance of ConClus in comparison to OSLOM, Infomap and LP using networks from the set S with 4000 vertices.

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

(a) NMI values by mixing parameter

0.0 0.2 0.4 0.6 0.8

0

200

400

600

800
ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

(b) Running times by mixing parameter

Fig. 13. Performance of ConClus in comparison to OSLOM, Infomap and LP using networks from the set L with 4000 vertices.

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

(a) NMI values by mixing parameter

0.0 0.2 0.4 0.6 0.8

0

200

400

600

800
ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

(b) Running times by mixing parameter

Fig. 14. Performance of ConClus in comparison to OSLOM, Infomap and LP using networks from the set S with 5000 vertices.

132 C.P. Santos et al. / Expert Systems With Applications 54 (2016) 121–135

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

(a) NMI values by mixing parameter

0.0 0.2 0.4 0.6 0.8

0

200

400

600

800

1000

1200
ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

(b) Running times by mixing parameter

Fig. 15. Performance of ConClus in comparison to OSLOM, Infomap and LP using networks from the set L with 5000 vertices.

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

(a) NMI values by mixing parameter

0.0 0.2 0.4 0.6 0.8

0

50

100

150

200

250

300
ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

(b) Running times by mixing parameter

Fig. 16. Performance of ConClus in comparison to OSLOM, Infomap and LP using networks from the dense set with 1000 vertices and with average and maximum in-degrees,

respectively, 40 and 100.

u

C

t

b

C

i

d

L

c

u

a

t

c

a

o

a

f

defining the quality of partitions, ConClus relies on this metric as

fitness function. A neural network provides intervals of values for

defining a parameter known as resolution parameter for adjust-

ing the modularity measure to overcome the so-called resolution

limit. Then, after a semi-greedy strategy produces a set of parti-

tions guided by the adjusted modularity, ConClus returns the final

partition that is a consensus of the set.

In the computational experiments, we compared the results

of ConClus with those from three extensively used algorithms

from the literature: OSLOM, Infomap and Label Propagation (LP).

Additionally, this paper shows the results of ConClus when α
is 0, i.e., considering the greedy version of the coarsening algo-

rithm. This version of ConClus is referred as G-ConClus. Con-

Clus achieved the best results in the first experiment with two

real benchmark networks. Concerning a second experiment with

600 directed LFR networks of small and large-sized communities,

ConClus presented a very good performance, being robust and ef-

fective. It is worth to point up that ConClus outperformed In-

fomap and LP even in the networks that modularity is reportedly
nreliable due to its resolution limit. In comparison to OSLOM,

onClus was very competitive. It achieved more accurate results

han OSLOM when considering dense graphs, whereas OSLOM is

etter for sparse graphs. G-ConClus was slightly worse than Con-

lus, but with a computational time significantly inferior.

The strongest points of ConClus are the semi-supervised learn-

ng phase and the memory stage. The former was fundamental for

efining a measure more accurate for detecting communities in

FR networks. The latter, in which the vertices are collapsed into

ommunities due to the frequency they are together in the eval-

ated partitions, had a major impact on the quality of the results

nd on the computational time.

ConClus, however, presented a higher computational time than

he algorithms involved in the comparisons. Nevertheless, one may

onsider G-ConClus in applications where the computational times

re supposed to be low. G-ConClus, besides being deterministic,

utperformed the results of Infomap, the only algorithm that had

computational time competitive with G-ConClus. As a matter of

act, G-ConClus was faster than Infomap. Additionally, it is possible

C.P. Santos et al. / Expert Systems With Applications 54 (2016) 121–135 133

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

(a) NMI values by mixing parameter

0.0 0.2 0.4 0.6 0.8

0

200

400

600

800
ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

(b) Running times by mixing parameter

Fig. 17. Performance of ConClus in comparison to OSLOM, Infomap and LP using networks from the dense set with 2000 vertices and with average and maximum in-degrees,

respectively, 40 and 100.

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

(a) NMI values by mixing parameter

0.0 0.2 0.4 0.6 0.8

0

500

1000

1500
ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

(b) Running times by mixing parameter

Fig. 18. Performance of ConClus in comparison to OSLOM, Infomap and LP using networks from the dense set with 3000 vertices and with average and maximum in-degrees,

respectively, 40 and 100.

t

i

g

c

w

t

p

d

w

s

p

s

c

i

t

f

a

t

n

t

p

w

t

a

r

v

t

o

w

a

m

i

d

t

o consider parallelism in the multiple iterations of ConClus, to

ncrease the speediness.

As future research, we suggest the development of frameworks

uided by the adjusted modularity, but with a lower asymptotic

omplexity to detect communities in large scale networks. In line

ith this, we recommend a distributed version of ConClus, using

he local (adjusted) modularity measure, similar to a recent pro-

osal of the Louvain method. This type of framework is highly in-

icated since it can be used for either dynamic or distributed net-

orks. In adapting ConClus, it is notable its natural parallelization

ince, during the coarsening iterations, it provides partitions inde-

endently, before considering them for the consensual analysis.

Following a more theoretical line, there is a strong potential in

tudies that perform topological analysis of the networks. In this

ontext, these investigations may provide ways to extract relevant

nformation of the network to determine the resolution parame-

er. In particular, we strongly recommend the development of ef-

ective local metrics, as an attempt to find cheap and distributed

lgorithms to detect communities in large networks.
The core of most studies related to intelligent systems treating

he community detection problem in networks either introduces

ew measures or uses consolidated measures, such as modularity,

o guide their algorithm that may fail in some case studies. This

aper shows that the parameter adjustment by the neural net-

ork by evaluating the network topology enhanced significantly

he quality of the results achieved by the algorithm. The interval

pproach gave diversity to the strategy since ConClus used the

ange to find the consensus partitions from the set acquired by

arying the parameter values within the interval. We suggest as fu-

ure work related to intelligent systems the fine tuning of the res-

lution parameter according to the graph topology. Furthermore,

e recommend the use of a memory mechanism hybridized with

diversification strategy to guide the search for high-quality com-

unities.

To sum up, this paper demonstrated that even though there

s evidence about the low quality of the modularity measure

ue to the resolution limit, its adjusted version guided ConClus

hat achieved outstanding results. In spite of the training of the

134 C.P. Santos et al. / Expert Systems With Applications 54 (2016) 121–135

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

(a) NMI values by mixing parameter

0.0 0.2 0.4 0.6 0.8

0

500

1000

1500

2000

2500 ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

(b) Running times by mixing parameter

Fig. 19. Performance of ConClus in comparison to OSLOM, Infomap and LP using networks from the dense set with 4000 vertices and with average and maximum in-degrees,

respectively, 40 and 100.

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

ConClus
G−ConClus
OSLOM
Infomap
LP

(a) NMI values by mixing parameter

0.0 0.2 0.4 0.6 0.8

0

500

1000

1500

2000

2500

3000

3500 ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

ConClus
G−ConClus
OSLOM
Infomap

(b) Running times by mixing parameter

Fig. 20. Performance of ConClus in comparison to OSLOM, Infomap and LP using networks from the set with 5000 vertices and with average and maximum in-degrees,

respectively, 40 and 100.

B

B

B

C

D

D

F

G

K

L

neural network employed LFR networks, ConClus was very accu-

rate in detecting communities in the real benchmark networks. The

most cohesive groups of vertices were identified by the perma-

nent coarsening strategy enabling ConClus to further investigate

the communities of the border vertices.

Acknowledgments

The authors thank Fundação de Amparo à Pesquisa do Estado

de São Paulo (FAPESP) for the financial support. We also are in-

debted to the anonymous reviewers whose comments significantly

improved the presentation of the paper.

References

Adamic, L. A., & Glance, N. (2005). The political blogosphere and the 2004 US elec-
tion: divided they blog. In Proceedings of the 3rd international workshop on link

discovery (pp. 36–43). ACM.
Arenas, A., Duch, J., Fernández, A., & Gómez, S. (2007). Size reduction of complex

networks preserving modularity. New Journal of Physics, 9(6), 176.
londel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding
of communities in large networks. Journal of Statistical Mechanics: Theory and

Experiment, 2008(10), P10008.

lum, C., Puchinger, J., Raidl, G. R., & Roli, A. (2011). Hybrid metaheuristics in com-
binatorial optimization: a survey. Applied Soft Computing, 11, 4135–4151.

randes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer, M., Nikolosk, Z., & Wagner, D.
(2008). On modularity clustering. IEEE Transactions on Knowledge and Data En-

gineering, 20, 172–188.
arvalho, D. M., Resende, H., & Nascimento, M. C. V. (2014). Modularity maximiza-

tion adjusted by neural networks. In Proceedings of the 21st international confer-

ence in neural information processing (ICONIP): 8834 (pp. 287–294). Springer.
anon, L., Diaz-Guilera, A., Duch, J., & Arenas, A. (2005). Comparing community

structure identification. Journal of Statistical Mechanics: Theory and Experiment,
2005(09), P09008.

hillon, I., Guan, Y., & Kulis, B. (2005). A fast kernel-based multilevel algorithm for
graph clustering. In Proceedings of the eleventh ACM SIGKDD international confer-

ence on knowledge discovery and data mining (KDD) (pp. 629–634).

ortunato, S., & Barthélemy, M. (2007). Resolution limit in community detection.
Proceedings of the National Academy of Sciences USA, 104(1), 36.

irvan, M., & Newman, M. E. J. (2002). Community structure in social and biological
networks. Proceedings of the National Academy of Sciences USA, 99, 7821–7826.

im, Y., Son, S.-W., & Jeong, H. (2010). Finding communities in directed networks.
Physical Review E, 81(1), 016103.

ancichinetti, A., & Fortunato, S. (2009). Community detection algorithms: a com-

parative analysis. Physical Review E, 80(5), 056117.

http://dx.doi.org/10.13039/501100001807
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0001
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0001
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0001
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0001
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0002
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0002
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0002
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0002
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0002
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0002
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0003
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0003
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0003
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0003
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0003
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0003
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0004
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0004
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0004
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0004
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0004
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0004
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0005
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0005
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0005
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0005
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0005
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0005
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0005
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0005
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0005
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0006
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0006
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0006
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0006
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0006
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0007
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0007
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0007
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0007
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0007
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0007
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0008
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0008
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0008
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0008
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0008
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0009
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0009
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0009
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0009
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0010
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0010
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0010
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0010
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0011
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0011
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0011
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0011
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0011
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0012
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0012
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0012
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0012

C.P. Santos et al. / Expert Systems With Applications 54 (2016) 121–135 135

L

L

L

L

M

M

N

P

R

R

R

R

R

R

T

T

ancichinetti, A., & Fortunato, S. (2012). Consensus clustering in complex networks.
Scientific Reports, 2 Article number: 336.

ancichinetti, A., Fortunato, S., & Radicchi, F. (2008). Benchmark graphs for testing
community detection algorithms. Physical Review E, 78, 046110.[5 pages].

ancichinetti, A., Radicchi, F., Ramasco, J. J., Fortunato, S., et al. (2011). Finding sta-
tistically significant communities in networks. PloS One, 6(4), e18961.

eicht, E. A., & Newman, M. E. (2008). Community structure in directed networks.
Physical Review Letters, 100(11), 118703.

alliaros, F. D., & Vazirgiannis, M. (2013). Clustering and community detection in

directed networks: a survey. Physics Reports, 533(4), 95–142.
eira, L. A., Máximo, V. R., Fazenda, Á. L., & Da Conceição, A. F. (2014). Acc-motif:

accelerated network motif detection. IEEE/ACM Transactions on Computational Bi-
ology and Bioinformatics (TCBB), 11(5), 853–862.

oack, A., & Rotta, R. (2009). Multi-level algorithms for modularity clustering. In
Proceedings of the 8th international symposium on experimental algorithms, SEA

’09: 1 (pp. 257–268).

ark, H.-J., & Friston, K. (2013). Structural and functional brain networks: from con-
nections to cognition. Science, 342(6158), 1238411.

aghavan, U. N., Albert, R., & Kumara, S. (2007). Near linear time algorithm to de-
tect community structures in large-scale networks. Physical Review E, 76(3 Pt 2),

036106.
eichardt, J., & Bornholdt, S. (2006). Statistical mechanics of community detection.
Physical Review E, 74, 016110.

omdhane, L. B., Chaabani, Y., Zardi, H., Group, M. R., et al. (2013). A robust ant
colony optimization-based algorithm for community mining in large scale ori-

ented social graphs. Expert Systems with Applications, 40(14), 5709–5718.
onhovde, P., & Nussinov, Z. (2010). Local resolution-limit-free potts model for com-

munity detection. Physical Review E, 81(4), 046114.
osvall, M., & Bergstrom, C. T. (2007). An information-theoretic framework for re-

solving community structure in complex networks. Proceedings of the National

Academy of Sciences USA, 104, 7327.
osvall, M., & Bergstrom, C. T. (2010). Mapping change in large networks. Plos One,

5(1), e8694.
opchy, A., Jain, A., & Punch, W. (2005). Clustering ensembles: models of consensus

and weak partitions. In Proceedings of IEEE transactions on pattern analysis and
machine intelligence: 27(12) (pp. 1866–1881).

raag, V. A., Van Dooren, P., & Nesterov, Y. (2011). Narrow scope for resolution-limit-

free community detection. Physical Review E, 84(1), 016114.

http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0013
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0013
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0013
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0013
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0014
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0014
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0014
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0014
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0014
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0015
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0015
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0015
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0015
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0015
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0015
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0016
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0016
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0016
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0016
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0017
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0017
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0017
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0017
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0018
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0018
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0018
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0018
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0018
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0018
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0019
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0019
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0019
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0019
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0020
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0020
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0020
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0020
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0021
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0021
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0021
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0021
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0021
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0022
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0022
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0022
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0022
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0023
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0023
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0023
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0023
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0023
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0023
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0024
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0024
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0024
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0024
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0025
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0025
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0025
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0025
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0026
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0026
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0026
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0026
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0027
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0027
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0027
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0027
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0027
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0028
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0028
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0028
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0028
http://refhub.elsevier.com/S0957-4174(16)00036-1/sbref0028

	A consensus graph clustering algorithm for directed networks
	1 Introduction
	2 Related works
	2.1 Basic terminology and background
	2.2 Community detection in directed networks
	2.2.1 Modularity-based algorithms

	3 The proposed solution method
	3.1 Coarsening clustering
	3.1.1 Permanent coarsening

	3.2 Consensus strategy

	4 Computational experiments
	4.1 Experiment I
	4.2 Experiment II

	5 Final remarks
	 Acknowledgments
	 References

