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a b s t r a c t

Clustering ensemble performance is affected by two main factors: diversity and quality. Selection of a
subset of available ensemble members based on diversity and quality often leads to a more accurate
ensemble solution. However, there is not a certain relationship between diversity and quality in
selection of subset of ensemble members. This paper proposes the Hierarchical Cluster Ensemble
Selection (HCES) method and diversity measure to explore how diversity and quality affect final results.
The HCES uses single-link, average-link, and complete link agglomerative clustering methods for the
selection of ensemble members hierarchically. A pair-wise diversity measure from the recent literature
and the proposed diversity measure are applied to these agglomerative clustering algorithms. Using the
proposed diversity measure in HCES leads to more diverse ensemble members than that of pairwise
diversity measure. Cluster-based Similarity Partition Algorithm (CSPA) and Hypergraph-Partitioning
Algorithm (HGPA) were employed in HCES method for obtaining the full ensemble and cluster ensemble
selection solution. To evaluate the performance of the HCES method, several experiments were
conducted on several real data sets and the obtained results were compared to those of full ensembles.
The results showed that the HCES method led to a more significant performance improvement
compared with full ensembles.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Clustering is one of the unsupervised rules for searching and
analyzing data, which is used in different fields such as statistics, patt-
ern recognition, machine learning, data mining, and bio-informatics
(Jain, 2010; Quintana et al., 2003; De Angelis and Dias, 2014; Sun et al.,
2012). Wide usage of clustering algorithms proves their usefulness in
exploratory data analysis (Jain et al., 2000). The major aim of data
clustering is to find groups of patterns (clusters) in such a way that
patterns in one cluster can be more similar to each other than to
patterns of other clusters. Because of characteristics of dataset, different
clustering algorithms obtain different clustering results. It is difficult to
choose a suitable algorithm for a given data set. Based on the Kleinberg
theorem, there is no the best single clustering algorithm (Kleinberg,
2003).

Clustering ensemble, which is an approach in clustering problem,
combines multiple clustering results (clusterings) to achieve final
clusters without accessing the features or algorithms that obtain the
clusterings. The combination of the clusterings is performed by a

consensus algorithm. The clustering ensemble approach attempts to
improve the quality and robustness of clustering results (Strehl and
Ghosh, 2003; Fred and Jain, 2005; Mimaroglu and Erdil, 2013).
Furthermore, clustering ensemble can achieve some properties such
as novelty, stability, and scalability (Topchy et al., 2005). There are
some applications of clustering ensemble in bio-informatics, image
processing, and marketing (Strehl and Ghosh, 2003; Avogadri and
Valentini, 2009; Ma et al., 2009; Mimaroglu and Erdil, 2010). Since
clustering ensemble only needs to gain access to the base clusterings
instead of the data itself, it provides a convenient approach to privacy
preservation and knowledge reuse (Strehl and Ghosh, 2003). In many
applications, for the objects under consideration, various clusterings
may already come to exist. In this condition, these clusterings can be
integrated into a single solution. For example, in market basket
analysis, assume that a company already has various legacy customer
segmentations based on geographical region, credit rating, demo-
graphics, and purchasing patterns in their retail stores, and so on.
They want to reuse this pre-existing knowledge in order to form a
single consolidated clustering. Because the legacy clusterings are
provided largely by experts or by other companies by means of
proprietary methods, for reusing this knowledge, there is a limited
access to original features of raw data and the algorithms that obtain
the clusterings (Strehl and Ghosh, 2003).
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On the other hand, in contrast to the knowledge reuse, there
could be a potential for greater gains when using an ensemble for the
purpose of improving clustering quality (Strehl and Ghosh, 2003).
Traditionally, a set of large library of clusterings is generated and then
the consensus solution is obtained by a consensus function based
on all base clusterings. Unlike classification problems where labels
of data items are known beforehand, data items in unsupervised
clustering problems are unlabeled which may some clustering results
unreliability in large library of clusterings. Thus, not all obtained
clusterings can truly benefit for the final solution of clustering
ensembles (Azimi and Fern, 2009; Hong et al., 2009).

Recently, a subset of diversity is selected rather than all for
combining the diversity to obtain the final result (Hadjitodorov
et al., 2006). Cluster ensemble selection is mainly aimed to select a
subset from a large library of clustering solutions to form a smaller
cluster ensemble that performs as properly as or better than the set
of all available clustering solutions (Kuncheva and Hadjitodorov,
2004; Fern and Lin, 2008; Azimi and Fern, 2009). Selective ensem-
bles method is also on the basis of the supervised classification area
in which it has been recognized that selective classifier ensembles
always outperform the conventional ensemble methods in terms of
achieving better solutions (Banfield et al., 2005; Zhang et al., 2006).
In a straightforward classifiers selection method, the classifiers are
ranked based on their individual performance on a held-out test set
and the best ones are picked (Caruana et al., 2014). Whereas, in
unsupervised clustering area, data items are unlabeled beforehand.
As a result, this is not possible to estimate the quality of a single
clustering result by computing its quality on the test set.

In ensemble selection, diversity and quality are two important
factors that affect ensemble performance (Fern and Brodley, 2003).
A few recent studies have investigated heuristically the question
how a subset of ensemble members should be selected based on
diversity and quality (Minaei-Bidgoli et al., 2014; Alizadeh et al.,
2014; Naldi et al., 2013). The most successful method proposed by
Fern and Lin (2008) is called the Cluster And Select (CAS) that
combines quality and diversity. This, first, partitions the ensemble
members into k (the number of clusters) clusters based on their
similarities. Then, CAS selects the clusterings with the highest
quality from each obtained cluster for the ensemble. They con-
cluded that the use of both quality and diversity in cluster
ensemble selection (CES) can make a higher improvement in the
results compared to full ensembles. However, the drawback of CAS
is that the number of k that can obtain the most appropriate
ensemble size is uncertain and the concept of quality and diversity
is loosely defined. To address the above problems, a hierarchical
diversity selection strategy based on both diversity and quality is
proposed to improve the traditional clustering ensemble perfor-
mance. This strategy also solves the drawback of ensemble selec-
tion strategy in the CAS method.

This paper proposes a new combinational method called the
Hierarchical Cluster Ensemble Selection (HCES). In the first step of
the HCES method, a pairwise matrix of all available clustering
members is constructed using two different diversity measures. It
then employs three hierarchical methods including single-link,
average-link, and complete-link to build a nested tree. An appro-
priate cut on the obtained tree creates diverse groups of primary
partitions that guide us in targeted selection of smaller yet better
performing ensemble. Finally, the HCES uses HGPA and CSPA con-
sensus clustering algorithms for obtaining consensus clustering
solutions. The HCES method obtains the final solution through
the selection of an appropriate layer of the hierarchy. In the HCES
method, there is no need to specify the value of k. The HCES
empirically is compared to the full ensemble. The evaluation results
obtained from different real data sets demonstrate statistically more
significant performance improvement compared to the full ensem-
bles. In addition, because of interpretability of the proposed method,

the results are improved even with removing only one clustering;
the removed clustering is considered as a noise. As a brief, the
contributions of the present paper are as follow:

1. Proposing an automatic hierarchical cluster ensemble selection.
2. Proposing a diversity measure and applying to the proposed

HCES method.
3. Applying three agglomerative clustering algorithms to the method

and showing their effect on the performance of the method.

The rest of the paper is organized as follows. Section 2 gives an
overview of related work. Section 3 introduces different diversity
and quality measures. Section 4 presents the hierarchical ensem-
ble selection method. Section 5 presents the experiments carried
out on several real data sets and the obtained results. Finally,
Section 6 concludes the paper and recommends future work.

2. Related work

Clustering ensemble is an approach that is widely adopted in
clustering research to improve the quality and robustness of
clustering results. Clustering ensemble includes two main parts:
diversity (creating multiple clusterings) and consensus function
(combining multiple clusterings). Recently, researchers have sug-
gested the selection of diversity to improve the ensemble perfor-
mance (Hadjitodorov et al., 2006; Jia et al., 2011; Hong et al.,
2009). Fig. 1 shows the steps of clustering ensemble selection
approach. In this section, some clustering ensemble methods and
recent studies conducted on cluster ensemble design are reviewed.

2.1. Diversity generation

In ensemble classifier/clustering techniques, generating diver-
sity is commonly used in supervised and unsupervised combining
approaches. Various methods have been proposed in the literature
for creating diversity or ensemble members, including

1. Different parameter initializations: Primary clusterings are cre-
ated using repeated runs of a single clustering algorithm with
several sets of parameter initializations such as cluster centers
of the k-means clustering technique, which are known as
homogeneous ensembles (Fred and Jain, 2005).

2. Different clustering algorithms: A number of different clustering
algorithms are used together to generate primary clusterings,

Dataset

Diversity

Consensus Function

Final Result

Selection of Diversity

Fig. 1. Steps of the clustering ensemble selection approach.
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which are called heterogeneous ensembles (Topchy et al., 2005;
Berikov, 2013).

3. Different subsets of features: Features are selected or extracted
to create subsets that are used for the generation of clusterings
(Fred and Jain, 2005; Topchy et al., 2003; Hong et al., 2008).

4. Different subsets of objects: Data are re-sampled with or without
replacement for generating clusterings (Minaei-Bidgoli et al.,
2004; Yu et al., 2012).

5. Projection to subspace: The objects are projected on different
subspaces, which include the projection to one dimension and
random cut that are applied to the production of clusterings
(Topchy et al., 2003; Fern and Brodley, 2003).

Typically, the first and second methods are suitable for low-
dimensional data, the third and fifth methods are suitable for high-
dimensional data, and the fourth method is suitable for large dataset.

2.2. Selection of diversity

Recently, cluster ensemble selection (CES) techniques have been
proposed to improve the ensemble performance (Hadjitodorov
et al., 2006; Fern and Lin, 2008; Azimi and Fern, 2009; Wang
et al., 2013). These techniques select a subset of ensemble members
based on both diversity and quality that are two important factors
for improvement of the ensemble solution (Fern and Brodley, 2003;
Hadjitodorov et al., 2006; Fern and Lin, 2008; Azimi and Fern,
2009). If the generated ensemble members (clusterings) are differ-
ent from each other and they also have an acceptable quality, a
better ensemble solution can be achieved (Yang et al., 2014).

In the literature, there are different quality and diversity measures
that are considered for ensemble members (Hadjitodorov et al., 2006;
Lu et al., 2013; Naldi et al., 2013; Alizadeh et al., 2014). Most of them
are based on match index between two partitions. Two diversity
measures commonly used in the literature are Adjusted Rand Index
(ARI) (Hubert and Arabie, 1985) and Normalized Mutual Information
(NMI) (Strehl and Ghosh, 2003). These measures also are used for
measuring quality between two partitions. Hadjitodorov et al. (2006)
used ARI diversity measure on a large number of cluster ensembles as
candidate ensembles for selection. They constructed four diversity
measures based on ARI and found the median of the diversity values
for ensemble members and picked the corresponding ensemble. Lu
et al. (2013) introduced a diversity measure based on covariance.
Alizadeh et al. (2014) proposed a cluster ensemble selection method
in which clusters (instead of clusterings) are selected based on quality
and diversity measures.

Naldi et al. (2013) proposed several relative cluster validity
indices based on quality and diversity for selection of clusterings.
Using different relative diversity measures, they also investigated
the impact of the diversity on partitions (clusterings) used for the
ensemble. Azimi and Fern (2009) proposed the adaptive cluster
ensemble selection method in which data sets were divided to
stable and non-stable based on NMI values. They demonstrated
that, for non-stable data sets, the selection of clusterings with
more diversity made an improvement in the solution. Jia et al.
(2011) generalized the selective clustering ensemble algorithm
proposed by Azimi and Fern (2009) and they proposed a novel
clustering ensemble method, namely SELective Spectral Cluster-
ing Ensemble (SELSCE). Ensemble members were generated
by spectral clustering (SC) that was able to engender diverse
committees. The random scaling parameter, Nyström approxima-
tion, and random initialization were used for producing the
components of the ensemble system. After the generation of
component clusterings, the bagging technique was used to rank
and assess the component clustering. Based on this ranking,
ensemble members were selected for ensemble. Fern and Lin

(2008) investigated a variety of heuristic methods for selecting
subsets, which considered both the diversity and the quality of
the ensemble members. Among these methods, CAS was empiri-
cally demonstrated to achieve the most robust performance. This
method first partitions all ensemble members into k clusters and
then selected one solution from each cluster to form the final
ensemble. However, the k is not a certain value in the CAS
method.

2.3. Consensus function

Consensus function is an algorithm for combining different
clusterings (ensemble members) to obtain final clusters (Strehl
and Ghosh, 2003; Fred and Jain, 2005; Mimaroglu and Erdil, 2013).
Assume that H has L ensemble members, H¼ fh1;h2;…;hLg, the
consensus function Φ combines all ensemble members of H as
hn ¼Φðh1;h2;…;hLÞ. In the cluster ensemble selection, the con-
sensus function affects a subset of ensemble members instead of
all. The consensus function for cluster ensemble selection is
defined as hn

s ¼ΦðHsÞ, where Hs �H. The literature contains
several approaches that can be divided into voting, feature-based,
pairwise, and graph-based approaches.

The voting approach is also referred to as direct approach or re-
labeling approach. Contrary to other approaches in which it is not
necessary to solve the correspondence problem between the labels of
known and achieved clusters, the voting approach solves the corre-
spondence problem. A re-labeling can be done optimally between two
clusterings using the Hungarian algorithm (Kuhn, 1955). After an
optimal re-labeling, a simple voting can be used to assign objects to
clusters, with which final consensus partitions are identified.

In the feature-based approach, output of each clustering algo-
rithm is considered as a categorical feature. In this approach, L
features can be considered as an intermediate feature space on
which other clustering algorithms can work. Topchy et al. (2004)
have proposed a function called the generalized mutual informa-
tion. Considering the fact that the objective function equals the
total intra-cluster variance of the partition in the transformed
space of labels, the k-means algorithm in such space can provide
corresponding consensus solutions.

The pairwise approach constructs the co-association matrix in
which the similarity between points is the number of times that
points are in the same created clusters of clusterings. Usually,
hierarchical algorithms such as single-link, average-link, and comp-
lete-link are used for combining results by co-association matrix
(Fred and Jain, 2005).

The graph-based approach includes instance-based, cluster-
based, and hybrid approaches. In instance-based approach, the
objects are considered as vertices and a similarity measure bet-
ween the objects (vertices) in clusters are calculated as weight
of the edges. The cluster-based similarity partitioning algorithm
(CSPA) as an instance-based approach constructs a hypergraph in
which the number of frequencies of two objects which are accrued
in the same clusters is considered as weight of each edge. The
k partitions are obtained using the METIS (Karypis and Kumar,
1998) on the induced similarity graph (Strehl and Ghosh, 2003).
On the other hand, cluster-based approach constructs a meta-
graph in which clusters are considered as vertices, and the similarity
measure between clusters (vertices) is calculated as weight of the
edges. The meta-clustering algorithm (MCLA) is a famous cluster-
based method in which the Jaccard measure is applied as a similarity
measure between two corresponding clusters (Strehl and Ghosh,
2003). In the hybrid approach, both objects and clusters are
considered as vertices, and the similarity measures are calculated
simultaneously based on objects and clusters located between two
vertices (Fern and Brodley, 2004).
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3. Diversity and quality measures

Two partitions are diverse if one partition's labels are not
matched properly with the labels of the other one. The normalized
mutual information (NMI) (Strehl and Ghosh, 2003) and adjusted
rand index (ARI) (Hubert and Arabie, 1985) are commonly
employed to measure the diversity or quality of partition(s). The
ARI and NMI quality measures are calculated, respectively, as
follows:

ARIðha;hbÞ ¼
∑ka

i ¼ 1∑
kb
j ¼ 1

nij

2

� �
�t3

1=2ðt1þt2Þ�t3
ð1Þ

where

t1 ¼ ∑
ka

i ¼ 1

nia

2

� �
; t2 ¼ ∑

kb

j ¼ 1

nbj

2

� �
; and t3 ¼

2t1t2
nðn�1Þ:

and

NMIðha;hbÞ ¼
�2∑ka

i ¼ 1∑
kb
j ¼ 1nijlog

n:nij

nia:nbj

� �

∑ka
i ¼ 1nialog

nia

n

� �
þ∑kb

j ¼ 1nbjlog
nbj

n

� � ð2Þ

where, in both equations, ha ¼ fca1; ca2;…; caka g and hb ¼ fcb1; cb2;…; cbkb g
with ka and kb clusters, respectively, are two clusterings on dataset
D with n samples; nij signifies the number of common objects in
cluster ci in clustering ha and in cluster cj in clustering hb; nia
denotes the number of objects in cluster ci in clustering ha; and nbj
stands for the number of objects in cluster cj in clustering hb.

Diversity measures can be divided into external and internal
diversities. When the class labels are available, the external
diversity measure is defined based on a quality measure such as
NMI or ARI, as follows:

diversityðh;hiÞ ¼ 1�qualityðh;hiÞ ð3Þ

where h is the known class label and hi; i¼ 1;2;…; L are cluster-
ings. Note that here NMI is used as a quality measure. The average
of diversity is

De ¼
1
L

∑
L

i ¼ 1
diversityðh;hiÞ:

Internal diversity can be divided into pair-wise and non-pair-wise
diversities. In pair-wise diversity, each clustering is chosen as a
class label implicitly, and other clusterings are measured by the
chosen class label. The diversity is calculated as follows:

diversityðhi;hjÞ ¼ 1�qualityðhi;hjÞ ð4Þ

where ia j¼ 1;2;…; L. The average of diversity measure is

Dp ¼
1

LðL�1Þ ∑
L

i ¼ 1
∑L

j ¼ 1;ia jdiversityðhi;hjÞ:

The non pair-wise diversity measure is defined as follows:

diversityðhn;hiÞ ¼ 1�qualityðhn;hiÞ ð5Þ

where i¼ 1;2;…; L and hn is a result obtained by a consensus
function. The average of diversity is

Dnp ¼
1
L

∑
L

i ¼ 1
diversityðhn;hiÞ:

Kuncheva and Hadjitodorov (2004) showed that ensembles
with larger spread of individual diversities are generally better
than ensembles with a smaller spread. Therefore, based on the hn

obtained by a consensus function and hi; i¼ 1;2;…; L that are
ensemble members, in this paper, a new relative diversity measure

is proposed as follows:

diversityðhi;hjÞ ¼ jqualityðhn;hiÞ�qualityðhn;hjÞj ð6Þ
The relative diversity measure calculates the absolute distance
between qualities of hi and hj in comparison with the reference
consensus partition, hn. The HCES obtains subsets of clusterings
with more diversity using the relative diversity measure compared
to that of Eq. (4) (Section 5.2). In our experiment, two diversity
measures of Eqs. (4) and (6) were used, and their effects on the
performance of the HCES method was compared with that of full
ensemble.

4. Cluster ensemble extraction approach

The process of hierarchical clustering methods can be displayed
as a dendogram that includes nested partitions (clusterings) of
a dataset. In fact, dendogram is a particular type of tree that
provides a comprehensive picture of the hierarchical clustering.
Each dendogram includes several layers of nodes each of which
represents a cluster. One clustering is obtained by cutting the
dendogram at the proper layer. The hierarchical clustering meth-
ods are grouped into two categories: agglomerative and divisive.
In the former, each data is considered as a cluster and, in a bottom-
up movement, each pair of clusters are merged recursively with
minimum defined distance value until all clusters are merged as
one partition (clustering). In the latter, all data is considered as one
partition (clustering) and, in a top-down movement, two clusters
with maximum distance value are disjoined recursively until each
data is constructed as a cluster. Some popular agglomerative
clustering methods are single-link, average-link, and complete-
link. Some advantages of hierarchical clustering methods are their
interpretability and the fact that there is no need to specify the
number of clusters (Murtagh, 1983).

In the proposed HCES method, each clustering solution is
considered as an entity (node in the dendogram). Using a pair-
wise diversity measure on each couple of ensemble members, the
pair-wise diversity matrix is constructed. In our experiment, two
diversity measures of Eqs. (4) and (6) are used in the HCES method.
The clustering solutions (ensemble members), hi; i¼ 1;2;…; L, are
partitioned by a hierarchical clustering algorithm using the con-
structed diversity matrix. Here, three agglomerative hierarchical
clustering methods: single-link, average-link, and complete-link are
used. In each layer of dendogram, two clusterings with minimum
diversity (i.e., high quality) are merged. One solution then simply is
selected from each group to form an ensemble. The solution is
selected based on the highest quality between clusterings of the
group and full ensemble solution (hn). This quality is calculated by
the formula of qualityðhn;hiÞ ¼NMIðhn;hiÞ, where hi is a member of
the group. Fig. 2 shows basic strategy of diversity selection used in
the HCES method.

The general framework of HCES method based on the basic
strategy is shown in Fig. 3.

The main procedure of the HCES method includes four steps. In
the first step, clusterings are partitioned into k groups. Each group
is included some homologous clusterings. In the second step, one
solution is selected with the highest quality based on a quality
measure such as NMI quality measure (hjiAcji; i¼ 1;2;…; k; j¼
1;2;…; L). In the third step, consensus solution is obtained using a
consensus function in each layer (hn

j ¼Φðhj1;hj
2;…;hjkÞ; j¼ 1;2;…;

L�1). At last, final solution is one consensus solution with the
highest quality value among the consensus solutions (hn ¼
maxqualityfhn

i ; i¼ 2;3;…; L�1g). In the first layer, the number of
partitions of the clusterings is equal to the number of clusterings
(Level 1 in Fig. 3). In this case, ensemble solution (hn

1) is equivalent
to the result of the full ensemble. In the last layer, all clusterings
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are included in one group (Level L in Fig. 3). In this condition, the
final result is equal to choose the solution with the highest quality
(hn

L ). Apart from layer 1 and L, different subsets of clusterings are
chosen based on diversity/quality in HCES (Levels 2 until L�1 in
Fig. 3). In each subset, the ensemble solution is obtained by a
consensus algorithm. Finally, the best subset is obtained with the
highest quality NMI value.

Given a dataset, the framework of the HCES method can be
explained based on Figs. 2 and 3 as follows:

1. Generating different clusterings.
2. Obtaining consensus clustering solution hn by applying a

consensus function.
3. Computing pair-wise diversity measure matrix in which each

element of matrix is diversity measure between two clusterings.
4. Using a hierarchical clustering algorithm on the diversity

measure matrix, all clusterings are partitioned as a dendogram
implicitly.

5. Choosing the one solution from each group with highest
quality (in each layer of dendogram) using NMI quality mea-
sure for finding a new subset of clusterings.

6. Obtaining an ensemble solution by a consensus function on the
new subset.

7. Choosing the best ensemble solution among ensemble results
based on their quality.

5. Evaluating validity of the HCES solutions

The experiments were conducted with real data sets, where
true natural clusters were known. Because our data sets were

labeled, the quality of the clustering solutions could be assessed
using external criteria (Strehl and Ghosh, 2003). The external
criteria were used to measure the discrepancy between the
structure defined by a clustering and the one defined by the class
labels. In this paper, the NMI measure was used to evaluate the
final results obtained by the HCES method. Remind that, if the NMI
value is zero, two partitions are completely different. While, they
are identical if the value is one. The CAS method is a special case of
our method, which is the basic strategy in HCES (Fig. 2). Moreover,
Section 5.2 shows that HCES method improves the performance of
adaptive clustering selection method proposed by Azimi and Fern
(2009). Thus, the performance of the HCES method was compared
to that of the traditional ensemble or full ensemble. Both popular
graph-based consensus clustering algorithms, CSPA and HGPA,
were used in the experiments for finding the consensus solution.
Time complexity of CSPA is Oðn2krÞ and the HGPA is O(nkr) where
n is the number of samples, r signifies the number of clusterings,
and k denotes the sum of the clusters that exist in all clusterings.
In HCES, the nodes in each layer of dendogram are the clusterings.
Since the complexity of the hierarchical methods is at least Oðr2Þ
(Murtagh, 1983). Both CSPA and HGPA that are linear based on r
are applied in HCES. As HGPA was suitable for large data sets, in
our experiment, Satimage data set was run only by HGPA rather
than CSPA.

5.1. Generating cluster ensembles

For generation of ensemble members (clusterings), the k-means
algorithm with different parameter k values and different initializa-
tions is used. Different k values were selected between kmin and kmax

randomly without replacement. For each selected value k, k-means

Levels Number
of cluster 
(k)

1 k=L

2 k=L-1

3 k=L-2

.

.

.

.
. 
.

L-1 K=2

L k=1

Step 1:

Step 3:Step 2: Step 4:

Fig. 3. HCES framework.

Input 
clusterings:

Obtaining k clusters 
of the clusterings:

Selecting the solution 
with the highest quality in 

each cluster:

Consensus 
function:

Final 
clustering:

Fig. 2. The basic strategy of diversity selection.
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was run r times. This approach created different diversities with
different qualities. It should be noted that diversity and quality are two
important factors that have impact on quality of the final solution
(Fern and Brodley, 2004). Fig. 4 shows an example that why different k
and different initializations were used for diversity generation. For
different k values and initializations, the k-means algorithm was
executed on 2-half rings data set (Jain and Law, 2005) shown in
Fig. 4(a). Based on clustering quality, Fig. 4(b–d) shows the impact of
different k values (between 2 and 19), one k and different iterations
(k¼6 and 18 iterations), and different k and different iterations for
each k (k is between 2 and 8, and 3 iterations), respectively.

The graph shown in Fig. 4(b) demonstrates that the quality of
clusterings in k¼ 5;6;7 is higher than those in k¼2, while for
2-half rings data set, the correct number of clusters is 2. The
average value of pair-wise diversity measure for these clusterings
is Dp ¼ 0:2893. In Fig. 4(c), the quality values are almost monotonic
(Dp ¼ 0:1161), whereas in Fig. 4(d), the quality values are not
monotonic (Dp ¼ 0:3535). Accordingly, using only different initi-
alizations with one k in k-means algorithm for arbitrary shape data
sets as diversity may create the clusterings with low quality and
high diversity, or viceversa. Therefore, in our experiments, differ-
ent k (between kmin ¼ 2 and kmax ¼

ffiffiffi
n

p
) and for each k, different

runs of k-means were selected for generating appropriate diversity
in the primary ensembles.

5.2. Test results

The HCES method was evaluated by comparing its performance
with that of the full ensembles. Since the HCES method obtained all
subsets of full ensemble members (clusterings) in a hierarchical
way, the clusterings of size 100 were generated using strategy
explained in Section 5.1 on a data set. The HCES method formed
different ensemble members based on quality and diversity strate-
gies in different layers. Three agglomerative clustering methods,
namely single-link, average-link, and complete-link, were applied
to the HCES method. These agglomerative clustering algorithms
were run using diversity measure matrix calculated by two diversity
measures of Eqs. (4) and (6). Once a set of ensemble members in
each layer of dendogram was selected, a consensus function, either
CSPA or HGPA, was applied to obtain a consensus clustering
solution. In the HCES method, in the first layer of dendogram, all
ensemble members were chosen for obtaining full ensemble solu-
tion. In the second layer, 99 ensemble members were selected, and
in the third layer, 98 ensemble members were selected; this went
on to the 99th layer that contained only two ensemble members.
All sets of ensemble members that exist in layers 2–99 were subsets
of full ensemble members. In this paper, the result of full ensemble
was compared to the results obtained from each layers using NMI
value computed by the class label information. To evaluate the final

performance of the HCES method, the average obtained from 10
NMI values was executed on each data set. The performance of the
HCES method was evaluated using eight real data sets. The real data
sets were extracted from the UCI data sets (available at: http://
www.ics.uci/mlearn/MLRespository.html).

The details of these data sets are presented in Table 1.
In the first experiment, using three agglomerative algorithms with

applying d1 diversity measure, the effect of the HCES method on
quality of the obtained results was compared to those obtained by
the full ensemble. Fig. 5 shows a comparison between full ensemble
solution and different cluster ensemble selection solutions. Different
clusterings selected from different layers were tested using NMI
evaluation and their quality was calculated. The CSPA algorithm was
used to obtain the final results. Using CSPA, the HCES method was
shown more effective on the quality of results except those of
Soymbean data set. Since the ensemble size was fixed for the full
ensemble, the performance was plotted as flat lines (red line). In each
layer (level) of the process of the HCES, two clusterings with minimum
diversity measure (i.e., high quality) were merged, then diversity
between clusterings was increased until 99th layer that contained
only two clusterings. The clusterings selected in the last layers showed
relatively more diversity than those of the first layers. Since HCES
method partitioned the cluster members based on quality/diversity,
the resulting ensembles achieved competitive performances even
when the ensemble size was small. In Ecoli, Wine, and Breast tissue
data sets, selection of clusterings in the last layers of hierarchy, that
contained small ensemble members, improved the consensus solution.

The performance of the HCES method in more than 90% of layers
for Iris, Ecoli, Glass, and Soymbean data sets was not shown better
than the full ensemble. According to Azimi and Fern (2009), these
data sets were stable where majority of the values NMIðhn;hiÞ were
more than 0.5. However, there were some layers of Iris, Ecoli, and
Glass data sets whose solutions were better than the full ensemble
solution. On the other hand, the performance of the HCES method
in more than 90% of layers for Breast tissue, Breast cancer, and Wine
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Fig. 4. Quality values of different clusterings based on different k values on 2-half rings data set.

Table 1
Distribution of data sets.

Rank Data set Data size (n) Dimension (d) No. clusters (K)

1 Soybean (small) 47 16 4
2 Ecoli 336 7 8
3 Breast tissue 106 9 6
4 Iris 150 4 3
5 Wine 178 13 3
6 Glass 214 9 7
7 Breast cancer 699 9 2
8 Satimage 6435 36 7
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data sets was shown better than the full ensemble. These data sets
were non-stable where the majority of values NMIðhn;hiÞ were less
than 0.5. As can be seen, for these data sets, the selected clusterings
in the last layers with small size and high diversity improved the
consensus solution. Especially, for Wine data set, the most quality

was occurred in consensus solution of the small number of selected
clusterings that have the highest level of diversity for all three
agglomerative clustering algorithms.

Interestingly, the HCES method is sensitive to even one layer of
clusterings. In other words, with elimination of even one clustering
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Fig. 5. Performance comparison of results obtained by CSPA for the HCES method that used single-link, average-link, and complete-link and the full ensembles. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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as a noise from the clusterings of one previous layer, the quality of
consensus solution significantly changes. For example, in the HCES
method that uses average-link, the quality value of 23th layer in the
Iris data set obtained by CSPA consensus algorithm is nearby 0.64,
while the quality value of 24th layer is nearby 0.9.

Fig. 6 compares the results obtained by the full ensemble and the
HCES method that uses HGPA consensus clustering algorithm. The

performance of the HCESmethod that used HGPA and that of the HCES
method that used CSPA were the same for Iris and Ecoli data sets.
However, for Soymbean and Glass data sets, the performance of the
HCES method was more successful than the full ensemble. The
maximum quality value was obtained in the last layers of dendo-
gram for Breast tissue, Glass, and Wine data sets in which clusterings
had more diversity. The HCES method that used HGPA was more
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Fig. 6. Performance comparison of results obtained by HGPA for the HCES method that used single-link, average-link, and complete-link and the full ensembles.
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capable of improving the performance of Satimage data set compared
to the full ensemble, while the HCES method that used CSPA could not
be run on the Satimage data set due to restricted memory.

To ease the interpretation of Figs. 5 and 6, the comparison
between the performance of three agglomerative algorithms that
use two consensus clustering algorithms and the performance of
full ensemble is displayed in Tables 2 and 3.

Table 2 presents the results of the comparison made, based on
NMI values, between HCES method that uses single-link, average-link,
and complete-link, and the full ensemble. In this table, the final
solutions were obtained by HGPA algorithm. The NMI value for the
obtained results of single-link, average-link, and complete-link algo-
rithms was chosen from the best NMI values of different layers. Using
single-link algorithm, the HCES gained the best solutions among
other algorithms and full ensemble used by HGPA on many of data
sets. In Table 2, the best results are shown by bolded numbers. For all
data sets, the results obtained by the HCES method were shown
better than those obtained by the full ensemble.

Table 3 shows the results obtained from the comparison made,
based on NMI values, between the HCES method that uses single-
link, average-link, and complete-link, and the full ensemble. In this

table, the final solutions were obtained by CSPA algorithm. Using
single-link algorithm, the HCES also gained the best solutions
among other algorithms used by CSPA and full ensemble on many
of data sets.

Fig. 7 compares the performance of two consensus clustering
algorithms applied to the HCES method with those applied to the full
ensemble. Since HCES obtained the good results using single-link
algorithm, these results are compared to full ensemble. The perfor-
mance of the HCES method that used HGPA and the performance of
full ensemble (Fig. 7(a)) were compared to each other and the
performance of HCES that used CSPA and full ensemble were
compared also to each other (Fig. 7(b)). Fig. 7 shows that the HCES
method that used both HGPA and CSPA was able to achieve
statistically more significant improvement compared to the full
ensemble.

In the second experiment, the effect of different diversity
measures on the HCES performance was examined. Two diversity
measures of Eqs. (4) and (6) were applied to the HCES method.
Note that the diversity measure of Eqs. (4) and (6) were shown
with d1 and d2, respectively. The HCES method was run using only
single-link algorithm, and CSPA consensus clustering algorithm
was used by the HCES method. For all data sets, the HCES method
based on d2 diversity measure created the clusters of clusterings
with more diversity than the created clusters of clusterings based
on d1 diversity measure (Fig. 8).

The HCES method based on d2 diversity measure was able to
achieve more improvement for all data sets except Iris and Breast
cancer data sets compared to d1 diversity measure. Furthermore,
for Breast tissue and Wine data sets, there was more improvement
in the last layers that had more diversity based on d2 diversity
measure. Specially, the best performance for Wine data set
occurred when there was only three clusterings with maximum
diversity (Fig. 8). For Iris, Glass, and Soymbean data sets based on
both diversity measures, improvement quality appeared in the
initial layers; whereas, for Breast tissue and Breast cancer data
sets, it appeared in the middle layers. The HCES method based on
d1 diversity measure improved the quality in the middle and last
layers monotonically for Breast cancer.

Table 4 demonstrates the results of comparison that was made
based on NMI quality values between the HCES method that used two
diversity measures d1 and d2 and the full ensemble. Based on both
diversity measures, the quality value of the HCESmethod for each data
set was chosen from among the best quality values of the layers.

The HCES results obtained based on diversity measure d2 was
shown better than those obtained based on diversity measure d1. In
Table 4, the best results are shown by bolded numbers. For all data
sets, the results obtained by the HCES method that used two
diversity measures d1 and d2 were shown better than those obtained
by the full ensemble.

Table 2
Cluster quality real data sets using different hierarchical methods and full
ensembles with HGPA algorithm.

Data sets Single-link Average-link Complete-link Full ensembles

Soybean 0.9098 0.8554 0.8554 0.6789
Ecoli 0.5964 0.5899 0.5881 0.5881
Breast tissue 0.3921 0.3652 0.3626 0.3286
Iris 0.9405 0.9405 0.9192 0.9192
Wine 0.4063 0.4063 0.4063 0.3948
Glass 0.4038 0.3722 0.3516 0.3263
Breast cancer 0.5715 0.5606 0.5593 0.5474
Satimage 0.5033 0.4875 0.5651 0.4262

Table 3
Cluster quality real data sets using different hierarchical methods and full
ensembles with CSPA algorithm.

Data sets Single-link Average-link Complete-link Full ensembles

Soybean 0.8224 0.8224 0.8224 0.8224
Ecoli 0.5366 0.5300 0.5092 0.5263
Breast tissue 0.3787 0.3787 0.3787 0.3058
Iris 0.9011 0.9192 0.9011 0.9011
Wine 0.4248 0.4118 0.4075 0.3856
Glass 0.4078 0.4110 0.4200 0.4027
Breast cancer 0.4854 0.4854 0.4854 0.3465
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Fig. 7. Performance comparison of the HCES method that used HGPA and CSPA with the full ensemble.
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6. Conclusion

In this paper, a hierarchical cluster ensemble selection (HCES)
method was proposed, which was shown both scalable and accu-
rate. The method used three agglomerative clustering algorithms:
single-link, average-link, and complete-link. Two consensus func-
tions CSPA and HGPA were used for combining the full ensemble
members and combining different subsets of full ensemble mem-
bers. The HCES method was often more successful in finding the
subset of cluster members based on quality and diversity in com-
parison with full ensemble. Specially, using single-link algorithm,

the HCES gained the best solutions among other algorithms and full
ensemble used by both CSPA and HGPA. Based on the quality and
the diversity, the HCES method clustered all available clusterings
hierarchically in which there was no need of the number of clusters.
Our experiments were conducted on eight real data sets using two
diversity measures and the obtained results showed that the HCES
method achieved comparable or better results in comparison with
those obtained by full ensemble. Due to the interpretability of the
HCES method, applying this method in different domains such as
bio-informatics, image processing, and marketing will be part of our
future works.
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Comparing results of the HCES method based on d1 and d2 diversity measures with
applying CSPA.

Data sets d1 d2 Full

Soybean 0.8072 0.8553 0.7546
Ecoli 0.5282 0.5362 0.5131
breast tissue 0.3643 0.3803 0.3152
Iris 0.9405 0.9192 0.9192
Wine 0.4254 0.4781 0.3129
Glass 0.4004 0.4028 0.3864
Breast cancer 0.5014 0.4850 0.4347
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