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Identifying the optimal cluster number and generating reliable clustering results are necessary but

challenging tasks in cluster analysis. The effectiveness of clustering analysis relies not only on the

assumption of cluster number but also on the clustering algorithm employed. This paper proposes a

new clustering analysis method that identifies the desired cluster number and produces, at the same

time, reliable clustering solutions. It first obtains many clustering results from a specific algorithm, such

as Fuzzy C-Means (FCM), and then integrates these different results as a judgement matrix. An iterative

graph-partitioning process is implemented to identify the desired cluster number and the final result.

The proposed method is a robust approach as it is demonstrated its effectiveness in clustering 2D data

sets and multi-dimensional real-world data sets of different shapes. The method is compared with

cluster validity analysis and other methods such as spectral clustering and cluster ensemble methods.

The method is also shown efficient in mesh segmentation applications. The proposed method is also

adaptive because it not only works with the FCM algorithm but also other clustering methods like the

k-means algorithm.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Cluster analysis aims to partition a large number of data into
different subsets or groups so that the requirements of homo-
geneity and heterogeneity are fulfilled. Homogeneity requires
that data in the same cluster should be as similar as possible
and heterogeneity means that data in different clusters should be
as different as possible [1]. Typical clustering activity involves
three sequential steps [2]: data/object representation, definition
and computation of data proximity, and clustering/grouping, as
shown in Fig. 1. Data/object representation refers to problem
definition including the number of clusters, the number of
available data, and the number, type, and scale of the data
variables available to the clustering algorithm. Data proximity,
also known as inter-object similarity, is usually measured by a
distance function defined on pairs of data. A variety of distance
measures are in use for different purposes. The grouping step can
be performed in a number of ways, for instance hierarchical
approach, partitional approach and other algorithms can be
employed. Cluster analysis is widely used in areas such as market
research, pattern recognition [3], image segmentation [4], and
mesh segmentation [5].
ll rights reserved.
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Different clustering algorithms have been developed in the
past, and some examples are shifting grid [6], SOFM neural
networks [7] and Evidential C-Means [8]. The availability of such
a vast collection of clustering algorithms in the literature can
easily confuse users attempting to select algorithm for a specific
problem. When presented with data, all clustering algorithms will
produce clusters regardless of whether the data contain clusters
or not. There is no clustering technique that is universally
applicable in uncovering the variety of structures present in
multidimensional data sets [2]. It is because clustering algorithms
often contain implicit assumptions about cluster shape and
grouping criteria used. Clustering algorithms must be carefully
selected by evaluating (1) the manner in which clusters are
formed, (2) the structure of the data, and (3) sensitivity of the
clustering technique [2].

Although clustering is a useful and challenging problem with
great potential in applications, its application must be cautiously
handled. Otherwise, the technique can easily be abused or
misapplied. Cluster number and similarity measure are the two
most important assumptions of clustering analysis, which affect
the overall quality of the results. In most of the automatic
clustering algorithms, the cluster number must be first defined.
This is true for most popular algorithms like the Fuzzy C-Means
(FCM) clustering algorithm. Some researchers [9–13] have pro-
posed cluster validity indices to validate the cluster results so as
to obtain the optimal cluster number. Apart from identifying the
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Fig. 1. Steps in clustering.
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Fig. 2. Clustering data sets by Fuzzy C-Means clustering algorithm. (a) cluster number¼2 and (b) cluster number¼3.

40 60 80 100 120 140 160 180 200 220
80

100

120

140

160

180

200

220

240

260

0 20 40 60 80 100 120 140 160
20

40

60

80

100

120

140

Fig. 3. Clustering data sets by k-means clustering algorithm. (a) cluster number¼2 and (b) cluster number¼3.
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optimal cluster number, effective clustering requires the algo-
rithm to be robust for data sets of different shapes. Sometimes,
correct cluster numbers do not guarantee that a data set can be
properly partitioned in the desired way. Most widely used
clustering algorithms assumed distance based similarity mea-
sures [2], upon which the grouping process is carried out. There
are varied types of distance based similarity measures, such
as Euclidean distance, Manhanttan distance, and Mahalanobis
distance. The similarity measure must be chosen carefully.
For instance, as shown in Figs. 2 and 3, data sets are not well
partitioned by either FCM or k-means algorithms, even though
the correct cluster numbers are given. FCM and k-means algo-
rithms use centroid-based distance as similarity measurement.
In Figs. 2 and 3, different clusters are depicted in different colours,
and all figures hereafter follow the same colour scheme to illustrate
cluster results.

The objective of this paper is to propose a robust and adaptive
clustering analysis method that produces reliable clustering
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results and simultaneously identifies the desired cluster number.
This method integrates the results of a specific clustering algo-
rithm with a range of cluster number initialisations, and then
identifies the desired cluster number and the final result by a
graph-partitioning process. The advantages of the proposed
method includes: (1) identifying the desired cluster number and
reliable result in an unsupervised manner; (2) requiring no
additional validation step of the clustering result; and (3) adaptive
nature of the method allowing effective integration with different
clustering algorithms without modification.

The remaining part of this paper is organised as follows:
Section 2 reviews different approaches of cluster analysis, the
related work on cluster validity indices, and graph theoretic
applications. Section 3 describes the proposed clustering method
and its implementation. Section 4 shows some experimental
results using both artificial and real-world data sets. An applica-
tion to mesh segmentation based on the proposed clustering
method is also included. Section 5 discusses that the current
method is adaptable to implement with different clustering
algorithms, and k-means algorithm is used as an example for
illustration. The method is also compared with spectral clustering
and cluster ensemble methods.
2. Related work

2.1. Clustering techniques

The clustering problem is to partition a data set into groups
(clusters) so that the data within a cluster are more similar to each
other than data in different clusters. Clustering algorithms can be
classified as hierarchical, partitional, density-based and grid-based
clustering [2,14]. Among which, hierarchical and partitional cluster-
ing are the two most widely used approaches [14]. Hierarchical

clustering algorithms create clusters recursively. They merge smaller
cluster into larger ones or split larger clusters into smaller ones.
Hierarchical algorithms construct a sequence of nested clusters in a
dendrogram, a graph of tree-like structure, representing the groups
of patterns and similarity level at which groupings change. In
contrast, partitional clustering does not involve treelike construction
process. Instead, Partitional clustering algorithms decompose directly
the data set into a set of disjoint clusters. They attempt to determine
the desired partitions that optimise a certain criterion function
(similarity measure).

Both hierarchical and partitional schemes have advantages
and limitations. Hierarchical methods allow user to examine a
wide range of solutions, obtained from a defined measure of
similarity, in an efficient manner. However, hierarchical methods
have a few shortcomings. Firstly, the sequential process of
hierarchical clustering may prevent arriving at optimal clusters
due to undesirable early combinations/divisions of clusters.
Secondly, hierarchical methods are susceptible to outliers in the
data. Partitional schemes can better manage large data sets
comparing to hierarchical approach, because the construction of
a dendrogram in hierarchical clustering for large data set is
computationally prohibitive. Different algorithms have been pro-
posed for partitional clustering, and some are optimisation
problems. These algorithms can produce the optimal result with
respect to a defined criterion, namely the input parameter of
cluster number and the defined similarity measure. However, the
result of a clustering algorithm can be very different on the same
data set for different inputs because input parameters can
extremely modify the behaviour and execution of the algorithm
[14]. Jain et al. [2] pointed out that a key problem accompanying
the use of partitional algorithms is the choice of cluster number,
according to some practical, objective or theoretical basis.
Some researchers recommend a hybrid approach integrating
both hierarchical and partitional clustering. A hierarchical tech-
nique is first used to select the number of clusters and the profile
cluster centres that serve as initial cluster seeds in the partitional
approach. Next, partitional method is used to cluster all data
using the seed points [15]. However, even though the hybrid
approach helps the identification of cluster number, the final
results are optimised based on the defined similarity measure. As
shown in Figs. 2 and 3, distance based measures may not fit data
with special shape.
2.2. Cluster validity indices

A critical issue of performing clustering analysis, by either
hierarchical or partitional method, is determining the number of
clusters most representative of the data structure. Unfortunately,
no standard objective selection procedure of cluster number
exists [15]. The study on identifying the optimal cluster number
can sometimes be referred as cluster validity study. Cluster
validity issues are concerned with determining the correct num-
ber of clusters and checking the quality of clustering results.
Many difference indices of cluster validity have been proposed,
such as the Bezedek’s partition coefficient (PC) and partition
entropy (PE) [16,17], the Xie-Beni’s index [18], and the Fukuyama
and Sugeno index [19]. See [20,21] for comprehensive reviews of
cluster validity. In the case of fuzzy clustering, some validity
indices use only the information of fuzzy membership to evaluate
the clustering results [16,17], and other indices make use of not
only the fuzzy memberships but also the structure of the data
[18,19]. Zhang [11] proposed a validity index for obtaining the
optimal cluster number by evaluating both the compactness and
separation of the cluster result. Compactness indicates the differ-
ence or variation of data points within the same cluster, and
separation represents the strength of separation between clusters.
A good clustering result is expected to have a low degree of
compactness and a large distance of separation. However, cluster
validity indices have certain drawbacks that such indices are
defined only for fuzzy partitioning or a specific group of clustering
algorithm. In other words, the cluster validity indices must be
modified if other types of cluster algorithm are used. In this paper,
the clustering results obtained from the proposed method are
compared with the cluster validity analysis results in Section 4.2.
2.3. Application of graph theory in clustering analysis

Graph theory has long been applied in cluster analysis. The
best-known graphic–theoretic divisive clustering algorithm is
based on construction of the minimal spanning tree of the data,
then deleting the tree edges with the largest lengths to generate
clusters [2]. The hierarchical clustering methods are applications
of graph–theoretic clustering. Traditional, graphs are used to
indicate the similarity (or dissimilarity) between data in the
clustering results. In this paper, adjacency graphs are used to
represent the degree of association between data, i.e., the con-
nectivity relationship, rather than their similarity.

This paper aims to develop a new approach of clustering for
simultaneously obtaining the desired cluster number and effec-
tive clustering result. The proposed method is described in
detailed in the next section and the method is implemented with
the FCM algorithm. Nevertheless, it is important to know that the
proposed method can be easily applied to other clustering
algorithms. An example of integrating the method with the
k-means clustering algorithm is described in Section 5.1.
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2.4. Spectral clustering and clustering ensembles

Spectral clustering method is to partition data by cluster-
ing the k-largest eigenvectors of the Laplacian matrix derived
from a given data set [22]. Different algorithms were propo-
sed [23–25]. The main differences between these spectral
algorithms are (1) the construction of the similarity graph W,
(2) the computation of the Laplacian matrix L, and (3) the
operation of the k-largest vectors [26]. The clustering method
proposed in this paper is compared with the spectral clustering
algorithm [24].

Cluster ensemble is a technique to combine several runs of
different clustering algorithms or independent runs of the same
clustering algorithm in order to get a better cluster partition of
the original data set. Although research on cluster ensemble
has not been widely recognised [27], several research efforts
have been done independently [28–30]. In [29], the authors
formally defined the cluster ensemble problem as an optimisa-
tion problem. Generally speaking, cluster ensembles have two
approaches, co-association methods [28] and hyper-graph meth-
ods [29]. In co-association methods, object relationship is repre-
sented in a co-association matrix, and then consensus partition
is obtained by applying a clustering algorithm. In hyper-graph
methods, different data partitions are represented as hyper-
graphs, and the final cluster result is obtained by hyper-graph-
partitioning algorithm. Strehl and Ghosh proposed three efficient
heuristics to partition the hyper-graphs in [30], including Cluster-
based Similarity Partitioning Algorithm (CSPA), Hyper Graph
Partitioning Algorithm (HPGA), and Meta-Clustering Algorithm
(MCLA). Fred and Jain [28] adopted co-association approach
and developed an evidence accumulation clustering (EAC)
method based on single-link (SL) and average-link (AL) hierarch-
ical clustering. Two other cluster ensemble methods, called
weighted cluster ensemble using a kernel consensus func-
tion (denoted as WKF) [30] and Generalised WKF (denoted as
GWKF) [31], were also proposed following the co-association
approach.

In this paper, the proposed clustering method is compared
with spectral clustering and cluster ensembles in Section 5.
3. A robust adaptive clustering method

3.1. Method overview and matrix definitions

The proposed clustering method follows an unsupervised
approach to obtain the desired cluster number and final parti-
tioned result. Inspiration comes from the human decision making
process. People usually make decisions after integrating diverse
opinions and comparing different alternatives. Similar to hier-
archical clustering, a number of clustering results are first
analysed, from which final results are obtained by manipulating
the graph of the resulted matrix. Different from hierarchical
clustering, the clustering process is not a sequential process,
where the cluster solutions later in the process are not based on
the clusters formed early. Instead, the cluster solutions being
integrate to obtain the final results are indeed cluster results
obtained from a clustering algorithm with varied initial settings.
In other words, the proposed method integrates both hierarchical
and partitional approaches in order to obtain reliable clustering
results. The whole process contains three phases:

Phase 1: A data set is clustered by a clustering algorithm a
number of times with a range of cluster number initialisations.
Phase 2: The clustering results are combined and investigated
by an iterative graph partitioning process.
Phase 3: The desired cluster number and clustering results are
identified by evaluating the distribution of graph partitioning
results.

The proposed method can lead to reliable clustering result by
summarising and evaluating a number of clustering solutions in
the form of a matrix and adjacency graph. The definitions of these
matrices and graphs are given as follows:

Definition 1. Observation matrix OC is an N�N matrix obtained
by clustering a data set X¼{x1, y, xN}CRm into C clusters with a
given clustering algorithm. Each entry of the observation matrix,
oij, represents whether or not the two data points xi and xj belong
to the same cluster.

Definition 2. Judgment matrix J is the sum of all observation
matrices OC for different values of C, CA ½2,k�.

Definition 3. Judgment graph GJ is defined as the adjacency graph
of judgment matrix J.

3.2. Clustering with varied initializations and result integration

If X¼{x1, y, xN} is a given data set of N samples, each sample,
xiARm is an m-dimensional data point. The proposed clustering
approach can be integrated with any clustering algorithms, but it
is first illustrated using Fuzzy C-Means (FCM) algorithm in this
paper. FCM proposed by Bezdek [3] is one of the most widely used
clustering algorithms with applications in social surveys, engi-
neering, chemistry and so forth. Until recently, further develop-
ment and new applications of the algorithm are still being
actively studied [13].

FCM algorithm partitions X into C clusters by minimising an
objective function

F ¼
XN

i ¼ 1

XC

j ¼ 1

up
ij:xi�cj:

2
, p41 ð1Þ

The cluster number C is first defined by users in the initialisa-
tion process. The centres (centroids) of cluster, cj, with the
following definition,

cj ¼

PN
i ¼ 1 up

ijUxiPN
i ¼ 1 up

ij

, 1r jrC ð2Þ

can be obtained by optimising the objective function (Eq. (1))
iteratively, where up

ij is the Fuzzy C-Means (FCM), which defines
the membership degree of data point xi in cluster j as follows

uij ¼
XC

k ¼ 1

:xi�cj:

:xi�ck:

 !2=p�1
2
4

3
5
�1

, 1r irN,1r jrC ð3Þ

In this way, the FCM provides a degree of membership for each
data point whereby a data point can belong to more than one
cluster during the iteration. The parameter p in the above
equations controls the fuzziness of membership of every data
point. In FCM, cluster number C determines the overall quality of
the clustering results, but the value of C is unknown.

By clustering the data set X using the FCM algorithm, the
following C�N membership matrix U is obtained:

U ¼

u11 u12 � � � u1N

u21 u22 � � � u2N

^ ^ & ^

uC1 uC2 � � � uCN

2
66664

3
77775 ð4Þ

The sum of each column of membership values equals 1, i.e.PC
i ¼ 1 uij ¼ 1.
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A row vector L¼[l1 l2 y lN] is then defined so that lj is the row
number of the largest membership value uij in each column of U,

i.e. lAL¼ i9maxuij

C

i ¼ 1

( )
. Each lj represents a label indicating to

which cluster data point xj belongs. The observation matrix
O¼[oij]N�N is computed based on the vector L as follows

oij ¼
1 li ¼ ljðia jÞ

0 otherwise

�
ð5Þ

where oij¼1 if xi and xj have the same label l in vector L, otherwise
oij¼0. In other words, observation matrix O shows the relation-
ships of data points, oij¼1 means that xi and xj belong to the same
cluster, while oij¼0 implies the two data points are in different
clusters. Therefore, O is a diagonal symmetric matrix representing
an observation result of clustering X in C clusters. Besides, O can
also be viewed as an adjacency matrix of an undirected graph,
whose adjacent edge lengths are all 1.

With the above matrix operation, the clustering result of a
given cluster number is represented by an observation matrix. In
order to obtain reliable clustering result, different observation
matrices are computed with the cluster number C ranging from 2
to k, where k is a number smaller than N. Different k values will
influence the reliability of the cluster number and this will be
discussed later in Section 4.1. The lower bound of C is 2 because a
data set is usually clustered into more than one group. To
integrate different clustering results, a judgment matrix J is
defined as

J¼
Xk

C ¼ 2

OC ð6Þ

where OC is the observation matrix for clustering the data set into
C clusters. The judgement matrix J can be viewed as an weighted
adjacency graph representing the algebraic connectivity of the
given data points.

The judgement matrix contains all the connectivity relation-
ship between data points. Larger the entry value of matrix J,
stronger the relationship between the corresponding data points,
higher chance they are being grouped in the same cluster in
clustering process. As mentioned, matrix J represents the weighed
adjacency graph, GJ. Clustering can therefore be performed by a
simple graph partitioning process [32] on GJ. Fig. 4 indicates that
data with or without noise can be clustered based on a defined
cluster number. It is important to note that adjacency graphs are
used to represent the possibility that data/objects being grouped
in the same cluster in the proposed method, which is different
from the dissimilarity (the ‘distance’) between data in traditional
graph–theoretic clustering.

A numerical example is given below to illustrate the process of
integrating different cluster results as observation matrices, O,
and then of evaluating the overall data point relationship as a
Fig. 4. Partitioning on the judgment matr
judgment matrix J. Let data set X be a sample of six 2D data
points:

X ¼
15 58 15 58 30 36

18 20 23 26 39 39

� �

The data set is clustered into 2 to 4 clusters using the FCM
clustering algorithm, which generates membership matrices U

and the corresponding row vectors L as follows

U2�6 ¼
0:9283 0:0151 0:9640 0:0050 0:8161 0:6468

0:0717 0:9849 0:0360 0:9950 0:1839 0:3532

� �
for C ¼ 2

U3�6 ¼

0:0033 0:9862 0:0033 0:9841 0:0085 0:0119

0:0081 0:0090 0:0107 0:0112 0:9760 0:9770

0:9887 0:0048 0:9860 0:0047 0:0155 0:0112

2
64

3
75 for C ¼ 3

U4�6 ¼

0:9854 0:0000 0:9827 0:0000 0:0152 0:0112

0:0033 1:0000 0:0033 0:0000 0:0076 0:0104

0:0080 0:0000 0:0106 0:0000 0:9681 0:9651

0:0032 0:0000 0:0033 1:0000 0:0091 0:0134

2
6664

3
7775 for C ¼ 4

LC ¼ 2 ¼ 1 2 1 2 1 1
� �

LC ¼ 3 ¼ 3 1 3 1 2 2
� �

LC ¼ 4 ¼ 1 2 1 4 3 3
� �

From the vectors L, observation matrices are computed showing
the relationships between these six data points:

OC ¼ 2 ¼

0 0 1 0 1 1

0 0 0 1 0 0

1 0 0 0 1 1

0 1 0 0 0 0

1 0 1 0 0 1

1 0 1 0 1 0

2
666666664

3
777777775

,OC ¼ 3 ¼

0 0 1 0 0 0

0 0 0 1 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

2
666666664

3
777777775

,

ix J by pre-defining a cluster number.



Fig. 6. Simple graph partitioning on the judgment matrix does not always provide good results.

Table 1
Graph-partitioning algorithm on judgment matrix to identify desired cluster

number and final result.

Input: A judgment matrix J

n¼0;

Gnew[0]¼ J. BSF_traversal ();

Jprevious
¼ J;

Do

n¼nþ1;

Jnew
¼Decreasing (Jprevious);

Gsubgraphs[n]¼BSF_traversal(Jnew)

ClusterNumber[n]¼ Gsubgraphs[n].getSubGraphNumber();

Jprevious
¼ Jnew;

Until (all entries in Jprevious previous are 0)

P1

P2P3

P4

P5 P6

Fig. 5. An example of the judgment matrix J and its adjacency graph. The value of each entry jij of judgment matrix J indicates the strength of the connection between data

points Pi and Pj.
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OC ¼ 4 ¼

0 0 1 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

2
666666664

3
777777775

Finally, a judgment matrix J is computed by Eq. (6). The
corresponding adjacency graph GJ of J is shown in Fig. 5. In this
figure, the value of an entry in matrix J represents the connection
strength of the corresponding data points. For an instance, J(1,3)
with the value 3 means the connection between P1 and P3 is
stronger than that of P1 and P5 because the value J(1,5) is 1.
Return ClusterNumber[n] and Gsubgraphs [n];

Output: An array of cluster numbers-ClusterNumber[n] and a set of sub-

graphs- Gsubgraphs
3.3. Iterative graph partitioning

Even though clustering can be achieved by graph-partitioning
the judgment matrix [33,34], a specific cluster number must be
first defined. Furthermore, experimental results show that a
simple graph-partitioning method [32] on the judgment matrix
does not always provide desired results with a fixed cluster
number, such as the examples shown in Fig. 6. Therefore, an
iterative graph partitioning process is proposed to decrease the
values of the matrix J by one degree so as to gradually break off
the connection among these data points. The partitioning divides
the original graph GJ into sub-graphs. By counting these adjacency
sub-graphs, cluster numbers can be identified. In the current
method, the iterative graph partitioning process comprises two
steps, namely decreasing matrices and counting sub-graphs.

Decreasing matrices is a procedure to decrease the judgment
matrix J by one degree in an iterative way until all entries of the
matrix become zero. This procedure can be represented as

tnew
ij ¼

tprevious
ij �1 if tprevious

ij 40

0 otherwise
,tnew

ij A Jnew
ij ,tprevious

ij A Jprevious
ij

(
ð6Þ
where a new matrix Jnew is obtained by deducting 1 from every
entry of the previous matrix Jprevious. The purpose of the decreas-
ing matrices procedure is to gradually break weak connections
between data points.

Counting sub-graphs is the procedure to count the connected
sub-graphs of every decreased matrix and to evaluate the cluster-
ing situation during the process of decreasing. A graph traversal
algorithm is implemented to count the graph Gnew of the matrix
Jnew, i.e. breadth first search (BSF), which is denoted as:

Gsubgraphs ¼ BSF_traversalðJnew
Þ

The judgment matrix J aggregating from the k-1 observation
matrices would serve as the input to the graph-partitioning
process. During each step of decreasing Jprevious, a new matrix Jnew

and its adjacency graph Gnew are generated. Each Gnew contains a
number of sub-graphs. The number of these sub-graphs is in fact
the cluster number. The partitioning process will stop until all



Fig. 7. Decreasing matrices and counting their adjacency graphs: The graph of the original judgment matrix J is shown in (a), after several iterations, the graph is

partitioned as three groups of nodes in (b), four groups of nodes in (c), five groups of nodes in (d), and more number of groups after further iterations in (e) and (f).
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Fig. 8. Decreased matrices, corresponding adjacency graphs, and cluster results.
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entries of Jprevious are zero. The algorithm is summarised in
Table 1.

Fig. 7 visualises the part of the decreasing and counting process.
The adjacency graph of the original judgment matrix is depicted in
Fig. 7(a). It is shown that all the data points are connected and
therefore they belong to only one cluster. In Fig. 7(b), three sub-
graphs are shown after a few iterations of graph partitioning, in
which the connections between the three sub-graphs are broken off.
It means that the connections between these data points are
comparatively weaker than those of connecting data points. Three
clusters are hence identified. In Fig. 7(c) and (d), four and five
clusters are found after further graph partitioning iterations. Even
more sub-graphs are generated if the process continues as shown in
Fig. 7(e) and (f). As a result, every decreasing and counting step
breaks the connections of these sub-graphs and a number of
clustering results are found. Nevertheless, it has yet to give answers
to the question how the final clustering result and the desired
cluster number are obtained.

With reference to the numeric example in Section 3.2, Fig. 8
demonstrates the complete process of decreasing matrices and
counting sub-graphs. The first row of Fig. 8 shows the decreasing
process in which the judgment matrix is decreased by one degree



Table 2
Generic workflow for applying the proposed method to other clustering algorithm

(OCA).

Input: A data set Y¼{y1, y, yM} in n-dimensional space

1. Using OCA to cluster the data set Y with cluster number ranging from 2 to k;

2. Every clustering result can be represented by a vector L¼[l1 l2 y lM], where

li¼ lj ¼c if both yi and yj belongs to the c-th cluster;

3. An observation matrix O can be computed from the vector L according to

oij ¼
1 li ¼ ljðia jÞ

0 otherwise

�
;

4. A judgment matrix J can be obtained as the sum of k-1 observation matrices O,

i.e., J¼
Pk

C ¼ 2 OC ;

5. The adjacency graph of J is iteratively partitioned so as to identify the

desired cluster number and clustering results according to the distribution of

the number of sub-graphs.

Output: The desired cluster number and final clustering result.
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every time until all entries become zero. The second row shows
the adjacency graphs of the resulted matrices. The connections
between data points are gradually broken off. The last row of
Fig. 8 shows the corresponding clustering results. As shown, many
cluster numbers and results are obtained during the decreasing
and counting operations. It is explained in the next section how
the desired cluster number and the final result can be identified.

3.4. Desired cluster number and final result identification

Many works [9–12,16,17,19–21,32,33,35–44] have been
reported for identifying optimal cluster numbers and results.
Optimal cluster numbers can be found by minimising or max-
imising clustering validity indices. In the current method, each
iteration of the graph partitioning process generates a number of
sub-graphs, and the number of sub-graph is exactly the cluster
number of that iteration. In the sub-graph number distribution, as
shown in Fig. 9, the number of sub-graphs may remain stable for a
number of iterations then experience a sharp change after that
stable level. The desired cluster number is accordingly defined as
the most stable sub-graph number in the distribution because
under this sub-graph number, the connections of the data points
within the sub-graphs are the strongest and hardest to break.
Fig. 9 displays an example of the sub-graph number distribution
and the final clustering result. It is obvious from the figure that
4 is the desired cluster number from both the stability of the
distribution (a) and from the clustered result (b).

It is important to note that the proposed method does not rely
on a single metric for clustering but verifies the relationships of
data points in different clustering attempts, in which varied
assumptions are considered. It avoids any bias caused by inap-
propriate assumptions (clustering initialisation). In the proposed
method, the relationships of the data points, namely the connec-
tions between data points in graphs, are derived from many
clustering results.

3.5. Adaptive implementation

The proposed clustering method follows an adaptive approach
because it can easily work with other clustering algorithms to
achieve reliable results and identify desired cluster numbers.
Table 2 provides a generic workflow for applying this idea to other
algorithms. Examples of integrating the proposed method with
k-means clustering algorithm is demonstrated in later Section 5.1.
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Fig. 9. An example of displaying the distribution of cluster number and the identificat

result.
4. Experimental results

The proposed clustering method concludes with the desired
cluster number and clustering result by verifying the distribution
of the number of sub-graphs. In the section, eight data sets were
investigated. The eight data sets include five artificial 2-dimen-
sional data sets with various data shapes, namely Dataset_1,
Dataset_2, Dataset_3, Dataset_4 and Dataset_5, and three widely
used data sets, Iris data set, Breast Cancer Wisconsin (Diagnostic)
data set and Wine data set, which are available on the Internet
[45]. An application of the proposed method to mesh segmenta-
tion was suggested.
4.1. Clustering results and cluster number stability

Dataset_1, Dataset_2, Dataset_3, and Dataset_4 were firstly
partitioned by the FCM clustering algorithm with the cluster
number ranging from 2 to k so as to obtain their judgment
matrices. By graph-partitioning the adjacency graphs of these
matrices, cluster number distribution and clustering results are
shown in Figs. 10, 11, 12 and 13. In these figures, based on the
stability of the distribution, the desired cluster numbers can be
easily identified. In Fig. 10, for example, the cluster number is
ion of final result. (a) Distribution of the number of sub-graphs and (b) Clustering
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Fig. 11. Dataset_2 with 2298 data points and the optimal cluster number¼2. (a) Cluster number distribution of Dataset_2 and (b) Clustering result and Dataset_2.
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Fig. 12. Dataset_3 with 781 data points and the optimal cluster number¼3. (a) Cluster number distribution of Dataset_3 and (b) Clustering result and Dataset_3.
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Fig. 10. Dataset_1 with 889 data points and the optimal cluster number¼3. (a) Cluster number distribution of Dataset_1 and (b) Clustering result and Dataset_1.
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Fig. 13. Dataset_4 with 278 data points and the optimal cluster number¼5. (a) Cluster number distribution of Dataset_4 and (b) Clustering result and Dataset_4.
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Fig. 14. Effect of different k values on the distribution of cluster number. (a) Cluster number distribution when k¼30. (b) Cluster number distribution k¼60. (c) Cluster

number distribution when k¼100 and (d) Clustering results of Datasets_5 of 1035 data points.
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stable on 3 and therefore we conclude that 3 is the desired cluster
number for Dataset_1. Moreover, the clustering results of the data
sets displayed in Figs. 11 and 12 are far more promising than
those in Fig. 2, which were partitioned by direct implementation
of FCM clustering. FCM is known as being sensitive to outliers or
noises. The current method can overcome this limitation. Fig. 13
shows the clustering result of a data set with much noise. Because
of data noise, 1 was considered as the most stable number. In
clustering analysis, data are usually grouped into more than one
cluster. Therefore, the second-most stable number, which is 5 in
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this case, is thus chosen as the desired cluster number. If the data
set contains some outliers, it is expected that the distribution
should be stepwise at the beginning, but the desired cluster
number can still be identified by checking the most stable cluster
number in the distribution. These experiments show that the
proposed clustering method is robust and independent of the data
shapes, needing no assumption on the data sets.

It is interesting to find out how the parameter k, namely the
upper bound of the cluster number, is defined. In related work
[18,35] of cluster validity index, kr

ffiffiffiffi
N
p

were chosen. It is observed
from the experiments that increasing the value of k (k must be
smaller than N) would generate a more reliable cluster number
distribution for easy identification of the desired cluster number.
Fig. 14 shows the different distributions when Dataset_5 was
clustered using different k values. When k¼30 in Fig. 14(a), the
distribution shows 2 could be a choice of desired cluster number.
When k is increased to 60 and 100 in Fig. 14(c) and (d), cluster
number 2 becomes overwhelming as the desired cluster number.
Consequently, when the distribution of cluster number is not stable
enough to give the desired number, increasing the upper bound of
cluster number can help identify the desired cluster number. This
can be proved again by clustering real-world datasets in the
following section. According to iterative graph-partitioning process,
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Fig. 15. Cluster number distribution of Iris data set
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Fig. 16. Cluster number distribution of Breast Cancer Wisconsin (Dia
the maximum value of k should be equal to the maximum entry
value of the obtained judgement matrix J.

4.2. Verification with real-world data sets

More clustering evaluations were conducted on three widely
used data sets including the Iris data set, Breast Cancer Wisconsin
(Diagnostic) data set and Wine data set. These real world multi-
dimensional data sets are used to verify the proposed clustering
method. The verification included two parts. It first verified the
distribution stability of the cluster number, from which the
desired cluster numbers were identified. The identified desired
cluster numbers were then compared to different cluster validity
index methods.

The Iris data set has 150 samples of 4-dimentional data points.
In this data set, two of the three clusters are hardly distinguish-
able and the third one is well separated from the other two [11].
Fig. 15 shows the cluster number distribution of the Iris data set.
As shown in Fig. 15(a), the cluster number is stable on 2 and
3 equally, when k is 80. In Figs. 15(b), 3 becomes slightly more
dominant than 2 when k is increased to 140. Therefore, choosing
C¼2 or 3 could be both acceptable for the Iris data set. The Breast
Cancer (Diagnostic) data set has is 569 samples, each with 32
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with two different k. (a) k¼80 and (b) k¼140.
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gnostic) data set with two different k. (a) k¼80 and (b) k¼160.
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Fig. 17. Cluster number distribution of Wine data set with two different k. (a) k¼60 and (b) k¼160

Table 3
Cluster numbers obtained by VPC [16], VPE [17], VXE [18], VFS [19], VW [11] and the proposed method with two different k values, k1 and k2.

Data sets Cn VPC VPE VXB VFS VW k1 k2

Iris 2 or 3 2 2 2 5 3 2 or 3 (k¼80) 3 (k¼140)

Breast cancer (Diagnostic) 2 2 2 2 4 2 2 (k¼80) 2 (k¼160)

Wine 3 2 2 3 13 3 3 or 5 (k¼60) 3 (k¼160)
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attributes (2 are non-numeric). Fig. 16 indicates that 2 is always
overwhelming and can be concluded as the desired cluster
number when k is 80 or 160. The Wine data set has 178 samples
in 13-dimensional space. Similarly, when k is 60, there are two
stable levels in Figs. 17, and 3 is slightly more stable than 5. When
k is increased to 160, 3 is shown to be the desired cluster number
for the Wine data set.

In Table 3, cluster numbers computed from optimising cluster
validity indices of VPC [16], VPE [17], VXB [18], VFS [19], VW [11] are
compared with the results of the current method. The column Cn

shows the actual cluster numbers of the three data sets [45]. The
desired cluster numbers obtained by the proposed method with two
different values of k are shown in the table. It is shown that the
proposed method is effective in identifying the optimal cluster
numbers in all three real-world multi-dimensional data sets.
4.3. Application to unsupervised mesh partitioning

Triangular mesh partitioning, as a clustering application, is
described in this section to evaluate the practical use of the
proposed method. Mesh partitioning is defined as segmenting a
shape into a number of patches that are uniform with respect to
some properties, for example curvature or distance to a fitting
plane. Katz and Tal [5] proposed a fuzzy clustering method to
segment the triangular mesh based on the angular distance and
geodesic distance between two triangles on the mesh surface. But
manually specifying a cluster number is a necessary step in
their segmentation process. In the current method, the desired
cluster number can be identified automatically. A 3D cube and a
triangular bi-pyramid were tested. The metrics for clustering
were triangle normals on the surface. In Fig. 18(a) and (c), the
cluster numbers are dominantly stable on 6, which means that
the six different regions of the mesh surface can be identified, as
shown in (b) and (d).
5. Discussions

5.1. Adaptive implementation with k-means clustering algorithm

It has been demonstrated that the proposed clustering method
is effective in clustering data sets of various shapes and in mesh
partitioning applications. As discussed in Section 3.5, the pro-
posed method has an adaptable nature that it can work with
other clustering algorithms. K-means clustering method is used as
an example in this section to explain this adaptive approach.
K-means clustering aims to partition any given data set YM into C

(CoM) partitions S¼S1, S2, y, SC so that the sum-of-squares,

arg min
S

XC

i ¼ 1

X
yj ASi

:yj�mi:
2

ð7Þ

is minimised. mi is the geometric centroid of the data points in Si.
According to the described workflow in Table 2, the data set is
first clustered according to the k-means algorithm with cluster
numbers ranging from 2 to k to obtain vectors L. k-1 observation
matrices are computed from these vectors and the judgment
matrix J is then obtained. Finally, an iterative graph-partitioning
process is conducted to identify cluster number and clustering
result.

Fig. 19 shows the cluster number distributions and results
obtained by implementing the proposed method with k-means
algorithm. Comparing with Fig. 3, it is shown that the proposed
method can generate more reliable clustering results. It is thus
demonstrated that the proposed method is flexible and adaptive,
can be implement with different clustering algorithms to
generate results and identify desired cluster numbers. If the
clustering algorithm to implement with the current method does
not involve the calculation of membership functions, Eqs. (1–4)
are not used. The clustering results obtained from a specific
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Fig. 18. Clustering application to mesh partitioning with optimal cluster number automatically identified. (a) Cluster number distribution of a 3D cube (b) Mesh

partitioning result (c) Cluster number distribution of a triangular bi-pyramid and (d) Mesh partitioning result.
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algorithm are summarised in vectors L, from which observation
matrices O and judgement matrix J are calculated.
5.2. Comparison with the spectral clustering method

In this section, the proposed clustering method is compared
with spectral clustering algorithms. Similar to the proposed
method, spectral clustering algorithms have a strong connection
with graph theory. A complete, weight undirected graph is
constructed for a given dataset, where the nodes correspond to
data and the edges define the adjacency relationship between
data. In such framework, clustering is a graph cutting problem to
separate a set of nodes. Spectral clustering method relaxes the
complexity of the graph cutting optimisation problem by spectral
decomposition of the Lapalcian matrix of the given dataset. It
gives useful information about the properties of the graph, in
which particular eigenvalue of the Laplacian matrix relates to
graph cut and the corresponding eigenvector can cluster together
similar data [22]. Different from using graph to represent data
relationship in spectral clustering methods, the current method
uses graph to consolidate a number of clustering results obtained
based on a chosen algorithm, and graph cutting is then used to
obtain a more reliable clustering result by consolidating and
verifying various clustering results. In this section, some artificial
datasets are used to compare the current method with spectral
clustering algorithm [22].

Fig. 20 shows the clustered results obtained from the spectral
clustering method (a, b, and c) and the current method (d, e, and f).
Firstly, (d–f) shows better clustered results than those in (a–c).
Secondly, the proposed method in this paper (d–f) is an unsuper-
vised process. No cluster number is needed to define. In the spectral
clustering, cluster numbers are required as input parameters, yet the
results are comparatively less promising.

The current method is adaptable to different clustering algo-
rithms. The current method is implemented with the spectral
algorithm [24]. Firstly, the spectral algorithm is used to cluster
data, resulting in a set of vectors L, from which observation
matrices O are computed. Secondly, the judgment matrix J is
computed by aggregating these observation matrices. Fig. 21
demonstrates that the proposed method can generate reliable
results by integrating with clustering algorithms, which are not
built upon membership functions.

5.3. Comparison with cluster ensembles

By reviewing the literature, it is found that the current method
has a similar concept as cluster ensemble methods. It is therefore
interesting to compare the current method with other cluster
ensemble methods. In this section, the proposed clustering
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Fig. 19. Clustering results and cluster number distributions for Dataset_2 and Dataset_3 using k-means clustering algorithm. (a) Cluster number distribution of Dataset_2

(b) Clustering result and Dataset_2 (c) Cluster number distribution of Dataset_3 and (d) Clustering result and Dataset_3.

Fig. 20. Clustering results comparison: (a–c) results from the spectral clustering method [24]; (d–f) results from the proposed method.
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Fig. 21. Clustering results and cluster number distributions based on adaptation of the spectral algorithm [24].
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method is compared with hyper-graph ensemble clustering algo-
rithms including Cluster-based Similarity Partitioning Algorithm
(CSPA), Hyper Graph Partitioning Algorithm (HPGA), and Meta-
Clustering Algorithm (MCLA) [30], and co-association algorirthms
including single link (SL) and average link (AL) based evidence
accumulation clustering (EAC) [28], weighted cluster ensemble
using a kernel consensus function (denoted as WKF) [30] and
Generalised WKF (denoted as GWKF) [31].

The current method can indeed be viewed as a clustering
ensemble method because the judgment matrix is integrated



Table 4
Clustering error rate comparison with k-means method and different cluster ensemble methods.

Dataset9Method k-meansavg CSPA HPGA MCLA EAC-SL EAC-AL WKF GWKF RAC-FCM

Iris 18.1 13.3 37.3 11.2 11.1 11.1 10.6 10.8 2.7

Breast cancer (Original) 3.9 17.3 49.9 3.8 4.0 4.0 3.7 3.7 3.5
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from many clustering solutions and also the final result is
computed from this matrix. Compared with other cluster ensem-
ble methods, the current method adopts a different way of
integrating or consolidating cluster results, a judgement matrix
is defined to represent the relationship between data points but
not simple distance-base similarity between data points, but the
definition of this relationship matrix is different from co-associa-
tion matrices in [28,30]. In addition, the matrix is partitioned
differently, in the current method it is done by an iterative graph
partitioning process while in [28] the matrix is analysed by the
single-link agglomerative approach.

In order to compare the current method with the other cluster
ensemble methods, the Iris and Breast Cancer (Original) datasets [45]
are used for evaluation. In Table 4, the error rates are calculated by
comparing the clustering results of various methods with true
underlying groups of the data in the dataset. The average error rates
of k-means algorithms with 20 different parameter initialisations are
also shown in the table for comparison. The current method is
implemented based on FCM algorithm, thus denoted as RAC-FCM. It
is shown form the table that the current method obtains lower error
rates than other ensemble methods, thus it is effective in clustering
Iris and Brest Cancer (Original) datasets.
6. Conclusions

In this paper, a robust adaptive clustering method has been
proposed and implemented. The idea stems from the human
decision process. In general, people make decisions after collect-
ing and evaluating different opinions. An opinion, from a cluster-
ing analysis perspective, is a partitioned result obtained from a
specific clustering algorithm with certain parameter settings. An
observation matrix has been defined to represent a possible
clustering result. A number of observation matrices are then
computed by conducting Fuzzy C-Mean clustering with different
parameter settings. A matrix, called the judgment matrix, has
been defined to summarise different observation matrices, from
which the desired cluster number and final result can be identi-
fied by an iterative graph-partitioning procedure.

Eight data sets, including five artificial 2D data sets of various
data shapes and three real-world multi-dimensional data sets, have
been used to evaluate the proposed clustering method. This has
demonstrated that the proposed method is robust in a sense that
data set of different structures can be clustered. The proposed
method is shown to be more effective than the Fuzzy C-Means
and k-means algorithms, even the optimal cluster numbers are
predefined for the latter. Experiments have also indicated that the
proposed clustering method is effective in mesh segmentation
applications. The method has also been compared with the spectral
clustering method and different cluster ensemble methods. It has
been demonstrated that the method can integrate with other
clustering algorithms like k-means. Therefore, the method is not
only robust but also adaptive as it can be readily implemented with
other clustering algorithms.

In conclusion, the proposed clustering approach not only
identifies the desired cluster number but also ensures reliable
clustering results.
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