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A structural learning algorithm is developed in this paper to achieve more effective training of large

numbers of inter-related classifiers for supporting large-scale image classification and annotation.

A visual concept network is constructed for characterizing the inter-concept visual correlations intuitively

and determining the inter-related learning tasks automatically in the visual feature space rather than in the

label space. By partitioning large numbers of object classes and image concepts into a set of groups

according to their inter-concept visual correlations, the object classes and image concepts in the same

group will share similar visual properties and their classifiers are strongly inter-related while the object

classes and image concepts in different groups will contain various visual properties and their classifiers

can be trained independently. By leveraging the inter-concept visual correlations for inter-related classifier

training, our structural learning algorithm can train the inter-related classifiers jointly rather than

independently, which can enhance their discrimination power significantly. Our experiments have also

provided very positive results on large-scale image classification and annotation.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

As digital cameras become more affordable and widespread,
digital images are growing exponentially on the Internet. In the last
three decades, many content-based image retrieval (CBIR) systems
have been developed [1–3], in which low-level visual features are
usually extracted for image indexing and retrieval. Unfortunately,
most naive users may not be familiar with the low-level visual
features and hence keywords would be more suitable for them to
specify their queries intuitively. To support keyword-based image
retrieval, it is very attractive to develop new algorithms for
supporting automatic image classification and annotation.

To achieve large-scale image classification (i.e., categorizing
large-scale images into large numbers of object classes and image
concepts), it is very important to train a large number of
classifiers for mapping the low-level visual features (computer
interpretations of visual content of images) onto the high-level
image concepts (human interpretations of visual content of
images). It is well accepted that the performance of image
classifiers largely depends on two inter-related critical issues:
(a) quality of visual features; (b) tools for classifier design and training.
The most popular visual features include color [4], texture [5],
ll rights reserved.
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shape [6–8] and salient points [9]. Each type of these visual
features is used to describe one particular type of visual proper-
ties of the images. In this paper, we focus on dealing with the
second issue for automatic image classification and annotation,
i.e., classifier design and training, and SIFT (scale invariant feature
transform [9]) features are used for image representation in our
experiments.

It is also worth noting that there are strong visual correlations
among the object classes and image concepts, e.g., the relevant
images for some object classes and image concepts may share
some common or similar visual properties. Thus it is not a good
idea to isolate such inter-related object classes and image con-
cepts and train their inter-related classifiers independently.
Training the classifiers for such inter-related object classes and
image concepts independently may result in low accuracy rates
for image classification. As a result, new algorithms, which can
leverage the inter-concept visual correlations for inter-related
classifier training, are strongly expected. For the tasks of inter-related
classifier training, the following two issues are equally important:
classifier design and inter-class correlation measurement.

There are two well-known approaches for multi-class classifier
design: (a) traditional approach (i.e., learning the classifiers for all
the object classes and image concepts independently) [10–12]
and (b) inter-related approach (i.e., the inter-concept relationships
among the object classes and image concepts are integrated for
inter-related classifier training) [13–17]. Two representative
ifiers for automatic image classification and annotation, Pattern

www.elsevier.com/locate/pr
www.elsevier.com/locate/pr
dx.doi.org/10.1016/j.patcog.2012.10.029
dx.doi.org/10.1016/j.patcog.2012.10.029
dx.doi.org/10.1016/j.patcog.2012.10.029
mailto:meikuizhi@mail.xjtu.edu.cn
dx.doi.org/10.1016/j.patcog.2012.10.029
dx.doi.org/10.1016/j.patcog.2012.10.029
dx.doi.org/10.1016/j.patcog.2012.10.029
dx.doi.org/10.1016/j.patcog.2012.10.029


P. Dong et al. / Pattern Recognition ] (]]]]) ]]]–]]]2
solutions for the traditional approach are the one-against-all (or
one-against-rest) method and pairwise (or one-against-one)
method. When the object classes and image concepts are inter-
related, the tasks for training their inter-related classifiers are
strongly dependent and their inter-related classifiers should be
trained jointly rather than independently. Multi-task learning is
accepted as one potential solution for leveraging such inter-
concept correlations to train the inter-related classifiers jointly
[16–19].

For a large number of object classes and image concepts, how
to measure their inter-concept correlations is another critical
issue. Most existing classifier training approaches aim at exploit-
ing the inter-concept semantic similarity contexts [20–23]. The
most popular method is to extract the inter-concept semantic
similarity contexts from some existing ontologies such as Word-
Net [24,25] (WordNet is a semantic lexical database which
provides multiple types of relations among English words).
Unfortunately, large amounts of text terms on the WordNet
may not directly relate to the text terms for interpreting the
object classes and image concepts on the Internet. The Google
similarity distance [26] is another method to measure the inter-
concept similarity relations among the object classes and image
concepts, while it prefers the inter-concept contextual relations
rather than the inter-concept semantic relations. In short, both
the Google similarity distance and WordNet can characterize the
inter-concept relatedness effectively at the label space. However,
both classifier training and automatic image classification indeed
happen in the visual feature space rather than in the label space,
thus all these methods for inter-concept similarity measurement
cannot be directly extended for determining the inter-related
learning tasks accurately.

When a large number of object classes and image concepts
come into view, most existing algorithms for classifier training
may further suffer from some other challenging problems. Firstly,
one challenging issue is how to excavate the inter-concept
relatedness automatically. Secondly, the classification error may
be transmitted among the classifiers for the inter-related object
classes and image concepts when the inter-concept correlations
are leveraged for classifier training. To support large-scale image
classification and annotation, it is very attractive to design a low-
computation-cost algorithm for training a large number of inter-
related classifiers with high discrimination power but less error
transmission.

In this paper, a structural learning algorithm is developed for
training a large number of inter-related classifiers jointly. The
followings highlight some main aspects of our proposed algo-
rithm for large-scale image classification and annotation.
(a)
Pl
Re
Our structural learning algorithm can determine the inter-
related learning tasks directly in the visual feature space
rather than in the label space. It is worth noting that the
visual feature space is the common space for classifier train-
ing and image classification.
(b)
 Our structural learning algorithm can significantly enhance
the discrimination power of the inter-related classifiers while
restraining their error transmission effectively.
(c)
 Our structural learning algorithm can lessen the computa-
tional cost dramatically for large-scale classifier training.
The rest of this paper is organized as follows. Section 2 briefly
reviews some most related work. In Section 3, we introduce our
algorithm for visual concept network construction. Our structural
learning algorithm is presented in Section 4, where the visual
concept network is used to determine the inter-related learning tasks
and leverage the inter-concept visual correlations for inter-related
ease cite this article as: P. Dong, et al., Training inter-related class
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classifier training. Section 5 describes our work on algorithm evalua-
tion and we conclude this paper in Section 6.
2. Related work

In this section, we review some most relevant work on multi-
class classifier training briefly, which can be summarized as two
categories: traditional approach and inter-related approach.

Comprehensive studies of the traditional approaches can be
found in many literatures, e.g., [27,28]. The one-against-all
method is probably the earliest approach for multi-class classifier
training [29] even it still deserves to be widespread concerned.
The one-against-all method is also known as one-against-others
or one-against-rest where one class is separated from the remain-
ing classes. Many current state of arts methods adopt this binary
strategy to deal with multi-class image classification tasks
[11,12,30]. The pairwise method is also known as one-against-
one method, which learns a set of pairwise binary classifiers to
distinguish each pair of classes. The classification decision is made
by aggregating the outputs of all the pairwise classifiers. A typical
work of this method can be found in literature [10].

Many previous work have demonstrated that the pairwise
method has better performance than the one-against-all method
[27,29]. The unbalance of training samples may be the most
serious problem that significantly decrease the performance of
the one-against-all method. For the one-against-all approach, a
correct prediction would require the true classifier to be more
confident than other classifiers. It will be difficult to achieve such
requirement especially when we deal with a large number of
classes because the chance of false alarms from many other
classifiers may dramatically increase. For a k-class classification
problem, the pairwise method needs to construct kðk�1Þ=2 pairwise
classifiers, thus the computation cost will grow quadratically as
the number of classes increases.

The traditional approach for classifier training mainly focus on
small-scale problems, typically from several classes to a few tens
of classes. The inter-class relatedness would be more crucial for
large-scale image classification, where we may usually deal with
hundreds of object classes and image concepts simultaneously.
Some pioneer work have been done to leverage the inter-concept
similarity contexts for inter-related classifier training. There are
two well-known approaches for inter-related classifier training:
multi-task learning and hierarchical learning. We focus on giving
a brief overview of those work that are most relevant to our
proposed algorithm.

A potential solution for inter-related classifier training is
multi-task learning [16–19]. Torralba et al. [18] have proposed a
JointBoost algorithm to leverage the inter-task correlations for
improving object detection, where the inter-task correlations are
explicitly characterized by using pairwise object combinations.
Fan et al. [17,19] have also integrated multi-task learning and
concept ontology to leverage the hierarchical inter-concept simi-
larity contexts for training multiple inter-related classifiers
jointly.

To support hierarchical image classification, Barnard et al. [31]
and Vasconcelos et al. [32] have incorporated hierarchical mix-
ture models and concept ontology to leverage the hierarchical
inter-concept semantic similarity contexts for training multiple
inter-related classifiers jointly. Li et al. [33] have presented a
linguistic structure for image database indexing, classification,
and annotation. Fei-Fei et al. [13] have also incorporated prior
knowledge of object parts and their locations to improve hier-
archical classification. Sudderth et al. [14] have proposed a
statistical approach to exploit the inter-object contexts to
improve object detection. Luo et al. [15] have integrated Bayesian
ifiers for automatic image classification and annotation, Pattern
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network for automatic image classification. Marsza"ek et al. [34]
have proposed a top-down approach for constructing category
hierarchies which postpone the decisions when the uncertainty
appears. The major problem for hierarchical learning approaches
is the inter-concept error transmission [35], e.g., the classification
errors will be propagated among the classifiers for the inter-
related object classes and image concepts at different levels [17].

In order to construct the hierarchies for measuring the inter-
task correlations, many pioneer work have been proposed. Mars-
za"ek et al. [22] and Fei-Fei et al. [36] have used WordNet to find
the semantic relationships between the labels and combined
discriminative classifiers through the semantic hierarchies. Wang
et al. [23] have proposed a Conditional Random Field framework
to incorporate the contextual relations between the words for
multi-label image annotation, where the normalized Google
distance (NGD) [26] is utilized as the inter-word contextual
potential. Bengio et al. [37] have learned a tree structure through
a confusion matrix which is obtained by the one-against-all
classifiers for all the classes. Tousch et al. [38] have proposed a
comprehensive study of the semantic hierarchies that are used in
the field of image annotation. However, all these similarity
measurements are not able to exactly reflect the visual correla-
tions among the object classes and image concepts, so it is not
quite reasonable to apply such semantic similarity contexts for
the tasks of multi-class image classification. For the purpose of
large-scale image classification, a visual concept network is first
proposed in [39] and the inter-concept visual correlations are
leveraged to jointly train the classifiers for the inter-related object
classes and image concepts in the same group (i.e., intra-group
separation). However, the literature [39] has not provided good
solutions for separating the object classes and image concepts in
different groups (i.e., inter-group separation).

Different from all these previous work, two inter-related issues are
equally taken into account in this paper: (a) the construction of the
structure (i.e., visual concept network construction for advising how
to cluster the object classes and image concepts into a set of groups);
and (b) the learning from the structure (i.e., machine learning
algorithm for advising how to design group-based classifier training).

A flowchart in Fig. 1 illustrates our structural learning algo-
rithm for inter-related classifier training. From this flowchart one
can observe that our structural learning algorithm consists of
three key components.
evaluation.

fox cat bear bee fish
(1)
hare abacus aircraft ballon tiger

desk mirror boat iPod coat

suit tank cherry banana flower

Pl
Re
Computing the inter-concept visual similarity contexts among
the object classes and image concepts, where a visual concept
network is constructed for characterizing such inter-concept
visual similarity contexts intuitively.
sandbar beach valley daisy rail

cliff dam clock computer � � �

(2)
 Partitioning the object classes and image concepts into a set

of small groups, where the object classes and image concepts
Fig. 1. Flowchart of our structural learning algorith

ease cite this article as: P. Dong, et al., Training inter-related classifier
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in the same group will share some common or similar visual
properties while the object classes and image concepts in
different groups will contain various visual properties.
(3)
 Designing a group-based structural learning algorithm for
training multi-class inter-related classifiers with less error
transmission but high discrimination power.
3. Task relatedness quantification

In this section, a visual concept network is constructed to
quantify the inter-task relatedness directly in the visual feature
space. The visual concept network could achieve more effective
organization of a large number of object classes and image
concepts according to their inter-concept visual similarity con-
texts in the visual feature space. In addition, the visual concept
network can provide a good environment to identify the inter-
related learning tasks for training multiple inter-related classifiers
jointly.

We take ImageNet [40] as our image set because a large
number of object classes and image concepts and their relevant
images are available. ImageNet image set has collected more than
9,353,897 Internet images with sufficient visual diversity and it
contains more than 14,791 object classes and image concepts at
different semantic levels. ImageNet currently provides densely
sampled SIFT features. The k-means clustering algorithm is
performed on a random subset of 10 million SIFT descriptors to
generate a visual vocabulary with 1000 visual words.

In this paper, we use Bag of Words (BoW [41]) representations
which are provided by ImageNet, so that we can focus on the
second issue for large-scale image classification, i.e., classifier
design and training. Three hundred object classes and image
concepts at different semantic levels are used for assessing the
effectiveness of our structural learning algorithm on large-scale
classifier training, where a 1000-bin codeword histogram is used
for image content representation. Parts of these 300 most popular
object classes and image concepts are given in Table 1.
m for inter-related classifier training.
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The visual concept network consists of two key components:
object classes or image concepts and their inter-concept visual

correlations. For two given object classes or image concepts Ci

and Cj, their inter-concept visual similarity context gðCi,CjÞ is
defined as

gðCi,CjÞ ¼
1

Ni � Nj

X
hACi

X
kACj

rðh,kÞ ð1Þ

where Ni and Nj are the total numbers of image instances for the
object classes or image concepts Ci and Cj, respectively, rðh,kÞ is
the kernel function for characterizing the visual similarity context
between the image instances h and k for Ci and Cj:

rðh,kÞ ¼ exp �
w2ðh,kÞ

s

� �
: ð2Þ

As mentioned above, each image instance is represented by
using a 1000-bin histogram (BoW), namely we can denote h and k

as: h¼ ðh1,h2, . . . ,h1000Þ and k¼ ðk1,k2, . . . ,k1000Þ. A w2 distance-
based kernel function is used to measure the visual similarity
context between two image instances. So the kernel function
rðh,kÞ is reformulated as

rðh,kÞ ¼ exp �
X1000

l ¼ 1

w2
l ðh,kÞ

sl

 !
ð3Þ

where the w2
l ðh,kÞ is the w2 distance between the lth entry of h and k:

w2
l ðh,kÞ ¼

1

2
�
ðhl�klÞ

2

hlþkl
ð4Þ

Normally, s¼ ðs1,s2, . . . ,s1000Þ is setting to the mean values of
the w2 distances. We have found, however, if the size of visual
vocabulary is very large, s would be very small, so all the visual
similarity contexts will be near to zero. Thus a logarithmic
Table 2
Part of inter-concept visual similarity contexts.

Object pair g Object pair

tailed frog-start fish 0.87 shaver-watch

lion-kit fox 0.81 jeep-stone wall

abacus-mug 0.17 scabious-bee

desk-bonsai 0.26 snake-flash

sandbar-seashore 0.57 church-stone wall

life boat-seashore 0.48 kit fox-cheetah

Fig. 2. Our visual concept network with 300 object classes and image concepts (left) a

Please cite this article as: P. Dong, et al., Training inter-related class
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transformation is used:

sl ¼ 1 log
1

NiNj

X
hACi

X
kACj

w2
l ðh,kÞ

2
4

3
5

������
������

,
ð5Þ

The inter-concept visual similarity contexts gð�,�Þ are further
normalized to the range [0,1].

Some experimental results on the inter-concept visual correla-
tions gð�,�Þ are given in Table 2, and larger values of gð�,�Þ mean
that there are stronger visual correlations among the correspond-
ing object classes and image concepts.

The visual concept network for our test image set is illustrated
in Fig. 2 (left) and some examples are given in Fig. 2 (right), where
each object class or image concept is linked with multiple inter-
related object classes and image concepts with larger values of
the inter-concept visual similarity contexts gð�,�Þ. A full inter-
concept visual correlation map for 100 object classes and image
concepts is illustrated in Fig. 3(a), where the luminance of the
color bar denotes the strength of the inter-concept visual correla-
tions. A representative part and its inter-concept visual similarity
matrix are given in Fig. 3(b) and (c), respectively. It is worth
noting that different object classes and image concepts have
different numbers of inter-related objects classes and image
concepts on the visual concept network.

Our visual concept network can: (a) characterize the inter-
concept visual similarity contexts intuitively and identify the
inter-related learning tasks directly in the visual feature space;
(b) provide a good environment to leverage the training instances
for multiple inter-related object classes and image concepts to
train their inter-related classifiers jointly, i.e., integrating their
training instances to learn their common prediction components
(which are shared among their inter-related classifiers) jointly.
Training the inter-related classifiers jointly can enhance their
discrimination power significantly.
g Object pair g

0.41 CD player-wok 0.26

0.51 speed boat-aircraft carrier 0.44

0.64 ballon-airline 0.21

0.12 wattle-pheasant 0.74

0.37 suit-kimono 0.33

0.90 sun flower-chrysanthemum 0.49

nd some examples for the inter-related object classes and image concepts (right).
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Fig. 3. The correlation map for 100 object classes and image concepts (a). A representative part with four classes (i.e., ‘‘computer’’, ‘‘earphone’’, ‘‘guitar’’ and ‘‘train’’) is

shown in (b). The corresponding inter-concept visual similarity contexts are given in (c). (For interpretation of the references to color in this figure caption, the reader is

referred to the web version of this article.)

Table 3
The grouping results for 100 object classes and image concepts of Fig. 3.

Group Items

1 kit fox, lion, brown bear, ice bear, hare, orangutan, cat, guenon

2 earphone, guitar, optical telescope, sax, scissors

3 abacus

4 feather boa, fur coat, headscarf, kimono, pajama, polo shirt, pullover,

stole, suit

5 star fish, water snake, shrimp, tailed frog, komodo dragon, otter

6 Chinese lantern, jack-o-lantern, flash, balloon, candle

7 web site

8 hand-held computer, hand calculator, computer

9 aircraft carrier, fire boat, life boat, speed boat, submarine

10 loudspeaker

11 mailbox

12 bonsai, blackberry, cherry, cymbid, fig, head cabbage, cauliflower,

spinach, lettuce

13 daisy, chrysanthemum, sunflower, scabious, bee

14 car mirror, CD player, flash memory, golf ball, hard disc, iPod, mouse

15 geyser, volcano, alp, valley

16 coffeepot, mug, wok

17 stone wall, church, desk, tank, mosque, obelisk

18 promontory, sandbar, seashore, dune

19 ginko, wattle, banana, pandanus, palm

20 electric locomotive, steam locomotive, model T, racer, shopping cart,

ambulance, bobsled, gondola, jeep, limousine, minivan, train
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4. Classifier design and training

To support keyword-based image retrieval, it is very attractive
to develop new algorithms for learning more accurate mapping
functions (i.e., classifiers) between the low-level visual features
and the high-level object classes and image concepts. From our
visual concept network, the inter-concept visual correlations can
be represented precisely by the strengths of gð�,�Þ. To design our
multi-class structural classifiers, support vector machine (SVM
[42]) is employed as the basis learner since it has achieved
superior performance in domains such as image retrieval and
classification [43–45].

As shown in Fig. 2, a given object class or image concept is
strongly related to multiple object classes and image concepts on
the visual concept network and their image instances share some
common visual properties. For example, the concept ‘‘sandbar’’ is
strongly related to ‘‘promontory’’, ‘‘speedboat’’, ‘‘beakwater’’,
‘‘lifeboat’’ and ‘‘seashore’’. Thus it is not appropriate to completely
ignore their inter-concept visual correlations and train their inter-
related classifiers independently. In this paper, a structural
learning scheme is developed to leverage such inter-concept
visual correlations for training a large number of inter-related
classifiers jointly, which can significantly enhance the discrimina-
tion power of the inter-related classifiers while restraining their
error transmission effectively.

In our visual concept network, the object classes and image
concepts, which have larger values of gð�,�Þ, are linked together.
For some object classes and image concepts, their inter-concept
visual correlations could be very weak (i.e., having smaller values
of gð�,�Þ), thus it is not necessary for each object class and image
concept to be linked with all the others on the visual concept
network. To reduce the computation complexity for inter-related
classifier training, the object classes and image concepts on our
visual concept network are partitioned into a set of groups
according to the strength of their inter-concept visual similarity
contexts. The object classes and image concepts in the same
group will share some common or similar visual properties and
their classifiers should be trained jointly since they are strongly
Please cite this article as: P. Dong, et al., Training inter-related class
Recognition (2013), http://dx.doi.org/10.1016/j.patcog.2012.10.029
inter-related. On the other hand, the object classes and image
concepts in different groups will contain various visual properties
and the inter-group visual correlations are much weaker than the
intra-group visual correlations, thus the classifiers for the object
classes and image concepts in different groups can be trained
independently. Theoretically, any unsupervised clustering method
can be used to cluster the object classes and image concepts on our
visual concept network into a set of groups. In this paper, the
normalized cut (N-cut [46]) algorithm is employed because our visual
concept network is essentially a graph.

Table 3 illustrates the results for clustering 100 object classes
and image concepts into 20 groups. One can observe that most of
ifiers for automatic image classification and annotation, Pattern

dx.doi.org/10.1016/j.patcog.2012.10.029
dx.doi.org/10.1016/j.patcog.2012.10.029
dx.doi.org/10.1016/j.patcog.2012.10.029


P. Dong et al. / Pattern Recognition ] (]]]]) ]]]–]]]6
the object classes and image concepts in the same group are
indeed visually similar, which has good consistence with human
perception and cognition. However, there are some exceptions,
for example, ‘‘tank’’ vs. ‘‘desk’’ (in group 17). Human would not
think they are visually similar, but they are clustered into the
same group. One explanation for the appearance of such phe-
nomenon is that feature-based interpretations of images (i.e., SIFT
features in this paper) are more or less inconformity with human
perceptions at semantic level.

For the inter-related object classes and image concepts in the
same group, a structural leaning algorithm is performed to learn
their inter-related classifiers jointly by sharing a common predic-
tion component [39]. In order to describe our proposed structural
leaning algorithm clearly, we predefine some notations shown in
Table 4.

Our group-based multi-class structural learning architecture is
illustrated in Fig. 4. We denote the object classes and image
concepts as C1, C2, y, CN, and the groups as G1, G2, y, GM. For a
given group Gi, it consists of Ni inter-related object classes and
image concepts. Obviously,

PM
i ¼ 1 Ni ¼N, where N is the total

number of object classes and image concepts on our visual
concept network and M is the total number of groups. For
example, in Table 3, we have N¼100 and M¼20.

All these groups are determined automatically by performing
N-cut clustering algorithm over our visual concept network. It is
worth noting that the object classes and image concepts in the
same group have stronger inter-concept visual correlations than
Table 4
Some tokens used in this paper.

Notation Description

Ci a given object class

Gi a given group contains some objects

Gg Gg ¼ GðCiÞ, the group which Ci

belongs

OGi
OGi
¼ fCj j Cjbelongs to groupGig

T a set of all groups

T ¼ fG1 ,G2 , . . . ,GMg

M the total number of groups

N the total number of classes

Fig. 4. Our group-based structural learning architecture.

Please cite this article as: P. Dong, et al., Training inter-related class
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those in different groups, thus the classifiers for the inter-related
object classes and image concepts in the same group are strongly
inter-related and should be trained jointly to enhance their
discrimination power. It is easy for us to design multiple dis-
crimination functions hGi

ðxÞ to distinguish the object classes and
image concepts in different groups, because the inter-group visual
correlations are much weaker. On the other hand, it could be
more difficult to distinguish the inter-related object classes and
image concepts in the same group because their inter-concept
visual correlations are stronger. Thus multiple intra-group classi-
fiers hCi

ðxÞ should be designed and learned for distinguishing the
inter-related object classes and image concepts in the same
group.

From the architecture of our visual concept network shown in
Fig. 4, one can observe that the inter-related classifiers consist of
at least two components: (1) the inter-group discrimination
functions hGi

ðxÞ (i.e., prediction components for separating one
certain group from other groups on the visual concept network);
and (2) the intra-group discrimination functions hCi

ðxÞ (i.e., pre-
diction components for separating one particular object class or
image concept from its inter-related object classes and image
concepts in the same group). Our inter-related classifiers are
defined as

HCi
ðxÞ ¼LðhCi

ðxÞ,hGðCiÞ
ðxÞÞ ð6Þ

where i¼ 1,2,3, y, N, N and GðCiÞ are defined in Table 4. The
function h(x) is a combination of some basis learners, and the
function Lð�,�Þ denotes the combination mode of hCi

ðxÞ and
hGðCiÞ
ðxÞ. Experimentally, the combination mode is hardly unique.

Obviously, different combination modes will result in different
architectures for supporting structural learning. In this paper, the
weighted sum method is adopted for constructing our structural
learning algorithm.
4.1. Our hybrid design approach

In order to restrain the issue of error transmission, we use a
weighted sum to instantiate (6) as

HCðxÞ ¼ aC � hCðxÞþbC � hGðCÞðxÞ ð7Þ

where C is one particular object class or image concept and G(C) is
the corresponding group for the given object class or image
concept C. aC and bC are the weighted coefficients, which are
subjected to aCþbC ¼ 1:

The item aC � hCðxÞ indicates the intra-group classifier while
the item bC � hGðCÞðxÞ indicates the inter-group classifier. However,
Eq. (7) may be weak to make a final decision. A simple example is
illustrated in Fig. 5. Assuming there are nine object classes and
image concepts C1 � C9, which are clustered into three groups
G1 � G3. Without loss of generality, let us take the object class or
image concept C5 into consideration. For the intra-group item (the
dash line in Fig. 5) in (7), it would be able to distinguish C5 from
C4 and C6. And the inter-group item bC � hGðCÞðxÞ (solid line in
Fig. 5) can also be able to distinguish G2 from G1 and G3.
Theoretically, for all the object classes and image concepts C4,
C5 and C6, the item bC � hGðCÞðxÞ may have same value. Because the
inter-concept visual similarity contexts for the object classes and
image concepts in the same group are much stronger than those
of the object classes and image concepts in different groups, it is
still hard to discriminate C5 from C4 and C6.

In order to enhance the discrimination power of the classifiers
(7) for the object classes and image concepts in the same group
(e.g., C4, C5 and C6), a hybrid level item (dash and dot line in Fig. 5)
is added to the classifiers (7), then the discrimination function for
ifiers for automatic image classification and annotation, Pattern
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Fig. 5. The design of our structural learning algorithm: an example for nine image

concepts and object classes which are partitioned into three groups.
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the object class or image concept C becomes

HCðxÞ ¼ aC � hCðxÞþbC � hGðCÞðxÞþgC � hRðCÞðxÞ ð8Þ

similar with (7), aC , bC and gC are subjected to

aCþbCþgC ¼ 1

The hybrid level item hRðCÞðxÞ is used to discriminate the object
class or image concept C from other groups (here the other groups

mean all the groups except the one which the object class or
image concept C belongs). So we can divide our inter-related
classifiers into three levels: the intra-group level, the inter-group

level and the hybrid level corresponding to three items in (8),
respectively.

Intuitively, our structural learning algorithm relies on the fact
that there are natural groupings for large numbers of object
classes and image concepts, i.e., common ‘‘attributes’’. According
to the description above, the overall structural learning algorithm
for training multiple multi-class structural SVM classifiers is
summarized as follows.
(1)
Pl
Re
Selecting the basis learner. In this paper, SVM is employed as
our basic binary classifier. The basic binary discrimination
function is denoted as f ðx,Cþ ,C�Þ, where x is the input test
instance, Cþ denotes the positive training concept(s), and
C� denotes the negative training concept(s). Namely, all the
training instances in Cþ are the positive samples, while all the
training instances in C� are the negative samples.
(2)
 Designing and training the intra-group classifiers. After the
concept clustering process, the object classes and image
concepts are partitioned into a set of groups. For each group,
the number of object classes and image concepts is small, so
we can employ the pairwise method and one-against-all
method cohesively. Assume that there are N object classes
and image concepts, C1, C2, y, CN, then we should train N

classifiers hC1
, hC2

, . . . ,hCN
:

hCi
ðxÞ ¼

X
Cj A fOGg \Cig

aijf ðx,Ci,CjÞþaiif ðx,Ci,fOGg
\CigÞ ð9Þ

where Gg ¼ GðCiÞ is the group which Ci belongs
(gAf1,2, . . . ,Mg), M is the total number of groups and ai� are
the weighted coefficients. The first term in (9) denotes the
pairwise method while the second one denotes the one-
against-all method. These two items are combined by a
weighted sum. It is noteworthy that the subscript j is
discontinuous. The weighted coefficients are subjected toP

jA fj9Cj AOGg g
aij ¼ 1.
(3)
 Designing and training the inter-group classifiers. Assuming that
there are M groups totally, which are denoted as G1, G2, y,
GM. Each group is considered as an independent entity.
ease cite this article as: P. Dong, et al., Training inter-related classifier
cognition (2013), http://dx.doi.org/10.1016/j.patcog.2012.10.029
Similar with (2), both the pairwise method and the one-
against-all method are employed cohesively. Then we should
train M classifiers hG1

, hG2
, . . ., hGM

:

hGg
ðxÞ ¼

X
Gj A fT\Gg g

bgj f ðx,OGg
,OGj
Þþbggf ðx,OGg

,OfT\Gig
Þ ð10Þ

where fT\Ggg contains all the ðM�1Þ groups except Gg, and bg�

are the weighted coefficients. Similar with (9), the first term
in (10) denotes the pairwise method while the second one
denotes the one-against-all method. The weighted coeffi-
cients are subjected to

PM
j ¼ 1 bgj ¼ 1.
(4)
 Designing and training the hybrid classifiers. This process is
different from (2) or (3). These hybrid classifiers are used to
discriminate one particular object class or image concept
from those object classes and image concepts in other
ðM�1Þ groups. For example as shown in Fig. 5, a hybrid
classifier is used to distinguish C5 from G1 and G3. One choice
is to design a ‘‘one-against-all’’ classifier. That is, for the given
object class or image concept C, all the training samples in the
other M�1 groups (on our visual concept network) are treated
as negative training samples. This approach may be feasible,
but we do not use it due to both the excessive unbalance and
the high computational cost of the one-against-all method.
Rather than designing a single unbalance classifier, we design
M�1 classifiers for separating the given object class or image
concept C from all the other groups individually, that is:

hRðCiÞ
ðxÞ ¼

X
Gj A fT\Gg g

gijf ðx,Ci,OGj
Þ ð11Þ

where Gg ¼ GðCiÞ is the group which Ci belongs. For all the
weight coefficients we have

P
jA fj9Gj A fT\Gg gg

gij ¼ 1.
According to Eqs. (8)–(11), the final discrimination function
can be formulated as

HCi
ðxÞ ¼ aCi

� hCi
ðxÞþbCi

� hGi
ðxÞþgCi

� hRðCiÞ
ðxÞ

¼
X

Cj A fOGg \Cig

aCi
aijf ðx,Ci,CjÞþaCi

aiif ðx,Ci,fOGg
\CigÞ

þ
X

Gj A fT\Gg g

bCi
bgjf ðx,OGi

,OGj
Þ

þbCi
bggf ðx,OGi

,OfT\Gig
Þ

þgCi

X
Gj A fT\Gg g

gijf ðx,Ci,OGj
Þ ð12Þ

where Gg ¼ GðCiÞ is the group which the object class or image
concept Ci belongs.

In order to simplify the problem, we use the average weights
for classifier combination in our structural learning algorithm.
Specifically, we use the average weight strategy to determine the

weighted parameters in (8)–(12), respectively. We take bgj in (10) as

an example, all the weight parameters are specified an equal value

and the sum of bgj is equal to 1. Hence, all the weights are subjected

to
P

jA fj9Cj AOGg g
aij ¼ 1,

P
jA f1,2 ,..., Mgbgj ¼ 1,

P
jA fj9Gj A fT\Gg gg

gij ¼ 1,

and aCi
¼ bCi

¼ gCi
¼ 1=3.

In the classifier training stage, we need to train N discrimina-
tion functions: HC1

ðxÞ, HC2
ðxÞ, y, HCN

ðxÞ. In the test stage, for any
given image instance x, we test it among N classifiers, which are
combined to make a final decision. The classifier, which generates
the highest confidence value, is selected as the winner:

c¼ arg max
Ci

PðCi9xÞ ¼ arg max
Ci

HCi
ðxÞ ð13Þ

In case that two classes have identical decision value, we use the
same strategy as in [47] that we simply choose the class appear-
ing first in the array of storing class names.
s for automatic image classification and annotation, Pattern
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4.2. Computational complexity

Most existing algorithms for multi-class object detection and
scene recognition are often handled by combining multiple binary
classifiers, thus they may have square complexity with the
number of object classes and image concepts N, i.e., the complex-
ity is OðN2

Þ. On the other hand, our structural learning algorithm
just needs to combine Nstruct binary classifiers, and Nstruct is
determined as

Nstruct ¼
XM
i ¼ 1

NiðNi�1Þ

2
þNi

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

intra-group

þ
MðM�1Þ

2
þM|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

inter-group

þNðM�1Þ|fflfflfflfflffl{zfflfflfflfflffl}
hybrid-level

¼
1

2

XM
i ¼ 1

N2
i þ

1

2
M2
þNMþ

1

2
M�

1

2
N ð14Þ

where M is the number of groups and Ni is the number of object
classes and image concepts for the ith group.

Typically, Ni5N and M5N, thus our structural learning
algorithm can achieve sub-quadratic complexity with the number
of object classes and image concepts N, i.e., Oð12

PM
i ¼ 1 N2

i þ
1
2 M2
þNMþ 1

2 M� 1
2 NÞ. As a result, our structural learning algo-

rithm is very attractive for training a large number of inter-
related classifiers for large-scale image classification.

By using a group-based approach to model the task related-
ness explicitly, the issue of huge inter-concept visual similarity
can be addressed more effectively by leveraging the task related-
ness for training the inter-related classifiers jointly. Thus the
discrimination power of the inter-related classifiers can be
enhanced significantly by learning from the image instances for
the inter-related object classes and image concepts. Incorporating
the image instances from other inter-related object classes and
image concepts for inter-related classifier training can signifi-
cantly enhance the generalization ability of the classifiers, espe-
cially when the image instances for the given object class or
image concept are not representative for large amounts of unseen
test images.
5. Algorithm evaluation

5.1. Basic setup

To evaluate our structural learning algorithm, extensive
experiments are carried out on two datasets: (1) a subset from
ImageNet [40] dataset with 300 most popular object classes and
image concepts and (2) Caltech256 dataset [48]. We consider the
LIBSVM [47] with non-linear RBF kernel as our basic learner for
each binary discrimination function f ðx,Ci,CjÞ. For each problem
(basic learner), we use a fivefold cross-validation to determine the
kernel parameters g and the cost parameters C among the range
g¼ ½2�10,2�9,2�8, . . . ,24

� and C ¼ ½20,21,22, . . . ,214
�. Therefore, for

each problem we try 225 combinations to complete the cross-
validation process. We perform this cross-validation procedure on
every basic learner (i.e., every binary discrimination function
f ðx,Ci,CjÞ shown in (12) in our paper) on its own separate training
set. For example, we perform cross-validation on a basic learner
f ðx,Ci,CjÞ on the validation examples (image instances) from class
Ci and Cj.

The goal for algorithm evaluation is to estimate the average
classification accuracy rates and average F scores of our structural
learning algorithm, where the experiments are carried out on the
following aspects:
(a)
Pl
Re
we compare our algorithm with the traditional approaches,
i.e., the one-against-all approach and the pairwise approach;
ease cite this article as: P. Dong, et al., Training inter-related class
cognition (2013), http://dx.doi.org/10.1016/j.patcog.2012.10.029
(b)
ifier
we focus on comparing our algorithm with two state-of-arts
algorithms for inter-related classifier training, including the
JointBoost algorithm [18] and the Hierarchical Method [34];
(c)
 we compare the performance of our structural learning
algorithm by leveraging different structures for inter-related
classifier training, i.e., our hybrid combination vs. the tree-like
hierarchy. For the tree-like hierarchy, we decompose the
inter-related object classes and image concepts into two
levels: inter-group and intra-group. We train the inter-
group classifiers hGi

and intra-group classifiers hCi
indepen-

dently. For a given test image instance x, firstly we should
determine which group it belongs. We test it over all the M

inter-group classifiers hG1
� hGM

, and the group-based classi-
fier which has the highest confidence value is selected as the
winner and the corresponding group index Gg is assigned to x.
And then, we repeat the same procedure over all the intra-
group classifiers hCj

, where hCj
is the intra-group classifier of

the object class or image concept Cj, which belongs to the
group Gg.
(d)
 we analyze the generalizability of our structural learning
algorithm and other algorithms (both the traditional
approaches and inter-related approaches) when they are used
to deal with different numbers of object classes and image
concepts (i.e., different category sizes);
(e)
 we also compare our visual concept network with other
similarity measurements, including the ontologies from
WordNet [25] and NGD [26]. WordNet [25] is one of the most
popular semantic networks for a large lexical database of
English. Nouns, verbs, adjectives and adverbs are grouped into
sets of cognitive synonyms (synsets), each expressing a
distinct concept. WordNet database contains 155,287 words
organized in 117,659 synsets for 206,941 word–sense pairs. In
our experiments, the similarity computation software module
from [49] is used to calculate the WordNetsemantic simila-
rities between different object classes and image concepts.
Google distance is proposed to calculate the contextual
relationship between two concepts by using their correlation
in their search results from Google search engine when two
concepts are used as query terms. For two given concepts x

and y, the normalized Google distance (NGD) [26] is defined
as

NGDðx,yÞ ¼
maxflog f ðxÞ,log f ðyÞg�log f ðx,yÞ

log N�minflog f ðxÞ,log f ðyÞg
ð15Þ

where f(x) denotes the number of pages containing x, f(y)
denotes the number of pages containing y and f ðx,yÞ denotes
the number of pages containing both x and y. N is the total
number of web pages indexed by Google search engine. In this
experiment, we use a approximate value 1012 for N.
5.2. Algorithm evaluation on imagenet

We directly use 1000-bin BoW histograms (which are pro-
vided by ImageNet) for image content representation. For each
image concept or object class, 200 image instances are used as the
training samples, and another 200 image instances (which are
different from the 200 training samples) are used as the test
samples. Besides that, 100 image instances are used as cross-
validation samples to select proper SVM parameters. Totally
about 150k image instances are employed in our experiments.

Experiment 1: our method vs. traditional approaches. In this
experiment, we aim at comparing our method with the one-

against-all approach and the pairwise approach. Three hundred
most popular object classes and image concepts from ImageNet
are used in our experiments. The classification accuracy rates for
s for automatic image classification and annotation, Pattern
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Fig. 6. Performance comparison on ImageNet with 300 object classes and image concepts, where the object classes and image concepts are illustrated in the orders of their

accuracy rates for our structural learning algorithm.

Fig. 7. Performance comparison on classification accuracy rates: our algorithm vs. traditional approaches.
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all these 300 object classes and image concepts are shown in
Fig. 6. All the object classes and image concepts in Fig. 6 are
illustrated according to their classification accuracy rates from
low to high for our structural learning algorithm, that is why our
approach is very smooth while the other algorithms show random
behaviors. Fig. 7 illustrates the classification accuracy rates for
some object classes and image concepts. From these experimental
results one can observe that our structural learning algorithm has
obtained very competitive results compared with the traditional
algorithms. The significant improvement on the classification
accuracy rates benefits from: the inter-related classifiers for the
inter-related object classes and image concepts are trained jointly
by leveraging their inter-concept visual correlations for inter-
related classifier training.

In addition, one can observe that the classification accuracy
rates are bad for a small number of object classes and image
concepts. This phenomenon is mainly caused by the issue of huge
intra-concept diversity for some object classes and image con-
cepts (which are called ‘‘hard’’ object classes and image concepts).
These ‘‘hard’’ object classes and image concepts are usually
difficult to be differentiated from others because the images from
these ‘‘hard’’ object classes and image concepts have huge
diversity on their visual properties, which may result in higher
chances to be overlapped with other object classes and image
concepts. The classification accuracy rates for them are usually
very low especially when a large number of object classes and
image concepts come into view. In our experiments, some
examples of such ‘‘hard’’ object classes and image concepts are
‘‘moth’’ (indexed n02283201 in ImageNet dataset), ‘‘syringe’’
(n04376876 in ImageNet) and ‘‘banjo’’ (n02787622 in ImageNet).

Experiment 2: our method vs. other inter-related approaches.
Two state-of-arts inter-related approaches, the JointBoost [18]
algorithm and the Hierarchical algorithm [34], are compared with
Please cite this article as: P. Dong, et al., Training inter-related class
Recognition (2013), http://dx.doi.org/10.1016/j.patcog.2012.10.029
our structural learning mechanism in this experiment. For the
JointBoost [18] algorithm, the basic learner is the boosted deci-
sion stump, and the classifier is generated by using 5000 rounds
of boosting. For the Hierarchical algorithm, we use 100 image
instances from each of these 300 object classes and image
concepts to construct the hierarchies. The classification accuracy
rates for these 300 object classes and image concepts are shown
in Fig. 8. Fig. 9 illustrates the classification accuracy rates for some
object classes and image concepts. We can see that our structural
learning algorithm makes more efficient use of the inter-concept
visual correlations for inter-related classifier training.

It is worth noting that among these three approaches (which
are compared in our experiments), the JointBoost method per-
forms worst on the classification accuracy rates for all these 300
object classes and image concepts, as shown in Figs. 8 and 9.
These results may be surprising. Firstly, we recall the overall
algorithm of JointBoost in Table 5 concisely. As shown in Table 5,
in order to address the issue of searching all possible 2C

�1
subsets of classes, it uses the best-first search and a forward
selection procedure, the overall complexity of which is OðC2

Þ

rather than Oð2C
Þ. S(i) is denoted as a subset of classes that are

shared in the ith boosting round. At the decision stage, for each
image class c, we find all the subsets Sð�Þ that contain c, and sum
up their additive models to give the final form of the classifiers:

Hðv,cÞ ¼
X

sA fs9sA Sð�Þ,cA sg

Gs
ðvÞ ð16Þ

where v is a vector of features and c is the class. However, this
JointBoost procedure would not be able to guarantee that every
class would be shared through the boosting procedure.

In the example shown in Table 6, there are five classes c1 � c5

and the number of booting rounds is 4. The shared subsets in each
boosting round is Sð1Þ ¼ fc2,c4,c5g, Sð2Þ ¼ fc1,c5g, Sð3Þ ¼ fc2,c4g,
ifiers for automatic image classification and annotation, Pattern
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Fig. 8. Performance comparison on ImageNet with 300 object classes and image concepts, where the object classes and image concepts are illustrated in the orders of their

accuracy rates for our structural learning algorithm.

Fig. 9. Performance comparison on classification accuracy rates: our algorithm vs. other inter-related approaches.

Table 5
The overall algorithm of JointBoost [18].

vi is the sample vector, N is the number of training samples, and C is the

number of classes and M is the boosting rounds.

(1) Initialize the weights oc
i and set Hðvi ,cÞ ¼ 0,

i¼ 1,2, . . . ,N, c¼ 1,2, . . . ,C

(2) Repeat for m¼ 1,2, . . . ,M

Initialize the subset that shares features SðmÞ ¼ |.

repeat for n¼ 1, . . . ,C

(a) repeat for p in ff1,2, . . . ,Cg\SðmÞg

(i) s¼ SðmÞ
S

p

(ii) fit shared stump

(iii) evaluate error J(s);

(b) find best sub set sn ¼ argminsJðsÞ

if JðsnÞo JðSðmÞÞ

update the subset SðmÞ ¼ sn

Updates the weights.
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Sð4Þ ¼ fc5g, respectively. One can observe that none of the subsets
contains c3. In this case, the test samples which come from c3

would not be classified correctly by the JointBoost classifier,
because Hðv,c3Þ is always equal to zero, i.e., the initial value.
When the number of object classes and image concepts becomes
large, this phenomenon becomes more common. In Fig. 10, we
compare the shared classes in the first 30 boosting rounds for
3 object classes and image concepts (left) and 48 object classes
and image concepts (right). All the object classes and image
concepts are selected from ImageNet image set. The indexes of
the boosting rounds are illustrated as the vertical axis in Fig. 10.
The white grid(s) located in the same line in Fig. 10 denotes the
classes that are shared in one boosting round. For small-scale
Please cite this article as: P. Dong, et al., Training inter-related class
Recognition (2013), http://dx.doi.org/10.1016/j.patcog.2012.10.029
(about tens of classes/concepts/categories) image classification
tasks, we can make a conclusion that the JointBoost algorithm
will perform very well. However, for a large-scale or medium-
scale (thousands or hundreds of classes) image classification
tasks, the JointBoost algorithm will perform significantly worse
than our inter-related learning algorithm.

Experiment 3: performance comparison with the tree-like hierarchy.
It is worth noting that our structural learning algorithm is different
from the tree-like hierarchy which is commonly employed in the
previous work [34,37]. In a tree-like architecture, a leaf node is
independent with its non-parent nodes (i.e., the high-level nodes at
the parent level which are not the parent node for the given leaf
node). However, in our architecture, the correlations between the
nodes of object classes and the nodes for other groups (which the
given object class does not belong to) are also taken into considera-
tion for inter-related classifier training.

A comparison result on the average classification accuracy
rates for 100 object classes and image concepts between our
structural learning algorithm and the tree-like approach
described above is shown in Table 7. Low computational cost is
the most significant advantage of the tree-like hierarchical
method, since in the test stage it only needs to test among the
inter-group classifiers and the corresponding intra-group classi-
fiers. However, the classification error in the inter-group level
may be completely transmitted to the intra-group level. By
suppressing the error transmission from the inter-group level
classifiers to the intra-group classifiers, one can observe that our
structural learning approach can enhance the discrimination
power of the inter-related classifiers significantly.

Experiment 4: performance comparison on different category

sizes. In order to verify the efficiency of our structural learning
algorithm on different numbers of object classes and image
ifiers for automatic image classification and annotation, Pattern
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Table 7
Average classification accuracy rates on 100 cate-

gories of ImageNet dataset for different classifier

structures.

Structures Accuracy rate

Tree-like Hierarchy Method 0.3480

Our Hybrid Method 0.3696
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concepts (i.e., different category sizes), we have also compared
the average classification accuracy rates of the four algorithms on
different size of categories. The experimental results on 100, 200
and 300 image categories for different algorithms are shown in
Fig. 11. The number of boosting rounds for the JointBoost
algorithm is 3000, 4000 and 5000, respectively. From these
results, one can observe that the classification accuracy rates
reduce significantly when the number of object classes and image
concepts increases. Even so, our structural learning algorithm still
outperforms others and it drops slower than others. From all
these results, one can observe that our structural learning algo-
rithm can obtain reasonable accuracy rates for large-scale image
classification.

Experiment 5: performance comparison on different similarity

measures. As what we have emphasized, the visual feature space
is the common space for both classifier training and image
classification, thus the inter-concept visual similarity is adopted
to construct our visual concept network. In this experiment, we
aim to compare the visual similarity measurement with the most
popular semantic similarity measurements from the label space.
The experiments are carried out on 100, 200, and 300 categories
independently, and the results of the average classification
accuracy rates are illustrated in Fig. 12. From the results, one
can observe that our visual similarity measurement can reflect
the inter-concept correlations among the object classes and image
concepts more accurately. Thus our visual similarity measure-
ment is more suitable for determining the inter-related learning
tasks.

In order to cover the false-positive rate, the average F scores
for different algorithms are also calculated in this paper, where

Fscore¼ 2 �
precision � recall

precisionþrecall
:

From Tables 8 and 9, one can observe that our structural learning
algorithm can achieve better performance on the average F scores
when the visual similarity measurement is used.
Table 6
An example of shared classes (þ) and unshared classes (�) for the JointBoost [18]

algorithm.

Boosting round c1 c2 c3 c4 c5

1 � þ � þ þ

2 þ � � � þ

3 � þ � þ �

4 � � � � þ

Fig. 10. Schematic diagram of shared and unshared classes in the fir

Please cite this article as: P. Dong, et al., Training inter-related class
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5.3. Algorithm evaluation on Caltech256 dataset

The Caltech256 dataset [48] is another standard multi-class
object recognition dataset which contains 30 607 images. We
evaluate our structural learning algorithm over 256 classes of the
Caltech256 dataset excluding its clutter category. We randomly
sample 80 images for each class, and split them into two parts: 40
images per class for training and the remaining for test. In order
to describe an image, we first construct a visual vocabulary of
1000 visual words and then extract the Bag-of-words SIFT
descriptors on the gray-scale images. Specifically, each image is
resized to have a max side length of no more than 300 pixels and
raw SIFT [9] features are extracted from it. We perform k-means
clustering algorithm on 500,000 raw SIFT features randomly sam-
pled from all Caltech256 images to form a visual vocabulary of
1000 visual words. Subsequently, the SIFT descriptors are quan-
tized using the vocabulary by performing vector quantization
st 30 boosting rounds for 3 classes (left) and 48 classes (right).

Fig. 11. Average classification accuracy on 100, 200 and 300 categories of

ImageNet dataset: our algorithm vs. others.
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(VQ) coding method. All these procedures are implemented by
running the VLFeat [50] toolbox.

Experiment 1: performance comparison with other approaches.
Table 10 shows the average classification accuracy and average F

scores of our structural learning algorithm and other most related
approaches on the Caltech256 dataset. For the JointBoost algorithm
[18], the number of the boosting round is 5000. For the Hierarchical
method [34], we use k-means method with 40 images per class for
constructing the class hierarchy and set a¼ 0:2. Our method can
significantly improve the discrimination power of classifiers by
leveraging the inter-concept correlations for classifier training.

Experiment 2: performance comparison with the tree-like hierarchy.
We have also compared our hybrid design of classifiers with the
Table 8
Performance comparison of average F scores on some subsets of ImageNet dataset:

our method vs. other most related approaches.

#
concepts

Algorithm

One-against-

all

Pairwise JointBoost

[18]

Hierarchical

[34]

Our

method

100 0.3000 0.3488 0.1640 0.2059 0.3670
200 0.1934 0.2532 0.0771 0.1362 0.2593
300 0.1338 0.2054 0.0543 0.1011 0.2167

Table 9
Performance comparison of average F scores on some subsets of ImageNet dataset:

our visual similarity vs. other measures.

# concepts Similarity measurement

WordNet similarity NGD similarity Our visual similarity

100 0.3310 0.3075 0.3670
200 0.2395 0.2076 0.2593
300 0.1654 0.1509 0.2167

Table 10
Performance comparison on Caltech256 dataset: o

Algorithms P

A

One-against-all 0

Pairwise 0

JointBoost (Torralba et al. [18]) 0

Hierarchical method (Marszalek et al. [34]) 0

Our Structural learning algorithm 0

g. 12. Average classification accuracy on 100, 200 and 300 categories of

ageNet dataset: our visual similarity vs. other measures.
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tree-like combination method on Caltech256 dataset. The average
classification accuracy rates are shown in Table 11.

Experiment 3: performance comparison on different similarity

measures. Table 12 shows the experimental results on Caltech256
dataset for different similarity measurements. These results
demonstrate that it is much more reasonable to use the visual
similarity rather than the semantic or contextual measurements
in the label space for the image classification tasks.
6. Conclusions and future work

A structural learning algorithm is developed in this paper to train
a large number of inter-related classifiers jointly for supporting large-
scale image classification and annotation. A visual concept network is
constructed for characterizing the inter-concept visual correlations
intuitively and determining the inter-related learning tasks directly in
the visual feature space rather than in the label space. For large-scale
image classification, our experimental results have demonstrated that
our structural learning algorithm can significantly outperform both
the traditional approaches (i.e., the pairwise method and one-against-
all method) and other inter-related approaches (i.e., JointBoost[18]
and Hierarchical [34] methods).

Although our structural learning algorithm has provided very
positive results on large-scale image classification tasks, we
should clearly see that it still has some shortcomings. Firstly, in
order to simplify the problem of weight determination for
classifier combination, we simply use the average weights in
our algorithm. However, developing new algorithms for estimat-
ing the optimal weights automatically will significantly enhance
the performance of our structural learning algorithm and it will
be one of future research directions. Secondly, the performance of
our proposed learning algorithm is limited to the utilization of
ur method vs. other most related approaches.

erformance measure

verage accuracy rate Average F score

.1947 0.1821

.1977 0.1933

.0559 0.0845

.1446 0.1662

.2120 0.2094

Table 11
Performance comparison on Caltech256 dataset:

our hybrid method vs. the tree-like combination.

Structure of
classifiers

Average accuracy
rate

Tree-like structure 0.1788

Our hybrid structural 0.2120

Table 12
Performance comparison on Caltech256 dataset: our visual similarity measure-

ment vs. other semantic measurements.

Similarity measurement Performance measure

Average accuracy rate Average F score

WordNet similarity [25] 0.1803 0.1932

Google Distance similarity [26] 0.1743 0.1874

Our visual similarity 0.2120 0.2094
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single SIFT features and the simple VQ coding method. With more
comprehensive features and more accurate algorithms for feature
coding, our structural learning algorithm will still have better
performance than other approaches. In our future work, we will
consider some comprehensive features and more accurate feature
coding methods to improve the accuracy rates of our structural
learning algorithm for large-scale image classification.
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