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Abstract8

This article presents a novel ‘self-training’ based semi-supervised classifica-9

tion algorithm using the property of aggregation pheromone found in real10

ants. The proposed method has no assumption regarding the data distribu-11

tion and is free from parameters to be set by the user. It can also capture12

arbitrary shapes of the classes. The proposed algorithm is evaluated with13

a number of synthetic as well as real life benchmark data sets in terms of14

accuracy, macro and micro averaged F1 measures. Results are compared15

with two supervised and three semi-supervised classification techniques and16

are statistically validated using paired t-test. Experimental results show the17

potentiality of the proposed algorithm.18

Keywords: Semi-supervised classification, Self-training, Ant colony,19

Aggregation pheromone.20

1. Introduction21

Traditional machine learning methods for pattern classification require22

sufficient number of labeled data to assign an unlabeled pattern to a cer-23
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tain class. However, labeled patterns are often difficult, costly, and/or time24

consuming to obtain, as they require the effort of experienced human anno-25

tators. On the other hand, unlabeled data may be relatively easy to gather.26

Semi-supervised learning (classification) [7] methods make use of the large27

amount of available unlabeled data, along with a small amount of labeled28

data, to improve classification accuracy. As semi-supervised classification29

requires less human intervention and produces better accuracy, it is of great30

interest to the machine learning researchers in recent years.31

A variety of semi-supervised learning methods exist in the literature.32

These can be broadly categorized as follows: self-training [38, 45], co-training33

[5], transductive support vector machines (TSVM) [2, 8, 9, 44], graph-based34

methods [3, 4, 47], expectation maximization (EM) with generative mixture35

models [31] etc. A good review of semi-supervised classification methods is36

available in [48, 49].37

Self-training is a wrapper based method commonly used for semi-supervised38

learning. In this process a classifier is first trained using a small amount of39

labeled data. Then unlabeled data patterns are classified using the trained40

classifier. The classified (unlabeled) pattern whose predicted value is suffi-41

ciently high for belonging to a certain class is added to the training set along42

with its predicted class label. This is done for all the classified (unlabeled)43

patterns. Thus, the amount of training data increases due to the inclusion44

of the “high confidence” unlabeled patterns in the original training set. Re-45

training of the classifier is done using the new enlarged training set; and the46

procedure is repeated. One can imagine that a misclassification can reinforce47

itself. Therefore, some algorithms are used to avoid this problem by unlearn-48
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ing the unlabeled points if the prediction confidence drops below a threshold.49

Self-training has been applied to several natural language processing tasks50

[36, 45]. Self-training was also applied to object detection from images [38],51

and showed that semi-supervised techniques perform better compared to the52

state-of-the-art object detectors. Self-training based semi-supervised method53

was used for motion estimation in dynamic systems [22]. Also self-training54

semi-supervised support vector machine (SVM) was proposed for electroen-55

cephalogram (EEG) based brain computer interface system [24].56

In co-training [5, 29], features are split into two sets. Following two57

assumptions are considered in co-training: (i) each sub-set (of features) is58

sufficient to train a good classifier, and (ii) given a class, the two sets are59

conditionally independent. Initially, two separate classifiers are individually60

trained with the labeled data, on the two sub-sets. Co-training then utilizes61

the unlabeled data by adding the most confident predictions of one classifier62

to the training set of the other classifier; thereby, effectively allowing each63

individual classifier to train its counterpart.64

Transductive support vector machine (TSVM) [44] is an extension of stan-65

dard support vector machine for dealing with unlabeled data. In standard66

SVM, only the labeled data is used, and the goal is to find a maximum67

margin linear boundary in the Kernel Hilbert Space [10]. In TSVM the un-68

labeled data is also used to find a labeling of the unlabeled data, so that69

a linear boundary has the maximum margin on both the original labeled70

data and the unlabeled data (with predicted label). The decision boundary71

has the smallest generalization error bound on unlabeled data [43]. Intu-72

itively, unlabeled data guides the linear boundary away from denser regions.73
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Initially developed TSVM algorithms [2] were not able to handle a large num-74

ber of unlabeled data efficiently. To overcome this drawback, many variants75

like SVMLight-TSVM [21], low density separation (LDS) [8], concave-convex76

procedure (CCCP) for TSVM (CCCP-TSVM) [9] have been proposed in77

the literature. A semi-supervised support vector classifier designed using a78

quasi-Newton method for nonsmooth convex functions is proposed in [35].79

Graph-based semi-supervised methods construct a graph where the nodes80

designate the labeled and unlabeled samples of the data set and (weighted81

or unweighted) edges represent the similarity of samples. These methods82

are nonparametric, discriminative, and transductive in nature. Some of the83

graph based methods like mincut [3, 4], harmonic [15], local and global consis-84

tency [47], mainfold regularization [1] are discussed in [48, 49]. A few recent85

graph-based semi-supervised classifiers are proposed particularly for graph86

construction [46], handling multiple graphs in gene networks [41], neighbor-87

hood graph construction [37], and betweenness computation on large sparse88

directed graphs [27].89

Generative models [7] are possibly the oldest semi-supervised learning90

method. It assumes a probabilistic model where identifiable mixture dis-91

tribution is known. With a large amount of unlabeled data, the mixture92

components can be identified. The model using EM method is being used93

for text classification [31].94

In this article, a novel ‘self-training’ based semi-supervised algorithm is95

proposed using the aggregation pheromone density which is inspired by the96

natural behavior of real ants and other social insects.97

Different applications originated from the study of different types of98
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swarms. Among them, most popular ones are ant colony and bird flocks99

[12]. Ant Colony Optimization (ACO) [11] and Aggregation Pheromone Sys-100

tems (APS) [42] are computational algorithms modeled on the behavior of101

ant colony. ACO [11] algorithms are designed to emulate ants’ behavior of102

laying pheromone on the ground while moving to solve optimization prob-103

lems. Pheromone is a type of chemical emitted by an organism to communi-104

cate between members of the same species. Pheromone, which is responsible105

for clumping or clustering behavior in a species and brings individuals into106

closer proximity, is termed as aggregation pheromone [42]. Thus, aggregation107

pheromone causes individuals to aggregate around good positions which in108

turn produces more pheromone to attract individuals of the same species.109

In APS [42], a variant of ACO, this behavior of ants is used to solve real110

parameter optimization problems.111

Inspired by the aggregation pheromone system found in ants and other112

similar agents, in earlier works, attempts were made for solving clustering113

[13], classification [16], image segmentation [14] problems, and land use map114

generation from mutispectral remotely sensed images [17] with encouraging115

results.116

Though a large number of techniques exists for ant based unsupervised117

classification (i.e., clustering) in the literature [19], a few attempts [25, 26,118

28, 34] have been made for (supervised) classification. In our earlier (confer-119

ence) work one preliminary attempt [18] was also made for semi-supervised120

classification based on ant colony approach with promising results.121

Motivated from the promising results, the earlier research [18] has been122

extended in this article to propose an advanced aggregation pheromone den-123
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sity based semi-supervised classification (called, APSSC) algorithm.124

The proposed APSSC algorithm is ‘self-training’ in nature and consists125

of two phases namely, ‘self-training’ and ‘testing’. In self-training phase the126

classifier is first trained with the small amount of labeled (patterns) ants.127

Afterwards, the classifier is used to classify the unlabeled ants; and then128

among the unlabeled ants, the ‘high confidence’ ones are determined and129

they are added (together with their predicted labels) to the corresponding130

(class) colony in the training set. The classifier is re-trained (using the newly131

formed training set) and this procedure is repeated until colony formation is132

stabilized. In this way, a new enlarged training set is built. Once the colony133

formation is stabilized, in the testing phase, each test (pattern) ant is eval-134

uated to assign to the colony for which the average aggregation pheromone135

density is more. In this way the classification accuracy obtained with a small136

amount of labeled ant can be improved by the use of the ‘high confidence’137

unlabeled ants.138

The proposed method has the advantage of not having any assumption139

regarding the data distribution. Moreover, opposed to the earlier version [18],140

it does not require to set any free parameter manually. In addition, it can141

better capture the arbitrary shapes of the classes by updating the covariance142

matrices of the classes with iterations.143

The proposed semi-supervised classifier is compared with two conven-144

tional supervised classifiers (viz., multi layer perceptron and support vector145

machine) and three state-of-the-art semi-supervised classifiers (viz., semi-146

supervised classification by low density separation [8] and concave-convex147

procedure for transductive support vector machine[9], self-training semi-super-148
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vised support vector machine [24]) using five real life benchmark data sets149

and four artificially generated data sets. Performance of each of the methods150

is evaluated using percentage of overall accuracy, macro averaged F1 mea-151

sure, and micro averaged F1 measure. Results of the investigations of the152

semi-supervised methods are also statistically validity using paired t-test [23].153

Experimental results show the potentiality of the proposed semi-supervised154

method compared to other techniques for most of the data sets.155

The rest of the article is organized as follows. Section 2 provides a detail156

description of the proposed ant based semi-supervised classification method157

using aggregation pheromone system. Details of the experiments and analysis158

of results are provided in Section 3, and finally, conclusions are drawn in159

Section 4.160

2. Proposed Methodology161

As mentioned earlier, aggregation pheromone brings individuals into closer162

proximity. This group forming nature of aggregation pheromone (found in163

natural behavior of real ants) is being used as the basic idea of the proposed164

technique.165

The proposed aggregation pheromone density based semi-supervised clas-166

sification (APSSC) algorithm is ‘self-training’ in nature. It consists of two167

steps. The first step uses ‘self-training’ strategy, where the semi-supervised168

classifier is (re)trained iteratively using the small number of labeled ants169

along with the ‘high confidence’ unlabeled ants (described latter). The sec-170

ond step is ‘testing’. Once self-training is over (i.e., colony is stabilized) the171

new test ants are predicted to assign a particular class (colony) in the testing172
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phase. The details of the proposed methods are described below.173

2.1. Aggregation Pheromone Density based Semi-Supervised Classification174

Consider a data set with K classes and a small number of labeled data175

patterns from each class which, by our assumption, forms K homogeneous176

groups or colonies of ants in the training/lebeled set L. Also, there is (a177

relatively large) |U | number of unlabeled data patterns in the unlabeled set178

U .179

Let, x lk
1 , x

lk
2 , . . . , x

lk
|C0

k
| be the given original training data or labeled data180

patterns in the kth initial training class C0
k . These patterns are considered as181

a population of |C0
k | number of ants represented as a lk

1 , a
lk
2 , . . . , a

lk
|C0

k
|. Hence,182

an ant a lk
i represents the ith training data pattern (in the kth initial training183

class) x lk
i ∈ C0

k .184

Consider x u
1 , x

u
2 , . . . , x

u
|U | to be the unlabeled data patterns represented185

as unlabeled ants au
1 , a

u
2 , . . . , a

u
|U |, correspondingly.186

187

188

Step1: self-training189

At iteration t = 0, only labeled ants (patterns) are considered to form190

the initial training colony, i.e., the kth training colony Ct
k is the same as kth

191

initial training class/colony C0
k .192

Each labeled ant emits pheromone at its neighborhood. The intensity193

of pheromone emitted by the ith individual labeled ant a lk
i ∈ Ct

k located at194

x lk
i at iteration t decreases with increase in its distance from x lk

i . Thus,195

the pheromone intensity at a point closer to x lk
i is more than those at other196

points that are farther from it. To achieve this, the pheromone intensity197
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emitted by ant a lk
i ∈ Ct

k at time t is modeled by a Gaussian distribution.198

Hence, effect of the emitted pheromone density on the jth unlabeled ant au
j199

(located at x u
j ) at iteration t due to the ith labeled ant of kth colony (a lk

i200

∈ Ct
k) located at x lk

i is given by:201

Δτ t(xlk
i ,x

u
j ) =

1

(2π)d/2 (det(Σt
k))

1
2

exp
(
−1
2
(xu

j − xlk
i )

T (Σt
k)

−1(xu
j − xlk

i )
)
,

(1)

where, Σt
k, det(Σ

t
k), and d represent respectively, the covariance matrix202

of the kth class at iteration t, the determinant of the covariance matrix Σt
k,203

and number of dimensions of the data set used.204

The average effect of emitted (aggregated) pheromone on the jth unla-205

beled ant au
j due to kth training colony Ct

k at iteration t is given by:206

Δτ tjk =
1

|Ct
k|

∑
xlk

i ∈Ct
k

Δτ t(xlk
i ,x

u
j ); ∀ j, ∀ k. (2)

Thereafter, pheromone density τ tjk due to the kth colony Ct
k on the jth207

unlabeled (pattern) ant at iteration t is updated according to the following208

equation:209

τ tjk = (1− ρ)τ t−1
jk + ρΔτ t

jk; ∀ j, ∀ k, (3)

where, 0 ≤ ρ ≤ 1 is the evaporation constant. With smaller values of ρ, the210

system uses information of the pheromone density of the past cycles more211

than with the larger values of ρ. Larger value of ρ indicates that the effect212

of the pheromone emitted in the present iteration is more compared to the213

pheromone emitted in the previous iterations. ρ acts as a trade-of factor of214

the emitted pheromone in the previous and the present iterations. Instead215
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of keeping it constant [18] throughout during the self-training process, it is216

reasonable to vary it with respect to time. As in the self-training process, the217

emitted pheromone (in the current iteration) at the location of an unlabeled218

ant is computed mainly due to the training ants; also, there is no (or, less)219

effect of the emitted pheromone from the earlier cycle, therefore, the effect220

of emitted pheromone (Δτ t
jk) in the current iteration should be high during221

the initial stage. As time progress the effect of the emitted pheromone in the222

current iteration should decrease and the effect of the pheromone density of223

the past cycles (τ t−1
jk ) should increase. Hence, ρ is a function of time and it224

is defined as:225

ρ =
1

1 + log(t+ 1)
. (4)

After pheromone density is updated, the gradation of belonging of an226

unlabeled ant au
j to colony Ct

k is computed as:227

μt
jk =

τ tjk
K∑
k=1

τ tjk

∀ j, ∀ k. (5)

This μt
jk is nothing but the normalized pheromone density (n.p.d.) at the228

location of an unlabeled ant au
j due to colony Ct

k.229

Once the normalized pheromone density (n.p.d.) values of all the unla-230

beled ants are determined, ants are evaluated to be temporarily added to the231

training set for the next iteration (t+1). Ants, added to the training set, are232

termed as ‘high confidence ants ’. Evaluation of the unlabeled ants is done as233

follows.234
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2.1.1. Determination of ‘high confidence’ ants:235

As stated earlier, let μt
jk be the normalized pheromone density (n.p.d.)236

value associated with an unlabeled ant au
j due to the colony Ct

k. Let the237

highest normalized pheromone density corresponding to the unlabeled ant238

au
j be μt

jh(= max
k

(μt
jk)). The ratio

µt
jk

µt
jh

(∀k �= h) represents the degree of239

similarity of an unlabeled ant au
j for belonging to colony Ck and the highest240

contributing colony Ch. Range of this ratio is in [0,1]. More the value of the241

ratio, more is the similarity of the unlabeled ant with two colonies Ck and242

Ch; hence, less is the confidence (of the unlabeled ant for belonging to any243

colony). Therefore, if all such ratios between μt
jk(∀k �= h) and the highest244

n.p.d. value μt
jh of the unlabeled ant au

j are less than equal to 1
K
, (where,245

K is the number of colony or class) then that unlabeled ant au
j becomes a246

‘high confidence’ ant to be added to the training set for the next iteration247

(t + 1). If for any colony Ck the ratio
µt
jk

µt
jh

(∀k �= h) is greater than 1
K
, then248

the corresponding ant is considered to be a less confidence one, and is not249

added to any colony.250

The methodology for determining the ‘confidence’ of an unlabeled ant auj251

is summarized in Algorithm 1.252

Note that, addition of an ant to the colony Ch is done temporarily for the253

next iteration. In subsequent iterations it will be added to the appropriate254

colony depending on its current membership value or it may not be included255

in any colony. Hence, in each iteration (re)assignment of the initial unlabeled256

ants occurs.257
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Algorithm 1 : Determination of the ‘confidence’ of an unlabeled ant auj

1: for each n.p.d. μt
jk (k �= h) due to kth training colony Ct

k at iteration t

do

2: if (
µt
jk

µt
jh

=max
k

(µt
jk

)
≤ 1

K
) then

3: flag variable = 1

4: else

5: flag variable = 0

6: break;

7: end if

8: end for

9: if (flag variable == 1) then

10: Add the unlabeled ant au
j to the appropriate training colony (Ct+1

h ) for

the next iteration (t + 1) as

Ct+1
h = C0

h ∪ xu
j

11: else

12: Do not add the unlabeled ant au
j to any colony.

13: end if

12



2.1.2. Stopping criterion of self-training:258

The self-training phase of the algorithm stops when there is no (re)assign-259

ment. This is done by computing the colony centers. If the colony centers in260

two successive iterations do not change then it can be said that there is no261

(re)partition. At that time colony formation by the unlabeled ants is over262

and the unlabeled ants are stabilized. It means either they have joined any263

colony with sufficient confidence, or (rest) have not joined any colony (with264

sufficient confidence). The unlabeled ants, which have joined in any colony265

are now considered as training samples, and thus, the size of the training set266

is increased with the help of the unlabeled patterns.267

268

269

Step2: testing270

After the colony formation (by the unlabeled ants) is over, the new ants271

(patterns) are tested as follows. If the test ant an at xn appears in the272

system, the average aggregation pheromone density (at the location of the273

new ant an) by the colony Ct
k is given by [as in Equation 2]:274

Δτnk =
1

|Ct
k|

∑
xi∈Ct

k

1

(2π)d/2 (det(Σt
k))

1
2

exp
(
−1
2
(xn − xi)

T (Σt
k)

−1(xn − xi)
)
.

(6)

The test ant an will move towards a colony for which the average aggre-275

gation pheromone density (at the location of that test ant) is higher than276

that of the other colonies. Hence, finally the said ant will join the colony277

that will be governed by the following equation:278
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ColonyLabel(xn) = argmax
k

(Δτnk). (7)

As opposed to the previous version [18], the present version of the al-279

gorithm does not have any free parameters to be set by the user manually;280

also in each iteration the algorithm updates the class covariance matrix (of281

Equation 1) and thereby is able to better capture the shape of the classes.282

The complete procedure is summarized in Algorithm 2.283

3. Experimental evaluation284

In this section we report the details of experimental setup, along with the285

data sets and then analyze the results.286

3.1. Data sets used287

For the purpose of our study, we used four artificially generated data sets288

(shown in Figure 1), and five real life data sets, four among them are from289

the UCI repository [30], and Telugu Vowel data is from [32].290

Among the synthetic data sets Annular data set (Figure 1 (a)) has four291

concentric rings of different radius representing 4 classes having total 1400292

data patterns. Ellipse data (Figure 1 (b)) consists of two very close ellipse,293

partially confound within a half ellipse representing the 3 classes having 300294

data patterns. Pat2 data (Figure 1 (c)) [33] consists of 3 classes having 880295

patterns. Spiral data (Figure 1 (d)) contains 1000 data points distributed in296

two spirals shaped classes. All the synthetic data sets have two dimensions.297

Please note that, all the synthetic data sets are non linearly separable.298

Among the real life data sets, the Ionosphere is a radar data which con-299

sists of 351 instances each with 34 continuous features distributed in 2 classes300
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Algorithm 2 : Aggregation Pheromone density based Semi-Supervised

Classification (APSSC)

1: begin self training()

2: Initialize: Iteration counter t ← 0; initial pheromone density τ−1
jk ←

0, ∀ j, ∀ k.

3: repeat

4: for each unlabeled ant auj located at xu
j do

5: for each training colony Ct
k at iteration t do

6: Calculate the average aggregation pheromone density Δτ t
jk on the

jth unlabeled ant auj due to all ants in present training colony Ct
k

at iteration t using equation (2).

7: Update pheromone density τ tjk due to kth colony Ct
k on the jth

unlabeled (pattern) ant at iteration t by Equation (3).

8: end for

9: for each training colony Ct
k at iteration t do

10: Compute the n.p.d. μt
jk of each unlabeled ant au

j due to each

colony Ct
k at iteration t using Equation (5).

11: end for

12: Compute the ‘confidence’ of the unlabeled ant auj and add or do not

add the ant to the appropriate colony for the next iteration (t + 1)

according to Algorithm 1.

13: end for

14: t← t + 1.

15: until < StoppingCriteria >

16: end self training (P.T.O.)

15



Algorithm 2: APSSC (continued)

begin testing()

for each new test ant an located at xn do

for each colony Ct
k do

Calculate the average aggregation pheromone density Δτnk at location

xn due to all ants in colony Ct
k using Equation (6).

end for

Compute the ColonyLabel(xn) of the ant an by Equation (7). // Ties

are broken arbitrarily.

end for

end testing

namely “good” and “bad”. This radar data was collected by a system in301

Goose Bay, Labrador. This system consists of a phased array of 16 high-302

frequency antennas with a total transmitted power of the order of 6.4 kilo-303

watts. The targets were free electrons in the ionosphere. “Good” radar304

returns are those showing evidence of some type of structures in the iono-305

sphere. “Bad” returns are those that do not; their signals pass through the306

ionosphere. The Indian Telugu vowel data [32] is the formant frequency of307

sounds in consonant-vowel-consonant context uttered by three speakers in the308

age group 30-35 years. The data set consists of 871 instances with 3 formant309

frequencies (features) which were obtained through the spectrum analysis of310

the speech data. The data patterns are distributed in 6 overlapping classes311

and their boundaries are ill-defined. Balance scale data was generated to312

model the psychological experimental results. It has 625 instances described313

by 4 features, distributed in 3 classes. Sonar data has 208 instances described314
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by 60 attributes distributed in 2 classes. Wisconsin Breast Cancer (WBC)315

data contains 699 instances distributed in 2 categories described by 9 features316

of which 16 instances with the missing values are ignored.317

To test the classification accuracy, 5% of data is taken out randomly from318

a data set to form the initial training set and the rest is considered as the319

unlabeled set. The process is repeated 10 times. The reported results are320

obtained considering the unlabeled data as the test set. A summary about321

the data sets is given in Table 1.322

Table 1: Summary of the data sets used for the experiments

Data set Classes Dimensions Pattern Labeled pattern

Synthetic data

Annular 4 2 1400 5%

Ellipse 3 2 3000 5%

Pat2 3 2 880 5%

Spiral 2 2 1000 5%

Real Life data

Ionosphere 2 34 351 5%

Telugu vowel 6 3 871 5%

Balance Scale 3 4 625 5%

Sonar 2 60 208 5%

WBC 2 9 683 5%

323
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Figure 1: (a) Annular data, (b) Ellipse data, (c) Pat2 data, and (d) Spiral

data
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3.2. Methods compared with324

The proposed method is compared with two traditional classifiers: multi325

layer perceptron (MLP) [20], and support vector machine (SVM) [40], along326

with three semi-supervised techniques, namely, semi-supervised classification327

by low density separation (LDS) [8], concave-convex procedure for trans-328

ductive support vector machine (CCCP-TSVM) [9] and self-training semi-329

supervised support vector machine (SS-SVM) [24]. For implementation of330

SVM and SS-SVM we have used the package as referred in [6] package. We331

have used the available source codes of LDS, and CCCP-TSVM, respectively,332

from [8], and [9] for the implementation. Note that, compared methods have333

a number of parameters. The MLP and APSSC algorithms are implemented334

in Matlab. We have suitably adjusted the parameters to get the optimum335

results.336

3.3. Performance evaluation measures337

In order to evaluate the performance of the proposed classifier, in this338

article we have used following three kinds of performance measures. Namely,339

(i) percentage accuracy, (ii) macro averaged F1 measure, and (iii) micro av-340

eraged F1 measure.341

Percentage accuracy: Here we have reported the results on test case342

accuracy only, that is percentage of correctly classified test patterns out of343

the total test patterns.344

Macro averaged F1 measure: Macro averaged F1 is derived from pre-345

cision and recall [39]. The precision (pi) of class i is defined as346

pi =
# patterns correctly classified into class i

# patterns classified into class i
, (8)
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and, recall (ri) of class i is defined as347

ri =
# patterns correctly classified into class i

# patterns that are truly present in class i
. (9)

Then (F1)i, the harmonic mean between precision and recall, of class i is348

defined as349

(F1)i =
2× pi × ri
pi + ri

. (10)

F1 measure gives equal importance to both precision and recall. The macro350

averaged F1 measure is computed by first computing the F1 scores for each351

category (class) and then averaging these per-category scores to compute the352

global means. Macro averaged F1 gives equal weight to each category.353

Macro averaged F1 measure (denoted as Macro F1, in short) is defined354

as:355

Macro F1 =
1

K

K∑
i=1

(F1)i, (11)

where K is the number of categories (classes).356

Micro averaged F1 measure: It is computed by first creating a global357

contingency table whose cell values are sum of the corresponding cells in the358

per-category contingency tables. Then this global contingency table is used359

to compute the micro averaged performance scores. Micro averaged F1 gives360

equal weight on each sample (test case).361

Micro averaged F1 measure (denoted as Micro F1, in short) is defined as:362

Micro F1 =
2× 1

K

∑K
i=1pi × 1

K

∑K
i=1ri

1
K

∑K
i=1pi +

1
K

∑K
i=1ri

(12)

where K is the number of categories (classes).363
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Note that, macro-averaged F1 and micro-averaged F1 [16] are derived364

from precision and recall [16], and their values lie between 0 and 1. Closer365

the value of macro averaged F1 and micro averaged F1 to 1, better is the366

classification.367

3.4. Statistical significance test368

To test the significance of results statistically (in terms of percentage369

accuracy) of the investigation, paired t-test [23] has been performed with370

the proposed APSSC versus other semi-supervised methods at 5% level of371

significance, and results of t-test in terms of p-score are reported in Table 4.372

3.5. Experimental results and analysis373

The average results and standard deviations (shown in bracket) for 10374

simulation runs (with 10 different labeled, unlabeled / test sets) of all the375

algorithms are reported in Tables 2 & 3 for synthetic and real life data sets,376

respectively. The CPU (execution) time, in seconds, needed by the algo-377

rithms are also given in the table for comparison.378

All the algorithms used in this article are implemented in Matlab and379

simulated in core 2 duo (2.2GHz speed) processor using 2 GB of main memory380

in Windows environment.381

Rank of each algorithm is given depending on its performance index using382

‘#’ symbol followed by corresponding rank (from 1 to 3). For example ‘#1’383

indicates the best result with respect to the corresponding performance index.384

The best results are also marked as bold.385

It is seen from the experimental outcome of synthetic data (Table 2)386

that the proposed APSSC algorithm outperforms the other semi-supervised387
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counterpart (LDS, CCCP-TSVM and SS-SVM), for Annular, Pat2 and Spi-388

ral data sets in terms of classification accuracy, macro averaged F1 (denoted389

as, Macro F1 in tables) and micro averaged F1 (denoted as, Micro F1 in ta-390

bles). In particular, the accuracy of the APSSC for the Spiral data is 100%.391

Also the small standard deviation of the average results produced by APSSC392

suggest the robustness of the proposed method with variation of the training393

sets. Though for Ellipse data set LDS performs slightly better than other394

semi-supervised methods, still the accuracy produced by APSSC is as high395

as 99.61%. The very high value (> 0.9) of Macro F1 and Micro F1 measure396

produced by APSSC in case of Annular, Ellipse, and Spiral data indicates397

the very high (classwise) precision, and recall rates. Analyzing the high ac-398

curacy produced by the proposed method trained with very limited training399

samples (only 5% of the total data) on synthetic data sets with arbitrary400

geometrical classes suggests the effectiveness of the proposed method in cap-401

turing the different geometrical shapes having non linearly separable and non402

convex class distributions. In these cases, the performance of the supervised403

classifiers (MLP and SVM) trained with limited training samples are very404

poor.405

For real life data sets (Table 3), the proposed APSSC is observed to406

perform better in terms of classification accuracy, macro averaged F1 and407

micro averaged F1 in three cases namely Telugu Vowel, Balance Scale and408

Sonar data sets. The improvement found by the proposed method over other409

methods is significantly high. For example, the improvement of the proposed410

algorithm in Telugu Vowel, Balance Scale and Sonar data compared to the411

second best method are 3.07%, 2.78%, and 4.39%, respectively. Whereas,412
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in case of the WBC data set the accuracy produced by the APSSC is only413

0.24% less as compared to the best one (CCCP-TSVM).414

It is worth mentioning here that, as expected, all the semi-supervised415

classifiers clearly dominate the supervised classifiers (MLP and SVM). This416

is because the use of the unlabeled patterns really helps to gain accuracy417

in semi-supervised case even though the number of training samples used in418

both the cases (supervised and semi-supervised) are the same.419

As mentioned earlier, results of the investigation (in terms of percentage420

accuracy) are statistically validated using the paired t-test [23] performed421

with the proposed APSSC versus other semi-supervised methods at 5% level422

of significance. Results of paired t-test in terms of p-score are reported in423

Table 4. Statistically significant results in terms of p-score of the paired424

t-test (at 5% level of significance) are marked as bold in Table 4. The up-425

arrow(↑), and down-arrow (↓) are also shown in the table along with the426

p-scores to indicate, respectively, the significant improvement found by the427

proposed method APSSC (compared to the other semi-supervised method),428

and significant improvement found by the other method (compered to the429

proposed APSSC) during the paired t-test.430

From the paired t-test it is found that in case of Annular and Ellipse data431

sets improvement in performances of the proposed APSSC method is sta-432

tistically significant (at 5% level) compared to SS-SVM method. However,433

performance of the LDS method for Ellipse data set is found to be signifi-434

cantly better than that of the APSSC method. Whereas, for Pat2 and Spiral435

data sets, the proposed method significantly outperformed two other semi-436

supervised methods, namely, SS-SVM and LDS. Statistical analysis of the437

23



results obtained in real life data sets reveals that the proposed APSSC sig-438

nificantly dominates all the three semi-supervised methods in cases of Telugu439

Vowel and Sonar data sets. Also for the Balance Scale data, the performance440

of the proposed APSSC is significantly better compared to those of the LDS441

and SS-SVM methods. However, CCCP-TSVM produces significant better442

performances compared to the proposed one in Ionosphere, and WBC data443

sets. Though, for WBC data, the proposed method showed significant statis-444

tical improvement in performance compared to LDS method. In summary,445

from Table 4 it is found that out of a total of 27 (statistical) tests, in 15 cases446

(shown in ↑) the proposed method showed statistically significant improve-447

ment in performances compared to the other methods. Whereas, for 8 cases448

(shown in normal font without arrow), there is no statistical difference of the449

performances of the proposed one to those of the other ones, and only for 4450

cases (shown in ↓) the other semi-supervised methods performed statistically451

better than the proposed method.452

Note that, the performance of the semi-supervised methods (particularly,453

LDS and CCCP-TSVM) is sensitive to a number of (manual) parameter454

settings, and the parameter tuning also varies with data sets. The proposed455

APSSC on the other hand does not have any free parameter to be set by456

the users manually. Hence, the proposed method has significant advantage457

compared to the other semi-supervised methods.458

Execution time is the least for CCCP-TSVM for most of the data sets.459

However, the execution time of the proposed algorithm is moderate.460

461
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Table 2: Experimental results for synthetic data

Data Method % Accuracy Macro F1 Micro F1 Time (in second)

MLP 50.75 0.444296 0.476262 15.92

(5.91744676) (0.135712944) (0.133639028) (0.074836414)

SVM 57.13533 0.52047 0.557013 3.7

(6.113701984) (0.038274) (0.04104) (0.05172)

Annular LDS 92.8449487 0.921006 0.93052 18.49

(3.249123293) (0.020370) (0.028701) (0.372124248)

CCCP-TSVM 94.057 #2 0.940297 #2 0.944773 #2 3.97

(3.805113) (0.034229) (0.0353177) (0.18274)

SS-SVM 92.976 #3 0.92507 #3 0.93516 #3 57.41

(1.595021421) (0.012046) (0.013301) (1.307)

APSSC 94.93233 #1 0.948773 #1 0.9517508 #1 13.34

(0.811250596) (0.0083383) (0.00805861) (0.244400491)

MLP 85.61713 0.856166 0.866189 26.06

(3.4172) (0.0025669) (0.0028241) (3.703)

SVM 86.86 0.860428 0.869185 10.53

(3.4172) (0.0023669) (0.0027075) (1.15733)

Ellipse LDS 99.9897126 #1 0.9988 #1 0.9994261 #1 139.68

(0.2401525) (0.001747) (0.002139) (8.67633282)

CCCP-TSVM 99.830522 #2 0.998066 #2 0.998524 #2 9.82

(0.534772203) (0.005335697) (0.00525842) (0.7391)

SS-SVM 99.227713 0.992187 0.992244 92.05

(0.474888166) (0.001937) (0.0020625) (3.114)

APSSC 99.61713 #3 0.996166 #3 0.996189 #3 35.29

(0.2865596) (0.00286905) (0.002839528) (2.011096484)

MLP 54.88037 0.449872 0.478673 9.02

(5.375179833) (0.09194651) (0.099698202) (0.02964681)

SVM 52.39 0.427153 0.449557 2.73

(4.01755) (0.072265) (0.070521) (0.1704)

Pat2 LDS 67.7976998 0.65829 0.664493 5.25

(0.812484618) (0.09194651) (0.099698202) (0.224279856)

CCCP-TSVM 69.92207 #2 0.68853 #2 0.689472 #2 2.06

(3.07411) (0.03285) (0.03432) (0.1402)

SS-SVM 68.497 #3 0.667205 #3 0.675106 #3 7.35

(2.057976622) (0.02663) (0.02908) (0.573)

APSSC 71.92585 #1 0.707392 #1 0.711016 #1 4.94

(0.0905977) (0.00776266) (0.006875903) (0.19262448)

MLP 56.29472 0.544723 0.564783 9.59

(4.37150531) (0.068508581) (0.046819013) (0.027942202)

SVM 59.537 0.574723 0.584783 2.79

(3.0627501) (0.048508581) (0.0510839) (0.500963617)

Spiral LDS 99.3887511 0.993897 0.99805 12.09

(0.487125227) (0.008184) (0.0093051) (0.125439068)

CCCP-TSVM 99.90275 #2 0.998074 #2 0.999143 #2 2.91

(0.037845215) (0.0006382) (0.00065066) (0.72095)

SS-SVM 99.518713 #3 0.99614 #3 0.99872 #3 28.32

(0.429304046) (0.007914) (0.008605) (2.017)

APSSC 100 #1 1 #1 1 #1 19.45

(0) (0) (0) (6.174734773)
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Table 3: Experimental results for real life data

Data Method % Accuracy Macro F1 Micro F1 Time (in second)

MLP 79.69972 0.771171 0.782185 84.10

(7.430090652) (0.100609496) (0.089924271) (0.348435169)

SVM 77.5736 0.7572257 0.764291 10.66

(5.8205) (0.057922) (0.061530) (1.757)

Ionosphere LDS 91.2455193 0.9125523 1.9730894 1.97

(1.804415569) (0.020557) (0.031433) (0.128268035)

CCCP-TSVM 93.524 #1 0.935217 #1 0.941882 #1 0.77

(3.170664) (0.031192) (0.034704) (0.015)

SS-SVM 92.15 #2 0.919527 #2 0.923172 #2 5.44

(2.377346794) (0.026204) (0.028137) (0.702)

APSSC 91.77 #3 0.9164 #3 0.9171 #3 3.12

(1.4300906) (0.008009) (0.0076992) (0.226394665)

MLP 70.49638 0.650171 0.67893 16.65

(5.306315094) (0.064746772) (0.055014359) (0.031653682)

SVM 65.71342 0.607968 0.619053 3.255

(5.306315094) (0.064746772) (0.055014359) (0.571)

Telugu Vowel LDS 73.7933292 0.708732 0.720191 6.39

(4.701421198) (0.037619) (0.039685) (0.101618292)

CCCP-TSVM 78.80682 #3 0.7669573 #3 0.7746102 #3 3.02

(3.7703) (0.05177) (0.058048) (0.1486003)

SS-SVM 80.1 #2 0.7847029 #2 0.788131 #2 12.33

(2.647850281) (0.028316) (0.035291) (1.28)

APSSC 83.17 #1 0.8105 #1 0.8183 #1 9.39

(1.306315094) (0.01047467) (0.01045014) (0.112917669)

MLP 81.3131 0.69203 0.71 11.8327

(3.450873883) (0.054379174) (0.053609467) (0.037680086)

SVM 76.54858 0.58904 0.59176 0.75

(3.449413067) (0.013060756) (0.01582411) (0.134919276)

Balance Scale LDS 85.5219 0.714331 0.72354 3.06

(3.033736355) (0.054379174) (0.053609467) (0.16965603)

CCCP-TSVM 86.4926 #2 0.73583 #2 0.748701 #2 0.57

(4.01775) (0.0440705) (0.0511604) (0.042)

SS-SVM 85.776 #3 0.727012 #3 0.73033 #3 5.07

(2.817399116) (0.0265512) (0.026827) (1.46)

APSSC 89.27 #1 0.7914 #1 0.7977 #1 2.39

(2.450873883) (0.013018994) (0.015757597) (0.134919276)
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Table 3: Continued.
Data Method % Accuracy Macro F1 Micro F1 Time (in second)

MLP 59.54546 0.566943 0.578235 103.15

(9.829256854) (0.124155419) (0.127092305) (1.275527151)

SVM 55.5556 0.518773 0.525311 1.27

(5.218325508) (0.10806338) (0.1099551) (0.266801403)

Sonar LDS 62.8509299 0.61840 0.61982 0.33

(4.0515366) (0.095227) (0.0988044) (0.118601667)

CCCP-TSVM 65.735 #3 0.64701 #3 0.65491 #3 0.19

(4.707361) (0.0986613) (0.104279) (0.05117)

SS-SVM 67.035 #2 0.66057 #2 0.66388 #2 2.55

(2.916623809) (0.072153) (0.072807) (0.437)

APSSC 71.42 #1 0.6867 #1 0.6894 #1 1.27

(2.89644287) (0.021920328) (0.027902532) (0.266801403)

MLP 92.78891 0.918684 0.921628 25.18

(4.077845215) (0.048510624) (0.044944388) (0.111789683)

SVM 95.146379 0.955182 0.955642 4.13

(0.699730146) (0.007923006) (0.007307063) (3.007353449)

WBC LDS 96.8146048 0.968061 0.971522 3.33

(0.406269611) (0.005105233) (0.005105233) (0.154653888)

CCCP-TSVM 97.8146048 #2 0.9779224 #2 0.9836402 #2 1.10

(0.5103577) (0.0055022) (0.00591107) (0.0602)

SS-SVM 97.984 #1 0.981307 #1 0.987071 #1 7.91

(0.649208) (0.006207) (0.006359) (1.05)

APSSC 97.57 #3 0.970376 #3 0.971952 #3 5.40

(0.6298) (0.0025074) (0.0035915) (0.2072)

Table 4: Results of paired t-test performed with proposed APSSC versus

other semi-supervised methods in terms of p-score

Data APSSC Vs LDS APSSC Vs CCCP-TSVM APSSC Vs SS-SVM

Annular 0.082 0.4963 0.001 ↑
Ellipse 0.0021 ↓ 0.3449 0.0251 ↑
Pat2 1.58 ×10−7 ↑ 0.0835 7.48 ×10−4 ↑
Spiral 0.0043 ↑ 0.3378 0.0063 ↑

Ionosphere 0.1123 0.0285 ↓ 0.4398

Telugu Vowel 9.79 ×10−5 ↑ 0.0173 ↑ 0.0301 ↑
Balance Scale 0.0107 ↑ 0.1223 0.0086 ↑

Sonar 0.0014 ↑ 0.0254 ↑ 0.0207 ↑
WBC 0.0138 ↑ 0.0492 ↓ 0.0085 ↓
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4. Conclusions462

This article presents a novel ‘self-training’ based semi-supervised classi-463

fication algorithm using the metaphore of the aggregation pheromone found464

in natural behavior of real ants. The performance of the proposed method465

is compared with two supervised (namely, MLP and SVM) and three semi-466

supervised classification techniques (namely, LDS, CCCP-TSVM, and SS-467

SVM). The proposed method has the following advantages. (i) No free pa-468

rameters need to be set by the users, (ii) during the self-training process469

in each iteration the method updates the covariance matrix of each class,470

and thereby it is able to capture the shapes of the classes, (iii) as the algo-471

rithm has no assumption regarding the data distribution, therefore, it can472

be applied for data sets having arbitrary distribution. On the other hand,473

the other semi-supervised methods have many parameters to be set by the474

user, and the optimal performance of the algorithm is sensitive to the choice475

of the parameter values (which varies with different data sets). Therefore,476

it is extremely difficult and time consuming to find the proper tuning of477

the parameters. In this respect also, the proposed APSSC has a significant478

advantage over the other semi-supervised counterpart.479

The performance of the proposed semi-supervised algorithm is tested us-480

ing a number of real life and synthetic data sets. Statistical significance of481

the experimental results (of different data sets) obtained using various semi-482

supervised methods is evaluated using paired t-test. Results of investigation483

justify the potentiality of the proposed APSSC algorithm in terms of classifi-484

cation accuracy, macro and micro averaged F1 measures consuming moderate485

execution time. In most of the cases, the improvement in results obtained486
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by the proposed method are found to be statistically significant compared to487

its other semi-supervised counterparts.488

Future work of the proposed method may be directed towards solving real489

world problems like microarray gene classification, landuse map generation490

from multi-spectral remotely sensed images etc.491
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-> Proposed novel ant based semi supervised classification algorithm 
 
-> The algorithm is self-training in nature 
 
-> Proposed method is parameter free with no assumption regarding data distribution 
 
-> Method can adaptively capture arbitrary shapes of classes 
 
-> Potentiality of the method is justified from the experimental results. 




