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Clustering is an important unsupervised learning technique widely used to discover the inherent structure
of a given data set. Some existing clustering algorithms uses single prototype to represent each cluster,
which may not adequately model the clusters of arbitrary shape and size and hence limit the clustering
performance on complex data structure. This paper proposes a clustering algorithm to represent one
cluster by multiple prototypes. The squared-error clustering is used to produce a number of prototypes to
locate the regions of high density because of its low computational cost and yet good performance. A sep-
aration measure is proposed to evaluate how well two prototypes are separated. Multiple prototypes with
small separations are grouped into a given number of clusters in the agglomerative method. New proto-
types are iteratively added to improve the poor cluster separations. As a result, the proposed algorithm
can discover the clusters of complex structure with robustness to initial settings. Experimental results on
both synthetic and real data sets demonstrate the effectiveness of the proposed clustering algorithm.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Clustering is the unsupervised classification of patterns into
groups [1]. It is widely used in data analysis such as data mining,
pattern recognition and information retrieval. The Voronoi diagram
also provides a means of naturally partitioning space into subre-
gions to facilitate spatial data analysis and has been applied for
data clustering [2–5]. But this technique often implies emphasis on
the shape and arrangement of patterns, i.e., the geometric aspect
of groups. Clustering techniques have been widely studied in Refs.
[6–19]. They suggest more on grouping behavior and can be broadly
classified into hierarchical or partitional clustering [1].

Hierarchical clustering is a procedure of transforming the prox-
imity matrix of the data set into a sequence of nested groups in
an agglomerative or divisive manner. The agglomerative hierarchi-
cal clustering has been widely studied as it allows for more feasible
segments to be investigated [7–11]. The Single-link [7], Complete-link
[8] and average-link [7] algorithms produce a sequence of clusterings
based on the rank order of proximities. The Single-link and Complete-
link algorithms use the distance between two closest and farthest
points of two clusters as the cluster distance, respectively. Depen-
dence on a few data points to measure the cluster distance makes
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these algorithms sensitive to noise. The average-link algorithm is
more robust to noise by using the average distance of all pairs of
patterns from different clusters as the cluster distance. A CURE algo-
rithm [9] represents each cluster with a certain fixed number of well
scattered points and shrinks these points toward the cluster center
by a specified fraction. This algorithm achieves an improvement of
noise robustness over the Single-link algorithm. A Chameleon algo-
rithm [10] partitions a constructed k-nearest neighbor graph into a
number of subclusters followed by dynamically merging the subclus-
ters. In general, the hierarchical clustering algorithms can provide
an easy understanding of the inherent structure of the data set. But
they often require high computational cost and large memory space
which make them inefficient for large data sets.

Partitional clustering produces a single partition of the data set
which aims to optimize a certain cluster criterion function. Many
partitional clustering algorithms have been proposed based on
different cluster criterions [20–26]. In fact, each cluster criterion im-
poses a certain structure on the data set. The model-based clustering
algorithms assume that the data distribution of a cluster fit a given
probability density model such as Gaussian model [20,21]. They can
discover the hyper-ellipsoidal clusters. But assumption of a static
model makes them ineffective to adequately capture the character-
istics of individual clusters, especially when the data set contains the
clusters of diverse shapes and densities. Some nonparametric clus-
tering algorithms based on density and grid are proposed to identify
clusters by searching the regions of high data density separated by
sparse valleys [22–24]. Although these algorithms can find clusters
of arbitrary shape, their performances usually degrade for the high
dimensional data set. The squared-error clustering algorithm is
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based on squared error criterion [1,25,30]. It tends to work well with
compact clusters of hyper-spherical shape and similar size and is
widely studied and used [25–31]. Some new distance measures are
proposed to detect clusters with specific characteristics [28,29]. Be-
sides the squared error, other criterions such as the Davies–Bouldin
index [32] and cluster variance are imposed as a global criterion to
determine the optimum number of clusters [26,31]. Most partitional
clustering algorithms require less memory space and computation
cost than the hierarchical clustering algorithms. But their cluster-
ing results are usually not as good as those of hierarchical clus-
tering. Recently, support vector clustering is proposed to generate
the cluster boundaries of arbitrary shape by transforming the orig-
inal space to a high dimensional space with a kernel function [19].
Although this algorithm can solve some difficult clustering problems,
it is not easy to choose a suitable kernel parameter and the cluster-
ing result cannot provide information about the representation of
cluster.

The hybrid clustering algorithms are proposed to combine the
merits of partitional and hierarchical clustering algorithms for bet-
ter data grouping [12–15,33,34]. They usually partition the data set
into a relatively large number of small subclusters and construct a
hierarchical structure for them based on a certain cluster distance
(similarity) measure. A given number of clusters can be found on
the hierarchical structure. A BIRCH algorithm [12] arranges the data
set into a number of subclusters represented by cluster feature (CF)
vectors in a tree structure. It is efficient for large data sets.

In some applications, we may need to efficiently represent data
and reduce the data complexity through clustering. A single pro-
totype for each cluster, e.g., the centroid or medoid of cluster in
K-means type clustering, may not adequately model the clusters of
arbitrary shape and size and hence limit the clustering performance
on the complex data structure. This paper proposes a clustering
algorithm to represent a cluster by multiple prototypes. The re-
maining of this paper is organized as follows. Section 2 reviews the
related work along with the discussion of their differences. Section 3
presents the proposed multi-prototype clustering algorithm. In
Section 4, the proposed algorithm is tested on both synthetic and
real data sets and the results are compared to some existing clus-
tering algorithms. Section 5 gives the conclusions.

2. Related work

The squared-error clustering algorithm produces a partition of
the data set which aims to minimize the squared error [1,25,30].
Let X = {X1,X2, . . . ,XN} where Xi = [xi,1, xi,2, . . . , xi,M] ∈ RM be a set
of N patterns represented as points in M-dimensional space and K
be the number of clusters. The cluster prototypes are denoted by
a set of vectors Z = {Z1, Z2, . . . , ZK }. The squared error function is
computed as

E(U, Z) =
K∑
l=1

N∑
i=1

ui,ld
2(Xi, Zl), (1)

subject to

K∑
l=1

ui,l = 1, 1� i�N, (2)

where ui,l ∈ {0, 1} and ui,l = 1 indicates that pattern i belongs to
cluster l. d(Xi, Zl) is the distance between pattern i and the prototype
of cluster l and Euclidean distance measure is often used. K-means
clustering algorithm is a simple squared-error clustering algorithm
with the number of clusters prespecified [25,27]. The processing
steps of the K-means clustering algorithm can be summarized as

HPCq Cl

Zq
Zl

Fig. 1. The separating hyperplane of cluster Cq and Cl represented by prototype Zq
and Zl , respectively, in squared-error clustering.

follows [1]:

(1) Randomly choose K cluster prototypes.
(2) For each pattern, compute its distances to all prototypes and

assign it to the closest cluster as

ui,l =
⎧⎨
⎩
1 if d2(Xi, Zl) = K

min
t=1

d2(Xi, Zt),

0 otherwise.
(3)

(3) Update the prototype of each cluster as

Zl =
∑N

i=1ui,lXi∑N
i=1ui,l

for 1� l�K. (4)

(4) Go to step (2) until convergence is achieved.

The K-means clustering algorithm has been widely used in data
partitioning because of its low computation and memory space re-
quirements and yet good performance in finding the regions of high
density. But the result is sensitive to the initial partition. ISODATA
(iterative self-organizing data analysis techniques) algorithm alle-
viates this problem by iteratively deleting small clusters, merging
similar clusters and splitting large clusters until a desired partition
is obtained [30]. However, ISODATA algorithm uses single prototype
(i.e., centroid) to represent each cluster, which may not adequately
model the clusters of arbitrary shape and size no matter how well
the data set is partitioned. In the squared-error clustering, the sep-
arating boundary for each pair of clusters is the hyperplane through
the midpoint of the cluster prototypes and perpendicular to the line
connecting these prototypes (see Fig. 1). It may reside in the re-
gion of high density for complex clusters (e.g., the separating hyper-
planes for two clusters of different size in Fig. 2a and arbitrary shape
in Fig. 2c). The hybrid algorithm [13] begins with K-means cluster-
ing to partition the data set into a set of subclusters and apply the
Single-link algorithm to merge them into a given number of clusters
according to their cohesions. More complex boundary can be con-
structed to separate the clusters. But the boundary may still reside
in the high-density region resulting in poor cluster separation when
the initial partition of K-means clustering is not properly set.

We propose a multi-prototype clustering algorithm to discover
the clusters of complex structure. The proposed algorithm begins
with the squared-error clustering to partition the data set into a
relatively large number of high-density subclusters represented by
prototypes. A new cluster separation criterion is proposed to eval-
uate how well two prototypes are separated by the sparse region.
Multiple prototypes with poor separations are grouped to model a
given number of clusters in the agglomerative method. New pro-
totypes, i.e., additional prototypes, are iteratively added to improve
the poor cluster boundaries until all of them move to sparse region.
Therefore, the significant difference of the proposed method from
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Fig. 2. Clustered data represented by different marks and prototypes denoted by text `Zl ': (a) poor result with two clusters of different size modelled by `Z1' and `Z2',
(b) good result with the small cluster modelled by `Z2' and the large cluster modelled by `Z1' and `Z3', (c) poor result with two clusters of arbitrary shape modelled by `Z1'
and `Z2' and (d) good result with one cluster modelled by `Z1,Z2,Z4,Z8' and another cluster modelled by `Z3,Z5,Z6,Z7,Z9'.

others is that we propose a new cluster separation criterion and our
algorithm is targeted at improving the cluster separation.

3. The proposed clustering algorithm

In this section, we first propose a separation measure to evalu-
ate how well two cluster prototypes are separated. Next, we present
the proposedmulti-prototype clustering algorithm based on the sep-
aration measure. Finally, the complexity analysis of the proposed
algorithm is provided.

3.1. Separation measure

The separation of two clusters measures how well the clusters
are separated. Conceptually, large separation of two clusters indi-
cates less inclination of integrating these clusters into a larger one.
It is also called cluster distance or similarity in the literature [7–10].
The distances between the closest or farthest data points of two
clusters are used to measure the cluster separation in the agglom-
erative clustering algorithms [7,8]. They are not only computation
expensive but also sensitive to noise due to the dependence on a
few points. In the prototype-based clustering algorithms, the sepa-
ration of two clusters (or prototypes) is often measured using the
distance between their prototypes. Although this measure is compu-
tationally efficient and robust to noise, it cannot distinguish the clus-
ters of different sizes and shapes. For example, four pairs of clusters
in Fig. 3 have equal prototype distances, but their separations are
obviously different. A measure of within-to-between cluster spread
Rq,l = (e(Zq) + e(Zl))/d(Zq, Zl), where e(Zl) is the within-cluster vari-
ance and d(Zq, Zl) is the distance between the prototype Zq and Zl,
is introduced to evaluate the cluster separation [32]. Including the
information of within-cluster variance solves the problem of cluster
size but leave the cluster shape problem unsolved. For example, the
R of two clusters in Fig. 3d is 0.2931 which is larger than that in
Fig. 3c, 0.2455. But two clusters in Fig. 3d are obviously better sep-
arated than those in Fig. 3c. A similarity measure of two clusters is

proposed by assuming the data distribution of each cluster follows a
static model [13]. Although this measure is effective in some cases,
it may not adapt to the internal characteristics of the clusters espe-
cially when the data set contains the clusters of diverse shapes and
distributions.

The cluster prototypes produced by the squared-error clustering
are often located in the high-density region. Two prototypes con-
nected by a region of high density are more likely to belong to one
cluster than those connected by a sparse region. We propose a sep-
aration measure based on the data distribution between two cluster
prototypes to evaluate how well the prototypes are separated by a
sparse region. Firstly, two cluster prototypes are connected by a line
segment.The data points of two clusters are projected onto the line
connecting the prototypes since the separating hyperplane is per-
pendicular to it. Let Zq and Zl denote the prototypes of cluster Cq and
Cl, respectively. The projections of the data points are computed by

x′ = (X − m0)
T (Zq − Zl)

‖Zq − Zl‖2
, X ∈ Cq ∪ Cl, (5)

wherem0=(Zq+Zl)/2 is corresponding to the origin of the projections
x′. Two cluster prototypes are projected at the positions − 1

2 and 1
2

of the line.
Subsequently, we compute the distribution of the projections

between the prototypes. For simplicity, we use the histogram to
compute the 1-D projected data distribution. The bin center of the
histogram is confined in the range of [−1 1]. To obtain the data densi-
ties at the prototypes and origin, the positions −1, − 1

2 , 0,
1
2 and 1 are

specified as the bin centers. 4B+1(B�1) bins of equal size (i.e., 1/2B)
are formed and the number of projections x′ falling in each bin is
counted to produce the histogram. Fig. 3 shows some examples of the
1-D projected distributionwhere B is set to 6. Let f (c) be the data den-
sity at the position c. The data distribution between the prototypes
is denoted by the 2B + 1 densities

{
f (− 1

2 ), f (− 1
2 + 1/2B), . . . , f ( 12 )

}
.

The smoothness of the data distribution depends on the bin size. To
obtain a smooth distribution, Gaussian filter is repetitively applied



692 M. Liu et al. / Pattern Recognition 42 (2009) 689 -- 698

Fig. 3. Four pairs of clusters and their 1-D projected distributions. Their separations are: (a) sp = 1 (b) sp = 0.8219 (c) sp = 0.6372 and (d) sp = 0.9930.

on these data densities until only one local minimum exists on
them.

Finally, the separation is computed based on the projected data
distribution between the prototypes. If the minimum of the 2B + 1
densities between two prototypes is large, the prototypes are con-
nected by a relatively high-density region and hence are inclined to
belong to one cluster. Based on the minimum density normalized by
the average of those at two prototypes, the separation is computed by

spq,l = 1 −
2min2B+1

k=1 f
(

−1
2

+ k − 1
2B

)

f
(

−1
2

)
+ f

(
1
2

) . (6)

Large spq,l indicates that cluster C
l and Cq or their prototypes are

well separated by a sparse region. Some examples of the separa-
tions between two clusters are shown in Fig. 3. Instead of assuming
a static distribution model, the data distribution is automatically es-
timated in this separation measure which can adapt to the internal
characteristics of individual clusters.

The separation in Eq. (6) is based on the minimum data density so
that the separating boundary is assumed at the hyperplane through
the most sparse region between two prototypes. However, two clus-
ters are separated by the hyperplane through the midpoint of the
prototypes in practice. By replacing the minimum density with the
density at the midpoint of two prototypes in Eq. (6), we compute
the separation of two prototypes based on the current separating
hyperplane as

sp0q,l = 1 − 2f (0)

f (− 1
2 ) + f ( 12 )

. (7)

If sp0q,l is small, the separating hyperplane resides in the high-

density region between two prototypes. Obviously, sp0q,l� spq,l.

3.2. The proposed multi-prototype clustering algorithm

For a given data set, the natural clusters often exist in the con-
tinuous regions of relatively high density separated by the sparse
areas in the pattern space. Using single prototype to represent each
cluster often result in the cluster boundaries residing in the region
of high density (see Fig. 2a and c). By adding one or more prototypes

to model the clusters, the cluster boundary can move to the sparse
region of the pattern space (see Fig. 2b) or a more complex boundary
can be constructed to separate the complex clusters (see Fig. 2d). We
propose a clustering algorithm in which multiple prototypes coexist-
ing within a continuous region of relatively high density are grouped
to model the cluster and new prototypes are iteratively added to
improve the poor cluster boundaries.

Firstly, we partition the data set into a relatively large number
of small subclusters with each one represented by a prototype. Let
P (K�P <N) be the number of prototypes for the K clusters. The
squared-error clustering has good performance in finding the regions
of high density with high computational efficiency and low mem-
ory space. It is thus employed in this stage to produce P prototypes.
However, the P prototypes may not be appropriately distributed in
the high-density regions. Some prototypes may represent the large
subclusters consisting of the patterns belonging to different clusters
and form a connection between two natural clusters. In addition,
some prototypes may reside in the outliers which do not belong to
any cluster. Thus, we try to add prototypes in the large subclusters
and remove the noise prototypes. For each subcluster l, we com-
pute the within-cluster squared error El and the number of patterns
Nl. The large subcluster usually has both large Nl and El while the
noise subcluster often has small Nl. We remove the noise proto-
types with Nl <Nmin (Nmin = 0.3N/P in our experiments) and add a
new prototype in the large subcluster with Nl >2.5Nmin and El > Emax

(Emax = ∑P
k=1Ek/P + �std(Ek),� >0). The squared-error clustering is

repeated until no prototypes are added or removed.
Next, multiple prototypes coexisting within a continuous region

of relatively high density are grouped to model the cluster based on
the separation measure in Eq. (6). We compute the separation spq,l
between each pair of prototypes and form a separation matrix of
P×P. If spq,l is small, prototype q and l coexist in a high-density region
and can be grouped into one cluster. The separation of two multi-
prototype clusters Cm and Cn is defined as the smallest separation
of two prototypes from different clusters

cspm,n = min
Zl∈Cm ,Zq∈Cn

spl,q. (8)

In cluster organization, each prototype forms a cluster initially.
Two clusters with the smallest separation are iteratively grouped
until K clusters are obtained. This process is similar to the ag-
glomerative Single-link clustering [7]. The P prototypes are finally
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organized to represent K clusters in the agglomerative method. Thus,
the separating boundary of two clusters is composed of multiple
hyperplanes determined by the pairs of prototypes from different
clusters. For example, the separating boundary of two clusters in
Fig. 2d is composed of five hyperplanes determined by the pairs
of prototypes: {Z7, Z8}, {Z9, Z8}, {Z9, Z2}, {Z6, Z1}, {Z6, Z4} and {Z5, Z4}.
By grouping multiple prototypes to represent a cluster, complex
boundaries can be obtained to separate the non-linearly separable
clusters.

The last step is to improve the poor cluster boundaries. The
cluster boundary may not reside in the sparse region between two
clusters due to the poor initial settings. Adding new prototype can
push the poor cluster boundary move to the sparse region or con-
struct a more complex boundary to separate the clusters. The sp0q,l in

Eq. (7) is used to check the separation of cluster hyperplane. If
sp0q,l < T, the cluster separating hyperplane is poor. We compute sp0q,l
for each pair of prototypes from different clusters and sort the poor
ones (sp0q,l < T) in increasing order. For each pair of prototypes sorted

by sp0q,l, if Nq+Nl >3Nmin and the separating boundary of the clusters

the prototypes belong to has no new prototype already been added
to, a new prototype is added to improve the poor cluster boundary.
The new prototype is computed as the mean vector of the patterns
whose projections x′ locate in [− 1

4 ,
1
4 ].

After adding new prototypes, the multi-prototype clustering al-
gorithm repeats the above steps until the prototypes do not change.
Each pattern in the data set belongs to the cluster consisting of the
closest prototype. The processing steps of the proposed algorithm
can be summarized as:

(1) Initially set P�K and randomly choose P cluster prototypes from
the data set.

(2) Apply the squared-error clustering on the data set to obtain P
subclusters with each one represented by a prototype.

(3) Remove the prototypes of subclusters with Nl <Nmin and de-
crease P accordingly. Add a new prototype in the large subclus-
ters with Nl >2.5Nmin and El > Emax and increase P accordingly.
If there are prototypes removed or added, go to step (2).

(4) Calculate the separations spq,l between each pair of prototypes
and produce a separation matrix.

(5) Organize the P prototypes into K clusters based on the separation
matrix. Two clusters with the smallest separation are iteratively
grouped into one cluster until K clusters are obtained.

(6) Compute the separation sp0q,l between each pair of prototypes

from different clusters and sort the poor ones (sp0q,l < T) in in-

creasing order.
(7) For each pair of prototypes sorted by sp0q,l, if Nq + Nl >3Nmin

and the separating boundary of the clusters the prototypes be-
long to has no new prototype already been added to, add a new
prototype between these two prototypes and increase P accord-
ingly. The new prototype is computed as the mean vector of the
patterns whose projections x′ locate in[− 1

4 ,
1
4 ].

(8) Go to step (2) until the prototypes do not change.
(9) Output the clustering result.

3.3. Complexity analysis

Let m be the number of iterations in the squared-error clustering.
The time complexity is O(NPm) for partitioning the data set to pro-
duce P prototypes. It is O(P2 log P) for the prototype organization
which is similar to the Single-link algorithm. Thus, the time com-
plexity of the proposed clustering algorithm is O(NPm + P2 log P).
The space complexity is O(N) for the partitioning of the data set
in the squared-error clustering. In the prototype organization, the

space complexity is O(P2) because a separation matrix of size P × P
has to be stored. Thus, the space complexity of the proposed clus-
tering algorithm is O(N + P2). The number of prototypes P is much
smaller than N. Thus, the proposed clustering algorithm requires less
memory space and computation cost than the commonly used hier-
archical clustering algorithms such as Single-link and Complete-link
while preserves much of the speed and efficiency of the squared-
error clustering algorithm.

4. Experimental results and comparisons

The proposed multi-prototype clustering algorithm can be ap-
plied for any numerical data set. We conduct a series of experiments
on both synthetic and real data sets to demonstrate the clustering
performance of the proposed algorithm. The results are compared
to some existing clustering algorithms.

4.1. Synthetic data

Clusters on two-dimensional (2D) data sets are easy to visualize
and compare. This section tests the proposed clustering algorithm on
five synthetic 2D data sets. For good visualization of the clustering re-
sults, we represent the clustered data by different marks and denote
the prototypes with texts (For example, `Zl' denotes prototype l).

To illustrate the process of the proposed algorithm, we first con-
sider the data set shown in Fig. 2c which consists of two clusters of
arbitrary shape and size. The clustering result with P = K (K = 2) is
shown in Fig. 2c. K prototypes cannot adequately model the clus-
ters. Our clustering algorithm initializes P as 5 and set T to 0.8. Since
only two clusters exist in the data set, a new prototype is added in
each iteration. Fig. 4a shows an initial clustering state of five proto-
types produced by the squared-error clustering. The separation spq,l
between each pair of the five prototypes is computed and Table 1
shows the separation matrix. In cluster organization, prototype Z1
and Z2 with the smallest separation are first grouped into one cluster
{Z1, Z2}. The second smallest separation is sp3,4 so that Z3 and Z4 are
organized into another cluster {Z3, Z4}. The left prototype Z1 are orga-
nized into the same cluster as Z5 i.e. {Z1, Z2, Z5} since sp1,5 is the third
smallest separation. The cluster boundary is composed of the hyper-
planes separating four pairs of prototypes, {Z3, Z2}, {Z3, Z1},{Z4, Z1}
and {Z4, Z5}. We compute the sp0q,l between these pairs of prototypes.

A new prototype is added between Z1 and Z4 since the sp01,4=0.4253
is the smallest among them. If the above steps are repeated, an in-
termediate clustering state of eight prototypes is obtained as shown
in Fig. 4b. Since the smallest separation sp0q,l between two clusters is

sp04,5 =0.7460 < T, a new prototype is added between Z4 and Z5. The
clustering algorithm terminates at P=10 when the smallest separa-
tion between two clusters sp04,10 =0.8400 > T. Fig. 4c shows the final
clustering result of 10 prototypes. We can see that two clusters are
correctly discovered.

In addition, we apply the proposed algorithm on four 2D data sets
which are often used to test the clustering algorithms [9,10,12,13,22].
Fig. 5 shows the four 2D data sets denoted as DB1, DB2, DB3 and
DB4, respectively. DB1 is obtained from Ref. [9]. It contains one big
and two small circles and two ellipsoids connected by a chain of

Table 1
The separation matrix of five prototypes in Fig. 4a

sp Z1 Z2 Z3 Z4 Z5

Z1 – 0.0330 0.8388 0.5747 0.3474
Z2 0.0330 – 0.8426 0.9008 1.0000
Z3 0.8388 0.8426 – 0.2663 1.0000
Z4 0.5747 0.9008 0.2663 – 0.8579
Z5 0.3474 1.0000 1.0000 0.8579 –
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Fig. 4. An illustrative example of our clustering algorithm where `◦` denotes the new added prototype: (a) initial clustering state of five prototypes, (b) an intermediate
clustering state of eight prototypes and (c) final clustering result of 10 prototypes.

Fig. 5. Four 2D data sets used in our experiments: (a) DB1 with 8000 data points, (b) DB2 with 8000 data points, (c) DB3 with 10,000 data points and (d) DB4 with 8000
data points.

outliers. The other three data sets DB2, DB3 and DB4 are obtained
from [10]. These data sets with 8000 to 10,000 data points consist of
the clusters of arbitrary shape and size and the outliers are scattered
on the data sets, which represent some difficult clustering instances.

Fig. 6 shows the clustering results of the proposed algorithm on
these 2D data sets. The total number of prototypes finally obtained
to model the clusters are 11, 29, 38 and 59 for the DB1, DB2, DB3 and
DB4, respectively. From these figures, we can see that the proposed
algorithm successfully discovers the clusters on these data sets.

To show the robustness to initial settings, we perform the pro-
posed clustering algorithm on a poor initialization. DB1 and DB3
are used in this experiment. The initial number of prototypes is set
to 20 for both data sets. The separation threshold T is set to 0.45.
Fig. 7a and c show the initial clustering results of 19 prototypes on
the DB1 and 20 prototypes on the DB3, respectively. DB3 has more
complex data structure than DB1 so that the initial 20 prototypes
may not adequately model the clusters on DB3. Although 20 proto-
types are enough to model the clusters on DB1, the inappropriate
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Fig. 6. The clustering results of our proposed algorithm on the four 2D data sets: (a) DB1 with 11 prototypes, (b) DB2 with 29 prototypes, (c) DB3 with 38 prototypes and
(d) DB4 with 59 prototypes.

Fig. 7. The clustering results of the proposed algorithm on poor initialization (a) the initial partition of DB1; (b) final result of 21 prototypes on DB1; (c) the initial partition
of DB3 and (d) final result of 47 prototypes on DB3.

initial prototypes also result in poor clustering result where two
small circles on the right are modelled into one cluster by a pro-
totype. Our proposed algorithm iteratively adds new prototypes to
improve the poor cluster boundaries resulted by the inappropriate
initial settings. Fig. 7b and d show the final clustering results of 21
prototypes on DB1 and 47 prototypes on DB3, respectively. We can
see the clusters on these data sets are successfully discovered.

We compare the proposed algorithm with some existing cluster-
ing algorithms on the four 2D data sets. As these data sets contain

the clusters of arbitrary shape and size, most variants of the squared-
error clustering algorithm such as K-means [25] and ISODATA [30],
which use single prototype to represent each cluster, cannot cor-
rectly discover the clusters on the data sets. DB1 is used to test the
CURE clustering algorithm [9]. As stated in Ref. [9], the BIRCH al-
gorithm [12] cannot distinguish between the big and small clusters
and the Single-link algorithm cannot handle the chain of outliers
connecting two ellipsoids. The hybrid clustering algorithm [13] is
also tested on the four data sets and performs better than some
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existing clustering algorithms such as the Single-link [7], Complete-
link [8], CURE [9], K-means [25], BIRCH [12] and DBScan [22] algo-
rithms. As stated in Ref. [13], the Complete-link, K-means and BIRCH
algorithms cannot discover the clusters on the four data sets, while
the Single-link equipped with outlier elimination, DBScan and CURE
algorithms can correctly discover the clusters on one or two of the
first three data sets but all fail on the complex DB4. The hybrid al-
gorithm [13] is able to discover the clusters of the four data sets.
However, its clustering result is sensitive to the initial settings. As
reported in Ref. [13], the probabilities of successful partitions are
about 95%, 90%, 65% and 40% on the DB1, DB2, DB3 and DB4, respec-
tively, after performing this hybrid algorithm 20 times with random
initialization on each data set. Similarly, the proposed algorithm is
performed on each of the four 2D data sets over 20 random runs
with the initial number of prototypes set to 3K. The probabilities of
the successful partitions are 100%, 100%, 95% and 90% on the DB1,
DB2, DB3 and DB4, respectively. The average numbers of prototypes
to finally model the clusters are 17, 26, 39 and 62 for DB1, DB2, DB3
and DB4, respectively. Thus, more prototypes are usually required to
represent the clusters which are more complex in shape and size.

4.2. Real data

To show the practical applicability of our proposed multi-
prototype clustering algorithm, we apply it on three real data sets:
Iris data, Wine Recognition Data and Wisconsin Breast Cancer (WBC)
Data, which are available at UCI Machine Learning Repository [35].
The class label is given for each pattern in these data sets. It is
ignored during the clustering but used for evaluation of clustering
performance. In this work, the clustering error rate is used to evalu-
ate the performance of clustering algorithm. It is computed by [27]:

Error = the number of misclassified patterns
the number of patterns in data set

× 100%. (9)

To compute the clustering error rate, the major problem is the
correspondence between the given class labels and the found clus-
ters.We perform thematching between them. A cluster l corresponds
to class label q if the number of patterns labelled as q in l is larger
than those of other class labels. The best matching of the clusters is
selected as the correspondence to the class labels.

We compare our proposed algorithm with some existing clus-
tering algorithms such as K-means, agglomerative hierarchical clus-
tering and hybrid algorithms on these real data sets. The proposed
algorithm is performed on each data set over 20 random runs and
the best clustering result is presented. We implement the K-means
algorithm with a good initialization of the cluster centers in Ref. [27]
on the WBC Data while the clustering results on the other two real
data sets are reported in Ref. [27]. We perform the three common ag-
glomerative clustering algorithms: Single-link [7], Complete-link [8]
and Average-link [7] on each data set and present the best cluster-
ing result of them. In addition, the hybrid algorithm [13] is also im-
plemented on these real data sets with our best effort. We give the
best clustering result after 20 random runs of it on each data set. For
other clustering algorithms, we present the results reported in the
literature.

The Iris data set consists of 150 patterns and each one is repre-
sented by four numerical features: sepal length, sepal width, petal
length and petal width. Three types of Iris flowers: setosa, versi-
color and virginica are labelled as class I, II and III, respectively.
Each class consists of 50 patterns. This data set is often used to test
the clustering algorithms and the clustering results of three clusters
are reported in Refs. [15,27]. Ref. [15] also gives the clustering re-
sults by the Single-link and Complete-link algorithms. Our algorithm
produces five prototypes to model the three clusters on this data set.
One prototype is used to represent cluster C1 which is easier to be

Table 2
The clustering results for Iris data

Found cluster Given class Clustering error rate (%)

I (50) II (50) III (50) Our
algorithm

[27] [13] Complete-
link

[15]

C1 50 0 0 2.67 11.33 4.0 4.0 7.4
C2 0 47 1
C3 0 3 49

Table 3
The clustering results for Wine Recognition data

Found cluster Given class Clustering error rate (%)

I (59) II (71) III (48) Our
algorithm

[27] [13] Average-
link

[23]

C1 59 2 0 2.25 5.05 3.93 5.62 17.42
C2 0 67 0
C3 0 2 48

Table 4
The clustering results for Wisconsin Breast Cancer data

Found cluster Given class Clustering error rate (%)

I (444) II (239) Our
algorithm

[27] [13] Average-
link

[11]

C1 427 2 2.78 3.95 3.66 8.20 3.37
C2 17 237

separated from others. Two prototypes are used to represent each of
cluster C2 and C3. Table 2 summarizes the clustering results for this
real data set. We can see our algorithm performs better than other
clustering algorithms.

The Wine Recognition data set contains the results of a chemical
analysis of the wines grown in the same region in Italy but derived
from three different cultivars. The wines from three cultivars repre-
sent three types of wine data labelled as class I, II and III, respectively.
This data set consists of 178 patterns and each one is represented
by 13 features such as alcohol, magnesium, color intensity, etc. The
feature values are normalized to [0, 1] to balance the effects of the
features measured on different scales. This data set is also used to
test the clustering algorithm [23,27]. Five prototypes are produced
in our algorithm to model the three clusters on this data set. Two
prototypes are used to represent each of cluster C1 and C2. Cluster
C3 is represented by one prototype. Table 3 shows the clustering re-
sults for this real data set. We can see that the clustering result of
our algorithm is better than those of others.

The WBC data set consists of 683 patterns which belong to two
types of patterns: 444 benigns and 239 malignants labelled as class I
and II, respectively. Each pattern is represented by nine features. This
data set is also used to test the clustering algorithm [11]. As stated
in Ref. [11], its clustering result is better than those in Refs. [17,18].
Our algorithm produces four prototypes to model the two clusters on
this data set. One prototype is used to represent cluster C1 and the
other three prototypes represent cluster C2. The clustering results
for this real data set are shown in Table 4. Our algorithm performs
better than other clustering algorithms on this data set.

The major computation load of the proposed clustering algo-
rithm is in the squared-error clustering of data set and the prototype
grouping process. It is well known that the squared-error clustering
of data set has low computation cost. Since the number of prototypes
is much smaller than the size of data set, the prototype grouping
process is also time efficient. The total computation time of the pro-
posed algorithm depends on the number of iterations (squared-error
clustering and prototype grouping) required for adding new pro-
totypes to improve the cluster separation. It is heavy as compared
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Table 5
The comparison of computational complexity on the three data sets

Data sets Time consumption in second

K-means
[27]

Hybrid
[13]

Average/Complete-
link [7]/ [8]

Our algorithm

Iris 0.0015 0.0056 0.0620 0.0150
Wine 0.0017 0.0062 0.1100 0.0160
WBC 0.0019 0.0113 7.8130 0.0310

with the K-means and hybrid [13] algorithms due to the iteration
of adding new prototypes. To alleviate this problem, we can ini-
tially set more prototypes in the squared-error clustering so that
fewer prototypes will be added afterwards. In addition, we can con-
sider re-clustering the data of the clusters affected by new proto-
types instead of the whole data set to reduce the computation cost.
Table 5 shows the computation time of our algorithm compared with
the K-means, hierarchical and hybrid clustering algorithms on the
three real data sets. All the algorithms are implemented in MATLAB
and executed on a Dell Precision PWS390 1.86 GHz PC with 1GB
memory running Windows XP professional. Although our algorithm
requires a little more computation than the K-means and hybrid
[13] algorithms, it is much faster than the hierarchical clustering
algorithms.

5. Conclusions

In this paper, we have proposed a multi-prototype clustering al-
gorithm which can discover the clusters of arbitrary shape and size.
The squared-error clustering is used to produce a number of pro-
totypes and locate the regions of high density because of its low
computation and memory space requirements and yet good perfor-
mance. A separation measure is proposed to evaluate how well two
prototypes are separated by a sparse region. Multiple prototypes
with small separations are organized to model a given number of
clusters in the agglomerative method. New prototypes are iteratively
added to improve the poor cluster boundaries resulted by the poor
initial settings. The proposed algorithm requires less memory space
and computation cost than the commonly used hierarchical cluster-
ing algorithms such as Single-link and Complete-link while preserves
much of the speed and efficiency of the squared-error clustering al-
gorithm. Experimental results on both synthetic and real data sets
show the effectiveness of the proposed clustering algorithm.
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