
Pattern Recognition 44 (2011) 1245–1261
Contents lists available at ScienceDirect
Pattern Recognition
0031-32

doi:10.1

n Corr

E-m
journal homepage: www.elsevier.com/locate/pr
Greedy optimization classifiers ensemble based on diversity
Shasha Mao n, L.C. Jiao, Lin Xiong, Shuiping Gou

Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China, Institute of Intelligent Information Processing, Xidian University, Xi’an, PR China
a r t i c l e i n f o

Article history:

Received 14 December 2009

Received in revised form

10 November 2010

Accepted 12 November 2010
Available online 4 December 2010

Keywords:

Diversity

Matching pursuit

Greedy optimization

Residual

Selective ensemble

Kappa-error diagram
03/$ - see front matter & 2010 Elsevier Ltd. A

016/j.patcog.2010.11.007

esponding author.

ail address: skymss0828@gmail.com (S. Mao)
a b s t r a c t

Decreasing the individual error and increasing the diversity among classifiers are two crucial factors for

improving ensemble performances. Nevertheless, the ‘‘kappa-error’’ diagram shows that enhancing the

diversity is at the expense of reducing individual accuracy. Hence, a new method named Matching Pursuit

Optimization Ensemble Classifiers (MPOEC) is proposed in this paper in order to balance the diversity and

the individual accuracy. MPOEC method adopts a greedy iterative algorithm of matching pursuit to search

for an optimal combination of entire classifiers, and eliminates some similar or poor classifiers by giving

zero coefficients. In MPOEC approach, the coefficient of every classifier is gained by minimizing the

residual between the target function and the linear combination of the basis functions, especially, when

the basis functions are similar, their coefficients will be close to zeros in one iteration of the optimization

process, which indicates that obtained coefficients of classifiers are based on the diversity among

ensemble individuals. Because some classifiers are given zero coefficients, MPOEC approach may be also

considered as a selective classifiers ensemble method. Experimental results show that MPOEC improves

the performance compared with other methods. Furthermore, the kappa-error diagrams indicate that the

diversity is increased by the proposed method compared with standard ensemble strategies and

evolutionary ensemble.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Ensemble learning is one of promising methods for constructing
an accurate predictor, its techniques have developed in the field of
ensemble classifiers by combining predictions of large numbers of
basis classifiers. On the other hand, classifiers ensemble has been
also an active area of research in machine learning and pattern
recognition, and many studies have been proposed in Refs. [1–5].
Classifiers ensemble is defined that classifiers are combined by an
ensemble strategy, and the motivation is to deal with some
problems, which the single classifier is difficult to achieve better
performance. According to Kuncheva [6], there are four funda-
mental approaches of ensemble: (a) using different combination
strategies; (b) using different classifier models; (c) using different
feature subsets; and (d) using different training set. Two classical
methods, bagging [1] and boosting [7], are also used most of four
approaches above. For example, Yasummura et al. introduced an
ensemble method about integration of boosting and bagging in Ref.
[8], Canul-Reich et al. used bagging to create an ensemble of fuzzy
classifiers in Ref. [9], and so on.

In fact, ensemble classifiers has been initially proposed as neural
network ensemble by Hansen and Salamon [10], in order to change a
weak neural network into a strong network, which is interesting for
pattern recognition due to improve the performance of classification
ll rights reserved.

.

compared with a single classifier. Subsequently, there are many
studies about weak classifier ensembles and the improved algorithm
for them. For example, decision tree ensemble in Ref. [11], Causal
Discovery Based Neural Network Ensemble Method in Ref. [12],
bagging-based selective clusterer ensemble in Ref. [13] and so on. On
the basis of the analysis of Tumer and Ghosh [14], in an ensemble
system, the generalization error is decided by the error of indi-
vidual classifiers and the diversity among individual classifiers.
Many papers based on increasing the diversity of classifiers and
decreasing the individual error are proposed, such as [15–17].
Although the weak classifier was initially adopted to ensemble,
some strong classifiers are also considered as basis classifiers to
ensemble, such as support vector machine [18–20] and kernel
matching pursuit [21]. Classifiers ensemble can deal with some
problems that are intractable for a single classifier, simultaneously,
compared with the single classifier, it also improves the performance
in Refs. [22–26].

However, the study of Margineantu and Dietterich in Ref. [27]
indicated that the error of individual and the diversity among
individuals are affected by each other, in other word, a conflict
occurred between the two factors. In that paper, the kappa-error
diagram showed that they augmented the diversity at the expense
of the accuracy of individual classifier. Exhilaratingly, Rodriguez
and Kuncheva [28] proposed a successful ensemble classifiers
method named Rotation Forest, in which the training set of each
individual classifier was made by applying PCA to transform
separately for different feature subsets of the original samples.
Compared with the previous ensemble strategies, such as bagging,
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AdaBoost [29,30] and random forest [31], Rotation Forest is more
robust because it can encourage simultaneously individual accuracy
and diversity within the ensemble. Subsequently, many researches
concerning Rotation Forest technique have been proposed, such as
Liu and Huang [32] classified for the cancer datasets by applying the
idea of Rotation Forest and using ICA which can better describe the
property of the microarray data instead of PCA; Zhang and Zhang
[33] combined Rotation Forest and AdaBoost to construct a novel
ensemble RotBoost, and the experiments were demonstrated that
RotBoost could gain individual with lower prediction error than
Rotation Forest and AdaBoost, it also performed better than bagging
and MultiBoost; Nanni and Lumini [34] introduced a method with
combining ensemble of classifiers (Rotation Forest and IDE [35]) and
feature selection to identify students with learning disabilities.
Additionally, in Ref. [36], Nanni and Lumini proposed input deci-
mated ensemble based on neighborhood preserving embedding for
spectrogram classification, especially, the combination of SVM and
the proposed method obtained the best performance. In short,
Rotation Forest has been probably the most performing ensemble
method, and recently ensemble strategies are constructed based on
the factors of the diversity and the individual accuracy. Noticeably,
the most researches obtained the ensemble individual by construct-
ing different training sets for individual classifiers to increasing
diversity in terms of training classifiers of ensemble. Nevertheless, in
the opinion of combination individual classifiers, whether or not two
factors of ensemble could be balanced by selecting some different
and better performance individual from entire classifiers in an
ensemble system.

In Ref. [3], Zhou et al. proposed a method of selective ensemble
neural networks, and the paper theoretically proved that selecting
some available neural networks to ensemble could gain better
performance than all networks. Zhang et al. [37] introduced
selective SVM ensemble driven by immune clonal algorithm, and
the experiments shown that selective ensemble is better. Partalas
et al. [38] constructed the selective ensemble method based on
diversity among classifiers, focused ensemble selection (FES),
which abandoned the low fes-value classifiers by computing the
diversity according to the prediction label of classifiers. According
as the above researches, it indicates that if one classifier has strong
diversity with others but its performance is lower than others, this
classifier could be considered whether it is helpful for ensemble or
not. Apparently, selecting classifiers to ensemble is essential for
improving the performance of the ensemble system, which is not
connected with the training sets. Consequently, it will be a hinge of
selective ensemble that how to select some available classifiers to
balance the diversity and the individual accuracy.

In this paper, we introduce a new method named Matching
Pursuit Optimization Ensemble Classifiers (MPOEC), based on the
diversity and accuracy of classifiers. This method searches greedily
for an optimal combination of the whole ensemble classifiers based
on matching pursuit theory, and obliterates some useless classifiers
(similar or poor performance) for ensemble by giving a coefficient
to each classifier. In MPOEC approach, every classifier of the
ensemble system is considered as a basis function from the basis
dictionary and the labels of samples as the target function
approximated. The coefficient of each classifier is gained by
iteratively minimizing the residual between the target function
and the linear combination of classifiers, and then classifiers with
nonzero coefficients will be selected to ensemble. Hence, a sparse
optimal combination of classifiers is produced by MPOEC method,
and the method can achieve several advantages compared with
other selective ensemble approaches [38–40]. Firstly, selecting
ensemble classifiers is an overall optimization process, and the
coefficients of classifiers can be updated automatically by back-
fitting after several iterative processes, which ensure that the
combination is the best approximation to the target function.
Secondly, we can gain a better sparse combination of classifiers
because of the sparsity of matching pursuit thought, and the speed
of combining classifiers may be decreased compared with other
selective ensemble methods. Finally, it is the most important point
that the optimization process of the MPOEC approach is actually
based on the diversity between a pair of classifiers according to the
analysis for diversity among classifiers, namely, the proposed
method selects classifiers to ensemble based on the diversity,
which will be explicated detailedly in following section. The
detailed algorithm of MPOEC is introduced in the following
segment, and the experimental results indicate MPOEC can
improve the performance of classification of the ensemble system.

The reminder of this paper is organized as follows. Section 2
introduces the general frame of classifiers ensemble system.
Section 3 introduces the basic matching pursuit algorithm, gives
the theoretic analysis of MPOEC, and shows how to search for the
optimal combination of ensemble classifiers and the detailed
introduction of the proposed algorithm. In Section 4, the analysis
of the diversity of classifiers selected by MPOEC is shown, and it
indicated that selecting classifiers is based on the diversity
between a pair of classifiers. Our experiments demonstrate that
the proposed method can gain better accuracy than before in
Section 5. Finally, Section 6 offers the conclusion as well as the
future works of this paper.
2. Classifiers ensemble system

As generally speaking, classifiers ensemble system is such a
classification system based on combining same or different classi-
fier models that are trained on different data subsets or feature
subsets, in order to improve the classification accuracy of learning
systems compared with the single classifier. Therefore, many
methods of constructing ensemble classifier systems have been
proposed, such as bagging [1] and boosting [7] which are methods
based different training samples, random subspace [58] based
different feature subsets, Rotation Forest [28] with transforming
the feature subsets by PCA and so on. In addition, in recent years, it
is proposed that using artificial immune algorithm to ensemble
classifiers in Refs. [37,5]. Although there are many different
proposed methods of ensemble classifiers, all of them are con-
structed to combine more than two different classifiers based on
the diversity and individual error of classifiers. In general, a
classifiers ensemble system is composed of two parts: training a
number of component classifiers and then combining the compo-
nent predictions, and the frame of ensemble classifiers is shown in
Fig. 1. In following, an ensemble classifiers system is simply
introduced.

Given an original training set Strain¼{(xi,yi)9i¼1, 2, y, Ntrain}
and a testing set Stest¼{xj9j¼1, 2, y, Ntest}, there into, yiA{1, 2,
y, K} is the class label of the training sample xi. At first, L classifiers
{C1, C2, y, CL} are produced based the different subsets of the
original samples by adopting an ensemble strategy, such as
bagging, random subspace, random forest and so on. Secondly,
each classifier Cl(l¼1, 2, y, L) can gain a prediction output label fjl

for each testing sample by learning. So {fj1, fj2, y, fjL} is a combina-
tion of the prediction label of a testing sample xj by L classifiers.
Finally, the combination is integrated by a combinatorial method,
such as majority voting [11] for classification, simple averaging
[41], weighted averaging [42] for regression, and the best predic-
tion label fjbest is made according to the form

fjbest ¼ sign
XL

l ¼ 1

wjlfjl

 !
ð1Þ

Many papers have indicated that ensemble classifiers can deal
with some problems better than a single classifier, such as Giacinto
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Fig. 1. The basic frame of ensemble classifiers system.
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and Roli [43] proposed neural network ensembles for image
classification, Pang et al. [44] used SVM ensemble to deal with
face classification, Li et al. [45] introduced fault diagnosis based on
SVM ensemble and so on. Although the advantages of classifiers
ensemble have been shown, the shortages also emerged gradually
along with the development of ensemble classifiers. For instance,
the instability of the performance is useless for practical problems.
In addition, not every classifier is beneficial for the classification
performance, and even someone could harm the performance of an
ensemble system. Hence, how to improve these shortages has been
important for improving the performance.
3. Classifiers ensemble based on matching pursuit

3.1. Basic matching pursuit

In this section, we first introduce the basic matching pursuit
algorithm [26,46], which was shown by Mallat and Zhang in Ref.
[46] from a machine learning perspective.

It is given that {x1, x2, y, xI} and {y1, y2, y, yI} separately
expresses S observational samples and these observational values,
and a finite dictionary D¼{d1,d2, y, dM} including M functions is
given in a Hilbet space H. Hypothetically, with a target function
qAH, the observational value yi(i¼1, y, I) can correspond to a
sample xi(i¼1, y, I). Hence the motivation of matching pursuit
algorithm is that the sparse approximations of q can be found out in
the dictionary D, which is expansion of the form

qN ¼
XN

n ¼ 1

angn ð2Þ

where, N is the number of the basis functions in the expansion,
{g1, g2, y, gN}CD shall be called the basis of the expansion,
{a1, a2, y, aN}ARN is the set of corresponding coefficients of the
expansion, qN designs an approximation of q that uses exactly N

distinct basis function taken from the dictionary. Notice that there
is a correspondence between the dictionary function{d1, y,
dM}and the particular ones{g1, y, gN}, which can be represented
by the equivalent gn ¼ dgn

(n¼1, y, N) with gnA{1, y, M}. Then the
reconstruction error is defined in following form:

99 R
!

N99
2
¼ 99 y
!
� qN
�!992

¼
XI

i ¼ 1

ðyi�qNðxiÞÞ
2

ð3Þ

where, R
!

N ¼ y
!
� qN
�!

is the residual, qN
�!

corresponds to the
evaluation of q on I training samples in form

qN
�!
¼ ðqðx1Þ,qðx2Þ, . . ., qðxIÞÞ ð4Þ
In matching pursuit algorithm, the basis function{g1, y, gN} and
these corresponding coefficients {a1, y, aN} are selected by apply-
ing the iterative greedy method, in the interest of minimizing the

reconstruction error R
!

N . The form of the coefficient a is shown in
following:

a¼/ g
!

, R
!

nS=99 g
!992

ð5Þ

According to the description given above, the matching pursuit
algorithm is a method that searches for a set of the basis functions
that can correspond to the maximized approximations of observa-
tional values with minimizing the reconstruction error by using a
greedy method.

3.2. Matching Pursuit Optimization Ensemble Classifiers

Initially, in order to change a weak classifier into a strong one
and made a good classification performance, classifiers ensemble is
proposed. Hansen and Salamon [10] put forward a hypothesis that
combining models was the most effective, when the individual
model of the ensemble system was independence with each other.
Subsequently, Tumer and Ghosh [14] indicated the relation of the
generalization error and every classifier and gave an Eq. (6) to
express it, which was shown in following:

Error
^

¼
1þrðN�1Þ

N
ErrorþErrorOptimalBayes ð6Þ

where, r indicates the agreement among the error of classifiers,
ErrorOptimal Bayes indicates the error of recognition gained with using
the Bayes rule in the case of all conditional probability given. When
r¼0, the error of ensemble system decreases in proportion with
the number of classifiers increasing; when r¼1, the error of
ensemble system is equal to error of single classifier. In 2000,
Zhou et al. [47] gave Eq. (7), which indicated that the diversity
among classifiers and the error of individual classifier affected the
generalization error of ensemble system

Error¼ Error�D ð7Þ

where, Error indicates the generalization error of ensemble system,

Errorexpresses the error of individual classifier, D shows the
diversity among all classifiers. Hence, according to the Eqs. (6)
and (7), it is the expectation that the classifiers should be as
differential as possible and the error of individual should be small
at the same time, then the generalization performance of ensemble

system will be enhanced. Presently, increasing the diversity D is
important to construct ensemble classifiers.

However, the high diversity may bring some poor performance
classifiers, which should affect the performance of ensemble
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system according to the form (7). Consequently, it is crucial that
how to choose some beneficial classifiers for ensemble with the
diversity preserved.

In this paper, a new method that Matching Pursuit Optimization
Ensemble Classifiers (MPOEC) is proposed in order to eliminate
some useless or similar classifiers from the whole ensemble
classifiers to improve the performance of ensemble without
decreasing the diversity among classifiers. The MPOEC approach
adopts a greedy iterative approach to search for an optimal
combination of ensemble classifiers, and this combination must
satisfy with minimizing the residual R between the target function
and the optimal combination. In this method, the set of all
ensemble classifiers {Cl(x)}(l¼1, y, L) is regarded as the basis
function dictionary D, and every classifier can obtain a coefficient
al by minimizing R. When ala0, the classifier corresponding to al is
selected to ensemble, and when al¼0, the classifier should be
eliminated. The description of MPOEC algorithm is shown in
Algorithm 1.

In MPOEC algorithm, at first, L training sets {X1, y, XL} are
gained from original training set by using an ensemble strategy,
and component classifiers {C1(x), y, CL(x)} are obtained by train-
ing, respectively, {X1, y, XL}. Secondly, the coefficients {a1, y, aL}
corresponding to L ensemble classifiers are given by minimizing
the residues R, and classifiers with nonzero coefficients al are
selected to ensemble, then the optimal combination fopt is obtained.
Finally, the optimal prediction of ensemble classifiers is given by
the following form:

hopt ¼ signðfoptÞ ¼ sign
XLopt

l ¼ 1

alf
�
l

 !
, l¼ 1, :::, Lopt ð8Þ

In addition, the error et is computed by form (9) in each iterative
process

et ¼
XN

i ¼ 1

yi�sign
Xloop

j

ajfji

0
@

1
A

2
4

3
5,N ð9Þ

Algorithm 1. Matching Pursuit Optimization Ensemble Classifiers
algorithm (MPOEC algorithm)
Input: Original training set Xtraining¼{(x1,y1), y, (xN,yN)}, testing
set Xtesting¼{x1, y, xN*}, the number of classifiers L, the

iterative number T, a threshold error l.
Procedure:

� For l¼1 to L
Xl¼gained from Xtraining by an ensemble strategy

Cl(x)¼the classifier learning for Xl
fl(x)¼the prediction labels for Xtraining by Cl(x)
f �l ðxÞ¼the prediction labels for Xtesting by Cl(x)
End for

� Search for the optimization combination of L classifiers
* Prediction labels {f1(x), y, fL(x)} are considered to be the
basic functions{g1, y, gM};

* The initial residue R0 is equal to the class labels {y1,
y2, y, yN};
* While (loopo¼T & error4l)

– Obtain initial aini with the

formula:a¼ f
!

,Rt
!

� �
=: f
!

:2
;

– amax ¼ aini;

– For i¼1, y, L;
Compute ai by the above formula;
If (99ai99499amax99)

Note ai and update amax : amax ¼ ai;
Else

Give a zero value to ai : ai¼0;
End if

End for

– Note at : at ¼ amax, and compute the residue

R�t : Rt
�
¼ Rt�atft;
– Update the residue Rt : Rt ¼ R�t ;
– Update the number of iteration: loop¼t;

– Compute the error et;
End while

* Gain the coefficients of ensemble classifiers {a1, y, aL}
and select the classifiers of the nonzero al to ensemble.

Output: The combination of the optimal ensemble classifiers:
fopt ¼
PLopt

l

alfl
�, ðl¼ 1, :::, Lopt , Lopt rLÞ
Where, yi is the label of a training sample, loop is the number of
the iteration, N is the number of training samples, aj is the
coefficient gained in jth iteration, fji is the prediction label given
by the classifier with aj coefficient for the ith training sample in jth
iteration.

In accordance with the description of the proposed algorithm,
it is found that the MPOEC approach actually selects classifiers to
ensemble based on the diversity of classifiers and the performance
of classifiers, which is the reason that when a pair of classifiers are
similar to each other, the coefficient of one classifier will be close to
zero, even be equal to zero. The detailed analysis is shown in the
section of the diversity analysis. Hence, the agreement r in the
Eq. (6) can be decreased by MPOEC, and then the error of ensemble
can be decreased. For MPOEC algorithm, the initialization of the
residue R0 is the class labels of samples, so in first iterative process
(t¼1) the obtained coefficient a is satisfied to maximize the form

amax ¼ :/ f
!

, R
!

tS=99 f
!

992: ð10Þ

When the prediction function f is more similar to the class labels
of samples, the coefficient a is bigger, so the classifier correspond-
ing to the coefficient amax may be the most similar to the labels Y.
All latter classifiers minimize the difference between the idea labels
Y and the combination qt of anterior classifiers

qt ¼
Xt�1

i ¼ 1

aifiþatft ð11Þ

It indicates that the MPOEC approach can retain some classifiers
that have good performance of classification. However, the anterior
gained coefficients can be adaptively modulated by back fitting
method in MPOEC algorithm, so the basis function f that is the most
similar to the ideal label Y may not always gain the max value of the
coefficient a.

Especially, we find that the coefficients of the classifiers may be
given negative values in the MPOEC algorithm, when the basis
function f has a negative correlation to the residue R. For a
classification problem, when the target function Y is yiA{�1, 1}
(i¼1, y, N), the negative correlation means that the prediction
function is very disagree with the idea class label for a classification
problem. Hence, we also proposed an approach OPMPOEC that
selecting the classifiers of the positive coefficients to ensemble. The
OPMPOEC approach adds a restriction a40 to the initial condition
99ai99499amax99 for noting a and updating amax in each iterative
process.

3.3. MPOEC based on SVM ensemble with bagging algorithm

Specially, in this part, SVM ensemble with bagging strategy by
applying MPOEC algorithm is introduced in order to demonstrate
the proposed method favorably, but which does not predicate that
MPOEC method is not adaptive to other strategies and other
classifier models. Then bagging algorithm is shown in Algorithm 2.
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As follows, the MPOEC approach is introduced from the view of
classifier models.

Algorithm 2. Bagging algorithm
F
D

ra

v

Input: The training samples (x1, y1), y, (xm, ym), where xiAX,
yiAY, Y¼{�1, +1}

For l¼1, y, L
ig
ar

n

er
* Bootstrap resample from the training sample and gain a set
Xl;

* Learn for the samples Xl by the classifier model and gain a
classifier Cl(x);

End

Output: The final prediction HðxÞ ¼ argmax
PL

l ¼ 1 ClðxÞ.

For an SVM classifier [20], the testing samples are classified by
the discriminant function f(x) in form (12), which is the expression
of the hyperplane Hopt given by the support vectors in fact, as shown
in Fig. 4(b)

f ðxÞ ¼wxþbias ð12Þ

where, w is normal vector to the hyperplane, 9bias9=99w99 is the
perpendicular distance from the hyperplane to the origin. Hence, in
an SVM ensemble system, every classifier gains an optimal hyper-
plane with (wl, biasl) (l¼1, y, L) by learning for its training
samples. In MPOEC method, we consider the all hyperplanes
{(w1, bias1), (w2, bias2), y, (wL, biasL)}as basis function {gn}. By
the greedy iterative method, helpful hyperplanes
fðw1,bias1Þ, . . ., ðwLopt

,biasLopt
Þgfor ensemble classifiers are searched

and the nonzero coefficients fa1 . . .,aLopt
g are obtained. Then the

optimal combination is shown in following form:

fopt ¼
XLopt

t ¼ 1

atft , t¼ 1, . . ., Lopt , Lopt rL ð13Þ

where, Lopt is the number of classifiers that are searched for nonzero
coefficients. According as the form (12), it is gained

fopt ¼
XLopt

t ¼ 1

atðwtxþbiastÞ ¼
XLopt

t ¼ 1

atwtxþ
XLopt

t ¼ 1

atbiast ð14Þ

Suppose we give wopt ¼
PLopt

t ¼ 1 atwt and biasopt ¼
PLopt

t ¼ 1 wtbiast

for above forms, well then fopt is decided by the form

fopt ¼woptxþbiasopt ð15Þ

According to the form (15), it is shown that (wopt, biasopt)
expresses a new hyperplane of classification searched by the
proposed algorithm. In Fig. 2, (b) shows several hyperplane
{(wl, biasl)} of ensemble individual classifier, and an optimal
. 2. A Gaussian distribution dataset with 100 training samples in two-dimensional spa

kened lines denote the hyperplane of classification. (a) The distribution of initial tra

domly. (c) The optimal hyperplane of ensemble classifiers by MPOEC. (For interpreta

sion of this article.)
hyperplane (wopt, biasopt) is shown in (c) by MPOEC algorithm.
Note that the final prediction label is obtained by

hopt ¼ signðfoptÞ ¼ signðwoptxþbiasoptÞ ð16Þ

However, for the traditional ensemble, the final prediction
function hfin is given by the voting rule during the procedure of
combining classifiers, as shown in following:

hfin ¼ sign
XL

l

signðflÞ

 !
¼ sign

XL

l

signðwlxþbiaslÞ

 !
ð17Þ

where, L is the number of ensemble classifiers. According to the
above form, it has been found that for a testing sample, when the
number of classifiers gaining the correct label for a testing sample is
more than L/2, ensemble classifiers will obtain a right label.
Contrarily, it will obtain a wrong label. Whereas, in the MPOEC
approach, obtaining a right label or a wrong one is decided by the
optimal (wopt, biasopt), this can improve the disadvantage that every
classifier has same probability to affect the performance of
ensemble.

Algorithm 3. Random subspace algorithm
ce

in

tio
Input: The training samples (x1, y1), y, (xm, ym), where xiAX,
yiAY, Y¼{�1, +1}; M is the number of the feature of samples;

For l¼1, y, L
.

in

n

* Randomly select a subspace with m(moM) features from M

features, and gain a training subset Xl;

* Learn for the samples Xl by the classifier model and gain a
classifier Cl(x);

End

Output: The final prediction HðxÞ ¼ argmax
PL

l ¼ 1 ClðxÞ.

Additionally, the simple ensemble strategies, such as bagging
and random subspace, are chosen to construct the individual
classifiers in experiments, because simpler strategies could illus-
trate the proposed method favorably, in other word, MPOEC can
improve the diversity and accuracy of ensemble connected with
selecting classifiers, not with constructing training sets for classi-
fiers. In Algorithm 3, random subspace algorithm is described.
4. The diversity of classifiers for MPOEC algorithm

For the classical ensemble strategies such as bagging and
boosting, the diversity of classifiers is gained justly by the different
training samples. But the different training samples could not
ensure that each classifier is absolutely different from others in an
ensemble system. However, the MPOEC algorithm combines the
Blue triangle stands for the positive data and red dot stands for the negative data.

g samples. (b) The hyperplanes of four ensemble individual classifiers selected

of the references to color in this figure legend, the reader is referred to the web
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classifiers based on the diversity between a pair of classifiers, and
an analysis of the diversity is given in the following description.
According to the description of the MPOEC method in Algorithm 1,
searching for a classifier is based on minimizing the residual R, and
its coefficient a is gained by the form (10). Hence, two forms are
given for the tth (t¼1, y, T) basis function (namely, one classifier
of the ensemble system)

at ¼/ft ,Rt�1S
�
99ft99

2
ð18Þ

Rt ¼ Rt�1�atft ð19Þ

where, ft represents the basis function in the tth iteration, at is the
coefficient of the basis function ft and Rt is the residual in the tth
iteration. And then the coefficient ai of each basis function f will be
computed by the following form in the t+1th iteration

ai ¼/fi,RtS
�
99fi99

2
, ði¼ 1, . . ., LÞ ð20Þ

By the form (19), at +1 may be expressed

ai ¼
/fi,RtS

99fi99
2
¼

/fi,Rt�1�atftS

99fi99
2

¼
/fi,Rt�1S�/fi,atftS

99fi99
2

¼
/fi,Rt�1S

99fi99
2
�at

/fi,ftS

99fi99
2

ð21Þ

where, ft expresses the basis function obtained the coefficient at,
and {fi} (i¼1, y, L) expresses the set of all basis functions in the
t+1th iteration. For the Eq. (21), if the function fi is similar to ft, two
forms will be obtained

lim
fi-ft

/fi,Rt�1S

99fi99
2
¼ at ð22Þ

lim
fi-ft

/fi,ftS

99fi99
2
¼ 1 ð23Þ

Then the form (21) may be expressed according as the above
forms (22) and (23)

lim
fi-ft

ai ¼ 0 ð24Þ

Because the function ft +1 gains the coefficient at + 1in the t+1th
iteration, when ft + 1 is satisfied the following inequation:

:/fi,RtS
�
99fi99

2:r:/ftþ1,RtS
�
99ftþ199

2: ð25Þ

According as these equations and the inequation, when a
function fi is similar to the function ft, the probability that the
function fi gains a max coefficient ai may be close to zero in the
t+1th iteration, so this classifier will not obtain a nonzero
coefficient.

In the MPOEC algorithm, the basis function dictionary is
composed of the whole ensemble classifiers, in other words, a
basis function represents an individual classifier. Hence, according
to the above analysis, it is obvious that a classifier Cl(l¼1, y, L) has
gained a nonzero coefficient al and its corresponding basis function
is ft, if the basis function fi(i¼1, y, L)is similar to ft, the classifier
Cm(m¼1, y, L) corresponding to fi will obtain a coefficientai whose
value is approach to zero, so this classifier Cm may be not selected to
ensemble. On the contrary, obtaining a coefficient which is not
close to zero shows that there is the diversity between the former
classifier and the latter one. Summarily, the above analysis
indicates that the MPOEC approach selects classifiers according
to the diversity between a pair of classifiers, and it can neglect the
effect of some similar classifiers by giving the zero or close-zero
coefficients a to these classifiers C in order to increase the diversity
of the ensemble system.

In the optimizing process, the ideal prediction {y1, y, yN} is
considered as the initial residual R0. Hence, in initial iterative
process, the classifier selected by the MPOEC algorithm is the most
approximate of the target function, and it means that the classifier
may be the best performance of ensemble classifiers, then in
following iterative processes, the selected classifiers are added to
the anterior combination of classifiers in order to be close to the
target label at best. Therefore, the increase in the diversity will not
reduce the accuracy of individual classifiers in the optimization
process of MPOEC approach.
5. Experiments and analysis

For the comparison of the different models we selected 23
datasets from UCI Machine Learning Repository [48]. The descrip-
tion of the datasets is shown in the following part. In experiments,
the available data is randomly partitioned into two disjunctive
parts: one is used as training set for each learning algorithm and the
other is tested on. The proportion of training set is approximately
6–50% of all samples, which is decided based on the number of
dataset. For instance, only the 12% of the whole samples is used as
original training set for waveform dataset, the 48% is used as
training set for sonar dataset. Especially, in order to elucidate the
performance of the MPOEC approach, four artificial datasets are
also chosen in experiments. Because the artificial data has low-
dimension character, the hyperplanes of classification can be
described easily with 2D pictures.

At present, the ensemble classifiers algorithms have been
constructed mostly from the part of training individual classifiers
to construct the training set of classifiers in the ensemble system,
but the MPOEC method balances the diversity and the accuracy
from the combination of classifiers. In experiments, we select two
ensemble strategies, bagging [1] and random subspace [58], with
simpler-constructing training sets, which can be more benefit for
exhibiting the performance of our method than other ensemble
strategies, especially the diversity among individual classifiers. For
each dataset, the radio of the bootstrap resample in bagging
algorithm is 50% to gain a new training set, and 60% features are
selected randomly to construct a new training set in random
subspace algorithm.

It is clear that selecting different classifier model may have the
dissimilar effects on the results of the proposed algorithm. Thus, we
select two different basis classifier models: the C4.5 algorithm [49]
with back-pruning and a support vector machine [20] with a Gaussian
kernel. For C4.5 we use 20% to be the percentage of incorrectly
assigned samples at a node, and for the support vector machine
model, the penalty factor of each dataset applies to C¼210, and the
parameter s of the kernel function is given by the cross-validation.

Furthermore, in order to elucidate the performance of the
proposed method for classification problems of pattern recognition
as comprehensive as possible, our experiments are composed of
three parts. Firstly, the classification performance of the proposed
method is shown elementarily by the classification problem of four
artificial datasets. Specially, it also is illustrated visually with
drawing the pictures of the hyperplane. Secondly, UCI datasets
are used to validate the performance of our method with two
classical ensemble strategies, and we also compare MPOEC algo-
rithm with several ensemble methods mentioned previously. Ulti-
mately, the kappa-error diagrams of the diversity among classifiers
are demonstrated, which testifies that our method improves the
diversity of classifiers compared with other ensemble methods.

The algorithms in experiments are coded by matlab R2009b and
implemented with matlab R2009b, and our experiments are
executed on a workstation with HP xw9400 2.4 GHz AMD Opteron,
32G memory and Windows XP 32 operation system. In addition,
the source codes are freely available upon request to the authors by
e-mail.
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5.1. Artificial datasets

Because the low dimension datasets can be visualized, we
employ originally four typical artificial datasets to illustrate in
experiments, which obey, respectively, the Gaussian distribution,
the semicircular distribution, the hyperbolic distribution and the
spiral distribution. The distributions of four datasets are shown in
Fig. 3. Especially, we apply bagging strategy and SVM classifier
model to the MPOEC method. The hyperplane of classification can
be drawn in 2D datasets for the SVM classifier, and bagging
algorithm can reduce the computation of each individual classifier
by selecting a small portion of the whole training set, which is
beneficial to learn for SVM. For each artificial dataset, we produce
randomly 5000 training samples and 2000 testing samples (or 2828
samples). Note that the training set of each individual classifier
contains 500 samples, which selected randomly from original
training samples. The parameters s of SVM are 8, 8, 2 and 4 for
four datasets, respectively. In addition, we utilize 30 SVM classifiers
to ensemble, and the results of classification are shown in Table 1.

In Table 1, ‘Acc’ denotes the accuracy rate of classification, ‘NSC’
denotes the number of classifiers selected to ensemble, and ‘NC’
indicates the number of the whole ensemble classifiers. According
to the results in Table 1, it is seen that our method may outperform
bagging ensemble and single SVM classifier appreciably, especially,
Fig. 3. The distributions of

Table 1
Results of four artificial datasets recognized by 30 SVM classifiers ensemble.

Datasets

distribution

Number of samples MPOEC

EC-Trn Testing Acc NSC

Gaussian 500 2000 0.9855 4

Semicircular 500 2000 0.9695 4

Hyperbolic 500 2000 0.995 4

Spiral 500 2828 0.8851 11

Fig. 4. Three arbitrary hyperlanes for four artificial datasets: (a) Gaussian distribution. (
MPOEC justly selects less than five classifiers to ensemble and gains
better performance than others for the front three datasets.
However, only the spiral dataset, the accuracy is lower than the
method of ensemble with bagging. We give some pictures about
the hyperplane of classifier to demonstrate in Fig. 4, and the three
hyperplanes are arbitrarily chosen from all hyperplanes of each
artificial dataset in an ensemble process. It is shown that the
proposed method is actually a process that the hyperplane of
ensemble classifiers is improved.

In an ensemble system, each classifier produces a hyperplane,
obviously, but there are not only some good (useful) ones but also
some poor (useless so much as baneful) ones as shown in Fig. 2(b) in
all hyperplanes. The MPOEC method should make an advisable
selection for those hyperplanes. The useful individual classifiers are
reserved, at the same time, the useless or harmful ones could be
eliminated. The proposed method can achieve improvement of
ensemble performance.

5.2. UCI datasets

In this section, UCI datasets are utilized to validate the validity of
the proposed method. We also make a detailed comparison with
the standard methods. A summary of the datasets is shown in
Table 2. In this experiment, we select two classifier models as the
four artificial datasets.

OPMPOEC Ensemble with bagging Single

SVM

Acc NSC Acc NC

0.985 3 0.9845 30 0.981

0.9655 3 0.963 30 0.962

0.995 4 0.995 30 0.98

0.8851 11 0.8854 30 0.8221

b) Semicircular distribution. (c) Hyperbola distribution, and (d) Spirals distribution.
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ensemble individuals to learn and classify for UCI datasets,
respectively. One is a weak classifier model applied popularly in
ensemble learning, decision tree C4.5, the other is a strong classifier
model, support vector machine, which has been recently used to
deal with classification problem in the fields of not only pattern
recognition but also ensemble learning. Additionally, bagging and
random subspace algorithms are applied to construct ensemble
individuals.
Table 2
Summary of characteristics of the datasets used in experiments.

Datasets Cases Features Input Classes

Continue Binary Nominal

Balance 625 4 – – 4 3

Breast 277 9 – – 9 2

Chart 600 60 – – 60 6

Clean 476 166 – – 166 2

Glass17 99 9 – – 9 2

Glass25 90 9 – – 9 2

Glass 214 9 – – 9 7

Heart_c 303 6 1 6 13 2

Ionosphere 351 33 1 – 34 2

Iris 150 4 – – 4 3

Liver 345 6 – – 6 2

Musk 6598 166 – – 166 2

Pima 768 8 – – 8 2

Sat 6435 36 – – 36 6

Shuttle 14500 – – 9 9 7

Sonar 208 60 – 60 2

Spambase 4601 57 – 57 2

Vehicle 846 18 – 18 4

Vot 435 – 16 16 2

Waveform 5000 40 – – 40 3

Wdbc 569 30 – – 30 2

Wine 178 13 – – 13 3

Wpbc 198 33 – – 33 2

Table 3
The results for ensemble 100 classifiers using a C4.5 tree as the basis learner.

Datasets Bagging strategy Ran

MPOEC OPMPOEC Standard MP

Accuracy NSC Accuracy NSC Accuracy Acc

Balance 0.783570.0577 19 0.718470.0445 12 0.680870.0096 0.8
Breast 0.733170.033 55 0.729270.033 30 0.72770.0076 0.7

Chart 0.982170.006 3 0.976770.005 2 0.980170.004 0.9

Clean 0.818670.0483 26 0.79770.0682 22 0.803270.0256 0.8

Glass17 0.853170.0306 1 0.853170.0306 1 0.858470.0102 0.
Glass25 0.841470.044 1 0.841470.0114 1 0.845970.0341 0.8
Glass 0.860070.0451 3 0.856870.0516 2 0.838370.0449 0.8

Heart_c 0.793870.0493 31 0.763970.0542 18 0.765570.0172 0.8
Ionosphere 0.931970.0629 29 0.90370.0762 16 0.867470.053 0.9

Iris 0.974670.011 6 0.980270.0083 4 0.978870.0056 0.9
Liver 0.640870.0378 43 0.638170.0844 29 0.633270.0533 0.6

Musk 0.939770 1 0.939770 1 0.939770 0.9

Pima 0.737970.0238 56 0.728670.0299 17 0.741370.0053 0.7
Sat 0.965570.0025 21 0.959270.0046 16 0.950170.0006 0.9
Shuttle 0.999270 2 0.999270 2 0.980770.0002 0.
Sonar 0.69870.0602 37 0.680270.0602 20 0.650670.0324 0.6

Spambase 0.881670.0181 39 0.872170.0522 32 0.87970.0109 0.8
Vehicle 0.83370.0238 34 0.824670.0304 20 0.813270.0151 0.8
Vot 0.935970.0191 13 0.935470.0191 9 0.923770.0021 0.9

Waveform 0.849770.0099 33 0.837770.0162 21 0.814970.0066 0.8
Wdbc 0.911470.0285 16 0.888270.065 11 0.909570.0312 0.9
Wine 0.959170.0251 11 0.944970.0251 7 0.95270.0502 0.9
Wpbc 0.640470.0816 29 0.635170.0714 16 0.635770.0255 0.6

Average 0.850770.0312 22 0.834970.0366 13 0.833470.0194 0.8
This experiment distinguishes from the former, and the num-
bers of ensemble classifiers are 100 instead of 30, which aims at
revealing the sparsity of the proposed method. Our method will
select a few classifiers to ensemble. For each dataset, the parameter
s is selected respectively by the 10 fold cross-validation for the
original training set. It will be used in each individual classifier in
order to ensure the diversity among classifiers that is irrelevant
with the parameter and simple the process of producing classifiers.
For optimal parameters, the threshold error is decided according to
the accuracy of training samples of each dataset (note that the most
cases are l¼0.003), and the iterative numbers T are 80 correspond-
ing to the numbers of ensemble classifiers 100. In addition, for each
dataset and each method, the results of the experiment are the
average of 50 times. As follows, the tables show the results of all
experiments.

Tables 3 and 4 show the experiments results of C4.5 tree and
SVM ensemble with 100 individual classifiers, respectively. In
tables, ‘MPOEC’ and ‘OPMPOEC’ denote the proposed methods,
‘Standard’ denotes the standard ensemble method, ‘Single Classi-
fier’ denotes the accuracy of original training samples by single
basic classifier algorithm, ‘Accuracy’ is the accuracy rate and bias of
classification for datasets and ‘NSC’ indicates the number of
classifiers which obtained nonzero coefficients, in the other word,
it is the number of classifiers selected from 100 individual by our
method in ensemble. The tables also show the results using a single
classifier to classify for datasets.

In Tables 3 and 4, it is obvious that our algorithm exceeds the
others at the accuracy of classification for the most datasets, such as
balance, breast, chart, iris, liver, sat, vehicle, vot, waveform, wdbc,
wine, wpbc and so on, and the results are bold. For C4.5 classifier,
the proposed method improves the performance of standard
methods for bagging and RSM more than 2% for most datasets,
especially, like balance, heart_c, vehicle and waveform. The results
are even better for SVM as base classifier. According as the results of
23 UCI datasets, the MPOEC method obtains higher accuracy for 18
datasets and 16 datasets than standard bagging and standard RSM
dom subspace strategy Single

classifier

OEC OPMPOEC Standard

uracy NSC Accuracy NSC Accuracy Accuracy

10470 4 0.712670 4 0.771370.0489 0.7126

25270.0152 27 0.726470.0076 11 0.720470.0076 0.7208

82170.0167 21 0.983370.0127 13 0.991470.0033 0.9813

02870.0455 24 0.79570.0881 17 0.838570.0199 0.8011

85870.1429 1 0.85870.1429 1 0.857170 0.8571

62370.0227 1 0.830970.0341 1 0.830970.0341 0.8409

48770.1182 4 0.850770.1125 3 0.863270.0268 0.8641
09870.032 16 0.777670.0369 10 0.772670.0029 0.7635

01770.0066 25 0.903470.0265 16 0.908170.0099 0.9078

77870 3 0.977870 2 0.928770.0389 0.9778

26770 8 0.626770 2 0.626770 0.6267

39770 1 0.939770 1 0.939770 0.9397

41370.0035 32 0.742370.0053 9 0.706570.0405 0.7038

63470.0037 18 0.957870.0076 14 0.949570.0006 0.9458

99470.0043 4 0.990470.0058 2 0.981770.0012 0.9794

85670.1065 9 0.685670.1065 8 0.693770.0324 0.6204

69770.025 31 0.859970.0512 23 0.867470.0184 0.8257

34970.0145 23 0.829570.0111 12 0.825170.0093 0.8169

21270.0043 14 0.923470 10 0.919570.0085 0.9234

29170.0137 24 0.81670.0183 15 0.807370.0043 0.8046

17570.019 7 0.910370.0244 6 0.898270.0257 0.8997

78270.0137 4 0.978270.0137 3 0.92870.0137 0.9087

76770.1071 10 0.674570.102 7 0.653970.0918 0.6837

50370.0311 13.5 0.841370.0351 8.3 0.838270.0191 0.8307



Table 4
the results for ensemble 100 classifiers using SVM as the basis learner.

Datasets Bagging strategy Random subspace strategy Single

classifier

MPOEC OPMPOEC Standard MPOEC OPMPOEC Standard

Accuracy NSC Accuracy NSC Accuracy Accuracy NSC Accuracy NSC Accuracy Accuracy

Balance 0.952170.0052 10 0.945570.013 8 0.949270.0024 0.928970 3 0.952670 3 0.831470.0489 0.9541
Breast 0.750970.0054 12 0.738370.0148 7 0.71870.0033 0.759970.0076 4 0.714870.0025 2 0.710770 0.7157

Chart 0.943470.02 2 0.944170.0217 2 0.936770.0054 170 1 170 1 170 0.936

Clean 0.811970.015 7 0.785770.0234 6 0.800570.0227 0.826770.054 1 0.826770.054 1 0.831470.0142 0.7906

Glass17 0.997170.0071 1 0.997170.0071 1 0.847770.0969 0.999670.0102 11 0.992270.0102 6 0.910270.0102 0.7143

Glass25 0.908270.0121 14 0.858270.0542 8 0.857770.0969 0.884170.0341 10 0.860570.0455 6 0.920570.0114 0.8864

Glass 0.902670.0264 10 0.890570.0351 6 0.878670.0121 0.903370.0174 4.7 0.892670.0167 3 0.887870.0198 0.8653

Heart_c 0.829970.0066 17 0.816970.0194 11 0.833270.0043 0.83570.0146 19 0.75270.034 11 0.828970.0194 0.8252

Ionosphere 0.943370.0072 15 0.930770.0087 9 0.919370.0023 0.95570.0199 24 0.968270.0166 12 0.97570.0066 0.9404

Iris 0.974170.0089 1 0.973770.0098 1 0.969170.0032 0.988970 1 0.988970 1 0.984170.0083 0.9667

Liver 0.715470.017 14 0.70670.0255 9 0.692370.0128 0.724370.0044 14 0.666670.0022 10 0.70870.0267 0.6327

Musk 0.940170.0002 47 0.939970.0002 30 0.939770 0.937270.005 1 0.932270.005 1 0.941470.003 0.9386

Pima 0.756370.0071 29 0.744170.0084 17 0.741170.0042 0.776870.0035 15 0.762170.0035 9 0.76370.007 0.7588

Sat 0.962470.0037 1 0.962270.0039 1 0.969170.0011 0.940570.0036 48 0.938870.0037 26 0.938170.0011 0.9602

Shuttle 0.957970.0023 27 0.950870.0041 22 0.931370.0016 0.945370.0131 59 0.940970.013 42 0.953770.0012 0.9234

Sonar 0.811170.0273 4 0.797870.0289 3 0.822270.0131 0.814170.0463 1 0.814170.0463 1 0.816970.0231 0.8148

Spambase 0.767970.0062 47 0.763970.0062 34 0.753970.0037 0.767870.0147 5 0.751670.02 5 0.760770.0081 0.7245

Vehicle 0.872270.006 14 0.857970.0088 8 0.857670.0031 0.882570.0083 15 0.863370.0129 9 0.860570.0048 0.8647

Vot 0.935170.0031 18 0.930870.0048 12 0.935170.0039 0.927770 15 0.927770 8 0.927570.0043 0.9191

Waveform 0.910670.0025 31 0.907370.0036 26 0.909470.0023 0.887570.0227 64 0.872770.0186 32 0.863570.004 0.884

Wdbc 0.946770.0063 12 0.93170.0104 7 0.914370.0034 0.940870.0136 14 0.91470.0298 10 0.927770.0095 0.9268

Wine 0.986270.0054 1 0.963770.0245 1 0.963970.0245 0.983170.0205 7 0.967870.0936 5 0.982970.0137 0.9817

Wpbc 0.737170.0092 15 0.736370.0115 12 0.725870.0039 0.689470.1327 1 0.689470.1327 1 0.672770.0408 0.6633

Average 0.883270.0091 15.2 0.874070.0151 10.5 0.863770.0142 0.882370.0194 14.7 0.869170.0243 8.9 0.869470.0124 0.8516
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with C4.5 learner, respectively. When the SVM classifier model is
applied, the MPOEC outperforms respectively two standard meth-
ods in 18 datasets and 14 datasets. Compared with the single
classifier, our method can improve the performance greatly.
Furthermore, the average of results of all datasets is shown on
the bottom of each table, which illustrates obviously that the
proposed method improves accuracy from 1.73% to 3.16% com-
pared with standard methods and single classifier. As a summary,
the results indicate that MPOEC method have the advantage of the
standard methods by greedy optimization selective ensemble
classifiers.

From the aspect of NSC, intuitively, the number of selected
classifiers for most datasets is less than 50% of entire number of
ensemble classifiers, and even no more than 15%. It indicates that
fewer classifiers are selected by the proposed method and are
combined obtain better performance than the whole classifiers
ensemble. Because of the character of sparse solution of MPOEC,
only less than 10 classifiers are selected to ensemble for some
datasets in 100 classifiers ensemble, such as chart, glass, iris and
shuttle. In a word, the results indicate that the proposed methods
can improve the performance of ensemble classifiers, and decrease
the complexity of ensemble by gaining a sparse combination of
classifiers.

For the sake of expressing the results of the proposed method
better than tables, we illustrate the results in Fig. 5. The figures
represent the testing accuracy of the standard method and ours for
each point. The horizontal-axis is accuracy of the proposed method,
and vertical-axis is accuracy of standard ensemble method. Evi-
dently, points below the diagonal line, which are more than ones
above the diagonal line, show a better performance of MPOEC
method, and points above the diagonal line show a better perfor-
mance of standard ensemble strategies. Hence, the points below
the diagonal line are more than above points, which indicates that
our method obtains better performance than standard methods.

Based on the theoretic analysis, one important reason is that
MPOEC algorithm actually can optimize the combination of
ensemble classifiers, which is acquired the best similar predictions
to the labels of samples. In optimization, MPOEC selects some
classifiers with good performance and discrepancy to ensemble,
and the selecting process of ensemble classifiers is shown in Fig. 6
for the sake of explanation about its advantage. Furthermore, in the
procedure of combining classifiers, many classifiers obtain zero
coefficients, so the MPOEC method is also considered to be a
selective ensemble classifiers method.

The process of selective classifiers for Breast dataset is shown in
Fig. 6, and it is the results of ensemble 50 SVM classifiers with
bagging and MPOEC. The upper chart is the accuracy of every
classifier for the original training set, the middle chart is the
coefficients gained by MPOEC, and the lower chart is the accuracy of
the testing set by individual classifiers. In this ensemble, the
accuracy of ensemble classifiers is 75.13% by MPOEC method,
and the accuracy is 72.59% by standard bagging strategy. In the
upper and lower charts, the points with ‘blue circle’ indicates that
these classifiers gained the positive coefficients, the points with
‘red triangle’ indicates that these classifiers gained the negative
coefficients, and the rest points are the classifiers gained zero
coefficients in ensemble. From the results of the three charts, only 7
classifiers are selected by MPOEC approach from 50 classifiers to
ensemble, and they are the 4th, 5th, 6th, 21st, 27th, 29th and 46th
classifiers, respectively. From the middle chart, the 21st and 27th
classifiers gained greater coefficients than others, because they
obtain better performance for the training set than others. Hence,
the effect of good classifiers (21st and 27th classifiers) for ensemble
performance is boosted up by given higher coefficients. According
to the form (26) (when the classifiers of zero coefficients are
eliminated, the form (26) is equal to the form (13)), the result of
ensemble is equal to the combination of all classifiers with their
coefficient al, so the selected classifiers are helpful for increasing
the accuracy of the ensemble system. In the lower chart, the purple
dashed line denotes that the accuracy for the testing set is 73%, and
it is easily found that there are more than 25 classifiers (50%) which
are lower than 73%. If the classifiers are combined by the general



Fig. 5. Accuracy of testing samples compared the proposed method with standard ensemble method. (a) C4.5 as the basic classifier and (b) SVM as the basic classifier.

Fig. 6. Diagram of accuracy of the training set and the testing set by each classifier and the coefficients of ensemble classifiers for Breast Dataset.
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voting rule, the performance of ensemble must be lower than 73%.
But MPOEC method eliminates some poor classifiers by giving zero
coefficients al to them. Especially, some similar performance
classifiers are erased based on the analysis of diversity in former
section of our paper, and a few poor classifiers are still reserved,
which also satisfies the need of diversity of an ensemble system, for
instance, two classifiers that are lower than 73% are selected in
Fig. 6. Hence, MPOEC approach improves the performance com-
pared with the standard ensemble strategies

fopt ¼
XL

l ¼ 1

alfl, l¼ 1, . . ., L ð26Þ
Fig. 7. Accuracy of each classifier and its coefficient in MPOEC. Note that accuracy for six

(Breast) 75.63% and 72.59%, (Clean) 80.11% and 78.98%, (Ionosphere) 92.72% and 90.07%
In following part, it is exhibited that the obtained coefficients of
all classifiers and accuracy of classification by each classifier in
ensemble system for some UCI Datasets are demonstrated in Fig. 7.
The first and third rows show the accuracy of classifiers for
datasets, the second and forth rows illustrate the gained optimal
coefficient of each classifier. The results are gained by MPOEC
ensemble and standard bagging with 100 classifiers (C4.5). The
classifier with good performance is given a higher coefficient,
especially, when some classifiers have similar performances, they
are eliminated by zero coefficients, which not only increases the
diversity but also reduces the complexity of combining classifiers.
However, according to the results of the pictures, it is found that
datasets are given as follow, respectively: ((Dataset) MPOEC and standard method)

, (Liver) 65.78% and 64.89%, (Vot) 93.19% and 92.34%, (Wdbc) 93.77% and 91.60%.
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some poor classifiers are also retained in ensemble system, and this
indicates that the diversity among ensemble classifiers can be
increased not be reduced by MPOEC. In conclusion, the accuracy
and coefficient diagrams indicate that a majority of similar and
harmful classifiers can be weakened by giving lower or zero
coefficients to them in the MPOEC algorithm, and the ensemble
diversity is increased by selecting some available classifiers,
consequently, our method can improve the performance of ensem-
ble classifiers.

However, in experiments, we discover that the MPOEC approach
was poor for some datasets compared with standard ensemble
methods. According to the analysis of experiments, there is an
important reason that the over-fitting may occur in the process of
searching the basis function of the MPOEC algorithm, which may
lead to the better performance made by standard ensemble
strategies than MPOEC algorithm. In MPOEC approach, the basis
functions are the predictions obtained by classifier algorithms for
the training set, and the target function of optimization is the true
label of training samples, so it is indicated that the coefficients of
individual classifiers is given based on original training set. If a
selected classifier has a good performance for original training set
but poor for the testing set, this classifier will damage the
performance of ensemble for testing set. Hence, the over-fitting
will be produced in the MPOEC approach. As follows, the over-
Fig. 8. Diagrams of accuracy of the training set and the testing set by each

Fig. 9. The results of changing parameters for sonar dataset: (a) Baggi
fitting problem is shown in a picture of the 50 classifiers ensemble
by MPOEC algorithm for Heart Dataset in Fig. 8.

In Fig. 8, the ‘blue circle’ denotes classifiers gained the positive
coefficient, and the ‘red triangle’ indicates classifiers gained the
negative coefficient. Three charts show the accuracy of the training
set, the coefficients and testing set of 50 classifiers for Heart
Dataset. In this ensemble, MPOEC method gains 81.55% accuracy
and bagging strategy gains 83.49%. From the upper and middle
charts, the classifiers, like the 6th, 18th, 24th, 30th and 39th
classifiers, have good classification performances for training set
and gain the higher coefficients than others. But these classifiers
have poor performance for testing samples in the lower chart. It
indicates that the MPOEC approach will not obtain a good
performance, comparing with the general ensemble methods,
because high coefficients are given to the poor classifiers for the
testing set by MPOEC algorithm, which are selected to ensemble.

Based on the experimental results, it is also found that the
accuracy obtained by single classifier algorithms is higher than
standard ensemble and MPOEC methods for several datasets in
Tables 3 and 4. According to the analysis of experiment, two
influential factors could lead to this problem in experiments. Firstly,
the parameter of classifier may affect the accuracy. In our experi-
ments, the parameter of every individual is given based on the original
training set, which is the same as the parameter of single classifier, in
classifier and the coefficients of ensemble classifiers for Heart Dataset.

ng and MPOEC with C4.5 and (b) Bagging and MPOEC with SVM.
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order to reduce the complexity of producing individual classifiers. For
instance, for C4.5 decision tree, all parameters are 20% as the
percentage of incorrectly assigned samples at a node. For SVM, the
Fig. 10. Best accuracy
parameter of every classifier is the one by which single classifier can
obtain better or best performance. The results of various parameters
are shown in Fig. 9. Secondly, it may be relation to the number of
of three methods.



Table 5
Results of our method compared with previous ensemble methods using the same datasets.

Datasets MPOEC Ref.

Bagging RSM [1] [2] [3] [4] [5] [6] [7]

C4.5 SVM C4.5 SVM

Balance 0.7835 0.9521 0.8104 0.9289 – – 0.9098 0.9487 0.9033 – 0.9056

Breast 0.7331 0.7509 0.7252 0.7599 – – 0.6821 0.7352 0.7266 – 0.7374

Chart 0.9821 0.9434 0.8523 1 – – – – – – –

Clean 0.8186 0.8119 0.8028 0.8267 – – – – – – –

Glass17 0.8531 0.9971 0.858 0.9996 – – – – – – –

Glass25 0.8414 0.9082 0.8623 0.8841 – – – – – –

Glass 0.86 0.9026 0.8487 0.9033 0.686 0.651 0.7234 0.7736 0.7427 – –

Heart_c 0.7938 0.8299 0.8098 0.835 – 0.809 0.7751 0.875 0.8225 – 0.8288

Ionosphere 0.9319 0.9433 0.9017 0.955 – – 0.916 0.9149 0.9388 – 0.9315

Iris 0.9746 0.9741 0.9778 0.9889 – – – – 0.9573 – 0.9533

Liver 0.6408 0.7154 0.6267 0.7243 – 0.626 – 0.7 – – –

Musk 0.9397 0.9401 0.9397 0.9322 – – – – – – –

Pima 0.7379 0.7563 0.7413 0.7768 – 0.745 0.7552 0.7625 0.7648 – 0.7811

Sat 0.9655 0.9624 0.9634 0.9405 – – – – – – –

Shuttle 0.9992 0.9579 0.994 0.9453 – – – – – – –

Sonar 0.698 0.8111 0.6683 0.8141 0.8423 0.753 0.8221 0.8221 0.8356 – –

Spambase 0.8816 0.7679 0.8697 0.76 – – – – – – –

Vehicle 0.833 0.8722 0.8349 0.8825 – – 0.7542 0.8123 0.7805 0.811 –

Vot 0.9359 0.9351 0.9212 0.9277 – – 0.9548 0.9333 0.9653 – 0.9654

Waveform 0.8497 0.9106 0.8291 0.8875 0.85 – 0.9092 0.8616 0.8393 0.86 0.8668

Wdbc 0.9114 0.9467 0.9175 0.9408 – – – – – – –

Wine 0.9591 0.9862 0.9782 0.9831 – – – – – – 0.9944

Wpbc 0.6404 0.7371 0.6767 0.6894 – – – – – – –

[1] (Zhang Xiangrong, 2005, in Ref. [37]) [2] (Ting and Zheng, 2003, in Ref. [50]) [3] (Melville and Mooney, 2005, in Ref. [51]) [4] (Nicolas Garcia-Pedrajas, 2008, in Ref. [5]) [5] (Juan and

Ludmila, 2006, in Ref. [28]) [6] (Partalas et al., 2008, in Ref. [38]) [7] (Tsoumakas et al., 2005, in Ref. [39], note that its accuracy is the result of only one fold cross-validation).
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training subset of individual. For bagging strategy, every subset is only
50% of original training samples instead of normal 75% or 80%. When
training samples are only 50%, the individual classifier may obtain
poor performance in the parameter that is used to obtain good
performance for single classifier (for original training samples), so the
ensemble may be inferior to single classifier.

In Fig. 9(a), it is obvious that when the parameter changed from
0% to 60%, MPOEC method (blue line) obtained better accuracy than
others. Specially, bagging strategy (black line) is not better than
single C4.5 (purple broken line) in all parameters. In Fig. 9(b), single
SVM algorithm is better than MPOEC and standard strategies for
several parameters, such as s¼1, 8. Note that the parameter s of
SVM is equal to 2n(n¼0, 1, 2, y, 10). However, it is obvious that the
proposed method can still obtain a good performance, when single
SVM and standard strategies have inferior accuracy. The change of
accuracy of MPOEC is not dramatic but robust while the parameters
are changed. According to the results, the performance of ensemble
is better than single classifier for original training samples in not all
parameters, but the proposed method improve the sensitivity of
parameter compared with standard ensemble strategies.

In order to illustrate visually the superiority of the proposed
method, Fig. 10 shows the best performances of three methods, and
they are respectively MPOEC, standard ensemble strategies (bagging
and random subspace) and single classifier. In charts, x-axis denotes
the UCI datasets and their names are listed at bottom of each chart.
Noticeably, several datasets use partial names.y-axis denotes the
best accuracy in 50 times of ensemble corresponding to the datasets.
‘Blue bar’ is the accuracy of the single classifier, ‘Carmine bar’ is the
accuracy of the standard ensemble strategy and ‘Green bar’ is the
accuracy of the MPOEC approach. Apparently, the results show that
the proposed method can improve ensemble performance.

In Table 5, it is shown that the results of the proposed method
compared with several previous ensemble methods and selective
ensemble methods. According to the accuracy of the datasets, the
performance of our method is slightly higher than other methods
for the same datasets, and the number of winning is listed in the
foot of the Table 5. In the comparison methods, original training
sets are, respectively, 50%, 75%, 40% and 90% (10 fold cross-
validations) of the whole datasets, but the training set is smaller
than them in our experiments. Especially the large datasets, such as
waveform, shuttle, sat and so on. The results indicate that the
proposed method obtains better performance than others, when
the training samples are smaller. In the light of the analysis of the
algorithms, our method can update the anterior obtained coeffi-
cients of classifiers by the posterior basis function selected in n

iteration, comparing with the other ensemble methods.

5.3. Kappa-error diagram of the diversity

The diversity of ensemble classifiers that is an important factor
for affecting the performance of ensemble system is studied
extensively. Generally speaking, it is not easy to measure the
diversity among more than two classifiers [52,53]. So the kappa
statistic k measuring the diversity between the pairwise classifiers
is used widely [54,28], and it is introduced to a pruning method for
AdaBoost by Margineantu and Dietterich [27]. It is defined as
follows.

Given two classifiers Ca and Cb, and a training set Xtraining which
has N samples. The k statistic is defined in

k¼ p1�p2

1�p2
ð27Þ

where, p1 is the probability that two classifiers agree, which is
computed by form (28), p2 is the probability that two classifiers
agree by chance, which is gained by form (29)

p1 ¼
XL

i

Dii

�
N ð28Þ
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Fig. 11. Kappa-error diagrams of four ensemble methods.

Table 6
The accuracy and number of dots of five datasets for four methods.

Methods Breast Clean Ionophere Liver Wdbc

Accuracy Number Accuracy Number Accuracy Number Accuracy Number Accuracy Number

MPOEC 0.6701 300 0.8125 171 0.9139 406 0.6933 1035 0.9106 78

OPMPOEC 0.731 91 0.75 136 0.9007 105 0.6533 351 0.905 28

Bagging 0.7259 4950 0.8182 4950 0.8411 4950 0.6711 4950 0.897 4950

EVEN 0.7259 4950 0.7841 4950 0.8675 4950 0.6311 4950 0.8943 4950
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where, L is the number of class of dataset, iA{1, 2, y, L}, Dij is the
number of training samples for which Ca(x)¼ i and Cb(x)¼ j. The
kappa-error diagram is a scatter plot where each point corresponds to
a pair of classifiers [28]. In kappa-error diagram, it is shown that the
diversity between two classifiers and the average error of two
classifiers, the x axis is the value ofk and the y axis is the average error.
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In following, the experiments are aimed at comparing the
diversity of the proposed method against the standard ensemble
methods and evolutionary ensemble method [55,56]. Evolutionary
ensemble (EVEN) applies a framework of genetic algorithm to
weight the contribution of each classifier via an appropriate fitness
function with the positive class f-measure [57] for unbalance
datasets. In experiments, 100 classifiers (C4.5) are ensemble with
bagging strategy by our method, and the parameters of MPOEC are
as same as the Section 5.2. For EVEN method, the number of
generations is G¼1000, the population size p is equal to 250, the
number of classifiers is 100, and three parameters of genetic
algorithm (crossover probability, mutation probability and survi-
vor probability) are, respectively, 80%, 1% and 19%.

General speaking [28], the kappa value k¼0 indicates that the
agreement of the two classifiers equals that expected by chance, and
k¼1 indicates the two classifiers agree on every sample. Especially,
negative value ko0 indicates that agreement is weaker than
expected by chance. Fig. 11 shows the kappa-error diagrams for five
datasets. According to these charts, it is easily seen that the kappak of
diagrams of standard bagging and EVEN method focus on the bottom
right corner. However, the kappa k of our method’s diagrams is
divided into three parts for wdbc dataset: the right corner segment,
the left middle segment and the right upper segment.

The right corner segment of MPOEC is similar with OPMPOEC,
because these points are obtained by classifiers with positive
coefficients, and it is obvious that the values of diversity are lower
than bagging and EVEN. The left middle segment is composed of the
dots gained by computing diversities between classifiers with
positive coefficients and classifiers with negative coefficients.
In the right upper segment, the dots are obtained by classifiers with
negative coefficients. Hence, from the results of diagrams of diversity,
it is obviously found that the dots in right corner of our method are so
smaller, and the values of dots are lower than bagging and EVEN. It
indicates that the proposed method eliminates some similar and
useless classifiers compared with bagging and EVEN. For instance,
the value of breast dataset is lower than 0.8. The accuracy of each
method and the number of dots in diagrams are shown in Table 6.
6. Conclusions

In this paper, we have presented a new method to combine
classifiers in ensemble system based on the diversity between a pair
of classifiers and the performance of classifiers, using a greedy
algorithm to search for an optimal combination of ensemble
classifiers. Because diversity and accuracy can be balances by the
proposed method, a very simple strategy can be used to construct
individual classifiers, which simples the process of constructing
individual of ensemble. In the optimal process, MPOEC approach can
select some classifiers with diversity, which makes the diversity of
ensemble instead of constructing different training sets. Further-
more, the experimental results indicate MPOEC improves the
performance of ensemble and increase the diversity compared with
bagging and random subspace strategies. However, we still found a
shortage about over-fitting problem in the proposed method. Hence,
our works will focus on improving the over-fitting phenomenon in
the future. One direction is to select some testing samples to add to
the training samples, and the other is to use the feedback informa-
tion of the testing performance of each basis function to decide the
coefficient together with the training performance.
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