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a b s t r a c t

The current discriminant analysis method design is generally independent of classifiers, thus the

connection between discriminant analysis methods and classifiers is loose. This paper provides a way to

design discriminant analysis methods that are bound with classifiers. We begin with a local mean based

nearest neighbor (LM-NN) classifier and use its decision rule to supervise the design of a discriminator.

Therefore, the derived discriminator, called local mean based nearest neighbor discriminant analysis

(LM-NNDA), matches the LM-NN classifier optimally in theory. In contrast to that LM-NNDA is a NN

classifier induced discriminant analysis method, we further show that the classical Fisher linear

discriminant analysis (FLDA) is a minimum distance classifier (i.e. nearest Class-mean classifier)

induced discriminant analysis method. The proposed LM-NNDA method is evaluated using the

CENPARMI handwritten numeral database, the NUST603 handwritten Chinese character database,

the ETH80 object category database and the FERET face image database. The experimental results

demonstrate the performance advantage of LM-NNDA over other feature extraction methods with

respect to the LM-NN (or NN) classifier.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The nearest neighbor (1-NN) classifier is one of the most
widely used classifiers due to its simplicity and effectiveness.
Cover and Hart laid the theoretical foundation of 1-NN classifier
and showed that when the training sample size approaches to
infinity, the error rate of the NN classifier is bounded above by
twice the Bayes error rate in 1967 [1]. As a generalization of 1-NN
classifier, K-NN classifier was presented subsequently [2]. In
recent years, with the popularity of manifold learning, the
NN-based classification methods arouse considerable research inter-
ests and a number of improved variants of the NN classifier have
been developed [3–8]. Among the most simple and interesting is the
local mean based nearest neighbor (LM-NN) classifier, which uses
the mean of the R nearest neighbors within a class as the prototype
of the class [8]. The LM-NN classifier was demonstrated to be more
robust to outliers than the classical 1-NN and K-NN classifiers and
thus achieves better classification performance [8].

If the dimension of the observation space is very high, it is
generally time-consuming to perform the NN-based classification
directly based on all of the original features. In addition, using all
ll rights reserved.
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features for classification is not necessary to achieve optimum
results due to the problem of ‘‘dimensionality curse’’. Therefore,
we usually perform feature extraction (or dimensionality reduc-
tion) first before the classification step. Discriminant analysis is a
fundamental tool for feature extraction. By far, numerous dis-
criminant analysis methods have been developed. Among the
most well-known is Fisher linear discriminant analysis
(FLDA) [36]. FLDA seeks to find a projection axis such that the
Fisher criterion (i.e. the ratio of the between-class scatter to the
within-class scatter) is maximized after the projection of samples.
FLDA receives intense attention in the past decade and numerous
FLDA variants were put forward to deal with real-world small
sample size problems [9–16]. A nonlinear version of FLDA, the
kernel Fisher Discriminant (KFD), was proposed for dealing with
the data with nonlinear structures [17–20]. Another nonlinear
discriminant analysis version, Locally Linear Discriminant Analy-
sis which involves a set of locally linear transformations, was
presented recently based on the idea that global nonlinear data
structures are locally linear [21]. In addition, motivated by the
idea of manifold learning algorithms [37,38], researchers
designed a family of locality characterization based discriminant
analysis techniques, such as Locality Preserving Projections
(LPP) [22], Local discriminant embedding [23], Marginal Fisher
Analysis (MFA) [24], etc.

The existing discriminant analysis method design, however, is
generally independent of classifier design. In other words, one
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does not consider what classifier would be used when trying to
derive a discriminant analysis method. The derived discriminant
analysis method, thus, can theoretically work with any classifier.
The connection between discriminant analysis methods and
classifiers is very loose. To generate an effective pattern recogni-
tion system, one needs to choose a classifier to match the
designed discriminant analysis method well by experience. But,
what classifier optimally matches the discriminant analysis
method is generally unknown to us.

In this paper, we provide a way to design discriminant analysis
methods that are bound with classifiers. We begin with a
classifier and use it as a steerer to direct the design of a
discriminator. Specifically we use the local mean based NN
classification rule to direct the design of a discriminator, thus,
the obtained discriminator, called local mean based NN discrimi-
nant analysis (LM-NNDA), matches the LM-NN classifier opti-
mally. Therefore, the LM-NNDA based feature extractor and the
LM-NN classifier can be seamlessly integrated into a pattern
recognition system. In contrast to that LM-NNDA is a NN classifier
induced discriminant analysis method, we further show that the
classical FLDA is a minimum (Class-mean) distance classifier (or
called nearest Class-mean classifier) induced discriminant analy-
sis method. Therefore, FLDA is the most suitable feature extractor
for the minimum distance classifier in theory.

Compared with the existing discriminant analysis methods,
the most remarkable advantages of the proposed LM-NNDA
method is its close connection to the NN classifier. Since the NN
classifier has an asymptotical average error rate P satisfying
P*rPr2P*, where P* is the Bayes error rate [36], it is reasonable
to believe that the proposed LM-NNDA method can yield a Bayes
suboptimal projection matrix which is connected to Bayes error
via lower and upper bounds. In contrast, most existing discrimi-
nant analysis methods don’t have this property.

In literature, we find that Hastie and Tibshirani’s work [46]
is quite interesting and related to ours. They proposed a
method, coined discriminant adaptive nearest neighbor (DANN),
to connect the discriminant analysis and nearest neighbor classi-
fication. The idea of DANN is quite different from ours, since
DANN employs the between-class and within-class scatter infor-
mation of a local linear discriminant analysis to define a new
metric for computing neighborhoods in the K-NN classifier,
whereas our method uses the decision rule of local mean based
nearest neighbor classifier to derive a new discriminant analysis.
In other words, the former uses the idea of discriminant analysis
for the NN classifier design, while the later uses idea of the
NN classifier for discriminant analysis design. Hastie and
Tibshirani also presented a global dimensionality reduction (DR)
method using the local between-class discriminant informa-
tion [46]. As an extension of Hastie and Tibshirani’s DANN
method, Domeniconi et al. suggested a locally adaptive metric
nearest-neighbor classification method by using the w2 distance
for metric learning [47]. Bressan and Vitria showed a connection
between nonparametric discriminant analysis and nearest neigh-
bor classification [48]. Zhang et al. presented a discrimi-
native nearest neighbor classification method by combining
support vector machines and K-NN classifiers into one frame-
work [49].

The remainder of this paper is organized as follows. Section 2
outlines the classical NN classifier and local mean based nearest
neighbor (LM-NN) classifier. Section 3 develops the idea of the
local mean based NN discriminant analysis (LM-NNDA) and the
relevant algorithm. Section 4 reveals that FLDA is a minimum
(Class-mean) distance classifier induced discriminant analysis
method and the connection between LM-NNDA and
FLDA. Section 5 describes the experimental methodology and
results. Section 6 offers our conclusions and future work.
2. Outline of nearest neighbor classifiers

2.1. Nearest neighbor classifier

Suppose there are c known pattern classes. Let Xi ¼

fXij9j¼ 1,. . .,Mig be the training sample set of Class i, where Mi is

the number of training samples of Class i. For a given new sample
x, let us find its nearest neighbor xir in each class. xir is viewed as
the prototype of Class i. The square distance from x to Class i is
defined by

diðxÞ ¼ 99x�xir99
2
: ð1Þ

Assume that the distance between x and Class l is minimal, i.e.

dlðxÞ ¼min
i

diðxÞ: ð2Þ

The decision rule of the 1-NN classifier is that x belongs to
Class l.

Let Pn(e) be the average probability of error for the 1-NN
decision rule using n training samples. The asymptotical average
error rate P¼ limn-1PnðeÞ satisfies the following property [36]:

P*rPrP* 2�
c

c�1
P*

� �
o2P*, ð3Þ

where P* is the Bayes error rate. Eq. (3) provides lower and upper
bounds for the error rate of the 1-NN classifier in the case of an
infinite number of samples.

The K-NN classifier naturally extends the idea of the 1-NN
classifier by taking the K nearest neighbors and assigning the sign
of the majority. Specifically, for a given test sample x, suppose
there are ki samples belonging to Class i. If kl ¼maxi ki,x belongs
to Class l. The K-NN classifier has a similar asymptotical average
error rate as shown in Eq. (3). However, it should be stressed that
the NN classifier (either 1-NN or K-NN) requires a large number of
training samples so as to approach the asymptotic performance.
For a given limited number of training samples, the asymptotical
error rate cannot be guaranteed.

2.2. Minimum (Class-mean) distance classifier

Minimum distance classifier uses the Class-mean as the pro-
totype of the class, thus this classifier is also called the nearest
Class-mean classifier. Let mi (i¼1,y,c) be the mean vector of the
training samples in Class i. The square distance from x to Class i is
defined by

diðxÞ ¼ 99x�mi99
2
: ð4Þ

If the distance between x and Class l is minimal, i.e.
dlðxÞ ¼mini diðxÞ, the decision of the minimum distance (MD)
classifier is that x belongs to Class l.

2.3. Local mean based nearest neighbor (LM-NN) classifier

Instead of searching for the 1-nearest neighbor of the given
sample x, the local mean NN classifier needs to find R-nearest
neighbors of x from each class. Suppose the R-nearest neighbors
of x in Class i are xir, where r¼1,y,R. Let us calculate the mean
vector of the these R-nearest neighbors miðxÞ ¼ ð1=RÞ

PR
r ¼ 1 xir ,

where mi(x) is called the local mean of the sample x in Class i.
mi(x) is viewed as the prototype of Class i with respect to x. The
square distance from x to Class i is thus defined by

diðxÞ ¼ 99x�miðxÞ99
2
: ð5Þ

If the distance between x and Class l is minimal, i.e.
dlðxÞ ¼mini diðxÞ, we can make the decision that x belongs to
Class l.
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The LM-NN classifier can be thought of as a meaningful com-
promise between the minimum distance classifier and the nearest
neighbor classifier. It has been demonstrated to be more powerful
than the classical 1-NN and K-NN classifiers [8]. A possible reason is
that the LM-NN classifier is more robust to outliers [8]. Actually
even when there is no outlier in the training sample set, the LM-NN
classifier can still be better. Fig. 1 provides an intuitive example for
why the LM-NN classifier can outperform the 1-NN classifier. In the
example, the two-class of samples are supposed to be linear
separable and the number of given training samples is pretty small.
Based on this small number of training samples, the 1-NN classifier
produces a locally linear decision surface as shown in Fig. 1, which
must lead to poor generalization performance. In such a case, the
K-NN classifier encounters the same problem [25] as the 1-NN
classifier and achieves an even worse decision surface. In contrast,
the LM-NN classifier can yield a desired linear decision surface for
this case. Note that here we use R¼2 in the LM-NN classifier since
the decision surface is one-dimensional (the nearest neighbor
parameter R is chosen as D+1 for D-dimensional decision surface).

It is obvious that the local mean based nearest neighbor
classifier is the nearest neighbor classifier when the nearest
neighbor parameter R¼1. The local mean based nearest neighbor
classifier can be viewed as a generalized version of the classical
nearest neighbor classifier. Therefore, we use the local mean NN
decision rule in the design of our discriminant analysis method.

2.4. Parameter selection in the LM-NN classifier

The parameter R plays an important role in the performance of
the LM-NN classifier, since it determines the degree of compromise
between the MD classifier and the nearest neighbor classifier. If R is
too small, for example reaches 1, the LM-NN classifier becomes the
1-NN classifier and loses the power of filling in ‘‘holes’’ caused by
missing samples (just as shown in Fig. 1). If R is too large and
approaching the training sample number of each class, the LM-NN
classifier becomes the MD classifier and loses its power for dealing
with nonlinearly separable problems. For instance, two classes of
samples lie on or near the two concentric circles, respectively, as
shown in Fig. 2, and suppose that for each class the mean of all 10
samples is exactly the center of circle. If R¼10, the LM-NN classifier
cannot make a decision because the Class-means share a same point.

From the theory of manifold learning [41,42,37,38], we can
assume that each class of samples forms a lower-dimensional
manifold (embedded in a high dimensional input space) which
Fig. 1. Illustration of the decision surfaces of the nearest neighbor (NN) classifier

and the local mean based nearest neighbor (LM-NN) classifier: (a) The decision

surface of the NN classifier (it is locally linear due to the limited number of

training samples) and (b) the decision surface of the LM-NN classifier. Note that in

(b), the white circles and triangles represents the generated samples by the local

mean operator (R¼2). These samples help the LM-NN classifier produce a desired

linear decision surface.
can reasonably be considered locally linear. For a given testing
sample, it is reasonable to think that its R neighbors exist [21,25]
on or near a local ‘‘flat patch’’ of the manifold, which is approxi-
mated by an (R�1)-dimensional local hyperplane spanned by R

neighbors. From this point of view, it is reasonable to use the
mean of the R neighbors, i.e. the centroid of the local hyperplane,
to represent the local ‘‘flat patch’’. Conversely, from the viewpoint
of manifolds, we have an insight into the LM-NN classifier itself.
The parameter R, the number of the neighbors in the LM-NN
classifier, should be chosen as D+1, where D is the local dimen-
sion, i.e. the dimension of the local ‘‘flat patch’’ of the manifold.

In the example as shown in Fig. 2, the 10 neighbors of one class
are placed on a circle. The circle is viewed as a one-dimensional
manifold, whose local patch is a line segment with a dimension of
1. In such a case, for a given test samples on or near the class
manifold, we can find its R neighbors from each class, where R as
is chosen as 2 rather than 10. Then, the local means of two classes
are different and the LM-NN makes a right decision.

From this example, we can also find that there is a flexible
scope allowing the parameter R to vary around D+1. When R

varies from 1 to 3, the LM-NN can always achieve the right
results. This provides us a flexibility to choose the parameter for
achieving satisfying results. Our experimental results in Sections
5.1 and 5.2 further demonstrate this fact.

The parameter R can be theoretically determined by the local
dimension of the manifold. However, evaluating the local dimension
of a manifold accurately is very difficult or even impossible when
there is a very limited number training samples available. Therefore,
it is infeasible to choose R by evaluating the local dimension of the
manifold. In practice, we generally choose R according to the
number of training samples of each class. If there is a same number
of training samples for each class, we always assume that there is a
same local dimension shared by all classes and choose a proper,
common R for each class which yields the best recognition perfor-
mance. Otherwise, we choose Ri¼R0Mi/M, where Mi is the number
of training samples in Class i, M is total number of the training
samples across all classes, i.e. M¼

Pc
i ¼ 1 Mi, and R0 is a parameter

which is shared by all classes. We use experiments to determine a
proper R0 for achieving satisfying recognition results.
3. Nearest neighbor rule induced discriminant analysis

This section will develop a discriminant analysis method
under the guide of the LM-NN decision rule. The central idea of
Fig. 2. Illustration of the choice of the parameter R in the LM-NN classifier for a

nonlinearly separable problem. Here, the red point denotes a test sample, and the

yellow points are local means belonging to different classes. An ideal parameter R

is chosen as 2, since the local dimension of the class manifold is 1.
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designing the method is to make the subsequent LM-NN classifier
achieve the optimum performance in the reduced-dimensional
space.

3.1. Basic idea

Let us first consider the problem in the observation space.
Suppose there are c known pattern classes. Let X¼ fXijg be the
training sample set, where i¼1,y,c and j¼1,y,Mi. For each
sample xij, we can find its R-nearest neighbors in every class
and calculate the corresponding local mean vector. Let ms

ij be the
local mean vector of xij in Class s. The distance between xij and
Class s is

dsðxijÞ ¼ 99xij�ms
ij99

2
: ð6Þ

To make the LM-NN classifier perform well on the training
sample set, we want the within-class local distance di(xij) as small
as possible and the between-class local distance ds(xij) for each
sa i as large as possible. To this end, let us define the local within-
class scatter of samples in the observation space as follows:

1

M

X
i,j

diðxijÞ ¼
1

M

X
i,j

:xij�mi
ij:

2
, ð7Þ

and the local between-class scatter of samples in the input space
as follows:

1

Mðc�1Þ

X
i,j

X
sa i

dsðxijÞ ¼
1

Mðc�1Þ

X
i,j

X
sa i

:xij�ms
ij:

2
, ð8Þ

where M is total number of training samples.
The local within-class scatter is actually the average of all pair

of within-class local distances, and the local between-class scatter
is the average of all pair of between-class local distances.
According to LM-NN decision rule, larger local between-class
scatter and smaller local within-class scatter will lead to better
classification results in an average sense if samples are classified
in the observation space.

Our goal is to find a linear discriminant transform

y¼ PT x where P¼ ðu1,. . .,udÞ, ð9Þ

such that the data points in the low-dimensional transformed
space have the following properties:
(i)
 The local neighbor relationship is preserved.

(ii)
 The local between-class scatter of samples is maximized

while at the same time the local within-class scatter of
samples is minimized.
The first property is to guarantee that the R nearest neighbors
of a point in the observation space are still the R nearest
neighbors of the point in the transformed space. The second
property aims to make the LM-NN classifier perform well in the
transformed space.

3.2. Local mean based nearest neighbor discriminant analysis

(LM-NNDA)

For simplicity, let first consider a one-dimensional linear
transform y¼uTx. Under this transform, each data point xij in
observation space is mapped into yij¼PTxij in a one-dimensional
transformed space. Let the R-nearest neighbors of xij in Class s in
the observation space be xsr, r¼1,y,R. Then, the local mean
vector of xij in Class s in the observation space is ms

ij ¼PR
r ¼ 1 xsr . Since we assume the local neighbor relationship is

preserved, in the transformed space, the R-nearest neighbors
of the point yij in Class s is ysr, r¼1,y,R. The local mean of yij in
Class s in the transformed space is

~ms
ij ¼

XK

r ¼ 1

ysr ¼
XK

r ¼ 1

uT xsr ¼uT ms
ij: ð10Þ

Now, let us define the local within-class scatter of samples in
the transformed space as follows:

1

M

X
i,j

diðyijÞ ¼
1

M

X
i,j

ðyij� ~m
i
ijÞ

2
¼

1

M

X
i,j

ðuT xij�uT mi
ijÞðu

T xij�uT mi
ijÞ

T

¼uT 1

M

X
i,j

ðxij�mi
ijÞðxij�mi

ijÞ
T

2
4

3
5u¼uT SL

wu,

where

SL
w ¼

1

M

X
i,j

ðxij�mi
ijÞðxij�mi

ijÞ
T

ð11Þ

is called the local within-class scatter matrix. It is easy to show
that SL

w is a nonnegative definite matrix.
Similarly let us define the local between-class scatter of

samples in the transformed space as follows:

1

Mðc�1Þ

X
i,j

X
sa i

dsðyijÞ ¼
1

Mðc�1Þ

X
i,j

X
sa i

ðyij� ~m
s
ijÞ

2

¼
1

Mðc�1Þ

X
i,j

X
sa i

½uT ðxij�ms
ijÞ�½u

T ðxij�ms
ijÞ�

T

¼uT 1

Mðc�1Þ

X
i,j

X
sa i

ðxij�ms
ijÞðxij�ms

ijÞ
T

2
4

3
5u¼uT SL

bu,

where

SL
b ¼

1

Mðc�1Þ

X
i,j

X
sa i

ðxij�ms
ijÞðxij�ms

ijÞ
T

ð12Þ

is called the local between-class scatter matrix. It is easy to show
that SL

b is a nonnegative definite matrix.
To maximize the between-class scatter and simultaneously to

minimize the within-class scatter, we can choose to maximize the
following criterion:

JðuÞ ¼
uT SL

bu
uT SL

wu
: ð13Þ

The optimal solution of the criterion in Eq. (13) is actually the
generalized eigenvector u, of SL

bX¼ lSL
wX corresponding to the

largest eigenvalue. Like FLDA, for multiple-class problems, one
projection axis u is not enough for discrimination, so we gen-
erally need to find a set of projection axes. Similar to the way
adopted by FLDA to get multiple projection axes, we can calculate
the generalized eigenvectors u1,. . .,ud of SL

bX¼ lSL
wX correspond-

ing to the d largest eigenvalues and use them as projection axes to
produce a transform matrix P¼ ðu1,. . .,udÞ, where d is the
number of projection axes chosen. The linear transformation
y¼PTx forms a feature extractor which reduces the dimension
of original feature vectors to d.

In summary of the description above, the local mean based
nearest neighbor discriminant analysis (LM-NNDA) algorithm is
given below:
3.2.1. The LM-NNDA algorithm

Step 1: For each sample point xij, find its R-nearest neighbors in
every class and calculate the corresponding local mean vector. Let
ms

ij be the local mean vector of xij in Class s.
Step 2: Construct the local within-class scatter matrix SL

w and
the local between-class scatter matrix SL

b using Eqs. (11) and (12).
Calculate the generalized eigenvectors u1,. . .,ud of SL

b and SL
w
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corresponding to the d largest generalized eigenvalues. Let
P¼ ðu1,. . .,udÞ.

Step 3: For a given sample x, its feature vector y is obtained by
the linear transform y¼PTx.

It should be noted that unlike FLDA, which can generate at
most c�1 effective projection axes, the LM-NNDA algorithm can
yield more than c�1 effective projection axes, since the rank of SL

b

is generally much larger than c�1.
In addition, since LM-NNDA involves a parameter R, how to

choose the parameter is a first problem. Here, we assume that a
common R is shared by all classes and determine a proper R which
yields the best recognition performance by experimental evalua-
tion, just as the way used in the LM-NN classifier. It should be
mentioned that our experiments show that LM-NNDA is insensi-
tive to the variation of R, that is, the performance of LM-NNDA is
steady when R ranges in a relative large interval.

Finally we would like to analyze the computational complexity
of LM-NNDA. In the construction of the between-class and
within-class scatter matrices SL

b and SL
w, for each training sample,

we need to find its R nearest neighbors within each class. There-
fore, compared to the FLDA method, an additional computational
cost of LM-NNDA is required for the nearest neighbor search. The
naive (linear) search of the R neighbors of one point within Class i

has a running time of O(RMiD), where Mi is the number of samples
in the Class i and D is of dimension of the pattern vectors. So
the computational complexity for nearest neighbor search in
LM-NNDA is O(RM2D), where is M is total number of training
samples, M¼

Pc
i ¼ 1 Mi. The naive search algorithm only suits for

small sample size cases. For large sample size cases, more
advanced nearest neighbor search algorithms with lower compu-
tational complexity can be used instead [43].
3.3. Implementation of LM-NNDA in small sample size cases

In the small sample size cases where the number of training
samples is smaller than the dimension of the image vector space,
the local within-class scatter matrix SL

w is always singular because
the following proposition holds:

Proposition 1. The rank of the local within-class scatter matrix SL
w is

equal or less than M�c, i.e. rankðSL
wÞrM�c, where M is number of

training samples and c is the number of classes.

Proof. First of all, let us rewrite SL
w ¼ ð1=MÞ

Pc
i ¼ 1 SLi

w, where
SLi

w ¼
PMi

j ¼ 1ðxij�mi
ijÞðxij�mi

ijÞ
T .

SLi
w can be viewed as the local scatter matrix of Class i. For

convenience of discussion, we would like to express SLi
w in a

matrix form. To this end, let us define a Mi-dimensional column

vector Hij ¼ ðH
k
ijÞMi�1 for each sample point xij, whose kth element

is given below:

Hk
ij ¼

� 1
K if xik is among K nearest nieghbors of xij,

1 if k¼ j,

0 otherwise :

8><
>:

Letting Xi ¼ ½xi1,. . .,xiMi
� and Hi ¼ ½Hi1,. . .,HiMi

�, we have

SLi
w ¼

XMi

j ¼ 1

ðXiHijÞðXiHijÞ
T
¼Xi

XMi

j ¼ 1

HijH
T
ij

0
@

1
AXT

i ¼XiðHiH
T
i ÞX

T
i :

Now, let us consider the rank of the Mi by Mi matrix

Hi ¼ ½Hi1,. . .,HiMi
�. Since the sum of the all elements in Hij is zero,

adding all but the first rows of the matrix Hi to the first row, we
get the following matrix:

0 0 � � � 0

H2
i1 1 � � � H2

iMi

^ ^ & ^

HMi

i1 HMi

i2 � � � 1

2
66664

3
77775

Thus, rank(Hi)rMi�1. From the singular value decomposition

(SVD) theorem [26], we know that Hi and HiH
T
i have the same

rank. Therefore, rankðHiH
T
i ÞrMi�1.

Let X¼[X1,y,Xc] and H¼ diagðH1HT
1,. . .,HcHT

c Þ. It is easy to

derive that

rankðHÞr
Xc

i ¼ 1

ðMi�1Þ ¼M�c:

Then, we have

SL
w ¼

1

M

Xc

i ¼ 1

SLi
w ¼

1

M

Xc

i ¼ 1

XiðHiH
T
i ÞX

T
i ¼

1

M
XHXT :

Therefore rankðSL
wÞrM�c. &

In real-world applications, the given M training samples are
generally linear independent in the high-dimensional input space.
The rank of SL

w is usually M�c. To avoid overfitting in small
sample size cases, we borrow the idea in [9,10] and use PCA to
reduce the dimension of the input space such that SL

w is non-
singular in the PCA-transformed space. We then perform
LM-NNDA based on PCA-transformed features. To further
enhance the robustness of the LM-NNDA algorithm, we use the
following technique to regularize the local within-class scatter
matrix SL

w:

SL
w’SL

wþaI, ð14Þ

where I is the identity matrix and a is chosen as
a¼ 0:001traceðSL

wÞ in this paper.

3.4. A special case of LM-NNDA: NNDA

Particularly, when the nearest neighbor parameter R¼1,
LM-NNDA becomes a nearest neighbor rule induced discriminant
analysis (NNDA). In the training process of NNDA, for each sample
point xij, we need to find its within-class nearest neighbor and all
between-class nearest neighbors. Then, we try to minimize the
average distance between every point and its within-class nearest
neighbor and simultaneously to maximize the average distance
between every point and its between-class nearest neighbor.

A NNDA closely related dicriminant analysis is the nonpara-
metric margin maximum criterion (NMMC) method proposed by
Qiu and Wu [27]. The basic idea of NMMC is to find the within-
class furthest neighbor (rather than the within-class nearest neigh-
bor) and the between-class nearest neighbor of each sample point,
and then to minimize the average distance between every point
and its within-class furthest neighbor and simultaneously to max-
imize the average distance between every point and its between-
class nearest neighbor. The most remarkable difference between
NMMC and NNDA is that the former focuses on the within-class
furthest neighbor of a sample while the later focuses on the within-
class nearest neighbor. Focusing on the within-class furthest neigh-
bor, however, may encounter the following problems:
(i)
 The within-class furthest neighbors are more likely to be
outliers, so depending on them to characterize the within-
class scatter is not very robust.
(ii)
 In some cases, minimizing the distance between a point and
its within-class furthest neighbor does not make sense for
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classification, as shown in Fig. 3. Reducing the distance
between a sample X1 and its within-class furthest neighbor
X2 has no effect on the classification of the two-class samples.
In contrast, the NNDA method does not have the foregoing
problems since it uses the within-class nearest neighbors to
characterize the within-class scatter. This within-class nearest

neighbors based within-class scatter characterization plus the
between-class nearest neighbors based between-class scatter
characterization make NNDA more suitable for the NN classifier
than NMMC.
4. Further discussion

This section shows that FLDA is a minimum distance classifi-
cation rule induced discriminant analysis method, and then
reveals the connection between LM-NNDA and FLDA. Finally we
elucidate the dependency of LM-NNDA and the LM-NN classifier
in a special case.
4.1. FLDA

FLDA seeks to find a projection axis such that the Fisher
criterion (i.e. the ratio of the between-class scatter to the within-

class scatter) is maximized after the projection of samples. The
between-class and within-class scatter matrices Sb and Sw are
defined by

Sb ¼
1

M

Xc

i ¼ 1

Miðmi�m0Þðmi�m0Þ
T, ð15Þ

Sw ¼
1

M

Xc

i ¼ 1

XMi

j ¼ 1

ðxij�miÞðxij�miÞ
T, ð16Þ

where xij denotes the jth training sample in class I, c is the
number of classes, Mi is the number of training samples in class I,
mi is the mean of the training samples in class I, m0 is the total
mean of training samples, i.e. m0 ¼ ð1=MÞ

PM
j ¼ 1 xj ¼

ð1=MÞ
Pc

i ¼ 1 Mimi. Specially when each class has the same num-
ber of training samples, the between-class scatter matrix becomes

Sb ¼
1

c

Xc

i ¼ 1

ðmi�m0Þðmi�m0Þ
T, ð17Þ
Y1X1

X2

X3

3. Illustration of the within-class furthest neighbor, the within-class nearest

hbor and the between-class nearest neighbor of a sample point. For the

ple point X1, its within-class furthest neighbor is X2, its within-class nearest

hbor is X3, and it is between-class nearest neighbor is Y1. It is obvious that

cing the distance between X1 and its within-class furthest neighbor X2 does

make sense for the classification of the two-class problem.
The Fisher criterion is defined by

JF ðuÞ ¼
uT Sbu
uT Swu

: ð18Þ

The stationary points of JF(u) are the generalized eigenvectors
u1,u2,y,ud, of SbX¼l SwX corresponding to d largest eigenva-
lues. These stationary points form the coordinate system of FLDA.

4.2. FLDA is a minimum distance classification rule induced

discriminant analysis

In this section, we first develop a MD classification rule
induced discriminant analysis method, and then show its equiva-
lence to FLDA when each class has the same number of training
samples.

Let us consider the problem in the y¼uTx transformed space.
Each data point xij in observation space is mapped into yij¼uTxij

in the transformed space. The class-mean vector mi (i¼1,y,c)
and the total mean vector m0 in observation space is thus mapped
into ~mi ¼uT mi and ~m0 ¼uT m0, respectively, in the transformed
space. To make the MD classifier perform well, we try to minimize
the following within-class scatter:

1

M

X
i,j

diðyijÞ ¼
1

M

X
i,j

ðyij� ~miÞ
2
¼

1

M

X
i,j

½uT ðxij�miÞ�½uT ðxij�miÞ�
T

¼uT Swu, ð19Þ

and simultaneously to maximize the following between-class
scatter:

1

Mðc�1Þ

X
i,j

X
sa i

dsðyijÞ ¼
1

Mðc�1Þ

X
i,j

X
sa i
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2

¼
1

Mðc�1Þ

X
i,j

X
sa i

½ðyij� ~miÞþð ~mi� ~msÞ�
2

¼
1

Mðc�1Þ

X
i,j

X
sa i

ðyij� ~miÞ
2
þ

1

Mðc�1Þ

X
i,j

X
sa i

ð ~mi� ~msÞ
2

þ
2

Mðc�1Þ

X
i,j

X
sa i

ðyij� ~miÞð ~mi� ~msÞ

¼
1

M

X
i,j

ðyij� ~miÞ
2
þ

1

Mðc�1Þ

X
i

X
s

Mið ~mi� ~msÞ
2
þ0

¼uT Swuþ
1

Mðc�1Þ

X
i

X
s

Mið ~mi� ~m0þ ~m0� ~msÞ
2

¼uT Swuþ
1

Mðc�1Þ
c
X

i

Mið ~mi� ~m0Þ
2
þ
X

i

Mi

X
s

ð ~ms� ~m0Þ
2
þ0

" #

¼uT Swuþ
1

Mðc�1Þ
c
X

i

Mið ~mi� ~m0Þ
2
þM

X
s

ð ~ms� ~m0Þ
2

" #

¼uT Swuþ
1

Mðc�1Þ

X
i

ðcMiþMÞðuT mi�uT m0Þ
2

¼uT SwuþuT 1

Mðc�1Þ

X
i

ðcMiþMÞðmi�m0Þðmi�m0Þ
T

" #
u:

ð20Þ

When each class has the same number of training samples,
i.e. Mi¼M/c (i¼1,y,c), the foregoing between-class scatter
becomes

1

Mðc�1Þ

X
i,j

X
sa i

dsðyijÞ ¼uT SwuþuT 2
c�1

X
i

ðmi�m0Þðmi�m0Þ
T

" #
u

¼uT Swuþ 2
c�1u

T Sbu: ð21Þ
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In such a case, the criterion of the MD classification rule
induced discriminant analysis is given by

JMðuÞ ¼
uT Swuþð2=c�1ÞuT Sbu

uT Swu
ð22Þ

It is easy to show that the following equivalent relationships
hold:

JMðuÞ3
ð2=c�1ÞuT Sbu

uT Swu
3

uT Sbu
uT Swu

¼ JF ðuÞ: ð23Þ

This equivalence means that the MD classification rule
induced discriminant analysis method has the same solution with
FLDA when each class has the same number of training samples.
Therefore, FLDA can be viewed as a MD classification rule induced
discriminant analysis method. From this point of view, it can be
said that FLDA is the most suitable feature extractor for the
minimum distance classifier.

4.3. Connecting LM-NNDA to FLDA

In this section, we will show that, when each class has the
same number of training samples, LM-NNDA is approaching to
FLDA with the increase of the nearest neighbor parameter R.

Suppose that the training sample number of each class is
Mi¼M/c (i¼1,y,c). Let ms

ij be the local mean vector of xij in Class s.
It is easy to know that ms

ij is approaching to the mean of Class s, ms,
when R approaches to Mi, i.e.

ms
ij-ms when R-Mi: ð24Þ

Therefore, LM-NNDA approaches to the minimum distance
classification rule induced discriminant analysis method
described in the foregoing section when R approaches to Mi. Since
the minimum distance classification rule induced discriminant
analysis has been proven equivalent to FLDA, we can conclude
that LM-NNDA approaches to FLDA when R approaches to the
class training sample number Mi. This is interestingly consistent
with the fact that the LM-NN classifier approaches to the MD
classifier when R approaches to the class training sample number
Mi, noticing that FLDA is a MD classification rule induced
discriminant analysis method.

4.4. Dependency of LM-NNDA and the LM-NN classifier

The design of the LM-NNDA method is intuitively based the
decision rule of the LM-NN classifier. That is, in order to make the
subsequent LM-NN classifier achieve a good performance, we
model LM-NNDA by maximizing the average point-to-intra-class
distance and simultaneously minimizing the average point-to-
inter-class distance. Thus, we conclude that LM-NNDA is the most
suitable feature extraction method for the LM-NN classifier. In
this section, we try to provide some theoretical analysis on the
dependency of LM-NNDA and the LM-NN classifier. We will
discuss in what cases, LM-NNDA is guaranteed to be the statis-
tically optimal for the LM-NN classifier.

Let us first begin with the FLDA method, a special case of LM-
NNDA. It is known that the transform matrix of FLDA is the Bayes
optimal when each class of samples shares a normal distribution
with an identical covariance matrix [34]. In this case, the within-
class scatter matrix of FLDA, Sw ¼ Si

w, for i¼1,y,c, where Si
w is the

covariance matrix of Class i. Then, in such a case, we can ensure
that the transformed samples of each class share a normal
distribution and the covariance matrix is an identity matrix
because the FLDA algorithm can lead to

PT SwP¼ I where P¼ ðu1,u2,. . .,udÞ where I is an identity matrix:

ð25Þ
The mean minimum distance classifier is the Bayes optimal
when each class of samples has a normal distribution with an
identity covariance matrix. From the above analysis, we can now
conclude that FLDA is the statistically optimal for the MD
classifier in the case that each class of samples shares a normal
distribution with a same covariance matrix.

The above conclusion on FLDA can be extended to LM-NNDA
because LM-NNDA can be viewed as a ‘‘locally’’ FLDA method.
Specifically let us look at class manifolds and focus on the set of R

samples within a local patch, which can be thought of as a
subclass. It is easy to show that LM-NNDA is a subclass based
FLDA method, following the derivation process given in Section
4.2. If the all subclasses share a normal distribution with an
identity covariance matrix, the subclass based FLDA method (i.e.
LM-NNDA) is the statistically optimal for the subclass based MD
classifier. Notice that the subclass (formed by the R local samples)
based MD classifier is the LM-NN classifier. Therefore, we can
conclude that when the class manifolds have the same local
distribution, i.e. all set of R local samples (subclasses) share a
normal distribution with an identical covariance matrix,
LM-NNDA is the statistically optimal for the LM-NN classifier.

It should be noted that here we only elucidate the dependency
of LM-NNDA and the LM-NN classifier in a special case. For more
general cases, statistical analysis on the dependency of LM-NNDA
and the LM-NN classifier is still an open problem.

4.5. Connecting LM-NNDA to LB-LDA

Hastie and Tibshirani presented a dimensionality reduction
method using the local discriminant information [46]. Their method
seeks the subspace spanned by eigenvectors of the average local
between sum-of-squares matrices based on the globally sphered
data. In other words, the method characterizes the between-class
scatter information locally, whereas characterizes the within-class
scatter information globally. Therefore, Hastie and Tibshirani’s
method is essentially a semi-local dimensionality reduction
method, which is named local between-class linear discriminant
analysis (LB-LDA) in this paper. In contrast, LM-NNDA is a full-local
dimensionality reduction method, which characterizes both the
between-class scatter information and the within-class scatter
information locally. Specifically LM-NNDA use the local within-
class scatter matrix as shown in Eq. (11), while LB-LDA uses the
global within-class scatter matrix as LDA as shown in Eq. (16).

Moreover, as far as local between-class scatter information is
concerned, LM-NNDA and LB-LDA have different characteriza-
tions. Specifically, for each sample point xij, suppose ms

ij is the
local mean vector of xij in Class s. LM-NNDA uses xij and its
between-class local means ms

ij (sa i) to describe scatters and to
construct the local between-class scatter matrix as shown in
Eq. (12), while LB-LDA uses the within-class local mean of xij,
mij ¼mi

ij, and the overall local mean mij ¼ ð1=cÞ
Pc

s ¼ 1 ms
ij to

describe scatters and to construct the local between-class scatter
matrix as follows:

SLB
b ¼

X
i,j

ðmij�mijÞðmij�mijÞ
T

ð26Þ

It is evident that the formulation in Eq. (26) is different from
that in Eq. (12).

Finally it should be stressed that based on the characterization
of the local between-class scatter matrix SLB

b and the global
within-class scatter matrix Sw, LB-LDA does not show direct
connections to classifiers. In contrast, the characterization of the
local between-class scatter matrix SL

b and the local within-class
scatter matrix SL

w in LM-NNDA guarantees the connections
between LM-NNDA and local mean based nearest neighbor
classifier.



FLDA

LM-NNDA
LB-LDA

Fig. 4. Illustration of the projection direction of LM-NNDA (red), LB-LDA (blue)

and FLDA (black) for two classes of samples (for interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article).

J. Yang et al. / Pattern Recognition 44 (2011) 1387–14021394
Fig. 4 shows an illustrative example where LM-NNDA yields
different projection direction as opposed to LB-LDA and FLDA. In
this example, there are two classes of samples. The samples of one
class follows a normal distribution, while the samples of the other
class form two clusters, each following a normal distribution. In
the figure, the red line represents the projection direction of
LM-NNDA, the blue line represents that of LB-LDA, and the black
line represents that of FLDA. It appears that LM-NNDA produces a
more meaningful projection direction than LB-LDA and FLDA for
separating the two classes of samples. After being projected onto
the direction of LM-NNDA, samples can be well classified under a
local mean based nearest neighbor classifier. LB-LDA produces a
projection direction somewhat close to LM-NNDA, but still causes
some overlapping of the two classes of samples after the projec-
tion. Note that LB-LDA uses the global within-class scatter matrix
to sphere data. In our opinion, it is the global within-class scatter
matrix that misleads the projection direction of LB-LDA. When
one class contains two clusters of samples as shown in Fig. 4, the
global within-class scatter matrix fails to characterize the struc-
ture of data well. In contrast, the local within-class scatter matrix
can provide a much better characterization. Therefore, LM-NNDA
can yield a desirable projection direction.
2 4 6 8 10 12 14 16 18 20
0.6

0.65

0.7

0.75

0.8

0.85

0.9

The value of K (R)

R
ec

og
ni

tio
n 

ra
te

LM-NN Classifier
K-NN Classifier

Fig. 5. The recognition rates of the LM-NN classifier and the K-NN classifier over

the variation of parameters on the validation set of the CENPARMI database.
5. Experiments

In this section, the local mean based nearest neighbor dis-
criminant analysis (LM-NNDA) method is evaluated using the
CENPARMI handwritten numeral database, the NUST603 hand-
written Chinese character database, the ETH80 object category
database, and the FERET face image database and compared with
the PCA, FLDA, Locality Preserving Projection (LPP) [22], and the
nonparametric margin maximum criterion (NMMC) method [27].

It is natural that the proposed LM-NNDA based feature
extractor and the LM-NN classifier can be integrated into a
complete pattern recognition system. In this system, however,
the neighbor parameter R can be chosen differently in the feature
extractor and classifier. The value of R is determined by the local
dimension of the pattern class manifold. Since the dimension of
the original pattern space is larger than the transformed feature
space, the value of R in LM-NNDA (which is performed in the
original pattern space) is generally chosen larger than the value of
R in the LM-NN classifier. For distinction, we use R1 to denote the
parameter in LM-NNDA and R2 in the LM-NN classifier in the
following experiments.
5.1. Experiment using the CENPARMI handwritten numeral database

The experiment was conducted on Concordia University CEN-
PARMI handwritten numeral database. The database contains
6000 samples of 10 numeral classes (each class has 600 samples).
The original 121-dimensional Legendre moment features [28]
were extracted for each sample and used here. In our experiment,
the first 200 samples of each class are used to compose the
training set, the second 200 samples of each class compose the
validation set, and the remaining 200 samples form the test set.

In order to provide a baseline, we first apply the three
classifiers, the local-mean based nearest neighbor (LM-NN) clas-
sifier, the K nearest neighbor (K-NN) classifier and the minimum
(class-mean) distance (MD) classifier, to the original 121-dimen-
sional Legendre moment features. The classification results on the
validation set are shown in Fig. 5. It appears that the LM-NN
classifier consistently outperforms the K-NN classifier. The per-
formance of the K-NN classifier does not improve with the
increase of K for this database. In contrast, the LM-NN classifier
is more robust with the variation of the parameter. From these
results, we choose the optimal parameter K¼1 for the K-NN
classifier and K¼6 for the LM-NN classifier. Based on these
parameters, we obtain the recognition results of both classifiers
on the test set, as shown in Table 1. Table 1 shows us that the
LM-NN classifier performs better than the K-NN and MD classifiers.

PCA, FLDA, LB-LDA [46], LPP, and the proposed LM-NNDA are,
respectively, used for feature extraction based on the original
Legendre moment features. For each of the five methods, we use
the three classifiers mentioned above. Taking the combination of
LM-NNDA and the LM-NN classifier as an example, we show how
to tune the parameters R1 in the feature extractor and R2 in the
classifier on the validation set. Let R1 vary from 5 to 40 with an
interval of 5, R2 varies from 2 to 20 with an interval of 2, and the
dimension of the extracted features vary from 2 to 50 with an
interval of 2. The maximal classification rates over the variation of
dimensions corresponding to R1 and R2 are shown in Table 2.
From Table 2, we can see that the performance of LM-NNDA is
very robust with the variation of the parameter; it remains above
95.6% despite the variation of R1 and R2 within the given range.



Table 1
The recognition rates (%) of the three different classifiers based on the original

121-dimensional Legendre moment features on the test set.

MD K-NN (K¼1) LM-NN (R¼6)

54.4 88.2 91.8

Table 2
The maximal classification rates over the variation of dimensions corresponding to

R1 in LM-NNDA and R2 in the LM-NN classifier on the validation set.

R2

R1 2 4 6 8 10 12 14 16 18 20

5 0.960 0.969 0.965 0.965 0.963 0.959 0.958 0.958 0.957 0.958

10 0.959 0.966 0.969 0.970 0.963 0.961 0.961 0.957 0.958 0.956

15 0.961 0.966 0.971 0.969 0.965 0.961 0.960 0.960 0.958 0.958

20 0.958 0.966 0.973 0.968 0.967 0.963 0.960 0.959 0.959 0.958

25 0.959 0.967 0.973 0.969 0.968 0.962 0.961 0.960 0.959 0.958

30 0.959 0.968 0.972 0.969 0.968 0.962 0.962 0.960 0.960 0.958

35 0.957 0.968 0.971 0.971 0.969 0.963 0.962 0.961 0.960 0.959

40 0.956 0.969 0.971 0.972 0.969 0.965 0.963 0.962 0.962 0.960

5 10 15 20 25 30 35 40 45 50
0.4

0.5

0.6

0.7

0.8

0.9

1

Dimension

R
ec

og
ni

tio
n 

ra
te

LM-NNDA,LM-NN
LPP,LM-NN
LB-LDA,LM-NN
PCA,LM-NN
FLDA,LM-NN

R
ec

og
ni

tio
n 

ra
te

5 10 15 20 2

0.4

0.5

0.6

0.7

0.8

0.9

Dim

Fig. 6. Recognition rates of PCA, FLDA, LB-LDA, LPP and the proposed LM-NNDA vers

(a) with the LM-NN classifier, (b) with the NN classifier and (c) with the MD classifier

J. Yang et al. / Pattern Recognition 44 (2011) 1387–1402 1395
This provides us enough flexibility for parameter selection in
LM-NNDA. Here the optimal parameter combination is chosen as
R1¼20 and R2¼6, which correspond to an optimal dimension
d¼48. In a similar way, we can find optimal parameters R1 and R2

for different combinations of other feature extraction methods
and classifiers. Based on these parameters, the recognition rate of
each method on the test set versus the variation of dimensions is
shown in Fig. 6.

Fig. 6(a) and (b) shows that the LM-NNDA with the LM-NN and
NN classifiers noticeably outperforms PCA, LB-LDA and LPP with
the same classifiers, irrespective of the variation in dimensions.
FLDA can only extract c�1¼9 features in this experiment since
there are totally 10 classes. Although the nine FLDA features are
as effective as the first nine LM-NNDA features, this small number
of features is obviously not enough to represent numeral pattern
for recognition purposes. Fig. 6(c), however, shows that FLDA
consistently outperforms the other four feature extraction
method in terms of the MD classifier. The above results are
completely consistent with our analysis in the foregoing sections,
that is, LM-NNDA is the LM-NN classification rule induced
discriminant analysis, while FLDA is the MD classification rule
induced.
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To verify our analysis in Section 4.3 that LM-NNDA is
approaching to FLDA with the increase of the nearest neighbor
parameter R1, we perform an extra test of LM-NNDA in which R1

is chosen as 199 (note that the number of class training samples is
200). The recognition rates of LM-NNDA with three classifiers are
shown in Fig. 7(a). Just as expected, LM-NNDA achieves almost
the same recognition results as FLDA when the dimension varies
from 1 to 9, no matter what classifier is used. In this case, the first
nine LM-NNDA features seem enough for classification, and the
remaining features have trivial effect on the recognition perfor-
mance. To explain this phenomenon, let us provide the values of
the criterion in Eq. (13) corresponding to the first 18 projection
axes, i.e. the first 18 largest generalized eigenvalues of
SL

bX¼ lSL
wX, in Fig. 7(b). It is evident that the eigenvalues except

the first nine are very small and invariant. This characteristic of
eigenvalues is quite similar to that of FLDA, in which the
eigenvalues except the first nine are all zeros.

Now, for further evaluating the performance of the proposed
method, we do experiments by 10-fold cross validation. 200
samples are randomly chosen from each class for training,
while the remaining 400 samples are used for testing. We
run the system 10 times and obtain 10 different training and
testing sample sets for performance evaluation. Based on the
optimal parameters we obtain on the validation set in the fore-
going experiment, we perform PCA, FLDA, LB-LDA, LPP and
LM-NNDA with the three classifiers. The average recognition rates
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corresponding to LM-NNDA.

Table 3
The average recognition rates (%) and the standard deviations (stds) of PCA, FLDA, LB-LD

on the CENPARMI handwritten numeral database and the corresponding dimensions.

Feature extractor FLDA PCA

Classifier LM-NN LM-NN

Recognition rate 89.970.45 91.770.55

Dimension 9 40

Feature extractor FLDA PCA

Classifier NN NN

Recognition rate 87.870.37 88.670.47

Dimension 9 44

Feature extractor FLDA PCA

Classifier MD MD

Recognition rate 87.870.36 54.171.65

Dimension 9 38
and the standard deviations (stds) across ten tests are shown
in Table 3.

By comparing the recognition results in the columns
of Table 3, we find that for all of the five feature extraction
methods, the LM-NN classifier achieves the better results than the
other two classifiers. If we compare the performance of the five
feature extraction methods based on the LM-NN classifier,
LM-NNDA achieves the best result. However, if we do the compar-
ison based on the MD classifier, FLDA achieves the best recognition
rate. These results show that LM-NNDA is the most suitable
discriminant analysis method for the LM-NN classifier, while FLDA
is the most suitable method for the MD classifier.

Here, it should be pointed out that FLDA is the most suitable
discriminant analysis method for the MD classifier in theory, but,
it is not true vice versa. That is, we cannot say that the MD
classifier is most suitable classifier for FLDA. In this experiment, it
can be seen that FLDA with the LM-NN classifier achieves better
results than with the MD classifier.

Finally let us evaluate the experimental results in Table 3 using
a paired t-test. If the resulting p-value is below the desired
significance level (e.g. 0.05), the performance difference between
two algorithms is considered to be statistically significant. By this
test, we find that under the same LM-NN classifier, the perfor-
mance of the first-ranked LM-NNDA method is statistically
significantly better than that of the second-ranked LB-LDA
method at a significance level p¼5.53�10�9.
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5.2. Experiment using the NUST603 handwritten Chinese character

database

The experiment is performed on the NUST603 handwritten
Chinese character database which was built in Nanjing University
of Science and Technology. The database contains 19 groups of
Chinese characters that are collected from bank checks. There are
400 samples for each character and thus 7200 in total. The original
128-dimensional Peripheral feature vectors [29] were extracted
for each sample and used in our experiment. The first 100 samples
of each class are used for training, the second 100 samples of each
class for validation, and the remaining 200 samples for test.

We first apply the three classifiers, the LM-NN classifier, the
K-NN classifier and the MD classifier, to the original 128-dimen-
sional Peripheral features. The classification results on the valida-
tion set are shown in Fig. 8. It seems that the LM-NN classifier
consistently outperforms the K-NN classifier. From these results,
we choose the optimal parameter K¼5 for the K-NN classifier and
K¼6 for the LM-NN classifier. Based on these parameters, we
obtain the recognition results of both classifiers on the test set, as
listed in Table 4. Table 4 shows that the LM-NN classifier
performs much better than the K-NN and MD classifiers.

We then apply PCA, FLDA, LB-LDA, LPP and LM-NNDA, respec-
tively, for feature extraction based on the original Peripheral
feature vectors. Similar to the experimental methodology adopted
in Section 5.1, we use three classifiers: the LM-NN classifier, the
NN classifier and the MD classifier for each of the four feature
extraction method mentioned. We use the validation set to tune
the nearest neighbor parameters for each method as done in the
above section and then evaluate their performance on the test set.
For each classifier, the recognition rate curve of each method
versus the variation of dimensions is shown in Fig. 9.

From Fig. 9, we can draw the follow conclusions. First,
LM-NNDA with the LM-NN and NN classifiers achieves better
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Fig. 8. The recognition rates of the LM-NN classifier and the K-NN classifier over

the variation of parameters on the NUST603 handwritten Chinese character

database.

Table 4
The maximal recognition rates (%) of the three different classifiers based on the

original 128-dimensional peripheral feature vectors.

MD K-NN (K¼5) LM-NN (R¼6)

84.3 91.2 95.2
results than PCA, FLDA, LB-LDA and LPP with the same classifiers,
which indicates that LM-NNDA, as a feature extractor, is more
suitable for the LM-NN (or NN) classifier than the other four
methods. Second, FLDA achieves better results than PCA, LPP and
LM-NNDA with the MD classifier, which indicates that FLDA is
more suitable for the MD classifier than others. Third, the LM-NN
classifier is more powerful than the NN classifier and the MD
classifier for each feature extraction method. These conclusions
are consistent with those we draw on the CENPARMI handwritten
numeral database.

Let us further evaluate the performance of the proposed
method using 10-fold cross validation. 100 samples are randomly
chosen from each class for training, while the remaining 300
samples are used for testing. We run the system 10 times and
obtain 10 different training and testing sample sets for perfor-
mance evaluation. Based on the optimal parameters we obtain on
the validation set in the foregoing experiment, we perform PCA,
FLDA, LB-LDA, LPP and LM-NNDA with the three classifiers. The
average recognition rates and the standard deviations (stds)
across ten tests are shown in Table 5. These results demonstrate
again that LM-NNDA is the most suitable discriminant analysis
method for the LM-NN classifier, while FLDA is the most suitable
method for the MD classifier. In addition, the result of the paired
t-test shows that under the LM-NN classifier, the primary LM-
NNDA method is statistically significantly better than the sec-
ondary LB-LDA method at a significance level p¼3.77�10�5.
5.3. Experiment using the ETH80 object category database

The ETH80 database includes 8 categories of biological and
artificial objects as shown in Fig. 10. For each category, there are
10 objects that span large in-class variations while still clearly
belonging to the category. Each object is represented by 41
images from viewpoints spaced equally over the upper viewing
hemisphere (at distances of 22.5–261). More details about the
database can be found in [30,31]. The database is made available
in a number of versions for different applications. Here we use the
’’cropped-close’’ version, in which all images are well cropped so
that they contain only the object without any border area. In
addition, each image is rescaled to a size of 128�128 pixels. In
our experiment, all images are converted to grayscale images by
averaging the three R, G, and B color components. The size of
images is reduced to be 64�64 pixels for computational effi-
ciency. For each object category, we use the first three objects for
training, the second three objects for validation and the remain-
ing four objects for testing. Thus, the number of training samples
is 8�3�41¼984, and the validating samples and testing sam-
ples are both 8�4�41¼1312.

PCA, FLDA, LB-LDA, LPP and the proposed LM-NNDA are,
respectively, used for feature extraction. Since the dimension of
the image vector space is much larger than the number of training
samples, FLDA, LB-LDA, LPP and LM-NNDA all encounter the
ill-posed problem. To address this problem, we first use PCA for
dimensionality reduction and then perform these feature extrac-
tion methods in the 200-dimensional PCA-transformed space. We
use three classifiers: the LM-NN classifier, the NN classifier and
the MD classifier for each feature extraction method. We use the
validation set to tune the nearest neighbor parameters for each
method as done in the above section and then evaluate their
performance on the test set. The recognition rate curve of each
method versus the variation of dimensions is shown in Fig. 11.

Fig. 11 shows that LM-NNDA with the LM-NN and NN classi-
fiers outperforms PCA, FLDA, LB-LDA and LPP with the same
classifiers. This result indicates that LM-NNDA is most suitable
feature extractor for the LM-NN (or NN) classifier among the four
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Fig. 9. Recognition rates of PCA, FLDA, LB-LDA, LPP and the proposed LM-NNDA versus dimensions on the NUST603 handwritten Chinese character database: (a) with the

LM-NN classifier, (b) with the NN classifier and (c) with the MD classifier.

Table 5
The maximal recognition rates (%) of PCA, FLDA, LB-LDA, LPP and the proposed LM-NNDA with each of the three different classifiers on the NUST603 handwritten Chinese

character database and the corresponding dimensions.

Feature extractor FLDA PCA LB-LDA LPP LM-NNDA

Classifier LM-NN LM-NN LM-NN LM-NN LM-NN

Recognition rate 95.0770.32 94.5770.30 95.5070.30 94.6370.36 96.3770.33

Dimension 18 46 46 50 48

Feature extractor FLDA PCA LB-LDA LPP LM-NNDA

Classifier NN NN NN NN NN

Recognition rate 93.7570.37 91.5570.39 93.0170.17 90.3770.71 94.8570.21

Dimension 18 48 48 30 28

Feature extractor FLDA PCA LB-LDA LPP LM-NNDA

Classifier MD MD MD MD MD

Recognition rate 92.4170.27 83.3670.55 92.2270.38 87.1070.67 92.4070.34

Dimension 18 46 38 36 32
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methods. In addition, FLDA achieves better results than PCA, LB-
LDA, LPP and LM-NNDA with the MD classifier, which verifies that
FLDA is the most suitable feature extractor for the MD classifier.

Table 6 shows the average recognition rates and the standard
deviations (stds) across 10-fold tests. In each test, three objects are
randomly chosen for training, the remaining seven objects for testing.
These results demonstrate again that LM-NNDA is the best for the
LM-NN classifier, while FLDA is the best for the MD classifier. In
addition, the result of the paired t-test shows that under the LM-NN
classifier, the primary LM-NNDA method is statistically significantly
better than the secondary LB-LDA method at a significance level
p¼3.16�10�4.



Fig. 10. The example figures of 8 categories of objects in the ETH80 database.
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5.4. Experiment using the FERET database

The FERET face image database is a popular database for testing
and evaluating state-of-the-art face recognition algorithms [32,33].
Our experiment uses a subset of the database, which includes 1000
images of 200 individuals (each one has 5 images). It is composed of
the images whose names are marked with two-character strings:
‘‘ba’’, ‘‘bj’’, ‘‘bk’’, ‘‘be’’ and ‘‘bf’’. This subset involves variations in facial
expression, illumination, and pose. In our experiment, the facial
portion of each original image was automatically cropped based on
the location of eyes and mouth, and the cropped image was resized
to 80�80 pixels and further pre-processed by histogram equaliza-
tion. Some sample images of one person are shown in Fig. 12.

In the first experiment, we use the first two images (i.e. ‘‘ba’’
and ‘‘bj’’) of each class to form the training set, and the remaining
three images (i.e. ‘‘bk’’, ‘‘be’’ and ‘‘bf’’) of each class to form the
validation set. PCA, FLDA, LB-LDA, LPP and the proposed LM-
NNDA are used for feature extraction. Since the dimension of the
image vector space is much larger than the number of training
samples, FLDA, LB-LDA, LPP and LM-NNDA all encounter the ill-
posed problem. To address this problem, we first use PCA for
dimensionality reduction and then perform FLDA, LB-LDA, LPP
and LM-NNDA in the 120-dimensional PCA-transformed space.
Since there are only two training samples per class, the nearest
neighbor parameter R1 is chosen as 1. Thus LM-NNDA is actually
NNDA in this case. We use the NN classifier for each feature
extraction method. The recognition rate curve of each method
versus the variation of dimensions is shown in Fig. 13. The
maximal recognition rate of each method and the corresponding
dimension are shown in Table 7. From Fig. 13, we can see that
NNDA consistently outperforms the other four methods on the
validation set, irrespective of the variation in the dimensions.

We further perform experiments by 10-run tests. In each run,
we randomly choose two images from each class for training, and
the remaining images for test. Based on the optimal dimensions
we obtain on the validation set in Table 7, for each method, we
perform PCA, FLDA, LB-LDA, LPP and LM-NNDA with the three
classifiers. The average recognition rates and the standard
deviations (stds) across ten tests are shown in Table 8. These
results indicate that NNDA, a nearest neighbor rule induced
discriminant analysis, is the most suitable method for the NN
classifier. In addition, from the paired t-test, we know that NNDA
significantly outperforms the secondary FLDA method at a
significance level p¼1.61�10�5.
6. Conclusion, discussion and future work

This paper introduces a new concept of designing a discrimi-
nant analysis method, which starts from a local mean based
nearest neighbor (LM-NN) classifier and uses its decision rule to
direct the design of a discriminant analysis method. The derived
discriminant analysis method, LM-NNDA, is the most suitable
feature extractor for the LM-NN classifier in theory. This has been
demonstrated by our experimental results on four databases: the
CENPARMI handwritten numeral database, the NUST603 hand-
written Chinese character database, the ETH80 object category
database and the FERET face image database. In addition, we
show that the classical Fisher linear discriminant analysis (FLDA)
is a minimum distance classifier (or called Nearest Class-mean
classifier) induced discriminant analysis method. This judgment
was also verified by our experimental results.

The LM-NNDA based feature extractor closely connects to the
NN classifier. The NN classifier has an asymptotical average error
rate connected to Bayes error via lower and upper bounds as
shown in Eq. (2). It can be expected that the projection matrix of
LM-NNDA is Bayes suboptimal, that is, the asymptotical average
error rate based on the LM-NNDA generated features has a lower
and upper bound of the Bayes error. Recently Petridis and
Perantonis gave the concept of the Bayes optimal projection
matrix and provided a theoretical framework to analyze the
Bayes optimality of linear discriminant analysis methods [34].
Hamsici and Martinez present an algorithm that can provide the
one-dimensional subspace where the Bayes error is minimized for
the C class problem with homoscedastic Gaussian distributions
and further extend the algorithm to suit for more general case
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Fig. 11. Recognition rates of PCA, FLDA, LB-LDA, LPP and the proposed LM-NNDA versus dimensions on the ETH80 object category database: (a) with the LM-NN classifier,

(b) with the NN classifier and (c) with the MD classifier.

Table 6
The maximal recognition rates (%) of PCA, FLDA, LB-LDA, LPP and the proposed LM-NNDA with each of the three different classifiers on the ETH80 object category database

and the corresponding dimensions.

Feature extractor FLDA PCA LB-LDA LPP LM-NNDA

Classifier LM-NN LM-NN LM-NN LM-NN LM-NN

Recognition rate 62.4972.95 68.8573.45 71.8673.87 66.9772.61 75.1972.79

Dimension 7 150 190 40 130

Feature extractor FLDA PCA LB-LDA LPP LM-NNDA

Classifier NN NN NN NN NN

Recognition rate 60.7973.32 66.1073.21 69.6572.79 61.8973.66 74.0273.21

Dimension 7 40 190 40 90

Feature extractor FLDA PCA LB-LDA LPP LM-NNDA

Classifier MD MD MD MD MD

Recognition rate 62.2072.48 50.0773.96 61.9772.68 56.6872.73 59.6372.97

Dimension 7 40 140 190 40

Fig. 12. Samples of the cropped images in the FERET database.
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Fig. 13. Recognition rates of PCA, FLDA, LB-LDA, LLP and the proposed NNDA

method with the NN classifier versus dimensions on the validation set of the

FERET database.

Table 7
The maximal recognition rates (%) of PCA, FLDA, LB-LDA, LLP and the proposed

NNDA method with the NN classifier on the validation set of the FERET database

and the corresponding dimensions.

Feature extractor FLDA PCA LB-LDA LPP NNDA

Recognition rate 75.0 73.3 75.2 78.5 81.7

Dimension 100 85 90 90 100

Table 8
The average recognition rates (%) and the standard deviations (stds) of PCA, FLDA,

LB-LDA, LLP and the proposed NNDA method with the NN classifier using 10-run

tests on the FERET database.

FLDA PCA LB-LDA LPP NNDA

76.0671.88 72.4072.38 76.0271.79 72.4875.13 82.8671.27

J. Yang et al. / Pattern Recognition 44 (2011) 1387–1402 1401
with heteroscedastic distributions and to obtain the d-dimen-
sional solutions [35]. Generally, discussing the Bayes optimality of
a linear feature extraction method needs some assumptions on
the probability distribution of data. For example, we have shown
that LM-NNDA is Bayes optimal under the assumption that all set
of R local samples share a normal distribution with an identical
covariance matrix. However, how to analyze the Bayes optimality
of the proposed method without any assumption is still open;
some new ideas and theoretical tools are required and we expect
them to be developed in the future.
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