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a b s t r a c t

We propose in this paper a new method for real-time dense disparity map computing using a stereo

pair of rectified images. Based on the neural network and Disparity Space Image (DSI) data structure,

the disparity map computing consists of two main steps: initial disparity map estimation by combining

the neuronal network and the DSI structure, and its refinement. Four improvements are introduced so

that an accurate and fast result will be reached. The first one concerns the proposition of a new strategy

in order to optimize the computation time of the initial disparity map. In the second one, a specific

treatment is proposed in order to obtain more accurate disparity for the neighboring pixels to

boundaries. The third one, it concerns the pixel similarity measure for matching score computation

and it consists of using in addition to the traditional pixel intensities, the magnitude and orientation of

the gradients providing more accuracy. Finally, the processing time of the method has been decreased

consequently to our implementation of some critical steps on FPGAs. Experimental results on real

datasets are conducted and a comparative evaluation of the obtained results relative to the state-of-art

methods is presented.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The issue of stereo correspondence is of great importance in
the field of Machine Vision. It concerns the features matching
between a pair of images of the same scene. When the stereo
images are rectified, the matching points will be searched on
corresponding horizontal lines and the disparity is calculated as
the difference between the abscissas of matched points. The
disparity values for all the image points define the disparity
map. Once the stereo correspondence problem is solved the depth
of the scene can be estimated. This issue is of great interest in the
context of 3D reconstruction, virtual reality and robot navigation.

In general, stereo algorithms can be categorized into major
classes: local methods and global methods. Local algorithms, which
are based on a correlation criterion, can have very efficient imple-
mentations that are suitable for real-time application [1–7]. One of
the principal factors, which influence the success of local meth-
ods, is the proper selection of a window shape and size. The
windows must be large enough to capture intensity variation for
reliable matching but small enough to avoid the effects of
projective distortions at the same time. An appropriate window
selection should improve matching accuracy but require an
optimized balance between the above opposite criteria [8].
ll rights reserved.
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Global approaches minimize an overall cost function that involves
all the pixels of the image. In these methods, calculating the
disparity field leads to minimize the objective function of energy.
Several optimization methods have been proposed such as dynamic
programming [9], graph cuts [10], directed anisotropic diffusion
[11], belief propagation [12,13] and neural network based
approaches [16,17]. The global methods can generate high-quality
disparity maps. However, these methods are often computationally
expensive and involve difficult parameter adjustment procedures
that require a lot of effort to find the optimal ones, making them
unsuitable for most interactive applications. Also, there are many
other methods that are not strictly included in any of these two
broad classes, as example, we can cite [18,19]. A survey for the
different approaches can be found in [20,21].

The real-time requirements of most robot applications com-
plicate the realization of such vision systems. The key to success
in realizing a reliable embedded real-time-capable stereo vision
system is the careful design of the core algorithm. The trade-off
between execution time and quality of the matching must be
handled with care and is a difficult task.

However, for extracting dense and reliable 3D information
from the observed scene, stereo matching algorithms are compu-
tationally intensive. To enable both accurate and fast real-time
stereo vision in embedded systems, we propose a novel method
for computing a dense disparity map based on the combination of
Artificial Neural Network and the DSI data structure. The real-
time required for such application means that a task has to be
finished within an a priori defined time frame [22].
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The goal is to combine the advantages of the neural network
and the DSI structure. Our approach divides the matching process
into two steps: initial disparity map and refinement of the initial
disparity map. Initial disparity map is first approximated by the
neuronal-DSI method so called (Neural-DSI). Then a refinement
method is applied to the initial disparity so that an accurate result
can be achieved. In addition, in order to accomplish real-time
operation, we implemented some steps of the disparity map
computation on FPGAs: field programmable gate array.

The main contributions of this work are:
-
 the proposition of a robust matching cost based on the com-
bination of the neural network and the DSI structure,
-
 the extension of matching primitives from pixel intensity to
intensity, gradient magnitude and orientation of gradient vector
of pixel for disparity computation of the considered window,
-
 taking into account of the dominant disparity to avoid any
refinement and involving only pixels of the same region in
case where the window contains a boundary.

This paper is organized as follows: Section 2 presents the related
work in the field of real-time based stereo vision. Section 3 presents
the stages followed to compute the initial disparity map. Section 4
presents the refinement method. In Section 5, experimental results
obtained on real images are presented and discussed. Finally,
Section 6 concludes the paper with some remarks.
2. Related work

Stereo vision is a very broad topic, which has been extensively
surveyed by [20,21]. In this section, we present an overview of
stereo algorithms reported in the literature. The method proposed
by [23] is based on the use of ZNCC as matching cost, integrated
within a neural network model. The results obtained are satisfac-
tory, but they are not suitable for real time applications because
the running time needed for standard image sets is very high. The
method reported in [4] performs interval matching instead of
pixel matching. The execution time of the algorithm varies from
1 to 5 s for the standard image sets. A window-based method for
correspondence search is presented in [24], which use varying
support-weights. The support-weights of the pixels in a given
support window are adjusted based on color similarity and
geometric proximity to reduce the image ambiguity. The running
time for the Tsukuba image pair with 35�35 pixels support
window is about 1 min. In the method based on the Bayesian
estimation theory described in [25], the results are encouraging in
terms of accuracy but they are not suitable for real time applica-
tions, since it takes few minutes to process a 256�255 stereo pair
with up to 32 disparity levels. The method developed in [26] uses
graph cuts, which produces semi-dense disparity map. The run-
ning times obtained for the Tsukuba pair is about 6 s and 13 s for
the Sawtooth pair. An improvement of the aggregation strategy
Fig. 1. Disparity c
based on color image segmentation [7] has been proposed by [5].
The processing time achieved by this method is around 0.2 s
for Tsukuba with a disparity range of 16 pixels. For the cost
aggregation method presented in [6], the running time for the
Tsukuba image pair is 13 s and 37 s for Teddy image pair. Another
method reported by [9] uses a two-pass dynamic programming
technique combined with generalized ground control points
(GGCPs), which is designed to resolve the inconsistency between
scanlines, which is the typical problem in conventional dynamic
programming. The processing time achieved by this method is
around 4.4 s for Tsukuba image pair with a disparity range of
16 pixels. In another method reported in [16] based on Self-
Organizing Neural Network, the average execution time is
approximately 100 s for the standard image sets.

The idea, which motivates this work, is to propose a novel
aggregation cost deploying neural network and DSI data structure
aiming at low computation time and at the same time as accurate
as to improve the results of fast local stereo algorithms. This leads
us to yield a level of accuracy comparable to that of global
methods and able to meet near-real time processing requirement.
3. Initial disparity map estimation: neural-DSI

We propose in this section the steps allowing the computation
of the initial disparity map using the combination of neural
network and Disparity Space Image (DSI).
3.1. Computation of the Disparity Space Image (DSI)

3.1.1. Disparity computation

Assuming that images pairs are rectified, the search for
correspondence of each feature in one image will be done in the
same horizontal line of the other image. For each pixel pl(xl, yl) in
the left image (reference image), the disparity computation will
concern all pixels of the windows Wl of the left image centered on
pl and Wr

d of the right image centered on pr instead of the use only
of pl and its match pr. The position of Wr

d depends on the disparity
d associated to the pair (pl, pr), which varies from zero to dmax,
where dmax represents the highest disparity value of the stereo-
scopic images (disparity range). The match pj(xj, yj) of each pixel
pi(xi, yi) of Wl will be searched in the window Wr

d (see Fig. 1) so as
xj¼xiþsd, yj¼yi, s¼{þ1,�1} is a sign of disparities.
3.1.2. Disparity Space Image

Disparity Space Image (DSI) is an explicit representation of the
matching space introduced by Bobik and Intille [14]. It plays an
essential role in the development of the overall matching algo-
rithm, which uses the occlusion constraints. Thus, it has the
advantage of improving disparities in occluded areas.

For a given value of d, disparity space image for the pixel pi is
defined as the score DSId(pi) computed using pixels attributes.
omputation.



Fig. 2. Neural-DSI network architecture.
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Many measures have been proposed in the literature [28] using
the module and orientation of the gradient vector.

What we propose in this work is a linear combination of the
three intensity, gradient magnitude and gradient orientation as
features for computing matching measure between pi and the
pixel pj translated by the distance d relatively to pi.

DSIdðpiÞ ¼ ðDSId
I ðpiÞþDSId

GðpiÞþDSId
OðpiÞÞn2 ð1Þ

where

DSId
I ðpiÞ ¼ ððIlðxi,yiÞ�Irðxiþsd,yiÞÞn1Þ

2
ð2Þ

DSId
GðpiÞ ¼ ððGlðxi,yiÞ�Grðxiþsd,yiÞÞn1Þ

2
ð3Þ

DSId
OðpiÞ ¼ ððOlðxi,yiÞ�Orðxiþsd,yiÞÞn1Þ

2
ð4Þ

where (Il, Ir), (Gl, Gr), (Ol, Or) are, respectively, the intensities,
gradient magnitudes and gradient orientations values of the
pixels on the left and right images, n1, n2 are the input weights
of the neural network, which will be computed in the step of
learning of the neural network as will be presented in Section 3.3.

The intensity of an arbitrary pixel is given by I(x, y), the
gradient is defined as

Gx

Gy

" # @I
@x

@I
@y

2
4

3
5 ð5Þ

Its magnitude (module) is defined as

9G9¼ 9Gx9þ9Gy9 ð6Þ

The orientation O(x, y) of the gradient vector is

O¼ tang21ðGx=GxÞ ð7Þ

3.1.3. Initial disparity computation

To determine the initial disparity d* (pl) of the central pixel
pl(xl, yl) of the window Wl, we calculate for all neighboring pixels
pi of pl the score DSId(pi) using different values of d (d¼0,y,dmax)
and we choose the value of d* giving to pl the minimal cost among
all computed DSId*(pi).

3.2. Neural network architecture

The Artificial Neural Network (ANN) is a network of neurons that
is trained to provide the right output for giving some inputs. The
neurons have some weighted inputs and are responsible for simple
operations, but the whole network can make parallel calculations
due to its wide parallel structure [30]. The neural network derives its
computing power from its massive parallel distributed structure and
from its ability to learn and, then to generalize. The generalization
refers to the production by the network of reasonable outputs for
inputs not encountered during training [30].

In our previous work [31], we proposed a multilayer feed
forward perceptron model, trained with the supervised back
propagation learning algorithm [32] to compute disparities.
However, the results obtained are satisfactory in terms of accu-
racy, but they are not suitable for real time applications because
the processing time needed for standard image sets is very high
(see Fig. 7). In the present study, a multilayer feed forward model
based on simple supervised learning procedure was adopted in
order to improve the processing time. This procedure can be
found in detail in Section 3.3

The proposed neural network is composed of four layers (see
Fig. 2). Each layer is responsible for a specific task (input, score
computation, decision and output). As the neurons perform simple
operations, their input weights and transfer functions are adjusted as
follows.
The input layer associated to a windows Wl (7�7¼49 pixels)
is constituted by 147 neurons of (49 neurons intensities,
49 neurons gradient magnitudes and 49 neurons orientations)
has the function to compute the scores DSII

d, DSIG
d and DSIO

d for
each one pixel of the window Wl as given in Eq. (2), (3) and (4).
The transfer function is f(x)¼sqr(x) and has as input weight the
value n1. We obtain then for each value of the disparity d
(0,y,dmax) three (7�7) matrices of scores.

To compute the final DSId, the second layer adds the three
correlation scores for each one pixel of the window (see Eq. (1)).
We obtain dmaxþ1 matrices of 7�7 scores. The transfer function is
linear and the input weights are identical and equal to n2. In the
third layer, for each value of d, all scores of the Wl pixels are added
and constitutes the score SumDSId of the central pixel. Then, to the
central pixel of the window is associated a vector of costs (Aggrega-
tion cost) AC¼(SumDSI0,SumDSI1,y, SumDSIdmax ). The input weights
are the same and equal to 1 and the transfer function is linear. In the
fourth layer, the minimum cost amount of the dmaxþ1 costs is chosen
as the best score and defines the disparity d* of the central pixel of the
window. The input weights are the same and equal to 1 and the
transfer function is linear f(x)¼Min(x).

3.3. Learning procedure

The neural correlation network must be trained with a
supervised learning procedure before computing the minimum
of AC (best score) for each pixel. In general, neural supervised
learning is based on the presentation to the network of a set of
training examples having the structure [(features); (expected
value)]. In our context, the feature designates a given training
example of matching pixels (pl, pr). The expected value is the
correlation score of (pl, pr). The first goal of learning procedure can
be formulated as the search for the appropriate weights.

To prepare the training data, some points of interest are
extracted and their attributes (gradients magnitude and orienta-
tions) are computed from the stereoscopic pair of images Cones,
Barn2, Sawtooth, Teddy available on the Middlebury stereo evalua-
tion website [35]. These points are selected depending on their high
values of intensity, gradient magnitude and orientation of the
gradient vector. The matching of these points is done using normal-
ized correlation ZNCC [29] method considering the left image to the
right image and vice versa. A valid match is considered only for
those points that yield the best correlation score. 150 unmatched
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pixels and 50 matched pixels are selected to train offline the
network. During training, the differences of intensities, gradient
magnitudes and orientations between two local windows (one for
the left image, the other for the right) are fed to the network. Our
method is based on exhaustive search of the best weights, in such
a manner to minimize the error of the matched pixels and to
maximize the difference between the error of the matched and
unmatched pixels. In our case, we defined two input weights:
n1 used in the first layer and n2 used in the second layer. After the
training, the network should have the ability to differentiate the
matched pairs from unmatched ones.
Fig. 3. Disparity computing with refinement method.

Fig. 4. Accuracy obtained with different values of n.
4. Disparity map refinements

The resulting disparity map described above is not the optimal
one because it contains still some noise and errors. We propose in
the following our approach for refinement of the disparity map.
Even if there exist more accurate techniques for the sub-pixel
refinement in the literature [33,34], they are computationally too
expensive for real-time stereo vision. In the next, we present our
approach, which has a sufficient accuracy for our purpose and a
low complexity for its implementation on FPGA circuit.

4.1. Refinement method

The proposed refinement method is inspired from the one
proposed in [15]. Unlike conventional techniques whose further
steps of matching algorithm are based on the minimal computed
cost, Binaghi et al. use all scores obtained [15]. Instead of selecting
in the window Wl only one disparity having the best score, they
propose to select for each pixel n disparities corresponding to the
best scores. In particular, for each pixel in the reference image the
costs are ranked and winners are identified. For a selected pixel,
the number of disparity winners within a given neighbor (win-
dow) is computed. The disparity with the highest number of
confirmation is finally selected.

Assuming that initial disparities of all pixels of the left image
are computed, we extended the Binaghi et al. method [15] by
adding two improvements in order to reduce the computation
time and to obtain a better accuracy.

4.1.1. First improvement

In contrast to the work of [15], where the authors compute
systematically the disparity value using n disparities, for each
pixel pl in the left image, we first verify if the disparity is
dominant in the window Wl centered on pl. If it is the case, this
disparity will be considered as the final disparity and not
necessitates any refinement. Otherwise, we do a refinement,
which consists of selecting in Wl window three best scores of
SumDSId for each pixel. Three best disparities are then associated
to the pixel pl instead of one disparity. The proposed process
consists of applying a vote in order to choose the dominant
disparity in the associated Wl using the three disparities of the
central pixel pl and of the 48 neighboring pixels.

Fig. 3 illustrates how we compute the new disparity using the
three best disparities for each pixel when we apply the vote
process. The disparity that will obtain the highest number of
points will be considered as the new disparity.

For the definition of the parameter n, we decided to use an
experimental evaluation of over existing stereo datasets [35]. The
number n¼3 corresponding to the three best disparities values
has been selected. If we take n greater than 3 it did not lead to an
increase in accuracy but an increase in processing time. Fig. 4
shows a dependence of accuracies achieved with different num-
bers of disparities on the cone image. For n¼4 the accuracy
increases just 0.029% while the processing time increases of
0.07 s. This is the main reason why increasing the n value beyond
a certain value does not improve accuracy any further.
4.1.2. Second improvement: processing of region boundaries

problem

The problem of region boundaries has not been addressed in [15].
The region boundaries problem occurs when the pixels of the same
window belong to two different regions (see Fig. 5). Indeed, the
pixels of the two sides of the contour have usually different
disparities. Consequently, we must consider in computation of
the new disparity (final disparity) only the pixels belonging to the
same region. The boundary between two regions is detected using
the gradient magnitude.

To take into account this problem, we propose a second
improvement of the method proposed in [15], which uses all
pixels of the window Wl, by adding a criterion, which eliminates
from the vote process described above all pixels of the window Wl

located in the second region at the right of the boundary, which is
detected using the gradient magnitude information. With this
improvement, the disparity map is more accurate because only
the pixels of the window belonging to the same region (object)
are involved in the calculation of the new disparity. Since, the
pixels belonging to two different regions have different dispa-
rities. Fig. 5 illustrates how we compute the new disparity in the
case the window Wl is positioned on two regions (objects).



The window Wl

Fig. 5. Example of region boundaries problem: (a) reference image, (b) case where the window Wl contains pixels of two regions, (c) blue color represents the pixels of the

same region of the window Wl involved in the computation of the new disparity. (For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)
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4.2. Disparity map smoothing

Finally, in order to keep the good trade-off between accuracy and
processing time, a simple median filter is applied for smoothing the
disparity map. The median filter is a robust method, often used to
remove the impulsive noise known for its salt and pepper noise
from an image [36–40]. This is the type of noise, which is present in
disparity maps. The median is calculated by first sorting all the pixel
values from the surrounding neighborhood into numerical order and
then replacing the pixel being considered with the middle pixel.
Processing time increases considerably when the size of the mask
increases giving noticeable image blur for large mask sizes. This is
the main reason the block size must be limited because it does not
improve the accuracy any further.
5. Experimental results

In this section, we describe the experiments conducted to
evaluate the performance of the proposed method. Our aim is to
obtain an accurate disparity map and a fast runtime, which is the
requirement for any obstacle detection system of autonomous
mobile robot navigation. For this purpose, an extensive perfor-
mance evaluation and comparison between different methods is
proposed. The two criteria used for the evaluation are then
accuracy and computation cost.

Several parameters have been mentioned and discussed in the
next sub-sections. Qualitative tests through disparity map obser-
vation were carried out with four stereo couples [35] to find the
influence and appropriate values of those parameters.

5.1. Initial disparity map results

In order to study the efficiency of the combination of the neural
network and DSI concept, two other approaches were implemented:
the neuronal method [31] called (Neural) and the DSI method
described in [14,15] called (DSI). We applied these methods on four
images (Cones, Barn2, Sawtooth, Teddy) of standard datasets avail-
able on the Middlebury stereo evaluation website [35]. Figs. 6 and 7
illustrate, respectively, the results of the initial disparity map
obtained for three selected methods and the correspondent proces-
sing time (s). The three selected methods were implemented using
the Cþþ language and the timing tests were performed on a Personal
computer PC, 2.5 GHZ. We can clearly see (Fig. 7) that our approach
(Neural-DSI) is relatively the fastest among DSI and neural methods.

5.2. Refinement disparity map results

We implemented our proposed method for disparity map
refinement as the neural refinement method [31]. Fig. 8 shows
the disparity maps obtained for the two methods. We can see
that, as depicted, our refinement method gives a better map than
the neural refinement method [31]. Fig. 9 illustrates the proces-
sing time of the two methods applied on the five image pairs.
Also, the proposed refinement is faster compared to the neural
refinement method.

We studied also the influence of window size on the accuracy
of the proposed method. Fig. 10 shows the disparity map obtained
after applying our refinement method for the Barn1 image pair for
different sizes of the window. Greater the size of the window W,
better the computed map disparity. Nerveless, the computation
time is also very high when the size of W is large. Fig. 11
illustrates the variation of time processing for three methods
Neural, DSI and our method (Neural-DSI).

Experiments are conducted in order to study the influence of
dmax values on the performance of the Neural-DSI method. We
use different values of this parameter for disparity map estima-
tion of four stereo images pairs with 1�7 window. Fig. 12
illustrates the processing times obtained and shows that the
Neural-DSI method is faster. Indeed, the processing time obtained
is less than 0, 2 s for the Map image.
5.3. Discussion and comparison

This section presents a comparison between the proposed
method (Neural-DSI) and other state-of-art methods. The results
obtained by our algorithm are better than some methods reported
in the literature [21,41]. Table 1 shows a comparison of stereo
vision implementation reported in the literature in terms of
computation time. The description of the systems introduced
here is restricted to the system platform, the basic matching
strategy, the image size and the processing time achieved.
A ranking of each method according to the computation time is
shown in the second column.

Scharstein and Szeliski [20] have developed an online evalua-
tion platform, the Middlebury Stereo Evaluation [35], which
provide a number of stereo image datasets consisting of the
stereo image pair and the appropriate ground truth image. To
evaluate an algorithm on this website, disparity maps of all
datasets have to be generated and uploaded. The disparity maps
have to correspond to the left stereo image and the disparities
have to be scaled by a certain factor. The evaluation engine
calculates the percentage of bad matched pixels, within a certain
error threshold, by pixel-wise comparison with the ground truth
image. Many stereo algorithm developers use this platform for
evaluation. This gives a significant overview of how the developed
algorithm performs in comparison to other algorithms. The plat-
form is up-to-date and constantly growing. Parameters ALL and
NOCC are defined according to the Middlebury website [35].



Fig. 7. Processing time (s) of Neural-DSI, Neural and DSI methods on the five

image pairs.

Fig. 6. Initial disparity maps obtained by the Neural-DSI, Neural and DSI methods: top to bottom the reference images; left to right: our method, Neural and DSI methods.
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ALL is the error computed on the whole image and NOCC is the
error computed on the whole image excluding the occluded
region. Among the quality measures proposed by [20] in their
paper we adopted the percentage of bad matching pixels between
the computed disparity map dC(x, y) and the ground truth map
dT(x, y)

PBP¼ ð1=N
X
ð9dCðx,yÞ�dT ðx,yÞ94ddÞÞ ð8Þ

where dd is the error disparity deviating from the ground truth by
more than 1 pixel.
In this new real-time disparity map estimation method, which
is the extension of our previous work [27], we propose a
qualitative evaluation of our method using the Middlebury Stereo
Evaluation [35]. Fig. 13 illustrates the influence of the window
size on the accuracy of our method for four images.

Table 2 shows the comparisons results in terms of accuracy of
the disparity maps obtained by some stereo vision methods
reported in the literature. We use four reference stereo pairs
and for each of them evaluate the error rates on the two ground
truth maps Nocc and All. Similar to the evaluation of computation
time, Table 2 shows the ranking of methods according to the
accuracy. Accuracy corresponds to the percentage of the correct
matched pixels. Finally, Table 3 reports in the rightmost column
the ranking obtained by averaging the overall accuracy ranking
and the time ranking, so as to highlight the methods that better
trade-off between accuracy and computational efficiency. Hence,
overall our approach can be regarded as an interesting trade-off
between accuracy and speed.

5.4. FPGA implementation

Due to the computational complexity of many stereo algo-
rithms, a number of attempts have been made to implement
such systems using reconfigurable hardware in the form of Field
programmable gate Arrays (FPGAs) [43–45]. These devices
consist of programmable logic gates and routing, which can be
re-configured to implement practically any hardware function.
Hardware implementations on one hand allow the application of
the parallelism that is common in image processing and vision
algorithms, and on the other hand the building of systems to



Fig. 8. Final disparity maps obtained by the neural refinement method and our

refinement method.
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perform specific computation quickly compared to software
implementations [46].

In order to reduce the computing time, we implemented the
disparity map computation approach on FPGA, the processing
time is reduced considerably. The architecture corresponding to
our method (Neural-DSI) is split into three major pipeline stages:
the pre-processing, calculation and post-processing stage. The
first stage is the input stage, which supplies the image data for the
computation. At this stage, the Sobel operator is used to calculate
the gradient value in x and y directions. The calculation stage
computes the Neural-DSI algorithm, which will give us the initial
disparity map. Finally, the initial disparity map is refined in the
post-processing stage using a median filter [47].



Table 1
Comparison of stereo vision implementations (‘‘/’’ means not available).

Author Time (s) Algorithm Image size Machine

Tombari et al. [5] 0.2 s 1 Aggr. Stra. based on color segm. Tsukuba 2.4 GHz Intel Core Duo

Our method 0.26 s Neural-DSI Neural-DSIþRefinement Tsukuba 2.5 GHz Centrinon Microprocessor
0.7 s 2

Gerrits and Bekaert [7] 2 s 3 Segment based Teddy 2.4GHz Intel Core Duo

Kim et al. [9] 4.4 s 4 Dyn. Prog. Tsukuba 2.4 GHz Pentium IV

Ogale and Aloimonos [4] 1–5 s 5 / All images /

Veksler [26] 6 s 6 Graph-cut Tsukuba 0.6 GHz, Pentium III

Tappen and Freeman [12] 183 s 11 Accelerated belief prop. Map 2.4 GHz Pentium IV

Mattocia [6] 13 s 7 LC locally consist. Tsukuba 2.5 GHz Intel Core Duo

Yoon and Kweon [24] 60 s 8 Window-based Tsukuba AMD 2700

Vanetti et al. [16] 100 s 9 Self org. map All images 1.8 GHz AMD processor

Venkatesh et al. [17] 120 s 10 Self org. map 256�256 1.4 GHz Pentium IV

Gutierrez and Marroquin [25] Few minutes 12 Bayesian estimation 256�255 /

Tombari et al. [42] 33 mn 34 s 13 Segment support Teddy 2.4 GHz Intel core Duo
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Fig. 13. PBP obtained by our method (Neural-DSI) on four image pairs for different window sizes.

Table 2
Accuracy according to the methodology defined by the Middlebury website (/ means not available).

Method Cones Teddy Tsukuba Venus Accuracy (%)

ALL NOCC ALL NOCC ALL NOCC ALL NOCC

Vanetti et al. [16] 12.4 6.31 15.73 10.41 3.76 3.38 1.42 0.98 93.21 2

Our method 15.2 7.97 21.3 14.3 5.69 3.78 3.84 2.6 90.7 5
Mattocia [6] 15.1 4.75 18.3 9.3 3.44 1.77 1.74 0.27 92.43 3

Yoon and Kweon [24] 16 5.5 21.6 12.7 6.68 4.66 6.18 4.61 91.08 4

Veksler [26] 27.3 29.6 25.5 25.9 4.86 3.12 3.87 2.42 84.68 8

Tombari et al. [5] / / / / / / / / 86.4 7

Tombari et al. [42] 3.77 9.87 8.43 14.2 1.25 1.62 0.25 0.64 94.9 1

Venkatesh et al. [17] 32.83 27.93 28.11 23.62 23.6 22.97 15.91 15.17 76.23 9

Gerrits and Bekaert [7] / 13.22 / 15.78 / 8.18 / 8.06 88.7 6

Tappen and Freeman [12] / / / / 4.1 / / /

Kim et al. [9] / / / / 1.53 / 0.94 / /

N. Baha, S. Larabi / Pattern Recognition 45 (2012) 1195–12041202



Table 3
Comparison of stereo vision implementations in terms of accuracy and

computation time.

Method Rank

time

Rank

accuracy

Average

rank

Our method 2 5 3.5
Mattocia [6] 5 3 4

Tombari et al. [5] 1 7 4

Tombari et al. [42] 9 1 5

Vanetti et al. [16] 7 2 4.5

Yoon and Kweon [24] 6 4 5

Veksler [26] 4 8 6

Venkatesh et al. [17] 8 9 8.5

Gerrits and Bekaert [7] 3 6 4.5

Table 4
Processing time (ms) for software implementation.

Method 1 2 3

Pair 1 147 73 468

Pair 2 163 780 470

Pair 3 107 490 312.5

Table 5
Processing time (ms) for FPGA implementation.

Method 1 2 3

Pair 1 2.99 14.99 3.46

Pair 2 3.07 15.36 3.55

Pair 3 2.01 10.07 2.32
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To demonstrate the importance of the use of FPGA circuits,
Table 4 illustrates the processing time obtained for each compo-
nent in traditional implementation (Soft) where:
–
 Pair 1, pair 2 and pair 3 are, respectively, Barn1 (432�381),
Teddy (450�375) and Tsukuba (384�288).
–
 Methods 1, 2 and 3 correspond, respectively, to Gradient
(Sobel), Neural-DSI (with 1�7 window and dmax¼50) and
Median Filter.

Table 5 illustrates the processing time obtained for each
component using FPGA implementation. Not surprisingly the
running times obtained with the use the FPGA are better. The
processing time for one image pair was 490 ms, which is around
49 times slower than our hardware implementation and it seems
obvious that even with algorithmic and software optimizations,
the processor-based system cannot outperform the FPGA-based
solution. All the reasons make FPGA implementation preferable.
6. Conclusion

In this paper, we proposed a novel disparity map estimation
algorithm based on the combination of neural network and DSI
data structure. Disparity map computing process is divided into
two main steps. The first step deals with computing the initial
disparity map using a neuronal method and DSI structure. The
second step presents a simple and fast method to refine the initial
disparity map so an accurate result can be achieved. Using this
method (combination of neural network and DSI structure), we
reached the results of global methods without sacrificing the
simplicity, flexibility and speed of local aggregation methods.
Thus, our method can be regarded as an interesting trade-off
between accuracy and speed.
The computation time mainly depends on the image size, the
size window and the value of highest disparity in the image
(dmax).

As this work is intended to be used for obstacle detection system
of autonomous mobile robot navigation, we implemented our
algorithm on FPGA decreasing the processing time considerably.
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