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a b s t r a c t

This paper proposes a new method to weight subspaces in feature groups and individual features for

clustering high-dimensional data. In this method, the features of high-dimensional data are divided

into feature groups, based on their natural characteristics. Two types of weights are introduced to the

clustering process to simultaneously identify the importance of feature groups and individual features

in each cluster. A new optimization model is given to define the optimization process and a new

clustering algorithm FG-k-means is proposed to optimize the optimization model. The new algorithm is

an extension to k-means by adding two additional steps to automatically calculate the two types of

subspace weights. A new data generation method is presented to generate high-dimensional data with

clusters in subspaces of both feature groups and individual features. Experimental results on synthetic

and real-life data have shown that the FG-k-means algorithm significantly outperformed four k-means

type algorithms, i.e., k-means, W-k-means, LAC and EWKM in almost all experiments. The new

algorithm is robust to noise and missing values which commonly exist in high-dimensional data.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The trend we see with data for the past decade is towards more
observations and high dimensions [1]. Large high-dimensional data
are usually sparse and contain many classes/clusters. For example,
large text data in the vector space model often contains many
classes of documents represented in thousands of terms. It has
become a rule rather than the exception that clusters in high-
dimensional data occur in subspaces of data, so subspace clustering
methods are required in high-dimensional data clustering. Many
subspace clustering algorithms have been proposed to handle high-
dimensional data, aiming at finding clusters from subspaces of data,
instead of the entire data space [2,3]. They can be classified into two
categories: hard subspace clustering that determines the exact sub-
spaces where the clusters are found [4–10], and soft subspace

clustering that assigns weights to features, to discover clusters from
subspaces of the features with large weights [11–24].

Many high-dimensional data sets are the results of integration of
measurements on observations from different perspectives so that
the features of different measurements can be grouped. For
example, the features of the nucleated blood cell data [25] were
divided into groups of density, geometry, ‘‘color’’ and texture, each
ll rights reserved.

n),

Xu),
representing one set of particular measurements on the nucleated
blood cells. In a banking customer data set, features can be divided
into a demographic group representing demographic information of
customers, an account group showing the information about custo-
mer accounts, and the spending group describing customer spend-
ing behaviors. The objects in these data sets are categorized jointly
by all feature groups but the importance of different feature groups
varies in different clusters. The group level difference of features
represents important information to subspace clusters and should
be considered in the subspace clustering process. This is particularly
important in clustering high-dimensional data because the weights
on individual features are sensitive to noise and missing values
while the weights on feature groups can smooth such sensitivities.
Moreover, the introduction of weights to feature groups can
eliminate the unbalanced phenomenon caused by the difference of
the populations among feature groups. However, the existing
subspace clustering algorithms fail to make use of feature group
information in clustering high-dimensional data.

In this paper, we propose a new soft subspace clustering method
for clustering high-dimensional data from subspaces in both feature
groups and individual features. In this method, the features of high-
dimensional data are divided into feature groups, based on their
natural characteristics. Two types of weights are introduced to
simultaneously identify the importance of feature groups and
individual features in categorizing each cluster. In this way, the
clusters are revealed in subspaces of both feature groups and
individual features. A new optimization model is given to define
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Fig. 2. Subspace structure revealed from feature group weight matrix.
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the optimization process in which two types of subspace weights
are introduced. We propose a new iterative algorithm FG-k-means
to optimize the optimization model. The new algorithm is an
extension to k-means, adding two additional steps to automatically
calculate the two types of subspace weights.

We present a data generation method to generate high-
dimensional data with clusters in subspaces of feature groups.
This method was used to generate four types of synthetic data
sets for testing our algorithm. Two real-life data sets were also
selected for our experiments. The results on both synthetic data
and real-life data have shown that in most experiments FG-k-
means significantly outperforms the other four k-means algo-
rithms, i.e., k-means, W-k-means [19], LAC [20] and EWKM [21].
The results on synthetic data sets revealed that FG-k-means was
robust to noise and missing values. We also conducted an
experiment on feature selection with FG-k-means and the results
demonstrated that FG-k-means can be used for feature selection.

The remainder of this paper is organized as follows. In Section 2
we state the problem of finding clusters in subspaces of feature
groups and individual features. The FG-k-means clustering algo-
rithm is presented in Section 3. In Section 4, we review some related
work. Section 5 presents experiments to investigate the properties
of two types of subspace weights in FG-k-means. A data generation
method is presented in Section 6 for the generation of our synthetic
data. The experimental results on synthetic data are presented in
Section 7. In Section 8 we present experimental results on two real-
life data sets. Experimental results on feature selection are presented
in Section 9. We draw conclusions in Section 10.
2. Problem statement

The problem of finding clusters in subspaces of both feature
groups and individual features from high-dimensional data can be
stated as follows. Let X ¼ fX1,X2, . . . ,Xng be a high-dimensional
data set of n objects and A¼ fA1,A2, . . . ,Amg be the set of m

features representing the objects in X. Let G¼ fG1,G2, . . . ,GTg be
a set of T subsets of A where Gt a|, Gt �A, Gt \ Gs ¼ | andS

Gt ¼A for tas and 1rt,srT . Assume that X contains k clusters
of fC1,C2, . . . ,Ckg. We want to discover the set of k clusters from
subspaces of G and identify the subspaces of the clusters from two
weight matrices W ¼ ½wl,t�k�T and V ¼ ½vl,j�k�m, where wl,t indicates
the weight that is assigned to the t-th feature group in the l-th
cluster and

PT
t ¼ 1 wl,t ¼ 1 ð1r lrkÞ, and vl,j indicates the weight

that is assigned to the j-th feature in the l-th cluster andP
jAGt

vl,j ¼ 1,
Pm

j ¼ 1 vl,j ¼ T ð1r lrk, 1rtrTÞ.
Fig. 1 illustrates the relationship of the feature set A and the

feature group set G in a data set X. In this example, the data contains
12 features in the feature set A. The 12 features are divided into
three groups G¼ fG1,G2,G3g, where G1 ¼ fA1,A3,A7g,G2 ¼ fA2,A5,A9,
A10,A12g, G3 ¼ fA4,A6,A8,A11g. Assume X contains three clusters in
different subspaces of G that are identified in the 3�3 weight
matrix as shown in Fig. 2. We can see that cluster C1 is mainly
characterized by feature group G1 because the weight for G1 in this
cluster is 0.7, and is much larger than the weights for the other two
groups. Similarly, cluster C3 is categorized by G3. However, cluster C2

is categorized jointly by three feature groups because the weights
for the three groups are similar.

If we consider G as a set of individual features in data X,
this problem is equivalent to the soft subspace clustering in
Fig. 1. Aggregation of individual features to feature groups.
[15–18,20,21]. As such, we can consider this method as a general-
ization of these soft subspace clustering methods. If soft subspace
clustering is conducted directly on subspaces in individual features,
the group level differences of features are ignored. The weights on
subspaces in individual features are sensitive to noise and missing
values. Moreover, there may exist unbalanced phenomenon so that
the feature group with more features will gain more weights than
the feature group with less features. Instead of subspace clustering
on individual features, we aggregate features into feature groups
and conduct subspace clustering in subspaces of both feature groups
and individual features so the subspace clusters can be revealed in
subspaces of feature groups and individual features. The weights on
feature groups are then less sensitive to noise and missing values.
The unbalanced phenomenon caused by the difference of the
populations among feature groups can be eliminated by the intro-
duction of weights to feature groups.
3. The FG-k-means algorithm

In this section, we present an optimization model for finding
clusters of high-dimensional data from subspaces of feature
groups and individual features and propose FG-k-means, a soft
subspace clustering algorithm for high-dimensional data.

3.1. The optimization model

To cluster X into k clusters in subspaces of both feature groups
and individual features, we propose the following objective
function to optimize in the clustering process:

PðU,Z,V ,WÞ ¼
Xk

l ¼ 1

Xn

i ¼ 1

XT

t ¼ 1

X
jAGt

ui,lwl,tvl,jdðxi,j,zl,jÞ

2
4

þl
XT

t ¼ 1

wl,t logðwl,tÞþZ
Xm

j ¼ 1

vl,j logðvl,jÞ

3
5 ð1Þ

subject to

Xk

l ¼ 1

ui,l ¼ 1, ui,lAf0,1g, 1r irn

Xk

l ¼ 1

wl,t ¼ 1, 0owl,t o1, 1rtrT

1rtrTP
jAGt

vl,j ¼ 1, 0ovl,jo1, 1r lrk

1rtrT

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð2Þ

where
�
 U is a n� k partition matrix whose elements ui,l are binary
where ui,l ¼ 1 indicates that the i-th object is allocated to the
l-th cluster.
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�
 Z ¼ fZ1,Z2, . . . ,Zkg is a set of k vectors representing the centers
of the k clusters.

�
 V ¼ ½vl,j�k�m is a weight matrix where vl,j is the weight of the

j-th feature on the l-th cluster. The elements in V satisfyP
jAGt

vl,j ¼ 1 for 1r lrk and 1rtrT .

�
 W ¼ ½wl,t�k�T is a weight matrix where wl,t is the weight of the

t-th feature group on the l-th cluster. The elements in W satisfyPT
t ¼ 1 wl,t ¼ 1 for 1r lrk.
�
 l40, Z40 are two given parameters. l is used to adjust the
distribution of W and Z is used to adjust the distribution of V.

�
 dðxi,j,zl,jÞ is a distance or dissimilarity measure between object i

and the center of cluster l on the j-th feature. If the feature is
numeric, then

dðxi,j,zl,jÞ ¼ ðxi,j�zl,jÞ
2

ð3Þ

If the feature is categorical, then

dðxi,j,zl,jÞ ¼
0 ðxi,j ¼ zl,jÞ

1 ðxi,jazl,jÞ

(
ð4Þ

The first term in (1) is a modification of the objective function
in [21], by weighting subspaces in both feature groups and

individual features instead of subspaces only in individual fea-
tures. The second and third terms are two negative weight
entropies that control the distributions of two types of weights
through two parameters l and Z. Large parameters make the
weights more evenly distributed, otherwise, more concentrated
on some subspaces.

3.2. The FG-k-means clustering algorithm

We can minimize (1) by iteratively solving the following four
minimization problems:
1.
 Problem P1: Fix Z ¼ Ẑ , V ¼ V̂ and W ¼ Ŵ , and solve the reduced
problem PðU,Ẑ ,V̂ ,Ŵ Þ;
2.
 Problem P2: Fix U ¼ Û , V ¼ V̂ and W ¼ Ŵ , and solve the
reduced problem PðÛ ,Z,V̂ ,Ŵ Þ;
3.
 Problem P3: Fix U ¼ Û , Z ¼ Ẑ and W ¼ Ŵ , and solve the
reduced problem PðÛ ,Ẑ ,V ,Ŵ Þ;
4.
 Problem P4: Fix U ¼ Û , Z ¼ Ẑ and V ¼ V̂ , and solve the reduced
problem PðÛ ,Ẑ ,V̂ ,WÞ.

Problem P1 is solved by

ui,l ¼ 1 if DlrDs for 1rsrk

where Ds ¼
PT

t ¼ 1 ws,t
P

jAGt
vs,jdðxi,j,zs,jÞ

ui,s ¼ 0 for sa l

8>><
>>: ð5Þ

and problem P2 is solved for the numerical features by

zl,j ¼

Pn
i ¼ 1 ui,lxi,jPn

i ¼ 1 ui,l

for 1r lrk ð6Þ

If the feature is categorical, then

zl,j ¼ ar
j ð7Þ

where aj
r is the mode of the categorical values of the j-th feature in

cluster l [26].
The solution to problem P3 is given by Theorem 1:

Theorem 1. Let U ¼ Û , Z ¼ Ẑ , W ¼ Ŵ be fixed and Z40.
PðÛ ,Ẑ ,V ,Ŵ Þ is minimized iff

vl,j ¼

exp
�El,j

Z

� �
P

hAGt
exp

�El,h

Z

� � ð8Þ
where

El,j ¼
Xn

i ¼ 1

ûi,lŵl,tdðxi,j,ẑ l,jÞ ð9Þ

Here, t is the index of the feature group which the j-th feature is
assigned to.

Proof. Given Û , Ẑ and Ŵ , we minimize the objective function (1)
with respect to vl,j, the weight of the j-th feature on the l-th
cluster. Since there exist a set of k� T constraints

P
jAGt

vl,j ¼ 1, we
form the Lagrangian by isolating the terms which contain
fvl,1, . . . ,vl,mg and adding the appropriate Lagrangian multipliers as

L½vl,1 ,...,vl,m �
¼
XT

t ¼ 1

X
jAGt

vl,jEl,j

2
4 þZ

X
jAGt

vl,j logðvl,jÞþgl,t

X
jAGt

vl,j�1

0
@

1
A
3
5
ð10Þ

where El,j is a constant in the t-th feature group on the l-th cluster
for fixed Û , Ẑ and Ŵ , and calculated by (9).

By setting the gradient of L½vl,1 ,...,vl,m �
with respect to gl,t and vl,j to

zero, we obtain

@L½vl,1 ,...,vl,m �

@gl,t

¼
X
jAGt

vl,j�1¼ 0 ð11Þ

and

@L½vl,1 ,...,vl,m �

@vl,j
¼ El,jþZð1þ logðvl,jÞÞþgl,t ¼ 0 ð12Þ

where t is the index of the feature group which the j-th feature is

assigned to.

From (12), we obtain

vl,j ¼ exp
�El,j�gl,t�Z

Z

� �
¼ exp

�El,j�Z
Z

� �
exp

�gl,t

Z

� �
ð13Þ

Substituting (13) into (11), we have

X
jAGt

exp
�El,j�Z

Z

� �
exp

�gl,t

Z

� �
¼ 1

It follows that

exp
�gl,t

Z

� �
¼

1P
jAGt

exp
�El,j�Z

Z

� �

Substituting this expression back into (13), we obtain

vl,j ¼

exp
�El,j

Z

� �
P

hAGt
exp

�El,h

Z

� � &

The solution to problem P4 is given by Theorem 2:

Theorem 2. Let U ¼ Û , Z ¼ Ẑ , V ¼ V̂ be fixed and l40. PðÛ ,Ẑ ,V̂ ,WÞ
is minimized iff

wl,t ¼

exp
�Dl,t

l

� �
PT

s ¼ 1 exp
�Dl,s

l

� � ð14Þ
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where

Dl,t ¼
Xn

i ¼ 1

ûi,l

X
jAGt

v̂l,jdðxi,j,ẑ l,jÞ ð15Þ

Proof. Given Û , Ẑ and V̂ , we minimize the objective function (1)
with respect to wl,t , the weight of the t-th feature group on the
l-th cluster. Since there exist a set of k constraints

PT
t ¼ 1 wl,t ¼ 1,

we form the Lagrangian by isolating the terms which
contain fwl,1, . . . ,wl,Tg and adding the appropriate Lagrangian
multipliers as

L½wl,1 ,...wl,T �
¼
XT

t ¼ 1

"
wl,tDl,tþl

XT

t ¼ 1

wl,t log wl,tþg
XT

t ¼ 1

wl,t�1

 !#
ð16Þ

where Dl,t is a constant of the t-th feature group on the l-th cluster
for fixed Û , Ẑ and V̂ , and calculated by (15).

Taking the derivative with respect to wl,t and setting it to zero

yields a minimum of wl,t at (where we have dropped the

argument g):

ŵl,t ¼

exp
�Dl,t

l

� �
PT

s ¼ 1 exp
�Dl,s

l

� � &

The FG-k-means algorithm that minimizes the objective
function (1) using formulae (5)–(9), (14) and (15) is given as
Algorithm 1.

Algorithm 1. FG-k-means.

Input: The number of clusters k and two positive parameters

l, Z;
Output: Optimal values of U, Z, V, W;
Randomly choose k cluster centers Z0, set all initial weights in
V0 and W0 to equal values;
t :¼ 0
repeat

Update Utþ1 by (5);

Update Ztþ1 by (6) or (7);

Update Vtþ1 by (8) and (9);

Update Wtþ1 by (14) and (15);
t :¼ tþ1

until the objective function (1) obtains its local minimum
value;

In FG-k-means, the input parameters l and Z are used to
control the distributions of the two types of weights W and V. We
can easily verify that the objective function (1) can be minimized
with respect to V and W iff ZZ0 and lZ0. Moreover, they are
used as follows:
�
 Z40. In this case, according to (8), v is inversely proportional
to E. The smaller El,j, the larger vl,j and the more important the
corresponding feature.

�
 Z¼ 0. It will produce a clustering result with only one import

feature in a feature group. It may not be desirable for high-
dimensional data.

�
 l40. In this case, according to (14), w is inversely propor-

tional to D. The smaller Dl,t , the larger wl,t and the more
important the corresponding feature group.

�
 l¼ 0. It will produce a clustering result with only one import

feature group. It may not be desirable for high-dimensional
data.
In general, l and Z are set as positive real values.
Since the sequence of ðP1,P2, . . .Þ generated by the algorithm is
strictly decreasing, Algorithm 1 converges to a local minima.
The FG-k-means algorithm is an extension to the k-means

algorithm by adding two additional steps to calculate two types of
weights in the iterative process. It does not seriously affect the
scalability of the k-means clustering process in clustering large
data. If the FG-k-means algorithm needs r iterations to converge,
we can easily verify that the computational complexity is
O(rknm). Therefore, FG-k-means has the same computational
complexity like k-means.
4. Related work

To our knowledge, SYNCLUS is the first clustering algorithm
that uses weights for feature groups in the clustering process [11].
The SYNCLUS clustering process is divided into two stages.
Starting from an initial set of feature weights, SYNCLUS first uses
the k-means clustering process to partition the data into k

clusters. It then estimates a new set of optimal weights by
optimizing a weighted mean-square, stress-like cost function.
The two stages iterate until the clustering process converges to
an optimal set of feature weights. SYNCLUS computes feature
weights automatically and the feature group weights are given by
users. Another weakness of SYNCLUS is that it is time-consuming
[27] so it cannot process large data sets.

Huang et al. [19] proposed the W-k-means clustering algo-
rithm that can automatically compute feature weights in the k-
means clustering process. W-k-means extends the standard k-
means algorithm with one additional step to compute feature
weights at each iteration of the clustering process. The feature
weight is inversely proportional to the sum of the within-cluster
variances of the feature. As such, noise features can be identified
and their affects on the clustering result are significantly reduced.

Friedman and Meulman [18] proposed a method to cluster
objects on subsets of attributes. Instead of assigning a weight to
each feature for the entire data set, their approach is to compute a
weight for each feature in each cluster. Friedman and Meulman
proposed two approaches to minimize its objective function.
However, both approaches involve the computation of dissim-
ilarity matrices among objects in each iterative step which
has a high computational complexity of Oðrn2mÞ (where n is
the number of objects, m is the number of features and r is
the number of iterations). In other words, their method is not
practical for large-volume and high-dimensional data.

Domeniconi et al. [20] proposed the Locally Adaptive Cluster-
ing (LAC) algorithm which assigns a weight to each feature in
each cluster. They use an iterative algorithm to minimize its
objective function. However, Liping et al. [21] have pointed out
that ‘‘the objective function of LAC is not differentiable because of
a maximum function. The convergence of the algorithm is proved
by replacing the largest average distance in each dimension with
a fixed constant value’’.

Liping et al. [21] proposed the entropy weighting k-means
(EWKM) which also assigns a weight to each feature in each
cluster. Different from LAC, EWKM extends the standard k-means
algorithm with one additional step to compute feature weights
for each cluster at each iteration of the clustering process. The
weight is inversely proportional to the sum of the within-cluster
variances of the feature in the cluster. EWKM only weights
subspaces in individual features. The new algorithm we present
in this paper weights subspaces in both feature groups and
individual features. Therefore, it is an extension to EWKM.

Hoff [28] proposed a multivariate Dirichlet process mixture
model which is based on a Pólya urn cluster model for multivariate
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means and variances. The model is learned by a Markov chain
Monte Carlo process. However, its computational cost is prohibitive.
Bouveyron et al. [22] proposed the GMM model which takes into
account the specific subspaces around which each cluster is located,
and therefore limits the number of parameters to estimate. Tsai and
Chiu [23] developed a feature weights self-adjustment mechanism
for k-means clustering on relational data sets, in which the feature
weights are automatically computed by simultaneously minimizing
the separations within clusters and maximizing the separations
between clusters. Deng et al. [29] proposed an enhanced soft
subspace clustering algorithm (ESSC) which employs both within-
cluster and between-cluster information in the subspace clustering
process. Cheng et al. [24] proposed another weighted k-means
approach very similar to LAC, but allowing for incorporation of
further constraints.

Generally speaking, none of the above methods takes weights
of subspaces in both individual features and feature groups into
consideration.
Fig. 3. The variances of W and V of FG-k-means on the Yeast Cell Cycle data set

against k. (a) Variances of V against k. (b) Variances of W against k.
5. Properties of FG-k-means

We have implemented FG-k-means in java and the source code
can be found at http://code.google.com/p/k-means/. In this sec-
tion, we use a real-life data set to investigate the relationship
between the two types of weights w, v and three parameters k, l
and Z in FG-k-means.

5.1. Characteristics of the Yeast Cell Cycle data set

The Yeast Cell Cycle data set is microarray data from yeast
cultures synchronized by four methods: a factor arrest, elutria-
tion, arrest of a cdc15 temperature-sensitive mutant and arrest of
a cdc28 temperature-sensitive mutant [30]. Further, it includes
data for the B-type cyclin Clb2p and G1 cyclin Cln3p induction
experiments. The data set is publicly available at http://geno
me-www.stanford.edu/cellcycle/. The original data contains 6178
genes. In this investigation, we selected 6076 genes on 77
experiments and removed those which had incomplete data. We
used the following five feature groups:
�
 G1: contains four features from the B-type cyclin Clb2p and G1
cyclin Cln3p induction experiments;

�
 G2: contains 18 features from the a factor arrest experiment;

�
 G3: contains 24 features from the elutriation experiment;

�
 G4: contains 17 features from the arrest of a cdc15 tempera-

ture-sensitive mutant experiment;

�
 G5: contains 14 features from the arrest of a cdc28 tempera-

ture-sensitive mutant experiment.

5.2. Controlling weight distributions

We set the number of clusters k as f3,4,5,6,7,8,9,10g, l as
f1,2,4,8,12,16,24,32,48,64,80g and Z as f1,2,4,8,12,16,24,32,48,
64,80g. For each combination of k, l and Z, we ran FG-k-means to
produce 100 clustering results and computed the average variances of
W and V in the 100 results. Figs. 3–5 show these variances.

From Fig. 3(a), we can see that when Z was small, the variances
of V decreased with the increase of k. When Z was big, the
variances of V became almost constant. From Fig. 3(b), we can see
l has similar behavior.

To investigate the relationship among V, W and l, Z, we show
results with k¼5 in Figs. 4(a) and (b), 5(a) and (b). From Fig. 4(a),
we can see that the changes of l did not affect the variance of V

too much. We can see from Fig. 4(b) that as l increased, the
variance of W decreased rapidly. This result can be explained from
formula (14): as l increases, W becomes flatter. From Fig. 5(a), we
can see that as Z increased, the variance of V decreased rapidly.
This result can be explained from formula (8): as Z increases, V

becomes flatter. Fig. 5(b) shows that the effect of Z on the
variance of W was not obvious.

From above analysis, we summarize the following method to
control two types of weight distributions in FG-k-means by
setting different values of l and Z:
�
 Big l makes more subspaces in feature groups contribute to
the clustering while small l makes only important subspaces
in feature groups contribute to the clustering.

�
 Big Z makes more subspaces in individual features contribute

to the clustering while small Z makes only important sub-
spaces in individual features contribute to the clustering.
6. Data generation method

For testing the FG-k-means clustering algorithm, we present a
method in this section to generate high-dimensional data with
clusters in subspaces of feature groups.

http://code.google.com/p/k-means/
http://genome-www.stanford.edu/cellcycle/
http://genome-www.stanford.edu/cellcycle/


Fig. 4. The variances of W and V of FG-k-means on the Yeast Cell Cycle data set

against l. (a) Variances of V against l. (b) Variances of W against l. Fig. 5. The variances of W and V of FG-k-means on the Yeast Cell Cycle data set

against Z. (a) Variances of V against Z. (b) Variances of W against Z.
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6.1. Subspace data generation

Although several methods for generating high-dimensional
data have been proposed, for example in [21,31,32], these
methods were not designed to generate high-dimensional data
containing clusters in subspaces of feature groups. Therefore, we
have to design a new method for data generation.

In designing the new data generation method, we first con-
sider that high-dimensional data X is horizontally and vertically
partitioned into k� T sections where k is the number of clusters in
X and T is the number of feature groups. Fig. 6(a) shows an
example of high-dimensional data partitioned into three clusters
and three feature groups. There are totally nine data sections. We
want to generate three clusters that have inherent cluster
features in different vertical sections.

To generate such data, we define a generator that can
generate data with specified characteristics. The output from
the data generator is called a data area which represents a
subset of objects and a subset of features in X. To generate
different characteristics of data, we define three basic types of
data areas:
�
 Cluster area (C): Data generated has a multivariate normal
distribution in the subset of features.

�
 Noise area (N): Data generated are noise in the subset of

features.
�
 Missing value area (M): Data generated are missing values in
the subset of features. Here, we consider the area which only
contains zero values as a special case of missing value area.

We generate high-dimensional data in two steps. We first use
the data generator to generate cluster areas for the partitioned
data sections. For each cluster, we generate the cluster areas in
the three data sections with different covariances. According to
Theorem 1, the larger the covariance, the smaller the group
weight. Therefore, the importance of the feature groups to the
cluster can be reflected in the data. For example, the darker
sections in Fig. 6(a) show the data areas generated with small
covariances, therefore, having bigger feature group weights and
being more important in representing the clusters. The data
generated in this step is called error-free data.

Given an error-free data, in the second step, we choose some
data areas to generate noise and missing values by either repla-
cing the existing values with the new values or appending the
noise values to the existing values. In this way, we generate data
with different levels of noise and missing values.

Fig. 6(b) shows an example of high-dimensional data gener-
ated from the error-free data of Fig. 6(a). In this data, all features
in G3 are replaced with noise values. Missing values are intro-
duced to feature A12 of feature group G2 in cluster C2. Feature A2 in
feature group G2 is replaced with noise. The data section of cluster
C3 in feature group G2 is replaced with noise and feature A7 in



Fig. 6. Examples of subspace structure in data with clusters in subspaces of feature groups. (a) Subspace structure of error-free data. (b) Subspace structure of data with

noise and missing values. (C: cluster area, N: noise area, M: missing value area).

Table 1
Characteristics of four synthetic data sets.

Data sets (X) n m k T EðXÞ rðXÞ

D1 6000 200 3 3 0 0

D2 0.2 0

D3 0 0.12

D4 0.2 0.12
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feature group G1 is replaced with noise in cluster C1. This
introduction of noise and missing values makes the clusters in
this data difficult to recover.

6.2. Data quality measure

We define several measures to measure the quality of the
generated data. The noise degree is used to evaluate the percen-
tage of noise data in a data set, which is calculated as

EðXÞ ¼ no:ofdataelementswithnoisevalues

totalno:ofdataelementsin X
ð17Þ

The missing value degree is used to evaluate the percentage of
missing values in a data set, which is calculated as

rðXÞ ¼ no:ofthedataelementswithmissingvalues

totalno:ofthedataelementsin X
ð18Þ

7. Synthetic data and experimental results

Four types of synthetic data sets were generated with the data
generation method. We ran FG-k-means on these data sets
and compared the results with four clustering algorithms, i.e.,
k-means, W-k-means [19], LAC [20] and EWKM [21].

7.1. Characteristics of synthetic data

Table 1 shows the characteristics of the four synthetic data
sets. Each data set contains three clusters and 6000 objects in 200
dimensions which are divided into three feature groups. D1 is the
error-free data, and the other three data sets were generated from
D1 by adding noise and missing values to the data elements. D2

contains 20% noise. D3 contains 12% as missing values. D4

contains 20% noise and 12% as missing values. These data sets
were used to test the robustness of clustering algorithms.

7.2. Experiment setup

With the four synthetic data sets listed in Table 1, we carried
out two experiments. The first was conducted on four clustering
algorithms excluding k-means, and the second was conducted on
all five clustering algorithms. The purpose of the first experiment
was to select proper parameter values for comparing the cluster-
ing performance of five algorithms in the second experiment.

In order to compare the classification performance, we used
precision, recall, F-measure and accuracy to evaluate the results.
Precision is calculated as the fraction of correct objects among
those that the algorithm believes belonging to the relevant
class. Recall is the fraction of actual objects that were identified.
F-measure is the harmonic mean of precision and recall and
accuracy is the proportion of correctly classified objects.
In the first experiment, we set the parameter values of three
clustering algorithms with 30 positive integers from 1 to 30 (b in
W-k-means, h in LAC and g in EWKM). For FG-k-means, we
set Z as 30 positive integers from 1 to 30 and l as 10 values of
f1,2,3,4,5,8,10,14,16,20g. For each parameter setting, we ran each
clustering algorithm to produce 100 clustering results on each of
the four synthetic data sets. In the second experiment, we first set
the parameter value for each clustering algorithm by selecting the
parameter value with the best result in the first experiment. Since
the clustering results of the five clustering algorithms were
affected by the initial cluster centers, we randomly generated
100 sets of initial cluster centers for each data set. With each
initial setting, 100 results were generated from each of five
clustering algorithms on each data set.

To statistically compare the clustering performance with four
evaluation indices, the paired t-test comparing FG-k-means with
the other four clustering methods was computed from 100
clustering results. If the p-value was below the threshold of the
statistical significance level (usually 0.05), then the null hypoth-
esis was rejected in favor of an alternative hypothesis, which
typically states that the two distributions differ. Thus, if the
p-value of two approaches was less than 0.05, the difference of
the clustering results of the two approaches was considered to be
significant, otherwise, insignificant.

7.3. Results and analysis

Figs. 7–10 draw the average clustering accuracies of four
clustering algorithms in the first experiment. From these results,
we can observe that FG-k-means produced better results than the
other three algorithms on all four data sets, especially on D3 and
D4. FG-k-means produced the best results with small values of l
on all four data sets. This indicates that the four data sets have
obvious subspaces in feature groups. However, FG-k-means pro-
duced the best results with medium values of Z on D1 and D2, but
with large values of Z on D3 and D4. This indicates that the
weighting of subspaces in individual features faces considerable
challenges when the data contain noise, and especially when
the data contain missing values. Under such circumstance, the
weights of subspaces in feature groups were more effective than
the weights of subspaces in individual features. Among the other
three algorithms, W-k-means produced relatively better results



Fig. 7. The clustering results of four clustering algorithms versus their parameter

values on D1. (a) Average accuracies of FG-k-means. (b) Average accuracies of

other three algorithms.

Fig. 8. The clustering results of four clustering algorithms versus their parameter

values on D2. (a) Average accuracies of FG-k-means. (b) Average accuracies of

other three algorithms.
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than LAC and EWKM. On D3 and D4, all three clustering algorithms
produced bad results indicating that the weighting method in
individual features was not effective when the data contain
missing values.

In the second experiment, we set the parameters of four
algorithms as shown in Table 2. Table 3 summarizes the total
2000 clustering results. We can see that FG-k-means significantly
outperformed all other four clustering algorithms in almost all
results. When data sets contained missing values, FG-k-means
clearly had advantages. The weights for individual features could
be misleading because missing values could result in a small
variance of a feature in a cluster which would increase the weight
of the feature. However, the missing values in feature groups
were averaged so the weights in subspaces of feature groups
would be less affected by missing values. Therefore, FG-k-means
achieved better results on D3 in all evaluation indices. When noise
and missing values were introduced to the error-free data set, all
clustering algorithms had considerable challenges in obtaining
good clustering results from D4. LAC and EWKM produced similar
results as the results on D2 and D3, while W-k-means produced
much worse results than the results on D1 and D2. However,
FG-k-means still produced good results. This indicates that FG-k-
means was more robust in handling data with both noise and
missing values, which commonly exist in high-dimensional data.
Interestingly, W-k-means outperformed LAC and EWKM on D2.
This could be caused by the fact that the weights of individual
features computed from the entire data set were less affected by
the noise values than the weights computed from each cluster.

To sum up, FG-k-means is superior to the other four clustering
algorithms in clustering high-dimensional data with clusters in
subspaces of feature groups. The results also show that FG-k-
means is more robust to the noise and missing values.

7.4. Scalability comparison

To compare the scalability of FG-k-means with the other four
clustering algorithms, we retained the subspace structure in D4

and extended its dimensions from 50 to 500 to generate 10
synthetic data sets. Fig. 11 draws the average time costs of the
five algorithms on the 10 synthetic data sets. We can see that the
execution time of FG-k-means was more than only EWKM, and
significantly less than the other three clustering algorithms.
Although EWKM needs more time than k-means in one iteration,
the introduction of subspace weights made EWKM faster to
converge. Since FG-k-means is an extension to EWKM, the
introduction of weights to subspaces of feature groups does not
increase the computation in each iteration so much. This result
indicates that FG-k-means scales well to high-dimensional data.



Fig. 9. The clustering results of four clustering algorithms versus their parameter

values on D3. (a) Average accuracies of FG-k-means. (b) Average accuracies of

other three algorithms.

Fig. 10. The clustering results of four clustering algorithms versus their parameter

values on D4. (a) Average accuracies of FG-k-means. (b) Average accuracies of

other three algorithms.

Table 2
Parameter values of four clustering algorithms in the second experiment on the

four synthetic data sets in Table 1.

Algorithms D1 D2 D3 D4

W-k-means 12 6 5 14

LAC 1 1 1 1

EWKM 3 3 4 7

FG-k-means (1,15) (1,12) (1,20) (1,20)
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8. Experiments on classification performance of FG-k-means

To investigate the performance of the FG-k-means algorithm
in classifying real-life data, we selected two data sets from the
UCI Machine Learning Repository [33]: one was the Image

Segmentation data set and the other was the Cardiotocography

data set. We compared FG-k-means with four clustering algo-
rithms, i.e., k-means, W-k-means [19], LAC [20], EWKM [21].

8.1. Characteristics of real-life data sets

The Image Segmentation data set consists of 2310 objects
drawn randomly from a database of seven outdoor images. The
data set contains 19 features which can be naturally divided into
two feature groups:
1.
 Shape group: contains the first nine features about the shape
information of the seven images.
2.
 RGB group: contains the last 10 features about the RGB values
of the seven images.

Here, we use G1 and G2 to represent the two feature groups.
The Cardiotocography data set consists of 2126 fetal cardioto-

cograms (CTGs) represented by 21 features. Classification was
both with respect to a morphologic pattern (A, B, C, y) and to a
fetal state (N, S, P). Therefore, the data set can be used either for
10-class or 3-class experiments. In our experiments, we named
this data set as Cardiotocography1 for the 10-class experiment and
Cardiotocography2 for the 3-class experiment. The 23 features in
this data set can be naturally divided into three feature groups:
1.
 Frequency group: contains the first seven features about the
frequency information of the fetal heart rate (FHR) and uterine
contraction (UC).
2.
 Variability group: contains four features about the variability
information of these fetal cardiotocograms.
3.
 Histogram group: contains the last 10 features about the
histogram information values of these fetal cardiotocograms.



Table 3
Summary of clustering results on four synthetic data sets listed in Table 1 by five clustering algorithms. The value of the FG-k-means algorithm is the mean value of 100

results and the other values are the differences of the mean values between the corresponding algorithms and the FG-k-means algorithm. The value in parenthesis is the

standard deviation of 100 results. ‘‘n’’ indicates that the difference is significant.

Data Evaluation indices k-Means W-k-means LAC EWKM FG-k-means

D1 Precision �0.21 (0.12)n �0.11 (0.22)n �0.21 (0.15)n �0.11 (0.18)n 0.84 (0.17)

Recall �0.17 (0.09)n �0.05 (0.14)n �0.15 (0.08)n �0.13 (0.10)n 0.82 (0.16)

F-measure �0.12 (0.13)n �0.02 (0.19) �0.12 (0.13)n �0.16 (0.13)n 0.75 (0.23)

Accuracy �0.17 (0.09)n �0.05 (0.14)n �0.15 (0.08)n �0.13 (0.10)n 0.82 (0.16)

D2 Precision �0.16 (0.05)n �0.04 (0.10) �0.14 (0.07)n �0.09 (0.20)n 0.82 (0.25)

Recall �0.24 (0.04)n �0.11 (0.10)n �0.21 (0.06)n �0.15 (0.13)n 0.87 (0.16)

F-measure �0.18 (0.05)n �0.07 (0.12)n �0.16 (0.07)n �0.19 (0.17)n 0.82 (0.22)

Accuracy �0.24 (0.04)n �0.11 (0.10)n �0.21 (0.06)n �0.15 (0.13)n 0.87 (0.16)

D3 Precision �0.26 (0.05)n �0.25(0.14)n �0.26 (0.06)n �0.33 (0.16)n 0.90 (0.20)

Recall �0.32 (0.04)n �0.27 (0.07)n �0.31 (0.06)n �0.24 (0.09)n 0.94 (0.13)

F-measure �0.29 (0.06)n �0.27 (0.11)n �0.29 (0.08)n �0.32 (0.12)n 0.91 (0.18)

Accuracy �0.32 (0.04)n �0.27 (0.07)n �0.31 (0.06)n �0.24 (0.09)n 0.94(0.13)

D4 Precision �0.29 (0.05)n �0.26 (0.07)n �0.23 (0.05)n �0.32 (0.16)n 0.89(0.17)

Recall �0.31 (0.04)n �0.30 (0.06)n �0.26 (0.04)n �0.22 (0.08)n 0.91 (0.13)

F-measure �0.29 (0.05)n �0.28 (0.07)n �0.23 (0.05)n �0.30 (0.11)n 0.88 (0.18)

Accuracy �0.31 (0.04)n �0.30 (0.06)n �0.26 (0.04)n �0.22 (0.08)n 0.91 (0.13)

Table 4
Parameter values of four clustering algorithms in the experiment on the three

real-life data sets. IS: Image Segmentation data set, Ca1: Cardiotocography1 data

set, Ca2: Cardiotocography2 data set.

Algorithms IS Ca1 Ca2

W-k-means 30 35 5

LAC 30 30 15

EWKM 30 40 15

FG-k-means (10,30) (1,5) (20,5)
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We can see that different feature groups represent different
measurements of the data from different perspectives. In the
following, we use the three real-life data sets to investigate the
classification performance of the FG-k-means clustering algorithm.

8.2. Experiment setup

We conducted two experiments, as with the synthetic data in
Section 7.2, and only report the experimental results in the
second experiment. In the second experiment, we set the para-
meters of four clustering algorithms as shown in Table 4.

8.3. Classification results

Table 5 summarizes the total 1500 results produced by the five
clustering algorithms on the three real-life data sets. From these
results, we can see that FG-k-means significantly outperformed
the other four algorithms in most results. On the Image Segmenta-

tion data set, FG-k-means significantly outperformed all other
four clustering algorithms in recall and accuracy. On the Cardio-

tocography1 data set, FG-k-means also significantly outperformed
all other four clustering algorithms in recall and accuracy. On the

Fig. 11. Average time costs of five clustering algorithms on 10 synthetic data sets.
Cardiotocography2 data set, FG-k-means significantly outper-
formed all other four clustering algorithms in the four evaluation
indices. From the above results, we can see that the introduction
of weights to subspaces of both feature groups and individual
features improves the clustering results.
9. Experiments on feature selection

In FG-k-means, the weights of feature groups and individual
features indicate the importance of the subspaces where the
clusters are found. Small weights indicate that the feature groups
or individual features are not relevant to the clustering. Therefore,
we can do feature selection with these weights. In this section, we
show an experiment on a real-life data set for feature selection
with FG-k-means.

9.1. Characteristics of the Multiple Features data set

The Multiple Features data set contains 2000 patterns of hand-
written numerals that were extracted from a collection of
Dutch utility maps. These patterns were classified into 10 classes
(‘‘0’’–‘‘9’’), each having 200 patterns. Each pattern was described by
649 features that were divided into the following six feature groups:
1.
 mfeat-fou group: contains 76 Fourier coefficients of the char-
acter shapes;
2.
 mfeat-fac group: contains 216 profile correlations;

3.
 mfeat-kar group: contains 64 Karhunen-Lo�eve coefficients;

4.
 mfeat-pix group: contains 240 pixel averages in 2�3

windows;



Table 5
Summary of clustering results on three real-life data sets by five clustering algorithms. The value of the FG-k-means algorithm is the mean value of 100 results and the

other values are the differences of the mean values between the corresponding algorithms and the FG-k-means algorithm. The value in parenthesis is the standard

deviation of 100 results. ‘‘n’’ indicates that the difference is significant.

Data Evaluation indices k-Means W-k-means LAC EWKM FG-k-means

IS Precision �0.00 (0.07) �0.01 (0.08) �0.00 (0.07) �0.00 (0.09) 0.59 (0.09)

Recall �0.02 (0.05)n �0.02 (0.03)n �0.02 (0.05)n �0.02 (0.05)n 0.63 (0.05)

F-measure �0.00 (0.07) �0.01 (0.05) �0.00 (0.07) �0.01 (0.07) 0.59 (0.07)

Accuracy �0.02 (0.05)n �0.02 (0.03)n �0.02 (0.05)n �0.02 (0.05)n 0.63 (0.05)

Ca1 Precision 0.07 (0.03)n 0.05 (0.03)n 0.07 (0.03)n 0.07 (0.03)n 0.40 (0.06)

Recall �0.01 (0.02)n �0.01 (0.02)n �0.01 (0.02)n �0.01 (0.02)n 0.38 (0.03)

F-measure 0.12 (0.02)n 0.12 (0.02)n 0.12 (0.02)n 0.12 (0.02)n 0.27 (0.03)

Accuracy �0.01 (0.02)n �0.01 (0.02)n �0.01 (0.02)n �0.01 (0.02)n 0.38 (0.03)

Ca2 Precision �0.03 (0.01)n 0.03 (0.04)n �0.03 (0.01)n �0.02 (0.02)n 0.76 (0.05)

Recall �0.36 (0.03)n �0.29 (0.06)n �0.36 (0.03)n �0.02 (0.02)n 0.81 (0.02)

F-measure �0.27 (0.04)n �0.20 (0.07)n �0.27 (0.04)n �0.02 (0.01)n 0.77 (0.04)

Accuracy �0.36 (0.03)n �0.29 (0.06)n �0.36 (0.03)n �0.02 (0.02)n 0.81 (0.02)

Table 6
Summary of clustering results from the Multiple Features data set by five clustering algorithms. The value in the cell is the mean value and the range of 100 results, and the

value in parenthesis is the standard deviation of 100 results. ‘‘n’’ indicates that the difference is significant. The bold in each row represents the best result in the

corresponding evaluation index.

Evaluation indices k-Means W-k-means LAC EWKM FG-k-means

Precision 0.7270.20 (0.09) 0.7470.20 (0.10)n 0.7270.20 (0.09) 0.5570.17 (0.09)n 0.7070.25 (0.11)

Recall 0.7370.18 (0.08)n 0.7470.19 (0.08)n 0.7370.19 (0.08) 0.5070.18 (0.10)n 0.7170.23 (0.10)

F-measure 0.7270.20 (0.09)n 0.7370.20 (0.10)n 0.7170.21 (0.09)n 0.4270.20 (0.10)n 0.6570.29 (0.12)

Accuracy 0.7370.18 (0.08)n 0.7470.19 (0.08)n 0.7370.19 (0.08) 0.5070.18 (0.10)n 0.7170.23 (0.10)

Fig. 12. Subspace structure recovered by the FG-k-means from the Multiple Features data set. (a) Subspace structure with l¼ 5. (b) Subspace structure with l¼ 10.

(c) Subspace structure with l¼ 15. (d) Subspace structure with l¼ 20. (e) Subspace structure with l¼ 25. (f) Subspace structure with l¼ 30.
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5.
 mfeat-zer group: contains 47 Zernike moments;
6.
 mfeat-mor group: contains six morphological features.

Here, we use G1, G2, G3, G4, G5 and G6 to represent the six feature
groups.

9.2. Classification results on the Multiple Features data set

In the experiment, we set b¼ 8 for W-k-means, h¼30 for LAC,
l¼ 5 for EWKM and l¼ 6, Z¼ 30 for FG-k-means. Table 6
summarizes the total 500 results produced by the five
clustering algorithms. W-k-means produced the highest average
values in all four indices. EWKM produced the worst results.
Although FG-k-means is an extension to EWKM, it produced
much better results than EWKM. FG-k-means did not produce
the highest average values, but it produced the highest maximal
results in all four indices. This indicates that the results were
unstable in this data set, which may be caused by noise. To find
the reason, we investigated the subspace structure of this
data set.



Table 7
Summary of clustering results from the Filtered Multiple Features data set by five clustering algorithms. The value of the FG-k-means algorithm is the mean value of 100

results and the other values are the differences of the mean values between the corresponding algorithms and the FG-k-means algorithm. The value in parenthesis is the

standard deviation of 100 results. ‘‘n’’ indicates that the difference is significant.

Evaluation indices k-Means W-k-means LAC EWKM FG-k-means

Precision �0.01 (0.10) �0.01 (0.09) �0.01 (0.10) �0.01 (0.09) 0.75 (0.11)

Recall �0.03 (0.08)n �0.03 (0.08)n �0.03 (0.08)n �0.03 (0.08)n 0.79 (0.10)

F-measure �0.02 (0.10) �0.02 (0.09) �0.02 (0.09) �0.02 (0.09) 0.75 (0.11)

Accuracy �0.03 (0.08)n �0.03 (0.08)n �0.03 (0.08)n �0.03 (0.08)n 0.79 (0.10)
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We set l as f5,10,15,20,25,30g and Z as 30 positive integers
from 1 to 30, and then ran FG-k-mean with 100 randomly
generated cluster centers to produce 18,000 clustering results.
For each value of l, we computed the average weight of each
feature group in each cluster from 3000 clustering results. Fig. 12
draws the six sets of average weights, where the dark color
indicates high weight and the light color represents low weight.
We can see that subspace structures recovered are similar with
different values of l. We noticed that most weights in G4 were
very small, which indicates that G4 was not important and could
be considered as a noise feature group. This feature group could
be the cause that made the cluster structure of this data insig-
nificant and these clustering algorithms sensitive to the initial
cluster centers.

9.3. Feature selection

To further investigate the assumption that G4 was a noise
feature group, we conducted a new experiment. In the new
experiment, we deleted the features in G4 and produced the
Filtered Multiple Features data set which only contained 409
features. We set b¼ 30 for W-k-means, h¼30 for LAC, l¼ 30 for
EWKM and l¼ 20, Z¼ 11 for FG-k-means and ran each of the five
algorithms 100 times with 100 randomly generated cluster
centers. Table 7 summarizes the total 500 results produced by
the five clustering algorithms. Compared with the results in
Table 6, we can see that all algorithms improved their results,
especially EWKM and FG-k-means. EWKM resulted in significant
increases in performance and the new results were comparable to
W-k-means and LAC. FG-k-means significantly outperformed the
other four clustering algorithms in recall and accuracy. In preci-
sion and F-measure, FG-k-means produced similar results as the
other four clustering algorithms. These results indicate that the
cluster structure of this data set was made more obvious and
easier to recover for soft subspace clustering algorithms after
removing the features in G4. In this way FG-k-means can be used
for feature selection.
10. Conclusions

In this paper, we have presented a new clustering algorithm
FG-k-means to cluster high-dimensional data from subspaces of
feature groups and individual features. Given a high-dimensional
data set with features divided into groups, FG-k-means can
discover clusters in subspaces by automatically computing fea-
ture group weights and individual feature weights. From the two
types of weights, the subspaces of clusters can be revealed. The
experimental results on both synthetic and real-life data sets have
shown that the FG-k-means algorithm outperformed the other
four clustering algorithms, i.e., k-means, W-k-means, LAC and
EWKM. The results on synthetic data also show that FG-k-means
was more robust to noise and missing values. Finally, the experi-
mental results on a real-life data set demonstrated that FG-k-
means can be used in feature selection.
Our future work will develop a method that can automatically
divide features into groups in the weighted clustering process.
Moreover, the weighting method used in FG-k-means can also be
considered for other clustering and classification methods.
Finally, we will test and improve our method on further real
applications.
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