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In this paper, an observability analysis for differential pneu-
matic pistons is presented, together with observer design and
implementation. To avoid as much as possible the knowl-
edge of the system model parameters, the GPI (Generalized
Proportional Integral) approach is employed for the estima-
tion of unmeasured variables. Experimental results show the
good performance of the proposed scheme.

1 Introduction
The attractiveness of pneumatic systems lies on their

cleanness, low prices, excellent weight to force ratio and easy
assembling. Industrial applications for this kind of devices
are wide, for instance in food production, robotic manipula-
tors or oil industry with flammable environments. Therefore,
it is important to design controllers capable of reaching the
same performance as for electric or hydraulic actuators.

The main control goals for differential pneumatic de-
vices are displacement and force tracking of the piston. In
either case it is necessary to regulate the mass flow entering
into the two chambers. Depending on the actuator, it may
be controlled by many kinds of valves, like simple ON/OFF
or proportional arrangements. The last ones generate mass
flows which depend on the control input voltage.

While there are many works regarding the designed and
implementation of different control strategies for pneumatic
systems (e. g.[1–8]), there are fewer regarding research on
observer design. For instance, Bigras and Khayati [9] devel-
oped a nonlinear observer for pressure estimation of a class
of pneumatic systems where the cylinder connection ports
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comprise a non negligible restriction. Only simulation re-
sults are presented. In [10] the design of a sliding mode
control law is proposed for which only the measurement of
one chamber pressure of a differential cylinder is necessary,
while the other one is estimated online by means of an ob-
server. Although the approach is simple, it turns out to be
very sensitive to friction effects. In [11, 12] a nonlinear ob-
servability analysis is developed to find out whether it is pos-
sible to design a control law based only on the piston posi-
tion, y, while pressure measurements are eliminated via ob-
server design. The results show that local observability islost
in several regions of the state space, in particular when ˙y= 0.
In [13] the design of two Lyapunov–based nonlinear pressure
observers is introduced. The approach is successfully tested
experimentally. However, the implementation requires many
information about the pneumatic system, which represents a
disadvantage.

In this paper, an observability analysis for differential
pneumatic pistons is presented. Based on the results, linear
observers are implemented for the estimation of one cham-
ber pressure and the piston velocity. To avoid the computa-
tion of the high nonlinear dynamics of the piston chambers,
the GPI (Generalized Proportional Integral) approach is em-
ployed [14, 15]. The result is an observer that does not need
the mass flow chamber dynamics at all. Experimental results
show the good performance of the proposed scheme.

The paper is organized as follows: in Section 2 the dy-
namic model for differential pneumatic pistons is given. Sec-
tion 3 carries out the observability analysis and Section 4
describes the observer design. Section 5 shows the experi-
mental results, while Section 6 gives some conclusions.



Fig. 1. Differential pneumatic piston structure

2 Differential pneumatic pistons
2.1 Dynamic model

Figure 1 depicts the general structure of a differential
pneumatic piston, whereL [m] is the maximal piston dis-
placement,y [m] is the piston position and ˙y [ m

s ] is the cor-
responding velocity. Fori = 1,2, Li [m] is the width of the
dead zone of chamberi, d [m] is the piston diameter,Ai [m2]
is the cross section area of piston chamberi, Vi [m3] is the
volume in chamberi, Vi0 [m3] is the dead volume of chamber
i including tubes,dv [m] is the piston rod diameter,w [m] is
the piston width,pi [Pa] is the pressure of chamberi. Finally,
F [N] is the applied force.

The system state is usually defined as
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Model development can be found in many works [16–18].
In the following we do a sketch of the procedure. Basically,
Newton’s second law and the first law of thermodynamics
for adiabatic processes are employed. As a matter of fact,
two subsystems can be distinguished. The mechanical part
whose dynamics is given by

ẋ1 = x2 (2)
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patm−
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x2, (3)

and the pneumatic components described by

ẋ3 =
γ

V10+A1x1
(RTṁ1(x3,u)−x2x3A1) (4)

ẋ4 =
γ

V20+A2(L−x1)
(RTṁ2(x4,u)−x2x4A2) , (5)

wherepatm [Pa] is the atmospheric pressure,M [kg] is the
piston mass,FV [(N ·m)/s] is the viscous friction coefficient,
γ is the adiabatic index,R [J/(kg·K)] is the air gas constant,
T [K] is the temperature,u [V] is the input voltage and ˙mi

[kg/s] is the mass flow chamberi, i = 1,2, given by

ṁ1 = C(u)γ̄1(x3) (6)
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and

ṁ2 = −C(u)γ̄2(x4) (7)
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[
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]

is the air density,ps [Pa] is the supply
pressure,b is the critical pressure ratio andC(u) [kg/s] is the
mass flow function.

Remark 2.1.
The input voltageu usually takes values from 0V to+10V,
but in (6)–(7) it is considered thatu ∈ (−5,+5)V while a
constant valueVoffset≈ 5V is added for implementation.△

3 Observability analysis
In this section, an observability analysis of the state of

system (2)–(5) is carried out. Our main goal is to design
an observer with the minimal number of sensors. Note that
usually three of them are employed, namely one for the dis-
placement (y) and two for the pressures in the chambers of
the piston (p1 and p2), while the derivative ˙y may be com-
puted numerically. The question is whether only one or at
most two sensors can be used. Based on Table 1, we consider
that there are seven cases of interest. In order to simplify the
observability analysis, we follow the well–known criterion
that the state is observable as long as it can be written as a
function of the measured variables, the different inputs, and
a finite number of their corresponding derivatives [19].

3.1 Case 1:x1 (y) available
Clearly,x2 can be gotten just by computing the deriva-

tive of x1. However, it is not posible to getx3 from (4) orx4

from (5) only as a function ofx1 and its derivatives because
bothẋ3 andẋ4 are involved, respectively. An attempt to elim-
inate them by computing ¨x2 from (3) and substituting ˙x3 and
ẋ4 would just lead to a nonlinear relationship betweenx3 and
x4. Thus, we can conclude that the state is not observable
if only x1 is available. It is worthy to note that by applying
the observability analysis described in [20], in [11, 12] the
authors show that the state is observable only if ˙y = x2 6= 0.
Clearly, this case is of little practical interest, since usually
one has ˙y = 0 for some time intervals.



Case Available Non Available Obs

1 y ẏ p1 p2 N

2 p1 y ẏ p2 N

3 p2 y ẏ p1 N

4 y p1 ẏ p2 Y

5 y p2 ẏ p1 Y

6 p1 p2 y ẏ N

7 y p1 p2 ẏ Y

Table 1. Complete Observability Analysis Scheme

3.2 Cases 2 and 3:x3 (p1) or x4 (p2) available
Consider that onlyp1 is available. Then, the state will

be observable ify (x1), ẏ (x2) and p2 (x4) can be expressed
as a function ofp1 and its derivatives. We begin withx2.
From (4) one gets

x2 =
RTṁ1(x3,u)

x3A1
−

ẋ3(V10+A1x1)
γx3A1

. (8)

As can be appreciatedx2 is a function ofx1, x3, the input and
their derivatives. An attempt to eliminatex1 would consist in
computing the derivative of (8) to use (3). However,x1 does
not disappear and, furthermore,x4 arises as well. Clearly,
there is therefore no way to writex2 only as a function ofx3

and one can conclude that the state is not observable. Note
that the same conclusion can be gotten ifx4 is available in-
stead ofx3.

3.3 Cases 4 and 5:x1 (y) and x3 (p1) or x4 (p2) available
For these cases,x2 = ẋ1. Supposex3 is available, so that

we need to determine whether it is possible to writex4 only
as a function ofx1, x3 and their derivatives. Directly from (3)
it is

x4 = A1
A2

x3−
A1−A2

A2
patm−

FV
A2

x2−
M
A2

ẋ2. (9)

Based on (9) we can conclude that the state is observable.
Alternatively, whenx4 is the available variable one gets

x3 = A2
A1

x4 + A1−A2
A1

patm+ FV
A1

x2 + M
A1

ẋ2. (10)

So, the state is also observable, as could have been expected.

3.4 Case 6:x3 (p1) and x4 (p2) available
As before, the goal is to writex1 andx2 as a function of

only x3, x4, the input and their derivatives. By combining (4)
and (5) one gets
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(RTṁ2−x2x4A2)+
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,
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By replacing (12) in (11) one gets
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Clearly, the state is not observable if ˙x3 = 0 and/or ˙x4 = 0,
i. e. if either p1 or p2 are constant.

3.5 Case 7:x1 (y), x3 (p1) and x4 (p2) available
The state is trivially observable since, as usual,x2 = ẋ1.

4 Observer design
According to the results of Section 3, there are only three

cases for the state of system (2)–(5) to be observable, namely
when the positiony (x1) and the pressurep1 (x3) (or the pres-
surep2 (x4)) are available or when these three variables can
be measured. In this section two observers will be designed
for the first two options. As pointed out in [8], it is difficultto
get an accurate dynamic model to represent the dynamics of
the complete system (2)–(7), specially for equations (6)–(7).
Thus, the less information employed for implementation the
better. In this work we propose the use of the GPI (General-
ized Proportional Integral) approach due to the flexibility of
the design [15].

Suppose thatx1 andx3 are available, whilex2 andx4 are
to be estimated, and rewrite (2)–(3) as

ẋ1 = x2 (15)

ẋ2 =
A1

M
x3 +z1−

A1−A2

M
patm−

FV

M
x2. (16)

Note that (4) is not necessary sincex3 is measured, whilex4

is substituted by

z1
△
= −

A2

M
x4 ⇒ x4 = −

M
A2

z1. (17)



Consider the following assumption [15].

Assumption 4.1. For the variable z1 in (17) it holds

1. z1 and a finite number of its time derivatives, say p of
them, are absolutely uniformly bounded.

2. z1 can be expressed as

z1 =
p−1

∑
i=0

ait
i + r(t) (18)

with each ai being a constant coefficient.
3. The continuously updated residual term, r(t), and its

time derivatives in the instantaneous Taylor polynomial
approximation of the signal z1, are bounded. Note in
particular that then r(p) is bounded. △

Remark 4.1.
The definition ofz1 in (17) is aimed at avoiding the knowl-
edge, and especially the employment, of (5) and (7). This is
possible as long as Assumption 4.1 holds. △

Remark 4.2.
Assumption 4.1 may appear to be too restrictive, however, it
should be taken into account that the following physical facts
hold:

1. patm≤ x3,x4 ≤ ps.
2. 0≤ x1 ≤ L.
3. γ̄1(x3), γ̄2(x4) ≥ 0 and bounded.
4. C(u) is a continuous strictly increasing function with

C(0) = 0.

Automatically Item 1. guarantees the boundedness ofz1.
Items 2.–4. guarantee the boundedness of ˙x3, ẋ4 as long as
x2 (ẏ) is bounded. From a practical and physical point of
view this can be expected. Thus, Assumption 4.1 is not
really restrictive regarding the boundedness ofz1 and its
derivatives. See [15] for full details about the interpretation
of z1. △

After Assumption 4.1, equations (15) and (16) can be
rewritten as

ẋ1 = x2 (19)

ẋ2 = −ax2+bx3+z1 + ū (20)

ż1 = z2 (21)
...

żp−1 = zp = z(p−1)
1 (22)

żp = r(p)(t) = z(p)
1 , (23)

where it has been conveniently set

a =
FV

M
(24)

b =
A1

M
(25)

ū = −
A1−A2

M
patm. (26)

Based on (19)–(23) and by defining

e= x1− x̂1, (27)

the following linear observer can be introduced

˙̂x1 = x̂2 + λp+1e−ae (28)
˙̂x2 = −a˙̂x1 +bx3+ ẑ1 + ū+ λpe (29)
˙̂z1 = ẑ2 + λp−1e (30)
˙̂z2 = ẑ3 + λp−2e (31)

...
˙̂zp−1 = ẑp + λ1e (32)

˙̂zp = λ0e. (33)

System (19)–(23) in closed loop with the GPI observer given
by (28)–(33) delivers the error dynamics

ė = e2−λp+1e+ae (34)

ė2 = −aė+ z̃1−λpe (35)
˙̃z1 = z̃2−λp−1e (36)
˙̃z2 = z̃3−λp−2e (37)

...
˙̃zp−1 = z̃p−λ1e (38)

˙̃zp = r(p)(t)−λ0e, (39)

wheree2 = x2− x̂2 andz̃i = zi − ẑi, for i = 1, . . . , p.

Theorem 4.1. Suppose that Assumption 4.1 holds. Then
for the error dynamics (34)–(39), the observation errors
e, ė and z̃1 globally asymptotically tend to an arbitrary
small neighborhood of the origin as long as the gains
{λ0,λ1, ...,λp+1} are chosen in such a manner that the poly-
nomial

ρ(s) = sp+2 + λp+1s
p+1 + · · ·+ λ1s+ λ0 (40)

is Hurwitz with roots located sufficiently far into the left half
of the complex plane. Furthermore, an estimate ofx̂4 is given
by

x̂4 = −
M
A2

ẑ1. (41)



Proof

By combining (34)–(35) one gets

ë+ λp+1ė+ λpe= z̃1. (42)

On the other hand, from (36)–(37) it is

¨̃z1 = z̃3−λp−2e−λp−1ė. (43)

Proceeding in the same way until reaching (39) results in

z̃(p)
1 = r(p)(t)−λ0e−·· ·−λp−1e

(p−1). (44)

Then, one gets after (42) and (44)

e(p+2) + λp+1e
(p+1) + · · ·+ λ0e= r(p)(t) =

dp

dt pz1. (45)

As stated before, the polynomial on the left side is Hur-
witz and with roots located sufficiently far away from the
imaginary axis in the left half of the complex plane. There-
fore, sincer(p)(t) is bounded by assumption, the time re-
sponse in (45) will be asymptotically, exponentially, ulti-
mately bounded by a small disk centered around the origin
of the error phase space,e = ė = · · · = e(p+1) = 0. More-
over, the radius of the ultimate bounding disk is proportional
to the inverse of the absolute value of the smallest real part
of the roots of the characteristic polynomial (40). After (27)
this means that the estimated values ˆx1 and x̂2 can be made
approximately close to the real valuesx1 andx2, respectively.

As a consequence of the convergence to an arbitrarily
small neighborhood of zero ofe= ė= · · · = e(p+1) = 0, one
can conclude after (42) that also ˜z1 can be made arbitrarily
small, meaning that ˆz1 becomes arbitrarily close toz1. Note
that this implies that the estimate of ˆx4 given by (41) also
becomes arbitrarily close to the actual valuex4. Finally,
after (42), by computing the consecutive time derivatives of
z̃1, i. e., z̃( j), the actual valuesz( j) are also approximately
estimated via the corresponding observer vector variables,
ẑj(t), j = 1,2, .... See [15] for more details. △

Remark 4.3.
It is rather trivial to design an observer forx3 when x4 is
available just by changing (15)–(17) to

ẋ1 = x2 (46)

ẋ2 = z1−
A2

M
x4−

A1−A2

M
patm−

FV

M
x2. (47)

Note that as before (5) is not necessary sincex4 is measured,
while x3 is substituted by

z1
△
=

A1

M
x3 ⇒ x3 =

M
A1

z1. (48)

Fig. 2. Experimental test bed

The corresponding observer is then given by

˙̂x1 = x̂2 + λp+1e−ae (49)
˙̂x2 = ẑ1−bx4+ ū−a˙̂x1 + λpe (50)
˙̂z1 = ẑ2 + λp−1e (51)
˙̂z2 = ẑ3 + λp−2e (52)

...
˙̂zp−1 = ẑp + λ1e (53)

˙̂zp = λ0e, (54)

where this timeb = A2
M and the estimated value ofx3 is

x̂3 =
M
A1

ẑ1. (55)

△

5 Experimental results
To test the performance of the observers proposed

in the last section, the device shown in Figure 2 will be
employed. This is aTelemecaniqueactuator provided with
a Festo proportional valve MYPE–5–1/8–HF–010 B, a
Festo pressure sensor for each piston–chamber and the
air supply, as well as aSick–Stegmannabsolute encoder
for reading the piston position. It is controlled with a
CompactRioacquisition system byNational Instruments
with a programmed sampling time of 2[ms] (fastest possible
achievable). The air is distributed by an 230 liters air com-
pressorCraftsman Professionaland a Festo maintenance
system with regulator. So as to be able to change the piston
mass to introduce a perturbation, a box can be fixed at the
piston–end as shown in Figure 2. This allows to increase the
nominal mass up to in 50%. The following data has been
used:A1 = 0.00316692174[m2], A2 = 0.00267604789[m2],
M = 5.8[kg], FV = 150[(N ·m)/s] and patm = 0.9 · 105[Pa]



(for Mexico City). The interested reader can see [8] for
details. No other system parameters are necessary for
implementation. Finally, for both observers it was chosen
p = 3 in (40), with the poles set tos1 = −20, s2 = −20,
s3 = −40,s4 = −60 ands5 = −60.

Remark 5.1. There is not an obvious way to choose the
best value forp in (40)a priori. Theoretically, the larger the
better. However, one can carry out an iterative procedure
beginning withp = 1 and increasing its value until it does
not represent any advantage,i. e. until the estimates given
by the observer are similar for two consecutive values of
p. On the other hand, usuallyp = 3 turns out to be a good
choice. △

Remark 5.2. A disadvantage of the GPI method is that the
transient performance may be very poor because of the pres-
ence of high peaks. In order to reduce this effect the so–
calledclutchcan be implemented in the following form

x̂2s =







x̂2sin8( πt
2ε ), 0≤ t ≤ ε

x̂2, t > ε
(56)

and

ẑis =







ẑi sin8( πt
2ε ), 0≤ t ≤ ε

ẑi , t > ε
i = 1, . . . , p, (57)

where x̂2s and ẑis, i = 1, . . . , p are the softened versions of
the observer’s states andε is the chosenclutch’s time. △

5.1 Comparative algorithm
In order to have a comparison point about the perfor-

mance of the proposed algorithm, the well–known observer
given in [10] is implemented too. Rewritten in the notation
used in this paper, it is for the pressurep1

˙̂x1 = x̂2 + α1x̃1 +k1sign(x̃1) (58)

˙̂x2 = −
Fv

M
x̂2 +

A
M

p̂1−
A
M

p2 + α2x̃2 +k2sign(x̃2) (59)

˙̂p1 = −κ
x̂2p̂1

x1
+

f1e1

h1x1
u+ α3x̃1 + α4x̃2 (60)

+k3sign(x̃1)+k4sign(x̃2)

and forp2

˙̂x1 = x̂2 + α1x̃1 +k1sign(x̃1) (61)

˙̂x2 = −
Fv

M
x̂2 +

A
M

p1−
A
M

p̂2 + α2x̃2 +k2sign(x̃2) (62)

˙̂p2 = κ
x̂2p̂2

L−x1
−

f2e2

h2(L−x1)
u−α3x̃1−α4x̃2 (63)

−k3sign(x̃1)−k4sign(x̃2) ,

wherex̃1 = x1− x̂1, x̃2 = x2− x̂2, k1 = 0.2, k2 = 10,k3 = 20,
k4 = 1× 106, α1 = 100, α2 = 10, α3 = α4 = 10000 are
the observer’s gains,κ = 1.4 is the ratio of specific heats,
A= 2.9214×10−3[m2] is the area of the chambersf1 = f2 =
2.4062× 106 (assuming sonic air flow through the valves),
andh1 = h2 = 1000 ande1 = e2 = 0.8192 are the valve pa-
rameters.

5.2 Test signals and experimental cases
Six different input signals have been employed to test

the robustness of the proposed approach under different cir-
cumstances. Recall that no control law is implemented since
our goal is to test the observers. Thus, it is considered signi-
ficative for the input both the frequency and the magnitude:

u1(t) = 5+0.8square(2π ·0.1t) [V] (64)

u2(t) = 5+1.0square(2π ·0.2t) [V] (65)

u3(t) = 5+1.5square(2π ·2.0t) [V] (66)

u4(t) = 5+2.0sin(2π ·0.3t) [V] (67)

u5(t) = 5+2.5sin(2π ·0.5t) [V] (68)

u6(t) = 5+3.0sin(2π ·2.0t) [V]. (69)

Also, each test signal has been used for three different
cases

a) For the piston without any perturbation over the nominal
parameters

b) An additional mass ofMp = 2.9[kg] is fixed on the pis-
ton (i. e. 50% of the nominal mass)

c) The additional mass is not fixed, but it is left atxp =
0.35[m] so that the piston will hit and push it until it
moves backwards. This represents an abrupt change in
the moving mass

5.3 Outcomes for inputu1(t)
5.3.1 Without additional mass

For both schemes, the observers forx3 andx4 are imple-
mented simultaneously sincep1 andp2 are actually available
and the estimated values are not used for feedback control.
Figure 3 shows the outcomes. Since the units are MPa, even
small relative errors turn out to be large in magnitude when
expressed in Pa. Thus, so as to have a kind of percentual error
x3− x̂3 is divided byx3 andx4− x̂4 by x4. Note that there are
no units in this case. From Figure 3 it becomes clear that the
proposed scheme GPI based Observer (GPIO) has a much
better performance than the Sliding Mode based Observer
(SMO). Although there are high peaks at the beginning, the
errors tend very fast around zero. Note that the peaks would
be even larger if theclutchmentioned in Remark 5.2 had not
been implemented.

As to the piston position, the initial value ofx1 is 0.2[m]
and it is set ˆx1(0) = 0[m]. In Figure 4 it can be seen that
the estimated variable tends rather fast to the real one, until
x̃1 oscillates around zero. To better appreciate this, the ini-
tial error of 200[mm] is not shown in the figure. The SMO
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Fig. 3. Input u1(t) without additional mass. a) x3 (· · ·), x̂3 (—–)

with GPIO and x̂3 (- - -) with SMO. b) x4 (· · ·), x̂4 (—–) with GPIO

and x̂4 (- - -) with SMO. c) (x3− x̂3)/x3, (—–) with GPIO and (- - -)

with SMO. d) (x4− x̂4)/x4, (—–) with GPIO and (- - -) with SMO.
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Fig. 4. Input u1(t) without additional mass. a) x1 (· · ·), x̂1 (—–)

with GPIO and x̂1 (- - -) with SMO. b) x2 (· · ·), x̂2 (—–) with GPIO

and x̂2 (- - -) with SMO. c) x1− x̂1, (—–) with GPIO and (- - -) with

SMO. d) x2− x̂2, (—–) with GPIO and (- - -) with SMO.

delivers a similar position error for this case. Only the veloc-
ity x2 may not be measured directly in our test bed, so that
x̂2 can just be compared with an approximate value gotten
by numerical differentiation and denoted by (making abuse
of notation) asx2 in Figure 4. It can be concluded that the
performance of both observers was also accurate in this case.

5.3.2 With fixed additional mass
To test the robustness of the proposed observer in the

presence of parameter uncertainties, an additional mass of
2.9[Kg] is added to the piston,i. e. 50% of the nominal
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Fig. 5. Input u1(t) with fixed additional mass. a) x3 (· · ·), x̂3 (—–)

with GPIO and x̂3 (- - -) with SMO. b) x4 (· · ·), x̂4 (—–) with GPIO

and x̂4 (- - -) with SMO. c) (x3− x̂3)/x3, (—–) with GPIO and (- - -)

with SMO. d) (x4− x̂4)/x4, (—–) with GPIO and (- - -) with SMO.

value. Note that an uncertainty of this kind introduces an
error in many equations of the proposed observer and it is in
some cases equivalent to an uncertainty onA1 and/or onA2,
so that it is a quite important change (see for instance (17),
(24)–(26) and (48)). The outcomes are shown in Figures 5
and 6. The experiment clearly shows a very good perfor-
mance for such a large variation in the nominal mass, since
the proposed observer was able to reconstruct the actual
value almost as accurately as for the first case. On the other
hand, the SMO shows pretty much the same behaviour as
before too.
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Fig. 6. Input u1(t) with fixed additional mass. a) x1 (· · ·), x̂1 (—–)

with GPIO and x̂1 (- - -) with SMO. b) x2 (· · ·), x̂2 (—–) with GPIO

and x̂2 (- - -) with SMO. c) x1− x̂1, (—–) with GPIO and (- - -) with

SMO. d) x2− x̂2, (—–) with GPIO and (- - -) with SMO.

5.3.3 With not fixed additional mass
Another kind of perturbation may be introduced when-

ever the piston mass changes suddenly. To achieve this goal,
the extra mass is not fixed but placed atx = 0.35[m], so that
it will be moved only as long as the piston pushes it. Once it
begins its backwards movement the perturbation disappears
for the rest of the experiment. The outcomes are shown in
Figures 7 and 8. They are very similar to the case with the
fixed mass even when the mass is changing. Thus, the varia-
tion on the errors is negligible regarding the previous cases.
Note that the SMO is having also a similar performance as
before.

5.4 Outcomes for inputu2(t)
Another way to test the robustness of the proposed

scheme is by increasing the magnitude and the velocity of
the input signal. For this goal are thoughtu2(t) andu3(t)
in (65) and (66), respectively. In this section, the outcomes
for u2(t) are presented, where the three experiments given
in Section 5.3 are repeated. Figures 9 and 10 show the out-
comes for the piston without additional mass. Note that the
same scales as in Figures 3 and 4 are used, so as to have a
more direct comparison. As before, when the square changes
direction the errors suffer an increase which is slightly larger
than foru1(t) and quite evidently twice more frequent. The
same conclusions can be drawn when an extra mass is em-
ployed, both for the cases when it is fixed and when it is
present only when the piston pushes it. The results can be
seen in Figures 11 and 14.
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Fig. 7. Input u1(t) with not fixed additional mass. a) x3 (· · ·), x̂3

(—–) with GPIO and x̂3 (- - -) with SMO. b) x4 (· · ·), x̂4 (—–) with

GPIO and x̂4 (- - -) with SMO. c) (x3− x̂3)/x3, (—–) with GPIO and

(- - -) with SMO. d) (x4 − x̂4)/x4, (—–) with GPIO and (- - -) with

SMO.
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Fig. 8. Input u1(t) with not fixed additional mass. a) x1 (· · ·), x̂1

(—–) with GPIO and x̂1 (- - -) with SMO. b) x2 (· · ·), x̂2 (—–) with

GPIO and x̂2 (- - -) with SMO. c) x1− x̂1, (—–) with GPIO and (- - -)

with SMO. d) x2− x̂2, (—–) with GPIO and (- - -) with SMO.
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Fig. 9. Input u2(t) without additional mass. a) x3 (· · ·), x̂3 (—–)

with GPIO and x̂3 (- - -) with SMO. b) x4 (· · ·), x̂4 (—–) with GPIO

and x̂4 (- - -) with SMO. c) (x3− x̂3)/x3, (—–) with GPIO and (- - -)

with SMO. d) (x4− x̂4)/x4, (—–) with GPIO and (- - -) with SMO.
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Fig. 10. Input u2(t) without additional mass. a) x1 (· · ·), x̂1 (—–)

with GPIO and x̂1 (- - -) with SMO. b) x2 (· · ·), x̂2 (—–) with GPIO

and x̂2 (- - -) with SMO. c) x1− x̂1, (—–) with GPIO and (- - -) with

SMO. d) x2− x̂2, (—–) with GPIO and (- - -) with SMO.
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Fig. 11. Input u2(t) with fixed additional mass. a) x3 (· · ·), x̂3 (—–)

with GPIO and x̂3 (- - -) with SMO. b) x4 (· · ·), x̂4 (—–) with GPIO

and x̂4 (- - -) with SMO. c) (x3− x̂3)/x3, (—–) with GPIO and (- - -)

with SMO. d) (x4− x̂4)/x4, (—–) with GPIO and (- - -) with SMO.
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Fig. 12. Input u2(t) with fixed additional mass. a) x1 (· · ·), x̂1 (—–)

with GPIO and x̂1 (- - -) with SMO. b) x2 (· · ·), x̂2 (—–) with GPIO

and x̂2 (- - -) with SMO. c) x1− x̂1, (—–) with GPIO and (- - -) with

SMO. d) x2− x̂2, (—–) with GPIO and (- - -) with SMO.



0 1 2 3 4 5

0

0.1

0.2

0.3

0.4

[M
P

a]

a)      t [s]

0 1 2 3 4 5

−0.5

0

0.5

1

[−
]

c)      t [s]

0 1 2 3 4 5

0

0.1

0.2

0.3

0.4

[M
P

a]

b)      t [s]

0 1 2 3 4 5

−0.5

0

0.5

1

[−
]

d)      t [s]

Fig. 13. Input u2(t) with not fixed additional mass. a) x3 (· · ·), x̂3

(—–) with GPIO and x̂3 (- - -) with SMO. b) x4 (· · ·), x̂4 (—–) with

GPIO and x̂4 (- - -) with SMO. c) (x3− x̂3)/x3, (—–) with GPIO and

(- - -) with SMO. d) (x4 − x̂4)/x4, (—–) with GPIO and (- - -) with

SMO.
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Fig. 14. Input u2(t) with not fixed additional mass. a) x1 (· · ·), x̂1

(—–) with GPIO and x̂1 (- - -) with SMO. b) x2 (· · ·), x̂2 (—–) with

GPIO and x̂2 (- - -) with SMO. c) x1− x̂1, (—–) with GPIO and (- - -)

with SMO. d) x2− x̂2, (—–) with GPIO and (- - -) with SMO.

5.5 Outcomes for inputu3(t)
For the input signalu3(t) the results are shown in Fig-

ures 15 to 20. As could have been expected, the errors be-
came larger for both schemes. It also becomes rather clear
that the high mass variation does not represent a key factor
in the observer performance for any of the two schemes em-
ployed, while the input frequency does.
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Fig. 15. Input u3(t) without additional mass. a) x3 (· · ·), x̂3 (—–)

with GPIO and x̂3 (- - -) with SMO. b) x4 (· · ·), x̂4 (—–) with GPIO

and x̂4 (- - -) with SMO. c) (x3− x̂3)/x3, (—–) with GPIO and (- - -)

with SMO. d) (x4− x̂4)/x4, (—–) with GPIO and (- - -) with SMO.
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Fig. 16. Input u3(t) without additional mass. a) x1 (· · ·), x̂1 (—–)

with GPIO and x̂1 (- - -) with SMO. b) x2 (· · ·), x̂2 (—–) with GPIO

and x̂2 (- - -) with SMO. c) x1− x̂1, (—–) with GPIO and (- - -) with

SMO. d) x2− x̂2, (—–) with GPIO and (- - -) with SMO.
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Fig. 17. Input u3(t) with fixed additional mass. a) x3 (· · ·), x̂3 (—–)

with GPIO and x̂3 (- - -) with SMO. b) x4 (· · ·), x̂4 (—–) with GPIO

and x̂4 (- - -) with SMO. c) (x3− x̂3)/x3, (—–) with GPIO and (- - -)

with SMO. d) (x4− x̂4)/x4, (—–) with GPIO and (- - -) with SMO.
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Fig. 18. Input u3(t) with fixed additional mass. a) x1 (· · ·), x̂1 (—–)

with GPIO and x̂1 (- - -) with SMO. b) x2 (· · ·), x̂2 (—–) with GPIO

and x̂2 (- - -) with SMO. c) x1− x̂1, (—–) with GPIO and (- - -) with

SMO. d) x2− x̂2, (—–) with GPIO and (- - -) with SMO.
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Fig. 19. Input u3(t) with not fixed additional mass. a) x3 (· · ·), x̂3

(—–) with GPIO and x̂3 (- - -) with SMO. b) x4 (· · ·), x̂4 (—–) with

GPIO and x̂4 (- - -) with SMO. c) (x3− x̂3)/x3, (—–) with GPIO and

(- - -) with SMO. d) (x4 − x̂4)/x4, (—–) with GPIO and (- - -) with

SMO.
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Fig. 20. Input u3(t) with not fixed additional mass. a) x1 (· · ·), x̂1

(—–) with GPIO and x̂1 (- - -) with SMO. b) x2 (· · ·), x̂2 (—–) with

GPIO and x̂2 (- - -) with SMO. c) x1− x̂1, (—–) with GPIO and (- - -)

with SMO. d) x2− x̂2, (—–) with GPIO and (- - -) with SMO.
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Fig. 21. Input u4(t) without additional mass. a) x3 (· · ·), x̂3 (—–)

with GPIO and x̂3 (- - -) with SMO. b) x4 (· · ·), x̂4 (—–) with GPIO

and x̂4 (- - -) with SMO. c) (x3− x̂3)/x3, (—–) with GPIO and (- - -)

with SMO. d) (x4− x̂4)/x4, (—–) with GPIO and (- - -) with SMO.
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Fig. 22. Input u4(t) without additional mass. a) x1 (· · ·), x̂1 (—–)

with GPIO and x̂1 (- - -) with SMO. b) x2 (· · ·), x̂2 (—–) with GPIO

and x̂2 (- - -) with SMO. c) x1− x̂1, (—–) with GPIO and (- - -) with

SMO. d) x2− x̂2, (—–) with GPIO and (- - -) with SMO.

5.6 Outcomes for inputu4(t)
The square waves change the movement direction

abruptly and reflect the behaviour of the system for step in-
puts. It is therefore interesting to find out the observer per-
formance for continuous input signals. For this goal, the sine
wavesu4(t) to u6(t) given in (67) to (69) are employed. As
before, the frequency and the magnitude of each signal goes
from the slowest to the fastest one. The outcomes foru4(t)
are shown in Figures 21 to 26. As before, the proposed ob-
server gets better results, while again the mass variation does
not appear to represent any significative drawback.
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Fig. 23. Input u4(t) with fixed additional mass. a) x3 (· · ·), x̂3 (—–)

with GPIO and x̂3 (- - -) with SMO. b) x4 (· · ·), x̂4 (—–) with GPIO

and x̂4 (- - -) with SMO. c) (x3− x̂3)/x3, (—–) with GPIO and (- - -)

with SMO. d) (x4− x̂4)/x4, (—–) with GPIO and (- - -) with SMO.
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Fig. 24. Input u4(t) with fixed additional mass. a) x1 (· · ·), x̂1 (—–)

with GPIO and x̂1 (- - -) with SMO. b) x2 (· · ·), x̂2 (—–) with GPIO

and x̂2 (- - -) with SMO. c) x1− x̂1, (—–) with GPIO and (- - -) with

SMO. d) x2− x̂2, (—–) with GPIO and (- - -) with SMO.
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Fig. 25. Input u4(t) with not fixed additional mass. a) x3 (· · ·), x̂3

(—–) with GPIO and x̂3 (- - -) with SMO. b) x4 (· · ·), x̂4 (—–) with

GPIO and x̂4 (- - -) with SMO. c) (x3− x̂3)/x3, (—–) with GPIO and

(- - -) with SMO. d) (x4 − x̂4)/x4, (—–) with GPIO and (- - -) with

SMO.
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Fig. 26. Input u4(t) with not fixed additional mass. a) x1 (· · ·), x̂1

(—–) with GPIO and x̂1 (- - -) with SMO. b) x2 (· · ·), x̂2 (—–) with

GPIO and x̂2 (- - -) with SMO. c) x1− x̂1, (—–) with GPIO and (- - -)

with SMO. d) x2− x̂2, (—–) with GPIO and (- - -) with SMO.

5.7 Outcomes for inputu5(t)
The sine wave in (68) is larger in magnitude and fre-

quency than that given in (67). The outcomes can be seen
in Figures 27 to 32. It can be appreciated that the results
for both schemes are similar. The disadvantage of the GPIO
lacks as usual in the transient performance. Once again, the
high variation in the mass has a relative small effect on the
performance of both observers.
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Fig. 27. Input u5(t) without additional mass. a) x3 (· · ·), x̂3 (—–)

with GPIO and x̂3 (- - -) with SMO. b) x4 (· · ·), x̂4 (—–) with GPIO

and x̂4 (- - -) with SMO. c) (x3− x̂3)/x3, (—–) with GPIO and (- - -)

with SMO. d) (x4− x̂4)/x4, (—–) with GPIO and (- - -) with SMO.
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Fig. 28. Input u5(t) without additional mass. a) x1 (· · ·), x̂1 (—–)

with GPIO and x̂1 (- - -) with SMO. b) x2 (· · ·), x̂2 (—–) with GPIO

and x̂2 (- - -) with SMO. c) x1− x̂1, (—–) with GPIO and (- - -) with

SMO. d) x2− x̂2, (—–) with GPIO and (- - -) with SMO.
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Fig. 29. Input u5(t) with fixed additional mass. a) x3 (· · ·), x̂3 (—–)

with GPIO and x̂3 (- - -) with SMO. b) x4 (· · ·), x̂4 (—–) with GPIO

and x̂4 (- - -) with SMO. c) (x3− x̂3)/x3, (—–) with GPIO and (- - -)

with SMO. d) (x4− x̂4)/x4, (—–) with GPIO and (- - -) with SMO.
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Fig. 30. Input u5(t) with fixed additional mass. a) x1 (· · ·), x̂1 (—–)

with GPIO and x̂1 (- - -) with SMO. b) x2 (· · ·), x̂2 (—–) with GPIO

and x̂2 (- - -) with SMO. c) x1− x̂1, (—–) with GPIO and (- - -) with

SMO. d) x2− x̂2, (—–) with GPIO and (- - -) with SMO.

0 1 2 3 4 5

0

0.1

0.2

0.3

0.4

[M
P

a]

a)      t [s]

0 1 2 3 4 5

−0.5

0

0.5

1

[−
]

c)      t [s]

0 1 2 3 4 5

0

0.1

0.2

0.3

0.4

[M
P

a]

b)      t [s]

0 1 2 3 4 5

−0.5

0

0.5

1

[−
]

d)      t [s]

Fig. 31. Input u5(t) with not fixed additional mass. a) x3 (· · ·), x̂3

(—–) with GPIO and x̂3 (- - -) with SMO. b) x4 (· · ·), x̂4 (—–) with

GPIO and x̂4 (- - -) with SMO. c) (x3− x̂3)/x3, (—–) with GPIO and

(- - -) with SMO. d) (x4 − x̂4)/x4, (—–) with GPIO and (- - -) with

SMO.
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Fig. 32. Input u5(t) with not fixed additional mass. a) x1 (· · ·), x̂1

(—–) with GPIO and x̂1 (- - -) with SMO. b) x2 (· · ·), x̂2 (—–) with

GPIO and x̂2 (- - -) with SMO. c) x1− x̂1, (—–) with GPIO and (- - -)

with SMO. d) x2− x̂2, (—–) with GPIO and (- - -) with SMO.
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Fig. 33. Input u6(t) without additional mass. a) x3 (· · ·), x̂3 (—–)

with GPIO and x̂3 (- - -) with SMO. b) x4 (· · ·), x̂4 (—–) with GPIO

and x̂4 (- - -) with SMO. c) (x3− x̂3)/x3, (—–) with GPIO and (- - -)

with SMO. d) (x4− x̂4)/x4, (—–) with GPIO and (- - -) with SMO.
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Fig. 34. Input u6(t) without additional mass. a) x1 (· · ·), x̂1 (—–)

with GPIO and x̂1 (- - -) with SMO. b) x2 (· · ·), x̂2 (—–) with GPIO

and x̂2 (- - -) with SMO. c) x1− x̂1, (—–) with GPIO and (- - -) with

SMO. d) x2− x̂2, (—–) with GPIO and (- - -) with SMO.

5.8 Outcomes for inputu6(t)

The fasted sine wave is used here. The results can be
seen in Figures 33 to 38. The experiment shows even clearer
that the proposed scheme performance becomes poorer for
high velocities. At the same time, for the SMO the increase
in the pressure error estimation is more moderate while it is
higher for the position estimation. For short, both schemes
are more sensitive to high frequencies than to mass varia-
tions.
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Fig. 35. Input u6(t) with fixed additional mass. a) x3 (· · ·), x̂3 (—–)

with GPIO and x̂3 (- - -) with SMO. b) x4 (· · ·), x̂4 (—–) with GPIO

and x̂4 (- - -) with SMO. c) (x3− x̂3)/x3, (—–) with GPIO and (- - -)

with SMO. d) (x4− x̂4)/x4, (—–) with GPIO and (- - -) with SMO.
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Fig. 36. Input u6(t) with fixed additional mass. a) x1 (· · ·), x̂1 (—–)

with GPIO and x̂1 (- - -) with SMO. b) x2 (· · ·), x̂2 (—–) with GPIO

and x̂2 (- - -) with SMO. c) x1− x̂1, (—–) with GPIO and (- - -) with

SMO. d) x2− x̂2, (—–) with GPIO and (- - -) with SMO.

5.9 Discussion
The experimental results clearly show a good perfor-

mance of the GPIO for low and medium input velocities and
that it owns strong robustness properties against high mass
variations. However, it diminishes its performance when the
input signal increases in frequency and magnitude. This ef-
fect was observed consistently with sine and square waves
as inputs. There are two possible reasons for this behaviour.
On the one hand, friction effects do depend on the velocity
x2. Thus, its influence will be stronger for higher velocities.
Our approach assumes that the only perturbation present in
model (3) is eitherx3 or x4, while there is only viscous fric-
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Fig. 37. Input u6(t) with not fixed additional mass. a) x3 (· · ·), x̂3

(—–) with GPIO and x̂3 (- - -) with SMO. b) x4 (· · ·), x̂4 (—–) with

GPIO and x̂4 (- - -) with SMO. c) (x3− x̂3)/x3, (—–) with GPIO and

(- - -) with SMO. d) (x4 − x̂4)/x4, (—–) with GPIO and (- - -) with

SMO.
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Fig. 38. Input u6(t) with not fixed additional mass. a) x1 (· · ·), x̂1

(—–) with GPIO and x̂1 (- - -) with SMO. b) x2 (· · ·), x̂2 (—–) with

GPIO and x̂2 (- - -) with SMO. c) x1− x̂1, (—–) with GPIO and (- - -)

with SMO. d) x2− x̂2, (—–) with GPIO and (- - -) with SMO.

tion present. Therefore, nonlinear friction effects may rise
for high frequencies and will become undistinguishable from
the unknown pressure, thus making its reconstruction less ac-
curate. On the other hand, the GPIO is based on high gains
and setting poles with high magnitudes, making it more sen-
sitive to the process of discretization. It may turn out that
a sampling time of 2[ms] is not fast enough. Finally, the
SMO chosen for comparison purposes is more robust than
the proposed algorithm to estimate the unknown pressures
in the sense that the errors do not increase its magnitude as
much as it does for the GPIO. However, the performance for

Table 2. RMSE for (x3− x̂3)/x3

In GPIO SMO GPIO SMO GPIO SMO

NAM NAM FAM FAM NFAM NFAM

u1 0.109 0.129 0.110 0.132 0.110 0.131

u2 0.153 0.150 0.155 0.148 0.154 0.150

u3 0.255 0.190 0.253 0.191 0.250 0.193

u4 0.110 0.131 0.110 0.133 0.112 0.129

u5 0.159 0.148 0.163 0.148 0.163 0.148

u6 0.253 0.194 0.283 0.180 0.251 0.195

Table 3. RMSE for (x4− x̂4)/x4

In GPIO SMO GPIO SMO GPIO SMO

NAM NAM FAM FAM NFAM NFAM

u1 0.113 0.130 0.112 0.131 0.114 0.129

u2 0.159 0.152 0.158 0.155 0.161 0.150

u3 0.264 0.191 0.254 0.185 0.261 0.196

u4 0.113 0.130 0.113 0.131 0.114 0.131

u5 0.156 0.147 0.159 0.153 0.159 0.155

u6 0.263 0.191 0.265 0.183 0.257 0.204

low frequencies is clearly poorer, for medium frequencies is
similar and just for high input frequencies is better.

In order to have another insight about the experimental
outcomes, the RMSE index employed in [2,8] and given by

RMSE=

√

1
n

n

∑
i=1

e2
i (70)

is also used in this work. In (70),i is the current sample num-
ber,ei is the corresponding error andn is the total number of
samples. The results for the pressure estimation can be seen
in Tables 2 and 3, where NAM= No Additional Mass, FAM
= Fixed Additional Mass, and NFAM= Not Fixed Addi-
tional Mass. From the tables the same conclusions can be in-
ferred. In Tables 4 and 5 the RMSE indexes for position and
velocity errors are shown, respectively. Most interesting, the
GPIO is better for all cases, regardless the input frequency.
Note that the SMO also shows peaks during the transient re-
sponse, what increases the RMSE. This means that the GPIO
shows a higher performance altogether.



Table 4. RMSE for (x1− x̂1) [mm]

In GPIO SMO GPIO SMO GPIO SMO

NAM NAM FAM FAM NFAM NFAM

u1 3.673 4.825 3.563 5.004 3.685 5.269

u2 5.258 7.307 4.957 6.693 5.188 7.304

u3 8.150 10.948 7.785 10.265 8.236 11.214

u4 3.786 5.233 3.766 5.221 3.648 4.839

u5 5.303 7.208 5.299 6.964 5.158 6.841

u6 8.395 11.448 8.311 10.647 8.121 11.367

Table 5. RMSE for (x2− x̂2) [m/s]

In GPIO SMO GPIO SMO GPIO SMO

NAM NAM FAM FAM NFAM NFAM

u1 0.056 0.139 0.077 0.226 0.085 0.254

u2 0.104 0.314 0.091 0.246 0.108 0.333

u3 0.159 0.394 0.132 0.314 0.162 0.438

u4 0.077 0.218 0.074 0.221 0.061 0.153

u5 0.102 0.275 0.081 0.199 0.086 0.216

u6 0.172 0.451 0.116 0.201 0.187 0.512

6 Conclusions
In this paper, an observability analysis for differential

pneumatic pistons is presented. It is shown that the sys-
tem will be observable as long as the piston position and the
pressure of any chamber is measured. Linear observers are
designed and implemented based on the GPI (Generalized
Proportional Integral) approach. This strategy is chosen be-
cause of the scarce information of the system model neces-
sary for implementation. To test the proposed algorithm in
performance and robustness a complete set of experiments
is carried out and the results compared with a well–known
Sliding Mode based Observer (SMO). The outcomes clearly
show a very good and robust performance of the proposed
scheme for low and medium input velocities and superior to
the SMO. Only for very high input velocities the observer
performance decreases.
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Ángeles, A., 2010. “On the linear control of nonlinear
mechanical systems”. In Proc. of 49th IEEE Confer-
ence on Decision and Control, pp. 1999–2004.

[16] Goettert, M., and Neumann, R., 1999. “Nichtlineare
Regelungskonzepte für servopneumatische Roboter”.
In Proceedings 3. Deutsch-Polnisches Seminar Ino-
vation und Fortschritt in der Fluidtechnik, Zakopane,
Poland.

[17] Sobczyk, M. R., and Perondi, E. A., 2006. “Variable
structure cascade control of a pneumatic positioning
system”. ABCM Symposium Series in Mechatronics,
2, pp. 27–34.

[18] Beater, P., 2007.Pneumatic Drives. Springer-Verlag
Berlin Heidelberg.

[19] Diop, S., and Fliess, M., 1991. “Nonlinear observabil-
ity, identifiability and persistent trajectories”. In Proc.
of the 36th IEEE Conference on Decision and Control.

[20] Hermann, R., and Krener, A. J., 1977. “Nonlinear con-
trollability and observability”. IEEE Transactions on
Automatic Control,22(5), pp. 728–740.


