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In this paper, an observability analysis for differentiadgu- comprise a non negligible restriction. Only simulation re-
matic pistons is presented, together with observer degigh asults are presented. In [10] the design of a sliding mode
implementation. To avoid as much as possible the knowbntrol law is proposed for which only the measurement of
edge of the system model parameters, the GPI (Generalizmte chamber pressure of a differential cylinder is necgssar
Proportional Integral) approach is employed for the estimawhile the other one is estimated online by means of an ob-
tion of unmeasured variables. Experimental results sh@w teerver. Although the approach is simple, it turns out to be
good performance of the proposed scheme. very sensitive to friction effects. In [11,12] a nonlinedr-o
servability analysis is developed to find out whether it ispo
sible to design a control law based only on the piston posi-
1 Introduction tion, y, while pressure measurements are eliminated via ob-
The attractiveness of pneumatic systems lies on theirver design. The results show that local observabillosis
cleanness, low prices, excellent weight to force ratio @sy e in several regions of the state space, in particular whed.
assembling. Industrial applications for this kind of d@sc |n [13] the design of two Lyapunov—based nonlinear pressure
are wide, for instance in food production, robotic manipulabservers is introduced. The approach is successfullgdest
tors or oil industry with flammable environments. Thereforexperimentally. However, the implementation requiresynan

it is important to design controllers capable of reachirg thnformation about the pneumatic system, which represents a
same performance as for electric or hydraulic actuators. disadvantage.

The main control goals for differential pneumatic de- : . . : .
. . . : In this paper, an observability analysis for differential
vices are displacement and force tracking of the piston. |n

either case it is necessary to regulate the mass flow eme[Pneumatic pistons is presented. Based on the resultsr linea
. y 9t eI ervers are implemented for the estimation of one cham-
into the two chambers. Depending on the actuator, it m

be controlled by many kinds of valves, like simple ON/OFE rpressure and th? piston velo_(:lty. To avqld the computa-
. tion of the high nonlinear dynamics of the piston chambers,
or proportional arrangements. The last ones generate mas

eGP Generalized Proportional Integrahpproach is em-
flows which depend on the control input voltage. loved 4. 15]. Th F; . b 9 F;]p d d
While there are many works regarding the designed a yed [14,15]. The resultis an observer that does not nee
. ) : 4 _— _the mass flow chamber dynamics at all. Experimental results
implementation of different control strategies for pnetima

. show the good performance of the proposed scheme.
systems €. g.[1-8]), there are fewer regarding research on _ _ _ i
observer design. For instance, Bigras and Khayati [9] devel ~The paper is organized as follows: in Section 2 the dy-
oped a nonlinear observer for pressure estimation of a cldgnic modelfor differential pneumatic pistons is givencSe

of pneumatic systems where the cylinder connection pof@n 3 carries out the observability analysis and Section 4
describes the observer design. Section 5 shows the experi-

mental results, while Section 6 gives some conclusions.

*Corresponding author.
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Fig. 1. Differential pneumatic piston structure
e = —C(u)Y2(xa) (7)
2 Differential pneumatic pistons PoXa u>0

2.1 Dynamic model 2
Figure 1 depicts the general structure of a differential N <ﬁ _ b>

pneumatic piston, where [m] is the maximal piston dis- = _C(u 1— Ps u<0andX® >p

placementy [m] is the piston position ang [T] is the cor- (4 pops 1= B Ps =

responding velocity. For= 1,2, L; [m] is the width of the

dead zone of chambgrd [m] is the piston diametes; [m?] PoPs u<o and% <b

is the cross section area of piston chamip& [m®] is the

volume in chambeir, Vig [m3] is the dead volume of chamber 37 - . . .
i including tubesd, [m] is the piston rod diametew [m] is where po [!(g/m ] 1S the air denS|typs [Pa] is the s_upply
the piston widthp; [Pa] is the pressure of chambeFinally, pressureb s the critical pressure ratio adx{u) [kg/s; is the

F [N] is the applied force. mass flow function.

The system state is usually defined as Remark 2.1.
The input voltageu usually takes values from 0V t¢10V,
X1 y but in (6)—(7) it is considered thate (—5,+5)V while a
x| o |y L constant valu®,fset ~ 5V is added for implementation A
x| |, @)
Xq P2

3 Observability analysis

. In this section, an observability analysis of the state of
Model development can be found in many works [16_18¥ystem (2)—(5) is carried out. Our main goal is to design

In the following we do a sketch of the procedure. Basically, gpserver with the minimal number of sensors. Note that
Newton's second law and the first law of thermodynamiGss aly three of them are employed, namely one for the dis-
for adiabatic processes are employed. As a matter of faﬁfacement;() and two for the pressures in the chambers of

two subsystems can be distinguished. The mechanical pai piston p1 and py), while the derivativey may be com-

whose dynamics is given by puted numerically. The question is whether only one or at
most two sensors can be used. Based on Table 1, we consider

X1 = Xo (2) thatthere are seven cases of interest. In order to simpiéfy t
_ A Ay AL—Ay = observability analysis, we follow the well-known critemio
X2 = WX‘O’ - MM* VIR Patm — sz, () that the state is observable as long as it can be written as a

function of the measured variables, the different inputsl, a

and the pneumatic components described by a finite number of their corresponding derivatives [19].

3.1 Case 1x; (y) available

X3 = Vio+ Aixq Clearly, x, can be gotten just by computing the deriva-
% ) tive of x;. However, it is not posible to get from (4) orxy

X4 = Voot Az(L—x1) (RTmz(xa,u) —x2xah2), (5)  from (5) only as a function of; and its derivatives because

bothxXs andx, are involved, respectively. An attemptto elim-

inate them by computingy from (3) and substitutings and

x4 would just lead to a nonlinear relationship betwegand

X4. Thus, we can conclude that the state is not observable

if only x; is available. It is worthy to note that by applying

the observability analysis described in [20], in [11, 128 th

authors show that the state is observable oniy=i X, # 0.

Clearly, this case is of little practical interest, sinceialty

. = C(u)y1(x3) (6) one hag = 0 for some time intervals.

Y (RTy(X3,u) — XoX3A1) 4)

where pam [Pa] is the atmospheric pressuid, [kg| is the
piston massky [(N-m)/g is the viscous friction coefficient,
yis the adiabatic indexR [J/(kg- K)] is the air gas constant,
T [K] is the temperaturey [V] is the input voltage anany’
[kg/9 is the mass flow chambeéri = 1,2, given by



Case Available Non Available Obs = & (RTIy — XoX3A) — \;_110,
1]y y P P2 N
2 b1 y v o N so thatxp can be obtained as
3 . N o Ao A
P2 R xp = RTWA2X4 Mo (12)
4 o y P Y A1 A2 (XaX3 + X3Xa)
. X3X4 V1o V20+A2L)
5 Y - =+ ]
Y P2 y = Y(XaXs + X3X4) (Al A2
6 P P2 y vy N
7 |y Moo y Y By replacing (12) in (11) one gets
Table 1. Complete Observability Analysis Scheme T Aox oA X
xg = 1 (RTr'n1X3Al (RT MuAPa TS ) 3)
A1x3 A1 A (XaX3 + X3X4)
X3X V \Y/ Aol V
3.2 Cases 2 and 3x3 (p1) or X4 (p2) available — X37X4 (% + 207&72))) - %,
Consider that onlyp; is available. Then, the state will YOuXs +XaXa) \ Ar 2 1
be observable i (x1), y (x2) and p2 (x4) can be expressed or
as a function ofp; and its derivatives. We begin witkp.
From (4) one gets B y _ M AoXs + MpA1X3
X1 = Tk RTm; — x4A2 RTAA( %o+ Xa%) (14)
RTryg(x3,u)  X3(Vio+Aixa) ey L2las e
RETHAL T WAL (8) X3X4 (VlO Voo + A2L> >) Voo + Aol
Y(XaX3 + XaXa) \ A1 A Ao

As can be appreciated is a function ofxs, x3, the input and
their derivatives. An attempt to eliminatg would consistin  Clearly, the state is not observablexf = 0 and/orxs = 0,
computing the derivative of (8) to use (3). Howevardoes . €. if either p; or p; are constant.
not disappear and, furthermone, arises as well. Clearly,
there is therefore no way to write only as a function oks 3.5 Case 7% (y), xs (p1) and x4 (p2) available
and one can conclude. that the state is n_ot obsgrvablg. Note The state is trivially observable since, as usuak- X;.
that the same conclusion can be gotteryifs available in-
stead ofxs.
4 Observer design
3.3 Cases 4 and 5x; (y) and xs (p1) or x4 (p) available According to the results of Section 3, there are only three
For these cases; = 1. SUpPpOs&s is available, so that cases for the state of system (2)—(5) to be observable, gamel
we need to determine whether it is possible to wxigenly ~When the positiory (x1) and the pressure, (xs) (or the pres-

as a function oky, x3 and their derivatives. Directly from (3) SUrepz (xa)) are available or when these three variables can
it is be measured. In this section two observers will be designed

for the first two options. As pointed outin [8], it is difficutty
get an accurate dynamic model to represent the dynamics of
the complete system (2)—(7), specially for equations (B)—(
Thus, the less information employed for implementation the
Based on (9) we can conclude that the state is observalyjetter. In this work we propose the use of the GB¢Keral-
Alternatively, wherxy is the available variable one gets ized Proportional Integrglapproach due to the flexibility of
the design [15].

Suppose that; andxgz are available, while, andx, are
to be estimated, and rewrite (2)—(3) as

AL, A A -
X = po¥3— =L Zpatm*A&ZXZ*AMZXZ- (9)

X3 = ﬁ—ixﬁ AlglAz Patm+ A&1X2+ AMlxz. (10)

So, the state is also observable, as could have been expected X = %o (15)

A AL — A 2V
3.4 Case 6x3 (p1) and x4 (p2) available Xo= et as —y Pam— e (16)
As before, the goal is to write; andx; as a function of
only X3, X4, the input and their derivatives. By combining (4)Note that (4) is not necessary sinegis measured, while,

and (5) one gets is substituted by
% . Voo + Aol A A M
= - (RTip —xox4A2) + ——— (11 == = =——17. 17
X1 A2X4( My — XoXaAz) + A (11) z 4 Xa=-pa (17)



Consider the following assumption [15]. b A1 (25)

Y
_ AL — Ao
Assumption 4.1.  For the variable z in (17) it holds U= ——y— Pam. (26)

1. 7z and a finite number of its time derivatives, say p of

them, are absolutely uniformly bounded. Based on (19)—(23) and by defining
2. 7 can be expressed as

p-1 e=x1—Xi, (27)
7= Z} at' +r(t) (18)

i=l
the following linear observer can be introduced

with each @abeing a constant coefficient.
3. The continuously updated residual ternft)r and its

time derivatives in the instantaneous Taylor polynomial 1(1 -0 —t Aprie= aAe _ (28)
approximation of the signaliz are bounded. Note in Ro = —aX +Dbxg+21+U+Ape (29)
particular that then (P is bounded. A 2 =2+Np1€ (30)
=21+ )\p,ge (312)
Remark 4.1.
The definition ofz in (17) is aimed at avoiding the knowl- .
edge, and especially the employment, of (5) and (7). This is p-1= Zp+ A€ (32)
possible as long as Assumption 4.1 holds. A Zp = Aoe. (33)
Remark 4.2. System (19)—(23) in closed loop with the GPI observer given

Assumption 4.1 may appear to be too restrictive, howevergy (28)—(33) delivers the error dynamics
should be taken into account that the following physicaisac

hold: _
. _ _ €= —Aprietae (34)
. X3,X4 < Ps. . s
L (F)Ja;mxI §3L).<4 Ps € = —aé+7—Ape (35)
3. y1(x3),y2(x4) > 0 and bounded. _21 =2 —Np-1€ (36)
4. C(u) is a continuous strictly increasing function with o =73—Np_o€ (37)
C(0) =0.
Automatically Item 1. guarantees the boundednesz; of N .
Items 2.—4. guarantee the boundednesgof, as long as Zp1=2—Me (38)
X2 (Y) is bounded. From a practical and physical point of Zo = rP(t) — hoe, (39)

view this can be expected. Thus, Assumption 4.1 is not

really restrictive regarding the boundednesszpfand its N . . )
derivatives. See [15] for full details about the interptista Wheree2 =x2 —Xpandz =z -z, fori =1,....p.
of z;. A

_ _ Theorem 4.1. Suppose that Assumption 4.1 holds. Then
After Assumption 4.1, equations (15) and (16) can b@r the error dynamics (34)—(39), the observation errors

rewritten as e, € andZ; globally asymptotically tend to an arbitrary
small neighborhood of the origin as long as the gains
X1 = X2 (19) {Ao,A1,...,Aps1} are chosen in such a manner that the poly-
Xo = —axp+bxs+z+u (20) nomial
21 =22 (21)
p(s) = P2 4 ApyasPt 4 £ Mis+ Ao (40)
2p1=2zp=2"" (22) L . .
. ® (D) is Hurwitz with roots located sufficiently far into the letilh
p=rP(t)=7", (23)  ofthe complex plane. Furthermore, an estimat&,a given
by
where it has been conveniently set
. M .
a= & (24) X4 = —A—221. (42)



Proof

By combining (34)—(35) one gets
E+Apr1e+Ape=17. 42)
On the other hand, from (36)—(37) it is
2 =23—Np_2e—Ap_1€. (43)
Proceeding in the same way until reaching (39) results in
AP = r(P)(t) —Nge— - —Ap_1elPD). (44)

Then, one gets after (42) and (44)

p
02 ng 6P 1 g e Pt = L (a5)

Fig. 2. Experimental test bed

The corresponding observer is then given by

dtP %1 = %o+ Apr1e—ae (49)
As stated before, the polynomial on the left side is Hur- ),fz - fl—bx4+u—ax1+)\pe (50)
witz and with roots located sufficiently far away from the 2 =2+Np-18 (51)
imaginary axis in the left half of the complex plane. There- 2 =23+ Ap_oe (52)
fore, sincer(P)(t) is bounded by assumption, the time re-
sponse in (45) will be asymptotically, exponentially, ulti :
mately bounded by a small disk centered around the origin .2p71 =2+ M€ (53)
—e—...— Pt _ - ~
of the error phase space= é e 0. More %p = Ao€, (54)

over, the radius of the ultimate bounding disk is propoion

to the inverse of the absolute value of the smallest real part
of the roots of the characteristic polynomial (40). Afte?)2 where this timé = % and the estimated value ®f is

this means that the estimated valuwgsaidx> can be made
approximately close to the real valugsandxy, respectively.

As a consequence of the convergence to an arbitrarily K3 = —2. (55)

small neighborhood of zero ef=é=--- = elP*1) = 0, one

can conclude after (42) that alzp €an be made arbitrarily

small, meaning that; " becomes arbitrarily close . Note
that this implies that the estimate »f given by (41) also
becomes arbitrarily close to the actual vakie Finally,

A

after (42), by computing the consecutive time derivativies o
71, i. e, 1), the actual valueg!)) are also approximately 5 Experimental results
estimated via the corresponding observer vector varigbles To test the performance of the observers proposed

2j(t), j =1,2,.... See [15] for more details. A

Remark 4.3.
It is rather trivial to design an observer fgg whenxy is
available just by changing (15)—(17) to

X1 = X2 (46)
. A AL — A 2V}
Xp =271 — MZM - 1M 2 Patm— e 47)

Note that as before (5) is not necessary sigds measured,
while X3 is substituted by

A A1 M
= — = —2Z. 4
2= 1% = =4 (48)

in the last section, the device shown in Figure 2 will be
employed. This is &elemecaniquactuator provided with

a Festo proportional valve MYPE-5-1/8-HF-010 B, a
Festo pressure sensor for each piston—chamber and the
air supply, as well as &ick—Stegmanabsolute encoder
for reading the piston position. It is controlled with a
CompactRioacquisition system byNational Instruments
with a programmed sampling time of 2[ms] (fastest possible
achievable). The air is distributed by an 230 liters air com-
pressorCraftsman Professionahnd a Festo maintenance
system with regulator. So as to be able to change the piston
mass to introduce a perturbation, a box can be fixed at the
piston—end as shown in Figure 2. This allows to increase the
nominal mass up to in 50%. The following data has been
used:A; = 0.00316692174[rf], A> = 0.00267604789[r,

M = 5.8[kg], Fv = 150(N-m)/s] and pamm = 0.9- 10°[Pa]



(for Mexico City). The interested reader can see [8] fowherex] = x1 — X1, X2 = Xo — X, k1 = 0.2, ko = 10, k3 = 20,
details. No other system parameters are necessary Kor= 1 x 1P, a; = 100, a» = 10, az = a4 = 10000 are
implementation. Finally, for both observers it was chosethe observer's gainsg = 1.4 is the ratio of specific heats,
p = 3 in (40), with the poles set te; = —20, s, = —20, A=2.9214x 10~3m?] is the area of the chambefg= f, =

s3 = —40,5 = —60 ands; = —60. 2.4062x 10° (assuming sonic air flow through the valves),
andh; = hp = 1000 ande; = e; = 0.8192 are the valve pa-
rameters.

Remark 5.1. There is not an obvious way to choose the

best value foip in (40)a priori. Theoretically, the larger the

better. However, one can carry out an iterative proceduse2 Test signals and experimental cases

beginning withp = 1 and increasing its value until it does  Six different input signals have been employed to test
not represent any advantagee. until the estimates given the robustness of the proposed approach under different cir
by the observer are similar for two consecutive values atimstances. Recall that no control law is implemented since
p. On the other hand, usually= 3 turns out to be a good our goal is to test the observers. Thus, it is considered-sign

choice. A ficative for the input both the frequency and the magnitude:
Remark 5.2. A disadvantage of the GPI method is that the ui(t) = 5+ 0.8squaré2m-0.1t) [V] (64)
transient performance may be very poor because of the pres- Uz(t) = 5+ 1.0squaré2m-0.2t) [V] (65)
ence of high peaks. In order to reduce this effect the so— B
calledclutchcan be implemented in the following form Us(t) = 5+ 1.559uar(é2n~ 2.01) [V] (66)
us(t) = 5+ 2.0sin(2m- 0.3t) [V] (67)
)A(ZsinB(%)7 0<t<e us(t) = 5+ 2.5sin(2m- 0.5t) [V] (68)
Xos = (56) Ug(t) = 5+3.0sin(2m- 2.0t) [V]. (69)
X2, t>¢
and Also, each test signal has been used for three different
cases
i Zisi’(%), 0<t<e a) For the piston without any perturbation over the nominal
Z%is = A i=1...p, (57) parameters
4, t>e¢ b) An additional mass dfl, = 2.9[kg] is fixed on the pis-

ton (i. e. 50% of the nominal mass)

whereXzs andzs,i = 1,..., p are the softened versions of c) The additional mass is not fixed, but it is leftxgt=

the observer’s states amds the choseglutchs time. A 0.35[m] so that the piston will hit and push it until it
moves backwards. This represents an abrupt change in
the moving mass

5.1 Comparative algorithm
In order to have a comparison point about the perfos.3  Qutcomes for inputus(t)
mance of the proposed algorithm, the well-known observgrz 1 without additional mass

given in [10] is implementEd too. Rewritten in the notation For both SchemeS, the Observers)fg)andle are imp]e_

used in this paper, it is for the pressyre mented simultaneously sinpe andp, are actually available
_ and the estimated values are not used for feedback control.
X1 = Ro+ 01Xy + kgsign(X1) (58) Figure 3 shows the outcomes. Since the units are MPa, even
. F. A, N o small relative errors turn out to be large in magnitude when
Ko =gty Py Pe T a2Xe kesign(%z) (59) expressed in Pa. Thus, so as to have a kind of percentual error
- Xp1  fieg . . X3 — X3 is divided byxz andxs — X4 by x4. Note that there are
Py = 7KX—§) + EWL 03Xy + 04Xz (60) o units in this case. From Figure 3 it becomes clear that the
+kasign(X) + kasign(Xz) proposed scheme GPI based Observer (GPIO) has a much

better performance than the Sliding Mode based Observer
(SMO). Although there are high peaks at the beginning, the

and for
P2 errors tend very fast around zero. Note that the peaks would
o . - . be even larger if thelutchmentioned in Remark 5.2 had not
%1 = X +0a1f + kasign(X) (61)  peen implemented.
%o = —522 + A pL— A P+ Q%o + koSign(S) (62) As to the piston position, the initial value ®f is 0.2[m]
M~ M . M and it is setx{(0) = O[m]. In Figure 4 it can be seen that
2 ; . .
, = 2P2 2€2 U— as%] — Oafo (63) tNhe es.tlmated variable tends rather fast to the rea! oné, unt
L—x1 ha(L—x) X, oscillates around zero. To better appreciate this, the ini-

—kasign(X1) — kasign(%2) tial error of 200[mm] is not shown in the figure. The SMO
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delivers a similar position error for this case. Only theoeel

ity X2 may not be measured directly in our test bed, so that
X2 can just be compared with an approximate value gotten
by numerical differentiation and denoted by (making abuse
of notation) asxy in Figure 4. It can be concluded that the
performance of both observers was also accurate in this case

5.3.2 With fixed additional mass

To test the robustness of the proposed observer in the
presence of parameter uncertainties, an additional mass of
2.9[Kg] is added to the piston, e. 50% of the nominal

value. Note that an uncertainty of this kind introduces an
error in many equations of the proposed observer and it is in
some cases equivalent to an uncertaintyA@@nd/or onAy,
so that it is a quite important change (see for instance (17),
(24)—(26) and (48)). The outcomes are shown in Figures 5
| and 6. The experiment clearly shows a very good perfor-
. mance for such a large variation in the nominal mass, since
the proposed observer was able to reconstruct the actual
value almost as accurately as for the first case. On the other
‘ hand, the SMO shows pretty much the same behaviour as
before too.



[m]
o o
S =
[m/s]
I
o o1
o
=

0.2 -0.5 0.3 \/
0 -1 ’6?_ 0.2
0 2 4 6 8 10 0 2 4 6 8 10 s
a) t[s] b) t[s] -
0.1
8 1 0 0
|
6 0 2 4 6 8 10 0 2 4 6 8 10
4 0.5 a) t[s] b) t[s]
T 7
£ 2 E 0 A Wit ibloio i i
0 1 1
2 -0.5
0.5 0.5
0 2 4 6 8 10 0 2 4 6 8 10 & T . R
= X =
Fig. 6. Input U1(t) with fixed additional mass. a) X1 (--+), X1 (—) -05 -05
with GPIO and X1 (- - -) with SMO. b) X2 (- - ), X2 (—) with GPIO o 2 4 & s 10 0o 2 4 6 8 10
and X2 (- - -) with SMO. ¢) X1 — X1, (—) with GPIO and (- - -) with o tHl 9 e
SMO. d) Xz — X, (—) with GPIO and (- - -) with SMO. Fig. 7. Input Uz (t) with not fixed additional mass. a) X3 (-++), X3

(—) with GPIO and X3 (- - -) with SMO. b) X4 (- - *), X4 (—) with
GPIO and %4 (- - -) with SMO. ¢) (X3 — X3) /X3, (—) with GPIO and

5.3.3 With not fixed additional mass N
-) with SMO. d) (X4 — R4) /X4, (—) with GPIO and (- - -) with

Another kind of perturbation may be introduced wherf ©
ever the piston mass changes suddenly. To achieve this géé(\?
the extra mass is not fixed but placedat 0.35[m], so that
it will be moved only as long as the piston pushes it. Once it
begins its backwards movement the perturbation disappears
for the rest of the experiment. The outcomes are shown in
Figures 7 and 8. They are very similar to the case with the
fixed mass even when the mass is changing. Thus, the varia-
tion on the errors is negligible regarding the previous sase

Note that the SMO is having also a similar performance ¢ ° 1
before.
0.6 0.5
5.4 Outcomes for inputus(t) =0t N
Another way to test the robustness of the propose¢ o2 -05
scheme is by increasing the magnitude and the velocity
the input signal. For this goal are thoughtt) and us(t) % 2 4 & 8 10 Tz 4 6 8 10
in (65) and (66), respectively. In this section, the outceme ) oo
for ux(t) are presented, where the three experiments giv =, 1
in Section 5.3 are repeated. Figures 9 and 10 show thea
comes for the piston without additional mass. Note thattt 05
same scales as in Figures 3 and 4 are used, soasto hag , 7
more direct comparison. As before, when the square chan(™ -0
direction the errors suffer an increase which is slighttgéa S os
than foruy (t) and quite evidently twice more frequent. The

same conclusions can be drawn when an extra massis¢ ° 2> 4 o & 1 .

ployed, both for the cases when it is fixed and when it is

present only when the piston pushes it. The results can #g 8. Input U1(t) with not fixed additional mass. a) Xt (---), X1

seen in Figures 11 and 14. (—) with GPIO and X1 (- - -) with SMO. b) X2 (---), X2 (—) with
GPIO and X2 (- - -) with SMO. c) X1 — X1, (—) with GPIO and (- - -)
with SMO. d) X2 — X2, (—) with GPIO and (- - -) with SMO.
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Fig. 9. Input U(t) without additional mass. a) X3 (---), X3 (—) Fig. 11. Input Up(t) with fixed additional mass. a) X3 (- - -), X3 (—)
with GPIO and X3 (- - -) with SMO. b) X4 (- - ), X4 (—) with GPIO  with GPIO and X3 (- - -) with SMO. b) X4 (- --), X4 (—) with GPIO
and X4 (- - -) with SMO. ¢) (X3 — X3) /X3, (—) with GPIO and (- - -)  and X4 (- - -) with SMO. c) (X3 — X3) /X3, (—) with GPIO and (- - -)
with SMO. d) (X4 — Xa) /X4, (—) with GPIO and (- - -) with SMO. with SMO. d) (X4 — Xa) /X4, (—) with GPIO and (- - -) with SMO.
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Fig. 10. Input Ux(t) without additional mass. a) X1 (---), X1 (—)  Fig. 12. Input U2(t) with fixed additional mass. a) X1 (- - -), X1 (—)
with GPIO and Xp (- - -) with SMO. b) X2 (-+ ), X2 (—) with GPIO  with GPIO and X1 (- - -) with SMO. b) X2 (- -+), X2 (—) with GPIO
and %o (- - ) with SMO. ¢) X1 — K1, (—) with GPIO and (- - ) with  and R (- - -) with SMO. ¢) X1 — K1, (—) with GPIO and (- - -) with
SMO. d) X2 — X2, (—) with GPIO and (- - -) with SMO. SMO. d) X2 — X2, (—) with GPIO and (- - -) with SMO.
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Fig. 13. Input U2(t) with not fixed additional mass. a) X3 (--+), X3
(—) with GPIO and K3 (- - -) with SMO. b) X4 (---), R4 (—) with

~ ~ 0 0.5 1 15 2 0 0.5 1 1.5 2
GPIO and X4 (- - -) with SMO. ¢) (X3 — X3) /X3, (—) with GPIO and o tisl @t
(- - -) with SMO. d) (X4 — Xa) /X4, (—) with GPIO and (- - -) with ~
SMO Fig. 15. Input U3(t) without additional mass. a) X3 (-- ), X3 (—)
with GPIO and X3 (- - -) with SMO. b) X4 (- - ), X4 (—) with GPIO
o ) and X4 (- - -) with SMO. ¢) (X3 — X3) /X3, (—) with GPIO and (- - -)
' with SMO. d) (X4 — Xa) /X4, (—) with GPIO and (- - -) with SMO.
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Fig. 14. Input U2(t) with not fixed additional mass. a) X1 (- ), X1 .
~ ~ T
(—) with GPIO and X1 (- - -) with SMO. b) X2 (- --), X2 (—) with )
GPIO and X2 (- - -) with SMO. c) X1 — X1, (—) with GPIO and (- - -) \
~ 4 [
with SMO. d) X2 — Xo, (—) with GPIO and (- - -) with SMO. = A -
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5.5 Outcomes for inputus(t) 2\
For the input signaliz(t) the results are shown in Fig-
0 0.5 1 15 2 0 0.5 1 15 2
ures 15 to 20. As could have been expected, the errors | O ts] o ths)

came larger for both schemes. It also becomes rather clear _ » R
that the high mass variation does not represent a key faci§t 16 nput Us(t) without additional mass. ) X1 (--+). X1 (—)
in the observer performance for any of the two schemes effit? GP!0 and %1 (- ) with SMO. b) X (), X2 (—) with GPIO

ployed, while the input frequency does. and %z (- - -) with SMO. ¢) X3 — X1, (—) with GPIO and (- - -) with
SMO. d) X2 — X2, (—) with GPIO and (- - -) with SMO.
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Fig. 17. Input U3(t) with fixed additional mass. a) X3 (- -), X3 (—)
with GPIO and X3 (- - -) with SMO. b) X4 (- ), X4 (—) with GPIO
and X4 (- - -) with SMO. ¢) (X3 — X3) /X3, (—) with GPIO and (- - -)
with SMO. d) (X4 — Xa) /X4, (—) with GPIO and (- - -) with SMO.
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Fig. 19. Input U3(t) with not fixed additional mass. a) X3 (--+), X3
(—) with GPIO and X3 (- - -) with SMO. b) X4 (- --), X4 (—) with
GPIO and %4 (- - -) with SMO. ¢) (X3 — X3) /X3, (—) with GPIO and

(- - -) with SMO. d) (X4 — Xa) /X4, (—) with GPIO and (- - -) with
SMO.
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Fig. 18. Input U3(t) with fixed additional mass. a) X (- - -), X1 (—)
with GPIO and Xy (- - -) with SMO. b) X (- - +), X2 (—) with GPIO
and %o (- - ) with SMO. ¢) X1 — K1, (—) with GPIO and (- - -) with
SMO. d) X2 — X2, (—) with GPIO and (- - -) with SMO.

Fig. 20. Input U3(t) with not fixed additional mass. a) X1 (- ), X1
(—) with GPIO and R (- - -) with SMO. b) Xp (- --), Ko (—) with
GPIO and X2 (- - -) with SMO. ¢) X3 — X1, (—) with GPIO and (- - -)

with SMO. d) Xo — X2, (—) with GPIO and (- - -) with SMO.
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Fig. 21. Input Ua(t) without additional mass. a) X3 (- ), X3 (—)
with GPIO and X3 (- - -) with SMO. b) X4 (- - +), X4 (—) with GPIO

and %4 (- - -) with SMO. ¢) (X3 — %3) /X3, (—) with GPIO and (- - -) Y . D s
with SMO. d) (X4 — X4) /X4, (—) with GPIO and (- - -) with SMO.
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Fig. 23. Input Ua(t) with fixed additional mass. a) X3 (- - ), X3 (—)
with GPIO and X3 (- - -) with SMO. b) X4 (- - +), X4 (—) with GPIO

o8 ! and %4 (- - -) with SMO. ¢) (X3 — X3) /X3, (—) with GPIO and (- - -)
o6 with SMO. d) (X4 — X4) /X4, (—) with GPIO and (- - -) with SMO.
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Fig. 22. Input Ua(t) without additional mass. a) X1 (---), X1 (—) a el Dt
with GPIO and X1 (- - -) with SMO. b) X2 (- - ), X2 (—) with GPIO . .
T

and X2 (- - -) with SMO. ¢) X1 — X1, (—) with GPIO and (- - -) with |
SMO. d) X2 — X2, (—) with GPIO and (- - -) with SMO. 05

5.6 Outcomes for inputua(t) 0
The square waves change the movement directic - -05

abruptly and reflect the behaviour of the system for stepi = -« —————— T —
puts. It is therefore interesting to find out the observer pe o sl &t
formance for continuous input signals. For this goal, the si _. e ,_ .
wavesus(t) to ug(t) given in (67) to (69) are employed. As' 924 nPut Ua(t) with fixed additional mass. a) Xy, (), 1 (—)
before, the frequency and the magnitude of each signal gdag SP'0 and X1 € - 9 with SMO. b) Xz (--), X2 (—) with GPIO
from the slowest to the fastest one. The outcomesif¢t) and 3 (- - with SMO. ¢) X1 =4, (—) with GPIO and (- - -) with
are shown in Figures 21 to 26. As before, the proposed GBYO- &) X2 = X2, () with GPIO and (- - ) with SMO.

server gets better results, while again the mass variatiea d

not appear to represent any significative drawback.
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Fig. 25. Input Ua(t) with not fixed additional mass. a) X3 (- ), X3
(—) with GPIO and X3 (- - -) with SMO. b) X4 (- - *), X4 (—) with
GPIO and X4 (- - -) with SMO. ¢) (X3 — X3) /X3, (—) with GPIO and
(- - ) with SMO. d) (X4 — X4) /X4, (—) with GPIO and (- - -) with
SMO.
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Fig. 26. Input U4(t) with not fixed additional mass. a) X1 (), X1

(—) with GPIO and X1 (- - -) with SMO. b) X2 (- - ), X2 (—) with

GPIO and X2 (- - -) with SMO. c) X1 — X1, (—) with GPIO and (- - -)
with SMO. d) X2 — X2, (—) with GPIO and (- - -) with SMO.

5.7 Outcomes for inputus(t)

10

c) t[s] d)  t[s]

Fig. 27. Input Us(t) without additional mass. a) X3 (---), X3 (—)
with GPIO and X3 (- - -) with SMO. b) X4 (- - ), X4 (—) with GPIO
and X4 (- - -) with SMO. ¢) (X3 — X3) /X3, (—) with GPIO and (- - -)
with SMO. d) (X4 — Xa) /X4, (—) with GPIO and (- - -) with SMO.

The sine wave in (68) is larger in magnitude and fre
guency than that given in (67). The outcomes can be se
in Figures 27 to 32. It can be appreciated that the results
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for both schemes are similar. The disadvantage of the GPF®- 28.  Input lfs(t) without additional mass. a) X (- '),_f(l —)
lacks as usual in the transient performance. Once again, Y& GPIO and Xg (- - ) with SMO. b) X2 (), X2 (—) with GPIO
high variation in the mass has a relative small effect on t/#gd X2 (- - -) with SMO. ¢) X3 — X1, (—) with GPIO and (- - -) with

performance of both observers.

SMO. d) X2 — X2, (—) with GPIO and (- - -) with SMO.
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Fig. 29. Input Us(t) with fixed additional mass. a) X3 (- ), X3 (—)  Fig- 31. Input us(t) with not fiX?d additional mass. a) X3 (- ), X3
with GPIO and X3 (- - ) with SMO. b) X4 (--*), X4 (—) with GPIO  (—) with GPIO and_Xs (- - ) with SMO. b) X4 (--), ?<4 (—) with
and X4 (- - -) with SMO. c) (X3 _ )’23)/)(3’ (—) with GPIO and (- - -) GPIO and X4 (- - -) with SMO. c) (X3 - X3)/X3, (—) with GPIO and

5 8 ) Sy wi —X —) wi nd (- - -) with
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Fig. 30. Input Us(t) with fixed additional mass. @) X1 (), X1 (—)  Fig. 32. Input Us(t) with not fixed additional mass. @) Xy (---), %1
with GPIO and Xy (- - ) with SMO. b) X2 (-+*), X2 (—) with GPIO () with GPIO and %1 (- - -) with SMO. b) Xo (--*), X2 (—) with
and Xz (- - -) with SMO. ¢) X — X1, (—) with GPIO and (- - ) with  GPIO and R (- - -) with SMO. ¢) X1 — X1, (—) with GPIO and (- - -)
SMO. d) Xz — X, (—) with GPIO and (- - -) with SMO. with SMO. d) X2 — X2, (—) with GPIO and (- - -) with SMO.
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Fig. 33. Input Ug(t) without additional mass. a) X3 (---), X3 (—)
with GPIO and X3 (- - -) with SMO. b) X4 (- - *), X4 (—) with GPIO
and X4 (- - -) with SMO. ¢) (X3 — X3) /X3, (—) with GPIO and (- - -)
with SMO. d) (X4 — Xa) /X4, (—) with GPIO and (- - -) with SMO.
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Fig. 35. Input Ug(t) with fixed additional mass. a) X3 (- -), X3 (—)
with GPIO and X3 (- - -) with SMO. b) X4 (- - *), X4 (—) with GPIO
and X4 (- - -) with SMO. ¢) (X3 — X3) /X3, (—) with GPIO and (- - -)
with SMO. d) (X4 — Xa) /X4, (—) with GPIO and (- - -) with SMO.
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Fig. 34. Input Ug(t) without additional mass. a) X1 (--), X1 (—)
with GPIO and Xy (- - -) with SMO. b) X (- - ), X2 (—) with GPIO
and %o (- - ) with SMO. ¢) X1 — K1, (—) with GPIO and (- - -) with
SMO. d) X2 — X2, (—) with GPIO and (- - -) with SMO.

5.8 Outcomes for inputug(t)
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Fig. 36. Input Ug(t) with fixed additional mass. a) X1 (- - -), X1 (—)
with GPIO and X1 (- - -) with SMO. b) X2 (- - ), X2 (—) with GPIO
and X2 (- - -) with SMO. ¢) X3 — X1, (—) with GPIO and (- - -) with
SMO. d) X2 — X2, (—) with GPIO and (- - -) with SMO.

5.9 Discussion

The experimental results clearly show a good perfor-
mance of the GPIO for low and medium input velocities and
that it owns strong robustness properties against high mass

The fasted sine wave is used here. The results can\@iations. However, it diminishes its performance whemn th
seen in Figures 33 to 38. The experiment shows even cleargrut signal increases in frequency and magnitude. This ef-
that the proposed scheme performance becomes poorerfémt was observed consistently with sine and square waves
high velocities. At the same time, for the SMO the increasss inputs. There are two possible reasons for this behaviour
in the pressure error estimation is more moderate while it@n the one hand, friction effects do depend on the velocity
higher for the position estimation. For short, both schemeas. Thus, its influence will be stronger for higher velocities.
are more sensitive to high frequencies than to mass var@ur approach assumes that the only perturbation present in

tions.

model (3) is eithexs or x4, while there is only viscous fric-



Table 2. RMSE for (X3 — X3) /X3

In GPIO SMO GPIO SMO GPIO SMO
NAM NAM FAM FAM NFAM NFAM

15 2 u 0109 0.129 0.110 0.132 0.110 0.131
u 0.153 0.150 0.155 0.148 0.154 0.150
uz 0.255 0.190 0.253 0.191 0.250 0.193
us 0.110 0.131 0.110 0.133 0.112 0.129
us 0.159 0.148 0.163 0.148 0.163 0.148
us 0.253 0.194 0.283 0.180 0.251  0.195
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Fig. 37. Input Ug(t) with not fixed additional mass. a) X3 (--+), X3 Table 3. RMSE for (X4 — %4) /X4
(—) with GPIO and X3 (- - -) with SMO. b) X4 (- --), X4 (—) with
GPIO and X4 (- - -) with SMO. ¢) (X3 — X3) /X3, (—) with GPIO and
(- - -) with SMO. d) (X4 — Xa) /X4, (—) with GPIO and (- - -) with
SMo. In GPIO SMO GPIO SMO GPIO SMO

NAM NAM FAM FAM NFAM NFAM
u 0113 0.130 0.112 0.131 0.114 0.129
u 0.159 0.152 0.158 0.155 0.161 0.150

0.8 1

g0 £ us 0264 0.191 0254 0.185 0.261 0.196
o | us 0.113 0.130 0.113 0.131 0.114 0.131
0 -1

0 08 g 2 0 05 g 2 us 0.156 0.147 0.159 0.153 0.159 0.155
us 0.263 0.191 0.265 0.183 0.257 0.204

4 }\
Eo» “\; E OJ ‘"“‘fj“h“\" YTV FYENY.Y low frequencies is clearly poorer, for medium frequencses i
ol A A gyn i \f d »WWW"W | similar and just for high input frequencies is better.
i ‘V 05 In order to have another insight about the experimental
4 outcomes, the RMSE index employed in [2, 8] and given by
0 0.5 1 15 2 0 0.5 1 15 2
c) t[s] d  t[s]
Fig. 38. Input Ug(t) with not fixed additional mass. a) X1 (), X1 1 n
(—) with GPIO and X1 (- - -) with SMO. b) X2 (- --), X2 (—) with RMSE= n I;qz (70)

GPIO and X2 (- - -) with SMO. ¢) X1 — X1, (—) with GPIO and (- - -)

with SMO. d) X2 — X2, (—) with GPIO and (- - -) with SMO. . o .
is also used in this work. In (70)is the current sample num-

ber,g is the corresponding error amds the total number of
tion present. Therefore, nonlinear friction effects maeri samples. The results for the pressure estimation can be seen
for high frequencies and will become undistinguishablefro in Tables 2 and 3, where NAM: No Additional Mass, FAM
the unknown pressure, thus making its reconstruction ess & Fixed Additional Mass, and NFAM= Not Fixed Addi-
curate. On the other hand, the GPIO is based on high gafial Mass. From the tables the same conclusions can be in-
and setting poles with high magnitudes, making it more sef@rred. In Tables 4 and 5 the RMSE indexes for position and
sitive to the process of discretization. It may turn out thatelocity errors are shown, respectively. Most interestthg
a sampling time of 2[ms] is not fast enough. Finally, th&PIO is better for all cases, regardless the input frequency
SMO chosen for comparison purposes is more robust thBlte that the SMO also shows peaks during the transient re-
the proposed algorithm to estimate the unknown pressuf#9nse, whatincreases the RMSE. This means that the GPIO
in the sense that the errors do not increase its magnitudesgws a higher performance altogether.
much as it does for the GPIO. However, the performance for



Table 4. RMSE for (X3 — X1) [mm]

References

(1]

In GPIO SMO GPIO SMO GPIO SMO
NAM NAM FAM FAM NFAM NFAM
u 3.673 4.825 3563 5.004 3.685 5.269[2]
u 5.258 7.307 4.957 6.693 5.188 7.304
uz 8.150 10.948 7.785 10.265 8.236 11.214
us 3.786 5.233 3.766 5221  3.648
us 5.303 7.208 5.299 6.964 5.158 6.841
Us 8.395 11.448 8.311 10.647 8.121 11.367[4]
Table 5. RMSE for (X2 — X2) [m/s]
(5]
In GPIO SMO GPIO SMO GPIO SMO
NAM NAM FAM FAM NFAM NFAM
up 0.056 0.139 0.077 0.226 0.085 0.254
uz 0.104 0.314 0.091 0.246 0.108 0.333 [¢g]
u3 0.159 0.394 0.132 0.314 0.162 0.438
us 0.077 0.218 0.074 0.221 0.061 0.153
us 0.102 0.275 0.081 0.199 0.086 0.216 7]
us 0.172 0.451 0.116 0.201 0.187 0.512
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