

Dinámica Parte II: Energía Cinética y Energía Potencial

Dr. Alejandro Gutiérrez-Giles ivan.gutierrez@ingenieria.unam.edu

Robótica Industrial
Departamento de Control
Facultad de Ingeniería - UNAM

Google Classroom code: gzt5pya

Energía Cinética

- Se mencionó que una de las dificultades para calcular la energía cinética es que el tensor de inercia ${}^{0}\mathcal{I}_{k}(\boldsymbol{q})$ está expresado con respecto al sistema base y entonces depende de las variables articulares.
- Sin embargo, este momento de inercia del eslabón k, sólo depende de la orientación del mismo y no de su posición, por lo que puede utilizarse una transformación de similitud para expresarlo con respecto al sistema coordenado k, fijo en el eslabón, i.e.,

$${}^{0}\mathcal{I}_{k}(\boldsymbol{q}) = {}^{0}\boldsymbol{R}_{k}(\boldsymbol{q})^{k}\mathcal{I}_{k}{}^{0}\boldsymbol{R}_{k}^{\mathrm{T}}(\boldsymbol{q}), \qquad (1)$$

donde ${}^{0}\mathbf{R}_{k}(\mathbf{q})$ es la matriz de rotación del sistema k con respecto al sistema 0 y se obtiene de la cinemática directa.

Tensor de Inercia

La ventaja del tensor de inercia con respecto al sistema del eslabón ${}^k\mathcal{I}_k$ es que es una matriz constante, calculada como

$${}^{k}\mathcal{I}_{k} = \begin{bmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{yx} & I_{yy} & I_{yz} \\ I_{zx} & I_{zy} & I_{zz} \end{bmatrix}, \qquad (2)$$

donde

$$I_{xx} = \int \int \int \rho(x, y, z)(y^2 + z^2) dx dy dz$$
 (3)

$$I_{yy} = \int \int \int \rho(x, y, z)(x^2 + z^2) dx dy dz$$
 (4)

$$I_{zz} = \int \int \int \rho(x, y, z)(x^2 + y^2) dx dy dz, \qquad (5)$$

se les conoce como momentos principales de inercia.

Tensor de Inercia

Por otro lado a

$$I_{xy} = I_{yx} = -\int \int \int \rho(x, y, z)(xy) dxdydz$$
 (6)

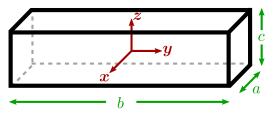
$$I_{xz} = I_{zx} = -\int \int \int \rho(x, y, z)(xz) dx dy dz$$
 (7)

$$I_{yz} = I_{zy} = -\int \int \int \rho(x, y, z)(yz) dx dy dz, \qquad (8)$$

se les conoce como productos cruzados de inercia.

Si el cuerpo es homogéneo, la función de densidad de masa es constante, *i.e.*, $\rho(x, y, z) = \rho$.

Calcular el tensor de inercia de un prisma rectangular con densidad de masa uniforme, como se muestra en la figura (el sistema coordenado está en el centro del prisma)



 \blacksquare El momento principal de inercia I_{xx} está dado por

$$I_{xx} = \rho \int_{-c/2}^{c/2} \int_{-b/2}^{b/2} \int_{-a/2}^{a/2} (y^2 + z^2) dx dy dz$$
$$= \frac{\rho abc}{12} (b^2 + c^2) = \frac{m}{12} (b^2 + c^2).$$
(9)

Los otros momentos principales son

$$I_{yy} = \rho \int_{-c/2}^{c/2} \int_{-b/2}^{b/2} \int_{-a/2}^{a/2} (x^2 + z^2) dx dy dz = \frac{m}{12} (a^2 + c^2)$$
$$I_{zz} = \rho \int_{-c/2}^{c/2} \int_{-b/2}^{b/2} \int_{-a/2}^{a/2} (x^2 + y^2) dx dy dz = \frac{m}{12} (a^2 + b^2).$$

Los productos cruzados de inercia están dados por

$$I_{xy} = I_{yx} = -\rho \int_{-c/2}^{c/2} \int_{-b/2}^{b/2} \int_{-a/2}^{a/2} xy \, dx \, dy \, dz = 0$$

$$I_{xz} = I_{zx} = -\rho \int_{-c/2}^{c/2} \int_{-b/2}^{b/2} \int_{-a/2}^{a/2} xz \, dx \, dy \, dz = 0$$

$$I_{yz} = I_{zy} = -\rho \int_{-c/2}^{c/2} \int_{-b/2}^{b/2} \int_{-a/2}^{a/2} yz \, dx \, dy \, dz = 0.$$

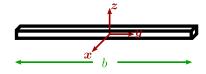
■ Por lo tanto, el tensor de inercia para este ejemplo es

$${}^{k}\mathcal{I}_{k} = \begin{bmatrix} \frac{m}{12}(b^{2} + c^{2}) & 0 & 0\\ 0 & \frac{m}{12}(a^{2} + c^{2}) & 0\\ 0 & 0 & \frac{m}{12}(a^{2} + b^{2}) \end{bmatrix} .$$
 (10)

■ En general, los productos cruzados de inercia son cero si el cuerpo es simétrico con respecto al sistema coordenado con respecto al que se obtienen.

Varilla Delgada

 Para el caso de una varilla delgada, como la que se muestra en la figura



siguiendo el procedimiento del ejemplo anterior, el tensor de inercia obtenido es

$${}^{k}\mathcal{I}_{k} = \begin{bmatrix} \frac{m}{12}(b^{2}) & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & \frac{m}{12}(b^{2}) \end{bmatrix} . \tag{11}$$

■ Nótese que para una asignación diferente de los ejes coordenados, se tendrá un tensor de inercia diferente.

Energía cinética

Finalmente, la energía cinética se calcula mediante

$$\mathcal{K}(\boldsymbol{q}, \dot{\boldsymbol{q}}) = \sum_{k=1}^{n} \left\{ \frac{1}{2} m_k \dot{\boldsymbol{q}}^{\mathrm{T}} \boldsymbol{J}_{\mathrm{vc}k}^{\mathrm{T}} \boldsymbol{J}_{\mathrm{vc}k} \dot{\boldsymbol{q}} + \frac{1}{2} \dot{\boldsymbol{q}}^{\mathrm{T}} \boldsymbol{J}_{\omega ck}^{\mathrm{T}} {}^{0} \boldsymbol{R}_{k}(\boldsymbol{q})^{k} \mathcal{I}_{k}{}^{0} \boldsymbol{R}_{k}^{\mathrm{T}}(\boldsymbol{q}) \boldsymbol{J}_{\omega ck} \dot{\boldsymbol{q}} \right\}.$$
(12)

Factorizando $\frac{1}{2}\dot{\boldsymbol{q}}^{\mathrm{T}}(\cdot)\dot{\boldsymbol{q}}$ se puede escribir de forma compacta

$$\mathcal{K}(\boldsymbol{q}, \dot{\boldsymbol{q}}) = \frac{1}{2} \dot{\boldsymbol{q}}^{\mathrm{T}} \boldsymbol{H}(\boldsymbol{q}) \dot{\boldsymbol{q}}, \qquad (13)$$

donde a

$$\boldsymbol{H}(\boldsymbol{q}) = \sum_{k=1}^{n} \left\{ m_k \boldsymbol{J}_{\text{vc}k}^{\text{T}} \boldsymbol{J}_{\text{vc}k} + \boldsymbol{J}_{\omega ck}^{\text{T}}{}^{0} \boldsymbol{R}_{k}(\boldsymbol{q})^{k} \boldsymbol{\mathcal{I}}_{k}{}^{0} \boldsymbol{R}_{k}^{\text{T}}(\boldsymbol{q}) \boldsymbol{J}_{\omega ck} \right\}$$
(14)

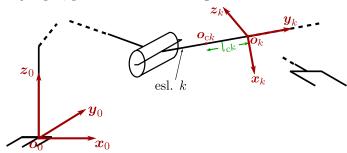
se le conoce como matriz de inercia del sistema.

Energía Potencial

- Una de las grandes ventajas del método de Euler-Lagrange es que se puede calcular la energía potencial de cada eslabón como si éste fuera un cuerpo independiente y luego sumar las energías de cada eslabón para obtener la energía potencial total.
- Para calcular la energía potencial de un eslabón k, sólo se necesita conocer su masa, y la altura de su centro de masa con respecto a un sistema de referencia inercial (base).
- Se puede obtener el vector de posición del centro de masa del eslabón o_{ck} a partir del origen 0o_k que se conoce por cinemática directa. Se debe de recordar que el k-ésimo eslabón no cambia de posición con respecto al sistema ${}^0o_k{}^0x_k{}^0y_k{}^0z_k$.

Energía Potencial

■ Por ejemplo, para el robot de la figura



si se conoce la distancia l_{ck} , el vector de posición del centro de masa ${}^{0}o_{ck}$ se puede obtener a partir de ${}^{0}o_{k}$ como

$${}^{0}\boldsymbol{o}_{ck} = {}^{0}\boldsymbol{o}_k - l_{ck}{}^{0}\boldsymbol{y}_k. \tag{15}$$

Nótese que este cálculo depende de la asignación de Denavit-Hartenberg y cambia para cada eslabón.

Energía Potencial

Para obtener la altura del eslabón, basta con definir un vector \bar{g} , cuya magnitud es la constante de aceleración de la gravedad $g = 9.81 [\text{m/s}^2]$ y cuya dirección es la del crecimiento de la energía potencial (la opuesta a la gravedad). Para el ejemplo de la figura, este vector es

$$\bar{\mathbf{g}} = \begin{bmatrix} 0 \\ 0 \\ g \end{bmatrix} . \tag{16}$$

La energía potencial del eslabón está dada por

$$\mathcal{P}_k(\boldsymbol{q}) = m_k \bar{\boldsymbol{g}}^{\mathrm{T0}} \boldsymbol{o}_{\mathrm{c}k}(\boldsymbol{q}). \tag{17}$$

■ Por último, la energía total del robot es

$$\mathcal{P}(\boldsymbol{q}) = \sum_{k=1}^{n} \left\{ m_k \bar{\boldsymbol{g}}^{\mathrm{T0}} \boldsymbol{o}_{\mathrm{c}k}(\boldsymbol{q}) \right\} . \tag{18}$$