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Abstract

Optical imaging is an emerging modality to image biological tissue non-invasively. Its use
for brain imaging function is known as functional Near Infrared Spectroscopy (fNIRS).
Its use as a functional neuroimaging modality demands attending numerous factors many
which are still being investigated. One of these factors is the image reconstruction, partic-
ularly critical for brain understanding. The main problem to investigate in this research
is the inherent inverse problem of the optical neuroimage reconstruction in which several
sources of noise exist aggravating the ill-posed nature of the problem. Popular methods
address this problem with strong assumptions leading to a reconstruction departing from
reality. In order to alleviate this situation, this research, aims to develop a reconstruc-
tion based on a precise model of the forward problem, the quantification of the noise
due to the blood irrigation in the scalp as one of the leading artefacts affecting recon-
struction and the use of this information as an a priori knowledge in order to improve
reconstruction. The main scientific contributions will be; the better understanding of the
image formation process in the optical neuroimage domain, the more accurate forward
model developed, the quantification of noise from scalp irrigation and the solution to the
inverse problem informed with the a priory knowledge. Preliminary results shows that
reconstruction is more viable when the source of noise is avoided.
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1 Introduction

Diffuse optical neuroimaging commonly known as functional Near Infrared Spectroscopy
(fNIRS) is a neuroimage modality that permits interrogating brain activity non invasively
(Villringer & Chance, 1997; Strangman et al., 2002). Its working principle involves irra-
diating infrared light at the subject’s scalp, this light propagates through the tissue and
eventually part of it is backscattered to the surface where it is collected by a photodetec-
tor. The sensed attenuated light encodes information about brain activity consequence of
the alterations in absorption and scattering induced as a result of physiological changes
associated to such activity, mainly brain haemodynamics.

The reconstruction of the diffuse optical image is the transformation of the exiting
radiation intensity captured by the photodetectors into quantified physiological informa-
tion of interest, and specifically, in optical neuroimaging the estimation of haemodynamic
changes from attenuation Arridge & Schotland (2009); Scholkmann et al. (2014).

One of the most interfering elements to obtain a reliable reconstruction is blood ir-
rigation to scalp which is widely accepted as one of the main sources of noise in fNIRS
(Haeussinger et al., 2011; Takahashi et al., 2011; Tachtsidis et al., 2010). In order to al-
leviate its effect in recovering brain haemodynamics as a proxy of brain activity, a number
of solutions have been already proposed in literature including having a proximal chan-
nel to sense shallow attenuation (multidistance optode arrays), concurrent observations
with Doppler or exploitation of transients but they are still under discussion by the
community (Kirilina et al., 2013).

As it will be described in this proposal, in computational terms the above represent
an unresolved challenge in the form of an strongly non-linear inverse problem with the
further complexity of being ill-posed which is often dealt with by means of aggressive reg-
ularization. Briefly the image reconstruction is a back projection from a low dimensional
image space where points in this space represent pixel intensities to a higher dimensional
space of histophysiological parameters where points represent tissue composition. Im-
portantly the analytical form of the accompanying forward projection is unknown. The
noise added by skin blood flow deforms the forward mapping in a non-linear manner
further stressing the degeneracy of the Jacobian determinant. Removal of this noise
source can be computationally addressed by blind source separation but this approach
has thus far fall short. The inclusion of constraints to the regularized reconstruction in
the form of prior seems an appealing alternative scarcely explored.

Several reasons might help to explain the difficulty to circumvent the problem in-
cluding the need of a more complex hardware, the stimulus-locked component of such
irrigation, or the lack of forward models explicitly incorporating the contribution of the
scalp blood irrigation.
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1.1 Motivation

Many of the factors affecting the optical signal encoding the brain haemodynamics are
widely recognised, yet surprisingly poorly understood (Orihuela-Espina et al., 2010) with
the paradigmatic case being the physiological noise including scalp irrigation. Indeed,
Kirilina et al. (2013) remarks that the precise physiological fNIRS noise mechanisms
are unknown. Notwithstanding, it is well known that scalp haemodynamics obfuscates
brain haemodynamics (Tachtsidis et al., 2010), and that its privileged location near the
surface in the optical path augments its disturbance over the signal of interest perhaps
representing as much as 76% of the attenuation (Scholkmann et al., 2014). Yet under-
standing of this component of the systemic noise remains incomplete. For instance, time
variation of the skin blood flow signal might be task evoked (Kohno et al., 2007) but
even its task independent contribution to the fNIRS signal remains largely unexplored.
Notwithstanding a number of efforts have been made to eliminate this contribution to
the optical signal none yet definitive(Kirilina et al., 2013). This gap in the knowledge
demands attention.

Removal of the extracerebral systemics e.g. skin blood flow/volume, from the fNIRS
signal requires accurate characterization of the quantification of the contribution of scalp
haemodynamics to the remitted spectra. The model by Takahashi et al. (2011) only
intended to confirm that most photons travelled through the scalp layer at optode sep-
arations that ranged from 5 to 30 mm. Moreover this noise contributes to the non-
monotonic spectral observations, thus confusing the determinant of the Jacobian and
hindering reconstruction. Computational solutions to this inverse problem like feeding
prior knowledge to the regularization might succeed where instrumental e.g. short chan-
nel, exploitation of transients e.g. task-evoked differences, and concurrent recordings e.g.
Doppler, have thus far prove insufficient.

1.2 Justification

Brain understanding is one the most important challenges currently faced by science
Sporns (2010), and the BRAIN initiative with its investment surpassing $300 million
USD is an excellent example of its importance. Neuroimages are our most direct way to
interrogate the brain in-vivo along with psychological and psychophysical studies, and
the only way to observe its function non-invasively. A number of neuroimages modalities
are at the disposal of neuroscientists each one offering different views of the brain. fNIRS
with its current tradeoff between spatial and temporal resolution, and its capability to
achieve ecological validity in difficult experimental tasks is emerging as a dependable
neuroimaging alternative in the study of neurodevelopment, psychiatric conditions or
stroke among others (Boas et al., 2014). The reconstruction of the brain haemodynamics
from the diffuse optical signal is a complex inverse problem(Dehghani et al., 2009b).

Inverse problems are an important issue in many fields of science Wang et al. (2011).
In these problems both the forward projection (physical observation) and the backward
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restoration (parameter retrieval) have to be properly understood to achieve the most
faithful reconstruction. In optical neuroimaging, providing new solutions to the inverse
problem e.g. perhaps by modeling certain unattended constraints, produces new knowl-
edge that helps to improve the quality of the optical signal and more importantly, the
brain function estimate as well. The development of computational methods to achieve
a clearer image of the neural activity is important for:

• boost reliability of the optical neuroimaging technology

• permit more complex interrogation of the brain activity and in consequence bene-
fitting research in neuroscience and

• alleviate operational constraints, perhaps opening the door to new applications e.g.
clinical.

The main goal of this research is on one hand to establish the effect over the remitted
spectra of the haemoglobin species present in the scalp and affecting the optical signal,
and on the other hand, the development of computational solutions to alleviate its effect,
and in consequence achieving a cleaner (less noisy) reconstruction of the markers of neural
activity.

1.3 Frame and assessment

This thesis is framed in the project ”CONACYT basic science: funtional Near Infrared
Spectroscopy exploring the brain in-vivo in-situ, CONACYT-CB-2011-01-169558”.

Despite the multidisciplinary nature of the thesis topic, which involves knowledge
related to: optics, histophysiology, neuroscience and mathematics this work focus on
computational solution to the reconstruction problem of the optical neuroimage. This
research will be focus on the development of algorithms that permits inversion of the
problem bounded by the histophysiological parameters of interest.

1.4 Specific problems to address

Specifically, this thesis aims at addressing the following three factors:

• The establishment of a computational forward model of transport radiation of the
human adult head with a geometry and histophysiology as realistic as possible
surpassing current models in faithfulness so that estimation of diffuse reflectance
at tissue surface is enhanced. Critically this model will explicitly incorporate blood
irrigation to scalp.

• The quantification of the non-linear contribution to the diffuse reflectance of the
absorption due to the presence of the oxygenated and reduced haemoglobin species
both due to normal irrigation as part of the global systemics and locally due to
task evoked changes.
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• Proposing a new approximation to the inverse and ill-posed reconstruction problem
that considers a priori knowledge of the aforementioned quantification of scalp
irrigation.

The former two further research aspects of the image formation process yet poorly
investigated, whereas the latter offers a novel alternative for the reconstruction itself.
Quantification of the attenuation due to the haemoglobin within the scalp open the door
to remove its effect from the optical signal and hence permitting an image of better
quality free from such noise.

As a collateral task, during this thesis, the contribution of several others histophysi-
ological parameters, in addition to those related to scalp irrigation will be further scru-
tinized and questioned about their individual contribution to the final remitted spectra,
and importantly which may strongly affect inversion. The rationale behind this more
exhaustive parameter evaluation is to establish an inversion strategy guaranteeing the
uniqueness of the mapping, as well as the stability of it by means of a regularization
approach that incorporates a priori physiological information.

1.5 Contributions

The main contributions of this research are expected to be the following:

• A better understanding of the diffuse optical neuroimage formation process through
the assessment of the contribution to the final remitted spectra of a set of histo-
physiological parameters, that is the forward mapping.

• The specific quantification of the attenuation introduced by blood irrigation to the
scalp within histologically plausible ranges, that is one source of non-linearity of
the problem.

• The development of a reconstruction approach that accounts for this knowledge
during the inversion, that is a novel regularization approach.

1.6 Preliminary results

The preliminary results thus far are:

• A literature review of the optical properties to characterize the different tissue
layers in the optical path of the adult human head; scalp, skull, meninges, gray
and white matter.

• A first model of 4 layers with flat and homogeneous geometry based on the model
of (Okada & Delpy, 2003) but extended for multiple wavelengths, as well as the
inclusion of blood flow in the gray matter expressed as haemoglobin concentrations.
Further, simpler models of 2 and 3 layers were built to set the decreased signal-to-
noise ratio (SNR) with increasing tissue complexity.
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• A colouration map (forward projection) was generated over two parameters, corre-
sponding to discretized concentrations of oxy- and deoxyhaemoglobin for the visual
cortex in a histologically plausible range.

• A first inversion (backward projection) based on the nearest-neighbour to outline
the feasibility of a candid reconstruction without prior information.

These results and the way to achieve them are detailed in section 5. Although more
detail is given later, as a summary, preliminary results show that with a 3 layers model
(equivalent to some extent to the elimination of the contribution from the layer of the
scalp), inversion is possible even in limited conditions, and the recovery of haemoglobin
concentrations in cerebral cortex is viable. But this situation becomes unstable and the
candid inversion is unable to recover haemoglobin concentrations in the gray matter when
the tissue model is extended to include the scalp. These results are in agreement with
the current concerns of the fNIRS community to avoid the influence of scalp introduced
in the optical signal and we think this justifies the need to conduct this research. This
results are still partial because blood flow has not been incorporated in the scalp layer,
however, this inclusion shall just produce a noisier signal.
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2 Theoretical Basis

2.1 Image formation and reconstruction

Image formation is the physical process by which light interacts with matter and the
exiting radiation is sensed with a photosensitive device (camera, eye, etc) forming the
scene. When a light source illuminates an object, the incident light might be reflected,
absorbed and/or scattered (interaction) according to the optical properties of the object
and spectra of the illuminant. The resulting exiting radiation, whether remitted or trans-
mitted, abides to a certain spectral intensity distribution (SID). The image acquisition
occurs when this SID is recorded by an optical sensor sensitive at that wavelength range.

Different models for image formation exists, like those shown in figure 1.

Figure 1: Different models of image formation.The reflectance model is used in optical
neuroimaging for adult heads. Image borrowed from Prof. Claridge

Mathematically, the process may be modelled as a double mapping from the space
of object’s properties Π to the remitted (or transmitted) spectra first Λ , and from there
to the image space I. Note the ambiguity in nomenclature of the last space, since the
image of interest is the reconstructed one in the object properties space, and not the
photometric captured directly by the image acquisition device.

G : Π → Λ F : Λ → I Π ∈ R
n I ∈ R

m (1)

Therefore, disregarding spatial aberrations, a pixel in the image observes:

i = F (G(~π)) (2)

The counterpart, image reconstruction is the process by which the properties of
the object with which light interacted are recovered from the image observed radiation
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Figure 2: Image formation and reconstruction. When a light source L irradiates over
an object Π light interaction produce a remitted electromagnetic spectrum Λ, this is
acquired by a sensor to produce an image I. Reconstruction goes from the acquired
image I to the object Π.

F−1 : I → Π. Image reconstruction therefore refers to an inverse problem. Figure 2
illustrates both concepts.

2.2 Inverse problems

In a simple way, physical phenomena can be modelled mathematically as an associative
relation like:

y = f(~x)

Where, given a model f (forward model) and a vector of parameters ~x the effect y
can be obtained.

Such problems arise under situations where it is not possible to measure directly the
parameters of the system and need to be inferred from measurements in the boundary.
This is the case in optical neuroimaging; this neuroimage, in the continuous wave modal-
ity, aims to retrieve the relative changes of haemoglobin oxygenated and reduced in the
cerebral cortex in a differential way in time from measurements of diffuse reflectance in
the scalp surface.

Inverse problems, often are ill-posed, i.e., they are not fulfilled with condition of
well-posed problems defined by (Hadamard, 1902):

• The solution exists

• The solution is unique

• The solution’s behaviour changes continuously with the initial conditions

In the inverse problem of optical neuroimage reconstruction, the first condition
is fulfilled, since an observation y corresponds to a histophysiological truth, i.e., the
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sensed light has been attenuated by the concentrations compounds in the tissue. The
ill-posed problem is due to several reasons. First, the physics problem of image for-
mation G is not monotonic throughout the whole in all the parameters’ space, oc-
curring that independently in different specifics wavelengths the chromophores sepa-
ration be insufficient, effect known as cross-talk(Uludag et al., 2002) so, this demands
a suitable selection of wavelengths for a correct reconstruction. Second, due to the
necesary discretization of the involved spaces in the image formation process, just a
discrete representation is available of a continuous problem. Third, as during image
acquisition -projection to a lower dimensionality- an undetermined system is obtained
(Π ∈ Rn, I ∈ Rm, n >> m), violating the uniqueness criterion of the solution, causing

that several parameters configurations ~(π) are reachable from the same observation ~λ,
effect know as metamerism(Preece & Claridge, 2004). Finally, the inherent noise in the
measuring devices or the models approximating the physical phenomena (as well as other
sources of noise) may alter the continuity of the solution. Therefore, small variations in
sensed data may result in large biases in the solution. This problem of sensitivity of the
data is inherent to the image reconstruction problem and not just of its computational
approach. Commonly, to deal with ill-posed problems the inversion process requires a
regularization method to avoid the problem of discontinuity in the solutions and ensure
stability(Wang et al., 2011).

2.3 Diffuse Optical Imaging

Diffuse optical imaging (DOI) is a promising imaging modality to study biological tissue
non-invasively. It is based on the use of light to measure the optical properties of the
tissue and create visual representations (Arridge & Schotland, 2009). This technique in-
volves irradiating a light beam on the surface of the tissue to be imaged. Light propagates
through the tissue where it suffers absorption and scattering by the various compounds
forming the biological tissue. Part of the light that abandons the tissue, is captured by
photoreceptors.

Particularly, in neuroimage, this technique is known as functional Near Infrared Spec-
troscopy (fNIRS) as it uses light in these wavelengths (600nm - 1000nm). In this optical
window, light is able to penetrate the human head tissues deep enough to reach the
cerebral cortex allowing interrogating the neural activity. The main characteristic that
allows the use of this technique is because the physico-chemical processes produced in
the tissue alter the light extinction as a function of the cellular metabolism. This makes
possible the use of fNIRS for the detection of cortical haemoglobin concentration from
measurements in the surface of the cerebral cortex. Figure 3 shows the operation of
fNIRS.

Before light reaches the cortex it has to travel through several layers of tissue. Each
of these layers is formed by different compounds and have a determined geometry that
affects light propagation independently of the attenuation caused by the markers of
neural activity to be measured. The figure 4 depicts an example of an image of the
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Figure 3: The operation of fNIRS is deceivingly simple. A light beam is irradiated into
the tissue surface to be explored. Light propagates and part of it leaves the tissue and
is captured by a photoreceptor. Figure reproduced from (resource:, 2015b)

Figure 4: Changes in concentration of oxy (red) and deoxyhaemoglobin (blue). Figure
reproduced from (Uludag et al., 2004)

neural activity with fNIRS applying one the most common forward models(Modified
Beer-Lambert Law -MBLL). The typical decrease of reduced haemoglobin concentration
concomitant with increase HbO2 concentration can be appreciated.

2.3.1 fNIRS modalities

The fNIRS signal can be measured in three different modalities (Strangman et al., 2002)
as shown in figure 5:

Continuous wave irradiates light at the tissue with constant intensity. Changes in
light attenuation are interpreted as a consequence of brain activity. This modality is
unable to distinguish light attenuation due to absorption and scattering. In contrast, it
has the best signal to noise ratio. It is the most popular modality.

In the time domain modality, tissue is irradiated with a light pulse in the order of
picoseconds and the photon’s time of flight is measured. Time of flight is proportional to
travelled path length, and thus photon coming from the cortex can be isolated by gating
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Figure 5: The three main measuring modalities in NIRS. a)Continuous Wave, b)Time
Domain, c)Frequency Domain

. Figure reproduced from (Bakker et al., 2012).

procedures. Its sensitivity is reduced because the little light intensity received.
Finally, the frequency domain uses light modulated in a given frequency. Changes in

light attenuation and phase allow to estimate the optical properties of the tissue.

2.4 Anatomy and physiology of the human brain and head

The brain is protected by a set of tissues, namely: scalp, skull, meninges (Dura mater,
arachnoid, pia mater) and cerebrospinal fluid (CSF)(Bear et al., 2006) and its formed
mainly by an outer layer named gray matter and an inner layer named white matter.
It is estimated that in the gray matter reside over 100,000 million of neurons, while
white matter is composed of the neuron’s axons. Gray matter is where most of the brain
activity occurs while the white matter is responsible of the communication between brain
areas. Figure 6 shows a segment of the human head exhibiting the different layers.

The scalp is an important tissue in optical neuroimage becuase it absorbs much of
the emitted light for spectroscopy (near to 76% (Haeussinger et al., 2011)). It consists
of five layers (Ellis & Mahadevan, 2013): Skin, Connective tissue, Aponeurosis, Loose
connective tissue and Periosteum (Figure 7).The principal blood vessels of the scalp lie in
the Connective tissue, and the scalp has the richest blood supply of any area of the skin.
Moreover, the skin itself has an important blood supply in the dermis layer where there
are blood vessels across the whole layer that act as absorbers of light(Claridge et al.,
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Figure 6: Representation of a segment of the human head where the layers that compose
it can be appreciated. Figure reproduced from (resource:, 2015c).

2002).

2.4.1 Markers of neural activity

A number of physiological processes accompany brain activity. Those occurring at the
level of a single neuron, and those occurring around its environment moderated by the
neurovascular coupling (Villringer & Chance, 1997). The latter refers to those vascular
events following neural activity. Such neural activity induces a vasodilation, consequence
of the increment in oxygen consumption in the active region (rCMRO2), permitting
higher blood perfusion and increasing the flow (rCBF ) and volume (rCBV ) of blood to
supply the active area with more oxygen. The increase in oxygen consumption following
the neural activity induces, after a transient regional episode of blood deoxigenation,
a massive response of blood irrigation increasing the oxygenated haemoglobin (HbO2)
and flushing out the reduced haemoglobin (HHb). Since the two species of haemoglobin
have different absorption spectra it is possible to estimate their concentrations by means
of spectroscopy. Figure 8 shows the absorption curves in the visible and infrared range
of the spectrum of both haemoglobins as well as other molecules commonly present in
biological tissues.

The direct electrical activity of the neurons is not observable with continuous wave
fNIRS. The indirect observation of brain activity by means of diffuse optical imaging
is possible because of the so called neurovascular coupling. This coupling is the phe-
nomenon governing the brain haemodynamics as a response to oxygen consumption
following neural firing. As afore mentioned, the alteration of the concentration of oxy-
gen in blood is observable since the absorption signature of the oxygenated haemoglobin
is distinct from that of the reduced species in the optical window. Figure 9 illustrates
the neurovascular coupling.
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Figure 7: Main layers of the scalp a)and skin b). Figures reproduced from (resource:,
2015a).

Figure 8: Absorption curves for both haemoglobin species and other tissue compounds in
and around the near infrared range. Figure reproduced from (Scholkmann et al., 2014).
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Figure 9: Schematic representation of the neurovascular coupling. Figure from (Martin,
2014). The illustration is prepared for the BOLD fMRI underlying neurovascular cou-
pling is also exploited by fNIRS.

2.5 Radiation transport in matter

As electromagnetic radiation interacts with matter, several phenomena affect its propa-
gation such as refraction, reflection, scattering and absorption. The former two occurs
at the boundary of two different media, whereas the latter two occurs within a turbid
medium. In general, these phenomena depend on matter, both its composition and its
geometry, which are jointly referred to as optical properties.

Refraction is the change of propagation direction when light crosses from one medium
to another. The refraction index n determines the speed of light within the medium as
relative to the speed of light in vacuum (Branco, 2007) and refraction is governed by
Snell’s law (Orihuela-Espina, 2005).

Closely related is the phenomenon of reflection; when hitting the boundary between
two media with different refraction index, part of the energy is bounced back or remitted
at the surface of the new medium, an effect known as reflection. If reflected light rays
are parallel and in a direction following the same but opposite angle to the incident ray,
then it is referred to as specular reflection, and if such reflected light rays follow different
directions then it is referred to as diffuse reflectance (Figure10).

Within the medium, as the light propagates, photons hit particles in the turbid
medium suffering absorption events in which they transfer some of their energy to the
particles, and such energy is transformed into another type of energy. This phenomenon
is known as absorption and as a result of it the intensity of the travelling light be-
comes attenuated (Figure 1.a). The level of absorption in a biological tissue depends
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Figure 10: Schematic representation of light reflection and refraction. Figure reproduced
from (Orihuela-Espina, 2005)

on its macroscopic absorption coefficient µa often expressed in mm−1. This absorption
coefficient represents the probability of a photon being absorbed by length unit.

a) b)

Table 1: Light attenuation due to absorption (a) and scattering (b) in a medium. Re-
produced from (Branco, 2007)

Finally, scattering is the change of direction of a photon after the collision of the pho-
ton with a particle within the medium (Figure 1.b). Analogously, the level of scattering
in a biological tissue depends on its macroscopic scattering coefficient µs often expressed
in mm−1 which represents the probability of a photon being scattered by length unit.

Associated to tissue scattering is the property of isotropy or anisotropy. It refers
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to the angular distribution of scattered light following a collision. Tissue an-/isotropy
defines the likelihood that a given photon is dispersed in a certain angle Θ. When all
directions are equally probable, then the medium is said to be isotropic, and otherwise is
said to be anisotropic. Since biological tissue are mainly forward scatterers, this angular
distribution is often only expressed over a single propagation plane; with the other
angular distribution along the perpendicular plane -side scattering- being assumed as
isotropic. Under this assumption, anisotropy may be expressed with a single anisotropy
factor g representing the average value of the dispersion angle.

In the interactions events that photons undergo within the matter, some photon
packages are fully absorbed whereas some other will retain some of their energy eventually
becoming transmitted or backscattered to tissue surface. The former, referred to as
transmittance, may be sensed with a transillumination setup but it is of little use in
in-vivo non-invasive adult optical neuroimaging. Backscattered light arising at tissue
surface is called remittance, and yet again if occurring in multiple directions it is referred
to as diffuse and it is central to fNIRS.

The above phenomena are not fully described unless light wavelength (λ) of the
propagating beam is taken into consideration, since the aforementioned properties are
all dependent on the wavelength, i.e., the optical properties of the matter vary as a
function of wavelength n(λ), µa(λ), µs(λ), g(λ).

2.5.1 Models of Radiation Transport

Several methods have been developed to explain and estimate light propagation within
matter. These models, capture with more or less detail, the radiation transport process
and consequently allow to express the process of image formation. The following sections
describe the radiation transport models frequently used in optical neuroimage.

2.5.2 Modified Beer-Lambert Law

The Beer-Lambert Law (BLL) is a model that describes the loss of light intensity (I) due
mainly to absorption as a function of the concentration of a substance in a non-scattering
medium (equation 3).

I = I0 exp
−ǫ(λ)cd (3)

Where I0 is the incident light, ǫ is the specific extinction coefficient of the medium
(wavelength dependent), c is the concentration of the cromophore1 responsible for the
extinction and d the thickness of the medium.

Since biological tissue is highly scattering and in order to use the relation defined
by this law, an extension known as the Modified Beer-Lambert Law (MBLL), was de-
veloped by (Delpy et al., 1988). This extension incorporates two elements to the BLL:

1A chromophore is the part of a molecule responsible for its color. The color arises when a molecule

absorbs certain wavelengths of light and transmits or reflects others.
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the Differential Path-length Factor (DPF ) that accounts for the increased distance that
the light travels due to scattering, from light source to detector, and a factor G ac-
counting for tissue geometry and light attenuation due to scattering (Boas et al., 2011;
Scholkmann et al., 2014). So the MBLL is expresed as:

I = I0 exp
−ǫ(λ)∗c∗d∗DPF (λ)+G(λ) (4)

A more general representation of the MBLL is show in equation 5 that express the
loss of light intensity (Optical Density - OD or Attenuation, unitless) in time and as a
linear combination of all present chromophores.

OD(t, λ) = − log10

(

I(t, λ)

I0(tλ)

)

=
∑

i

ǫi(λ) ∗ ci ∗ d ∗DPF (λ) +G(λ) (5)

This law is used in optical imaging under the assumption that the change in scattering
is small compared to changes in absorption in time. So, factor G(λ) is assumed to be
time-invariant. In this way, determining changes in OD in two consecutive measures, t0
and t1, the term G(λ) can be neglected and relative changes ∆OD can be estimated by
the difference:

∆OD(∆t, λ) = OD(t1, λ)−OD(t0, λ)

∆OD(∆t, λ) = − log10(
I(t, λ)

I0(tλ)
) =

∑

i

ǫi(λ) ∗∆ci ∗ d ∗DPF (λ)

Where the chromophore concentration ∆ci = ci(t1) − ci(t0) is a relative change in
concentration in time.

The MBLL is the most common forward model currently used in fNIRS
(Scholkmann et al., 2014). Nevertheless, because of the strong assumptions on scattering
and geometry, the MBLL does not hold true for measurements of the head (Boas et al.,
2011). Moreover, the strongest assumption with the MBLL to be used for neuroimage is
that the changes in attenuation are all attributable to changes in haemoglobin occurring
directly in the cerebral cortex.

2.5.3 Radiative Transfer Equation

The more general model of light propagation is the Radiative Transport Equation (RTE)
or Boltzmann equation (Eq. 6)(Branco, 2007)

1

c

∂I

∂t
+∇I(r, t, ŝ) + (µa + µs)I(r, t, ŝ) = µs

∫

f(ŝ, ´̂s)I(r, t, ŝ)d2ŝ+ q(r, t, ŝ) (6)

Where I(r, t, ŝ) is the radiance at point r, in time t and direction ŝ, c is the speed of
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Figure 11: Scheme of the different models derived for the RTE commonly used for optical
imaging and its respective implementations.

light in the medium, µa and µs are the absorption and scattering coefficients respectively,
f(ŝ, ´̂s) is the scattering phase function which define the scattering change direction (from
ŝ into ´̂s). Finally, the term q(r, t, ŝ) is the light source.

The RTE follows from the Maxwell equations when the latter are applied to the
problem of multiple electromagnetic scattering in discrete random media (Mishchenko,
2003). This is an energy balance equation that has into consideration the changes in
energy flow, in time and in an infinitesimal volume, due to gain of incoming energy by a
light source or by scattered photons and energy lost due to photons leaving the volume
and absorbed energy.

Exact solutions to the RTE are limited in practice to simple cases where the propaga-
tion medium has simple geometry and isotropic scattering (Branco, 2007). Given these
restrictions, other models have been derived that approximate the RTE (Dehghani et al.,
2009b) (see Figure 11) in order to be useful in practical applications. For each approx-
imation, there are different implementations which are summarized in Figure 12. This
figure summarizes the implementation of the main approaches used in optical image and
some of their advantages and disadvantages.

Figure 12 indicates that FEM methods are computationally fast. This is true in
this domain by two reasons: first, the structure of the mesh used is not too complex
and second, the consuming time of mesh generation is not considered which is known to
consume 70% of the computation time (Muñoz-Gómez et al., 2005). However, actually
there exist methods to avoid the mesh generation, such as: meshless methods (Kansa,
1990) which use random set of nodes in which the solution is computed. A method to
solve Partial Differential Equations explored recently are the so called Smooth Particle
Hydrodynamic. However, these methods are out of the scope of this work.

Monte Carlo methods involve simulating the interaction of single photons within the
matter through the use of probabilities that define photons events. In order to achieve
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Figure 12: Summary of advantages and disadvantage of some models that approximate
the RTE.

useful estimations millions of photons have to be simulated. In consequence, this method
is computationally expensive.

2.6 Image reconstruction

The image reconstruction process aims to recover the internal properties of the tissue
from the measurements recorded. This involves the solution of the forward and inverse
problems (Arridge, 2011; Branco, 2007).

The forward problem (Eq. 7) relates to predict the measurement y, through the use
of a photon propagation model F , from a given set of optical properties π in order to
approximate as close as possible the measurements in the real world.

y = F (π) (7)

The complementary inverse problem relates to the recovery of the hidden parameters
π from the measurements y; π = F−1(y). Several authors (Dehghani et al., 2009b;
Arridge & Schotland, 2009; Branco, 2007), classify methods in image reconstruction as
linear versus non-linear.

2.6.1 Linear methods

Linear methods are the simplest way to address the reconstruction problem. These meth-
ods are able to obtain images of temporal changes in optical properties (Dehghani et al.,
2009a) and require a difference experiment that measure ∆y = (y1−y0) as the difference
of optical changes ∆π = (π1 − π0).

2.6.1.1 Perturbation method

Perhaps the simplest of them all is the so called perturbation method. Given an estimate
π̂ close to the solution π, then assuming continuity an estimate ŷ = F (π̂), with the
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forward model is close to a real measurement y. By expanding Eq. 7 with Taylor series:

y = F (π̂) + F ′(π)(π − π̂) + (π − π̂)TF ′′(π)(π − π̂) + · · · (8)

Where F ′ and F ′′ are the first and second derivatives of the forward model. Neglecting
second and higher order terms, the linear term constitutes the perturbation approach
(Arridge & Hebden, 1997). In discrete cases the derivative F ′ can be expressed as a
matrix J , known as the Jacobian (or sensitivity matrix). Now, considering ∆y = (y− ŷ)
and ∆π = (π − π̂), the linear equations system to solve is (Eq.9):

∆y = J(π̂)∆π (9)

The reconstruction problems reduces to solving the linear system in Eq. 10 by in-
verting the Jacobian Matrix J .

∆π = J−1(π̂)∆y (10)

2.6.1.2 Reconstruction with MBLL

The MBLL described in section 2.5.2, can be used to recover the information of interest
in fNIRS. The reconstruction method is the system of equations derived from the MBLL
itself. We need measurements in time t0 and t1 in order to get the ∆OD(∆t, λ) in equa-
tion 5. Finally, to obtain the concentration changes of the n chromophores of interest,
that equation should be evaluated at n different wavelengths. Then, the resulting system
to solve is:

[∆Ci] = d−1[ǫi(λj)]
−1[∆OD(∆t, λj)/DPF (λj)] (11)

2.6.2 Non-Linear Methods

Non-linear reconstruction are iterative methods based in optimization looking for min-
imizing the difference between the values calculated by the forward model and the ex-
perimental data while the sensitivity matrix J is updated in each iteration (Jiang et al.,
1996).

There are two main approaches for such optimization (Dehghani et al., 2009a):
gradient-based reconstruction (Zhu et al., 1997; Arridge & Schweiger, 1998) and
Newton-like methods. The latter requires the calculation of the Jacobian and its in-
version. In general, the procedure followed in this methods is depicted in figure 13 and
proceed as follows: given an initial guess of the optical parameter under study (µ0), a
measure ŷ = G(µ0) is computed with the forward model given the initial parameter.
From these, the Jacobian matrix is calculated (J). The distance between ŷ and an ex-
perimental data y is measured. If the distance is greater than a given threshold the
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Jacobian have to be inverted and regularized in order to estimate a new value for µ. The
method iterates until the parameter µ has been closely approximated.

2.6.3 Alternative approaches

In the following sections we describe other approaches that have been used to solve the
inverse problem of image reconstruction. Their advantage is that the inverse problem
is solved implicitly without need to calculate the Jacobian. The prize to pay is often
explanatory power.

2.6.3.1 Colouration map

The Colouration Map has been used in works of Claridge et al. (2002); Orihuela-Espina
(2005); Claridge & Hidović-Rowe (2014). In this method, the space of parameters to be
recovered is discretized and each vector is projected to the spectral space through the
forward model. Each remitted spectra is convolved with a response function simulating
image acquisition process by a device and projecting each spectrum to the image space.
The image space (Colouration Map) becomes a look up table in which new observations
can be approximated looking for the estimated parameter π̂ such that:

π̂ = argmin
~π

||F (~π)−~i|| (12)

In Claridge & Hidović-Rowe (2014) model inversion is implemented using a Discrete
Markov Random Field (DMRF) optimization using an Iterated Conditional Models al-
gorithm which maximize the probability of each variable in the DMRF to get the pa-
rameter ~π with highest probability. An important aspect to consider in this method is
the discretization of the parameters space, which has a direct effect over the inversion
(Orihuela-Espina, 2005).

2.6.3.2 Machine learning

Because of the increasing popularity of machine learning algorithms, these methods have
been applied in some inverse problems. However, we are unaware of any application
related to neuroimage reconstruction.

These methods require samples from which the algorithm can be trained, of the
form (~π, y), being ~π the parameters to reconstruct and y the associated observation.
Although, they are able to achieve high scores in classifying a given observation (and
recoverying parameter ~π) generally they are not useful in the field of neuroimage because
the lack of explicative capacity needed to understand what is going on inside the tissue.
Neverless, a lot of the useful applications of machine learning algorithms in brain imaging
is characterizing states of the brain through the imaged signal for tasks, as for example,
in Brain-Computer-Interface(BCI)(Lemma et al., 2011).
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Figure 13: The flowchart shows the main steps in the iterative methods for reconstructing
optical parameters in diffuse optical imaging. Figure reproduced from (Prakash et al.,
2010).
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3 Related Work

3.1 Monte Carlo forward models of the adult head

Several authors have developed forward models of the adult head using the Monte Carlo
approach as light propagation method. These models have served for the study of many
phenomenons in optical imaging and more specifically in fNIRS. Many of these models
are far from a realistic anatomy of the brain both in geometry and histology. Some
use flat layers of the tissue (simple square geometry) and others use structural images
from magnetic resonance (MRI) segmenting each layer manually or semi automatically.
Further, many of these models assume an homogeneous structure of the layers, i.e., the
optical properties are constant within each layer.

The characteristics of some of these models are summarized in table 2.

Table 2: Head models proposed by several authors relying on Monte Carlo approach for
radiation transport.

3.2 Current solutions to capture blood irrigation to scalp

Several works have intended to de-noise the fNIRS signal from the skin blood flow noise
through the use of signal processing approaches, like wavelets, Multi-Resolution Analysis
or statistical approaches (Tachtsidis et al., 2010; Scholkmann et al., 2014). For this pur-
pose, the systemic effect altering the fNIRS signal is measured with specialized devices.
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In the case of the blood flow in the scalp a Laser Doppler has been used (Patel et al.,
2011). Other approaches try to avoid its effect detecting the signal in the scalp with
optodes in the NIRS device and resting its contribution for the signal (Takahashi et al.,
2011) thus complicating the hardware. Table 3 shows some of the works and the ap-
proaches to eliminate the blood irrigation in the scalp.

Table 3: Approaches to account for the effect of the blood flow in the scalp.

3.3 Image reconstruction for diffuse optical imaging

As described in section 2.6 the goal of image reconstruction is the recovery of parameters.
The table 4 summarizes some of the relevant reconstruction approaches related to optical
imaging.

Several authors have given insights about how prior knowledge, such as the anatom-
ical geometry of the head, physiological information, spatial or spectral relations can
be incorporated into the inverse problem to improve reconstructing(Baillet & Garnero,
1997; Dehghani et al., 2009a; Okada, 2013; Claridge & Hidović-Rowe, 2014).
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Table 4: Related works in image reconstruction.

4 Research proposal

4.1 Problem Statement

A lot of the research in the field of diffuse optical image concentrates on finding solutions
to remove artefacts, whether inherent to physics of radiation transport, or consequence
of a naturally imperfect sensing device (Orihuela-Espina et al., 2010). Eliminating un-
desired contributions to the signal permits establishing an inverse projection from the
sensed information closer to the physiological true.

Being ill-posed, the reconstruction problem demands the imposition of constraints
to guarantee uniqueness of the solution. These constraints take the form of specific
assumptions about the acquisition unit or more commonly in the form of simplifications
regarding the tissue composition, optical properties or geometry.

The problem that we address in this research is on the one hand, the quantification
and better understanding of the effect of haemoglobin concentration in the scalp, and
on the other hand, the development of a computational reconstruction solution that
retrieves the information of interest, proxy of the neural activity, in a cleaner manner
reducing the noise from the systemic effect of scalp irrigation.

From a more general point of view, the challenge involves establishing a map between
two spaces given certain constraints. To illustrate this conceptualization of the problem,
let’s take as an example the continuous bidimensional space Π in the left of Figure 14.
Every point in Π represents a vector of parameters corresponding to a certain set of
histophysiological compounds of interest with specific values ~π = (π1, π2). Through the
image formation process (represented by function F ), each parameter vector is projected
into space I (center panel of Figure 14). In this synthetic example the projection function
has been (manually) defined following an explicit analytical form for F -as indicated in
the Figure-, and it would suffice to find F−1 to be able to retrieve the original vector ~π
in Π associated to any observed vector ~i. However, in a real scenario, several sources of
noise affect the projection of every point, resulting in a space such as the depicted in the
right panel of Figure 14. Consequently, reconstruction becomes aggravated.
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Figure 14: The figure illustrates a a fictitious non linear mapping from parameter space Π
to image space I and noisy space I ′. In this particular example the mapping is manually
defined as F (i1, ı2) = (2π1π2, π1π

2
2). Intuitively, points in the most bended region of I

space (around the origin in this example) will have very low tolerance to noise. The
reconstruction involves recovery of originating locations in space Π from observations in
space I ′ without explicit knowledge of mapping F . In the case of diffuse optical imaging,
knowledge of physics allow us to express F̄ ≈ F

However, in the real scenario, the explicit analytical form of F is not available, That
is, the forward model F can’t be expressed as a combination of functions known until
now. Under these circumstances, the inversion problem becomes that of estimating
an approximation to F−1; this problem may be expressed in a generic case as follows
(Claridge & Hidović-Rowe, 2014): for every observed intensity vector ~i, find a vector of
parameters π̂ such that:

π̂ = argmin
~π

||F (~π)−~i|| (13)

In addition, in the image formation process several other ingredients are involved
affecting the recorded signal; from biological compounds naturally present in the tissue
but that are not of interest for decoding brain activity in this case, to external factors
such as uncertainty in the photodetectors response, or the environmental conditions
among others (Orihuela-Espina et al., 2010). Hence, in the inverse problem of image
reconstruction the observations are contaminated with noise that significantly distort
the estimations and thus violating the third postulate of Hadamard. It is in this state
of affairs that an adequate inversion model and the implementation of a regularization
approach are indispensable, and this research advocates for a solution that considers a
priori information of the domain. This a priori information will reduce the search space
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by fixing some of the parameters involved in the image formation process allowing the
reconstruction process to consider information just in the space of interest.

The computational problems addressed in this research are summarized in Table 5.

Problem Computational prob-
lem

Proposal

Image formation Modelling of the for-
ward problem y =
F (~π)

Forward model ex-
pressing realistic head
anatomy and blood
flow in gray matter
and scalp

Quantify the ef-
fect of blood in
scalp

Evaluation of error
(SNR)

Optical characteriza-
tion of its effect

Image recon-
struction

Regularization meth-
ods

Include a priori in-
formation to improve
stability

Table 5: Summary of problems and proposal to each one that contribute in the state of
the art

4.2 Research questions

The following questions will guide this doctoral research in order to achieve the scientific
contributions in the thesis topic.

Q1 Is attenuation of the effect of skin blood flow possible by means of informing the
inverse process with prior knowledge of its quantitative contribution to the remitted
spectra leaving a clearer reconstruction of the brain haemodynamics?

This is the central question to this thesis; as far as the author is aware this issue of
scalp noise has not yet been addressed by means of enhancing the inversion strategy.
Answering this requires (i) an accurate forward model permitting estimation of
scalp irrigation to remitted spectra, and (ii) a new way to express physiological
constraints in the inversion, none of which appear to be currently available in
literature.

Q2 Does systemic and/or task evoked changes in scalp irrigation leave a traceable
(quantifiable) and predictable (monotonic under certain constraints) imprint in
the remitted spectra from the adult head?

In absence of scattering and with a single absorber, the Beer-Lambert law pre-
scribes that higher concentrations in a chromophore will increase attenuation and
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consequently its concentration is quantifiable from optical density measurements.
However, as tissue becomes more complex, the monotonic recipe of Beer-Lambert
no longer can be guaranteed which is especially true if more than one chromophore
is concurrently altering its concentration. This question aims to elucidate the effect
of blood flow to scalp over the remitted spectra.

Q3 If the effect of blood flow to scalp over the remitted spectra, can uniqueness of
solution to the reconstruction problem be guaranteed throughout the entire phys-
iologically plausible range?

Even if contribution to remitted spectra from known physiological vectors is mea-
surable (positive answer to Q1), and even if this predicted attenuation can be
exploited to enhance reconstruction under specific circumstances i.e. specific lo-
cations of the parameters’ space (positive answer to Q2), uniqueness throughout
the whole region of physiologically plausible range has to be demonstrated giving
validity to the model

4.3 Hypothesis

Following the research questions it is hypothesized that:
The reconstruction of the haemodynamics markers (relative concentrations of

haemoglobin) of neural activity in optical imaging can be achieved more precisely once
the effect of the haemoglobin in the scalp has been avoided.

Here more precise means giving an approximation closer to the true solution.

4.4 Aim

To develop and validate a computational solution to circumvent the degeneracies intro-
duced by systemic scalp blood flow in the reconstruction of markers of brain activity ,
and thus permitting a cleaner reconstruction of the optical neuroimage.

4.5 Key objectives

O1. Optical characterization of different parameters of the tissue and their contribution
to the remitted spectrum given the defined forward model.

O2 Definition and development of a forward model of the adult human head consid-
ering realistic geometry and the haemodynamic in the gray matter and the blood
irrigation in the scalp.

O3 To develop a computational solution to the image reconstruction problem to ob-
tain the neural activity in a more clearly way considering knowledge of the noise
produced by the blood irrigation in the scalp.
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O4 To internally validate the solution to ensure an stable behaviour.

4.6 Contributions

• A better understanding of the diffuse optical neuroimage formation process through
the assessment of the contribution to the final remitted spectra of a set of histo-
physiological parameters.

• The specific quantification of the attenuation introduced by blood irrigation to the
scalp within histologically plausible ranges.

• The development of a reconstruction approach that accounts for this knowledge
during the inversion.

An indirect contribution of this work will be the way in which the a priori information
will be incorporated into the regularization problem. This could be extrapolated to other
domains where regularization is needed and a priori information is available in order to
obtain a numerically stable solution.

4.7 Methodology

Figure 15 shows the elements involved in the process of image formation in the real world
and the corresponding process in a computational model, from the image formation,
acquisition and reconstruction of the parameters of interest.

The following methodology is proposed to reach every objective in this research

• Optical characterization of the tissues of adult human head. Initially, a set of
major tissues (scalp, skull, meninges, gray matter, white matter) and compounds
(Hb in cortex and scalp) will be considered. Experimental estimation of optical
properties of these elements is not part of this thesis; this work will rely on values
published in literature. However, it is likely that the extinction coefficients of all
elements of interest may not be available at some or all the infrared region. In this
case approximation e.g. by interpolation, substitution for animal model values, or
reasonable assumptions shall be made prioritizing that order.

• To approximate the forward model to a more realistic anatomy of the human head,
either structural images of magnetic resonance or CT from the head will be used.
In the case of opting for the first alternative, 3D segmentation of tissues of interest
whether automatic, semi-automatic or manual will be needed.

• With the Monte Carlo approach, as radiation transport model, and the human
head model defined previously, the forward model will be determined over which
the effect of the haemoglobin can be studied. The forward model will be validated
in order to confirm its ability to generate spectra that could be fitted. Several
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simulations will be performed varying their histophysiological ranges to evaluate
the contribution of every tissue and compound in the remitted spectrum. This will
reveal the sensitivity of each layer in our model and their possible contribution
during inversion.

• Refining the forward model. Later, a more detailed second model will be defined.
This will for example, model the skin in the scalp (dermis, epidermis, subdermis)
and meninges in more detail. Again, optical characterization will follow similar
process that in the first step.

• Quantification on the diffuse reflectance of the effects of the concentrations of oxy-
genated haemoglobin and reduced in 4 variables model parameters: HbO2 and
HHb in the scalp, HbO2 and HHb in the cerebral cortex . These will be considered
to influence both absorption and scattering (under single scattering regime). Histo-
logically plausible ranges will be obtained from literature for several regions of the
brain, and under different circumstances for the scalp e.g. systemic or task-evoked.

• A colouration map will be generated for the haemoglobin variations considering
the wavelengths that best separate each chromophore according to literature. The
problem of wavelength selection for reduction of cross-talk at acquisition time is
not considered here. If necessary, image acquisition might be simulated by filtering
remitted spectra with assumed optical efficiency of the photodetector.

• Preliminar reconstruction. An initial reconstruction approach based on the nearest
neighbour over the colouration map will be implemented to establish distinction
capability . To evaluate the reconstruction, synthetic data will be generated with
the forward model altering the concentration of the haemoglobin considering all
possible cases: increase/decrease Hb in gray matter with/without Hb in the scalp
in all the plausible ranges.

• Another approach for reconstruction based on the perturbation method will be
developed to improve the parameters recovery and evaluate the advantage of this
method.

• Incorporation of priors to inversion. As was mentioned in section 3, is possible
include a priori information to deal with ill-posed problems and hence improve
reconstruction. The information about the effect of the blood in the scalp will be
incorporated to the regularization process. The needed regularization parameter
λ will be calculated by optimization methods.

• Once the model and the reconstruction approach have been accomplished and
extensively tested with synthetic examples, the reconstruction will be validated
with an optical phantom and/or real data depending on time availability. Real data
if necessary are expected to be obtained from a device currently being developed at
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Measurement oxy, deoxy and total haemoglobin concentration
Light source Laser diodes 650nm and 830 nm
Channels 24
Emitters 10
Detectors 8

Table 6: Summary of characteristics of a fNIRS device

our institution, but acquisition at external institutions may be considered. Internal
and apparent validity will be performed.

Following, the characteristics of a commercial NIRS device are summarized in Table
6.

Figure 15: Schematic representation of the whole process, both in real world and the
computational model.

4.8 Plan

The schedule in Figure 16 of activities for the realization of this research is proposed.
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Figure 16: Planned Schedule
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5 Preliminary Results

The experiment performed for this proposal has the main goal to exhibit a first insight of
the aforementioned hypothesis. Candid solutions for each step have been implemented
aiming at achiving a first reconstruction. This, by:

• Developing a first model of the head with simple geometry and homogeneous prop-
erties

• The simulation of the gray matter oxygenation due to neural activity varying the
haemoglobin concentrations.

• The generation of each spectral intensity distribution for every vector of cortical
HbO2, HHb

• The generation of a coarse colouration map.

• Use a candid reconstruct method to recover cortical HbO2, HHb based on nearest
neighbour

5.1 Forward model: image formation

5.1.1 The radiative transport model

We have chosen the Monte Carlo method as the model of radiation transport because
its flexibility. Specifically we have used the implementation provided by (Wang et al.,
1995) which implementation’s flowchart is depicted in Figure 17. Also the GPU version
of (Alerstam et al., 2008) was used.

5.1.2 Human Head model

A first tissue model of the adult head, inspired by the work of Okada & Delpy (2003) has
been defined, consisting of the four main flat and homogeneous layers; scalp, skull, gray
matter and white matter (see Figure 18). Each layer is defined by their optical properties:
refraction index n, absorption coefficient µa, scattering coefficient µs, anysotropy factor
g and layer thickness d.

In contrast with the model of Okada & Delpy (2003), this is defined for a wide
range of the NIR light, i.e., there are specific values for every optical parame-
ter for each wavelength in the NIR range (with 1nm resolution). All these values
were collected in the literature (Bashkatov et al., 2011; Choi et al., 2004; Custo et al.,
2006; Dehaes et al., 2011; Firbank et al., 1993; Hueber et al., 2001; Jacques, 2013;
Johns et al., 1998; Madsen & Wilson, 2013; Bashkatov et al., 2006; Friebel et al., 1999;
Sandell & Zhu, 2012; Sassaroli et al., 2000; Simpson et al., 1998; Taddeucci et al., 1996;
Van Der Zee & Essenpreis, 1993; Yavari & Dam, 2005). Figure 19 shows the optical
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Figure 17: Flowchart of the simulator developed by Wang et al. (1995). The simulation
is carried out launching a photon with a given start energy which is decremented by
absorption through the tissue. The photon’s step size and scattering direction is set by
sampling over two probability density functions respectively. Photon energy is stored as
absorbance, transmittance and/or reflectance.
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Figure 18: Human head model consisting of four main tissue layers with flat geometry

properties: absorption coefficient µa, scattering coefficient µs and anysotropy factor g
for each layer in the wavelengths range from 800nm to 950nm.

5.1.3 Simulating neural activity

As the marker of neural activity is the change in concentration of HbO2 and HHb in gray
matter and hence this affect the absorption in this tissue, this effect has been simulated
by altering the absorption coefficient in the gray matter in function of the concentration
of both haemoglobins as described by Eq. 14.

µGM
a (λ) = µGM

a (λ) + SACHbO2
(λ) ∗ CHbO2

+ SACHHb(λ) ∗ CHHb (14)

Where the terms SACHbO2
and SACHHb are the specific absorption coefficient which

represent the molecular absorption of the chromophore. In this equation the resulting
absorption coefficient considers: the normal absorption of the gray matter plus the ab-
sorption due to the concentration of each kind of haemoglobin. Although the light is
also attenuated by scattering, this coefficient of the gray matter remains unaltered.

5.1.4 Parameters space

The parameters space was defined discretizing the physiological range of haemoglobin
concentration. This data was obtained from the work of McIntosh et al. (2010). Which
reports absolute concentrations of HbO2 = 25.9 ± 3.9µM and HHb = 19.1 ± 2.3µM .
The parameters space consider 5 concentrations for each parameter, each one defined
by µ ± kσ with k = 0, 1, 2, resulting in 25 points in the space for every combination
(parameters vector) < HbO2, HHb >.

5.1.5 Spectral Intensity Distribution (SID)

For each vector in the parameters space, the diffuse reflectance was computed with the
forward model for every wavelength and considering models with i) 2 layers (gray and
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Figure 19: Optical properties collected in the literature used to define the model. Black
line represent interpolated coefficients which was not available in literature.
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white matter), ii) 3 layers (adding skull) and iii) 4 layers (adding scalp) in order to
analyse the effect of each layer in the generated spectrum.

The Figure 20 shows an example of the SIDs produced for a fixed concentration of
HHb and the 5 concentrations of HbO2 for each model i),ii) and iii).

For the model of two layers it can be appreciated the clear monotonic behaviour in
the measured reflectance in the whole range of wavelengths, i.e., the reflectance decrease
as the concentration of HbO2 increase.

For the models of three and four layers a more noisy spectrum is generated and in
some wavelengths the lost of monotonicity (lines crossing each other) becomes obvious.
This observation exemplifies the effect of superficial layers on the remitted spectrum.

5.2 Image Acquisition

5.2.1 Colouration Map

To generate the Colouration Map it is necessary the simulation of the acquisition process
which is carried out by convolving each remitted spectrum with a set of filters (one for
each parameter). We have chosen Gaussian filters approximating the quantum efficiency
curves of an ideal sensor parametrised by wavelength center and the Half With at Half
Maximum (HWHM). This Gaussian curves can be appreciated in figure 20 iii) centred in
wavelengths(λ) 833nm (filter R1)and 860nm (filter R2). The first wavelength was chosen
by findings in the state of the art as a good wavelength for fNIRS, second wavelength
was selected arbitrary.

The figures 21 and 22 shows the colouration maps for the 3 and 4 layers models
respectively. Each point represents a sensed value of reflectance for a given concentration
of HbO2, HHb (in the figure, markers corresponds to HHb and color HbO2).

5.3 Reconstruction

Once the colouration map has been generated, a reconstruction task was carried out.
to do this, a new observation was simulated altering the concentration of an arbitrary
vector < HbO2, HHb > around a small value (trying to be more close to it than other
points). This was projected on the colouration map by applying the filters previously
defined. A nearest-neighbour approach was used to get the most similar point in the
colouration map and since, in this experiment, the relation from the colouration map
to parameters space is known, the corresponding approximated concentration can be
retrieved.

This experiment was performed for the models of 3 and 4 layers. In the same figures
21, 22, a simulated point is showed and the corresponding nearest neighbour is indicated.
It can be appreciated that for the 3 layers model the nearest neighbour correspond to
the correct vector < HbO2, HHb >. However, for the model of 4 layers, this was not
correct obtained. This exhibit the insight of the noisy effect produced by the scalp layer.
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Figure 20: Spectral intensity distribution.
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Figure 21: Colouration map generated for the human head model consisting of 3 layers;
skull, gray matter an white matter. Markers represent different levels of HbO2 and
colour different levels of HHb. The data presents a more stable (monotonic) behaviour.

5.4 Conclusions

Despite the simplistic model and the candid reconstruction approach in this experiment,
the inversion is possible and is benefited if the source of noise is avoided. When the tissue
complexity increases, adding the 4th layer, this situation becomes unstable and a solution
like nearest neighbour is unable to recovery correctly the parameters. Further, with a
real complexity of the human head (in geometry and heterogeneity) the reconstruction
problem becomes aggravated. A necessity to do more realistic models of the human head
in whom be possible approximate diffuse reflectance with light propagation models is
apparent. On the other hand, still with a more realistic head model or more precise light
transport model the reconstruction keeps ill-posed because of the reduced dimensionality
from the parameters space to the discrete image space. Thus, the only way to deal with
the ill-posed inverse problem is through the computational solutions that can avoid the
artefacts that prevent inversion.

5.4.1 Publications

As part of the work developed during the preparation of this research proposal the
following work has been published:

• Javier Herrera-Vega, Karla Janeth Sánchez-Pérez, Luis Enrique Sucar, Carlos
G. Treviño-Palacios, and Felipe Orihuela-Espina, ”Understanding Signal-to-Noise
ratio for image reconstruction in optical topography”, in fNIRS2014, Montreal,
Canada, October 10-12, 2014.

• Cuervo-Soto, Bibiana; Herrera-Vega, Javier; Garcés-Báez, Alfonso; Sucar, Luis
Enrique; Treviño-Palacios, Carlos G.; Orihuela-Espina, Felipe, Facilitating tissue
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Figure 22: Colouration map generated for the human head model consisting of 4 layers;
scalp,skull, gray matter an white matter. In this case the reconstruction failed to identify
the correct solution.

specification and complex sensing geometries in Monte Carlo radiation transport
simulations-application to functional Near Infrared Spectroscopy (fNIRS), XVI Re-
union de Neuroimagen CIMAT, Guanajuato, Mexico, October 17, 2014.
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6 Glossary

Diffuse light The light in which its rays travel at different angles

Photodetector Sensor of light or other electromagnetic energy

Neuroimaging The use of various techniques to either directly or indirectly image the
structure, function/pharmacology of the nervous system.

Spectroscopy The study of the interaction between matter and radiated energy.

Haemodynamic In the context of neurobiology consists of the rapid delivery of blood
to active neuronal tissues.

Haemoglobin species Refers to the oxyhaemoglobin and deoxyhaemoglobin

Histophysiology Relate with the structure and function of tissues

Neurovascular coupling The relationship between local neural activity and subse-
quent changes in cerebral blood flow.

Light extinction The term refers to the light attenuation by absorption and scattering.

Optical properties The refractive index, absorption, scattering and anysotropy coef-
ficients dependent of the tissue and the wavelength.
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