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1 Introduction

Image analysis is an area in computer vision to extract information found within

digital images, an important operation in this area is image segmentation [1, 2].

Segmentation seeks to define boundaries within an image in order to identify, dif-

ferentiate and classif objects as the human eye would [3]. Segmenting an image

correctly helps to solve problems in medical, industrial, biometric, livestock, earth

observation satellites, agriculture, and many other applications [4]. For these reasons

segmentation is an extremely important task for solving image analysis problems.

Several algorithmic techniques have been developed to improve image segmentation.

However, not all segmentation methods work for all types of images. One of the

problems in image segmentation is that the contrast between regions is sometimes

not good. That is, they do not show a very clear border where the change of region

can be clearly identified when going from one region to another has a smooth and

gradual change [5] in addition to presenting combined pixels, which is a term used in

image processing to define areas with more than one homogeneous coverage, in other

words, that the pixels belong to more than one region in the image. This occurs

in medical areas such as mammographic imaging, where differentiating the borders

of the different tissues within the breast is difficult. It is worth mentioning that

mammography images are used to classify breast density to study the relationship

between breast density and the development of breast diseases such as breast cancer

[6].

Many works focus on the automatic segmentation of mammography images, as

is the work of D. Stylianos [7], who segments mammograms with Grayscale transfor-

mation, Image whitening, thresholding, and other operations for classification breast

density, obtaining 92.17% accuracy. However, although he obtained a high ranking,

not all mammography segmentation is automatic but requires an expert to search

for parameters for operations manually. Therefore, performing a segmentation task
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with this method is extremely laborious. Another disadvantage of these methods is

that it is not known if the operations used for segmentation are optimal and they

do not deal with the problem of pixel combination (combination of fibroglandular

tissue and fat), so a lot of information may be lost time to segment to image.

This work plans to find a segmentation method that optimally segments mam-

mography images with the help of genetic programming. Since Genetic Programming

has been shown to be an evolutionary algorithmic technique, it has developed highly

complex segmentation models incorporating local and global image information and

combining them in a strongly nonlinear manner[8]. Therefore, it is verified that

genetic programming is an effective tool for image segmentation. GP is one of the

principal techniques in Evolutionary Computation. One of the main advantages of

evolutionary algorithms is their possibility to escape local minima during the search-

ing process due to their stochastic nature. However, evolutionary algorithms depend

on a number of solutions or population and their evaluation is computationally ex-

pensive [9].

In addition to using genetic programming to generate a segmentation method,

it is sought to combine it with fuzzy logic due to its properties of identifying an object

as more than one class [10], it is perfect for dealing with the segmentation problem

of mammographic images in the areas where to find a combination of pixels. In

addition, fuzzy logic has linguistically descriptive properties that can help identify

the characteristics described by the ACR BI-RADS for its classification without

extracting extra features, but only those described by doctors.

During this work, fuzzy logic is planned to be used as a fitness function in

genetic programming. This is because evolutionary computation works they have

used fuzzy logic as a fitness function and have had good results [11, 12]. In addition

to the fact that by nature, it is not a heavy function, so it reduces the computational

cost. Although they have been tested in other evolutionary computational works, no
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work has been found that combines genetic programming with fuzzy fitness functions.

Therefore, it is expected from this research to find a method of segmenta-

tion of mammographic images and to be able to differentiate the existing tissues in

mammograms to extract the characteristics described in ACR BI-RADS and thus

improve the automatic classification of breast density. Improving segmentation in

mammography will help make automatic breast density classification better than

the current state of the art. The Breast Imagine ACR Reporting and Data System

(ACR BI-RADS) standard is the most widely used manual classification system in

the medical field. It will be used as the basis for automatic breast density classi-

fication. In the same way, the search with fuzzy fitness functions is expected to

provide an optimal segmentation process. Therefore, the objective of the research

is to find an optimal segmentation method for mammography images by performing

the search with genetic programming in conjunction with fuzzy fitness functions.
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2 Background

This section introduces core elements that will be integrated in the proposed seg-

mentation method. Thus, main aspects related to image segmentation, as well as

concepts for Genetic Programming and Fuzzy Logic are presented. Finally, problem

related considerations such as breast density and one of the main standards used in

the medical arena the Breast Imaging Data and Reporting System (BI-RADS) are

discussed.

2.1 Image Segmentation

Image segmentation extracts and identifies objects within an image for further anal-

ysis [13]. Image segmentation is also defined as the classification of pixels within an

image to separate objects of interest into independent regions to find helpful infor-

mation [14]. The identification of objects in images can be made by distinguishing

specific criteria such as pixel intensity, texture, edge identification, morphological

operations, among others.

Image segmentation plays an important role in medical image analysis. It aims

to divide an image into elementary parts with uniform and similar characteristics

such as tissue density, tumors, or other abnormalities within the human body [11].

By having a good segmentation, it is possible to observe and differentiate soft and

hard structures found in organs of the body that are not perceptible to the human

eye; therefore, image segmentation in the medical arena play an important role as a

support tool for medical experts.[14].

There are two ways to segment an image; the first consists of the segmentation

of a specific region of the image (local segmentation). The second segmentation is

performed on the entire image to detect several objects simultaneously (Global Seg-

mentation). These forms of segmentation are used depending on what the problem
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requires and can even combine the two [15].

Some widely used techniques in image segmentation are briefly described below:

• Pixel Connectivity is used to delimit regions by establishing connectivity be-

tween two or more pixels [16]. For example, to find the components connected

with four underlays of a binary image I, for a pixel at position (x,y), its neigh-

bors would be: (x − 1, y), (x + 1, y), (x, y − 1) y (x, y + 1). Thus the image

is processed from top to bottom resulting in regions located and labeled as

shown in Figure 1.

Figure 1: Connectivity segmentation process in a binary image.

• Thresholding segmentation based on histograms aims is at finding a threshold

that allows binarizing an image by adequately separating the background from

the objects of interest [17]. The technique works by analyzing the histogram

of the image; in this histogram, there are two sections or two peaks, one is the

background, and the other is the object, the optimal threshold T is the one

that separates these two areas, as shown in Figure 2.
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Figure 2: Histogram with optimal T threshold.

• Region growing segmentation groups and labels adjacent pixels of similar width

as a single region [18]. A widely known method is given by Brice et al. [19]

where pairs of quantized pixels are combined into atomic regions if these pixels

are of the same amplitude. Subsequently, heuristic rules are applied to con-

nect weak neighborhoods; a result example is observed in Figure 3, where two

regions, R1 and R2, that have perimeters that have been previously joined.

Figure 3: Image divided by region growth [18]

• Texture segmentation is based on visual texture that is defined as the roughness

or smoothness due to tone variations within an image [20]. Measuring texture

in a digital image is usually based on statistical values which can be of first
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or second order, and separate those different regions within images [21]; An

example of this can be seen in Figure 4, where the texture is represented by

different colors.

Figure 4: Different textures within a mammographic image.

Image segmentation is applied in different areas of science, such as image recov-

ery, detection, and recognition, satellite analysis, medical image analysis, agriculture,

among others. Therefore, image segmentation remains as a fundamental process for

many related computer vision areas. Although a number of image segmentation

methods have been developed to this day, it remains as an open problem due to the

complexities of the application contexts such as medical imaging which is pursued

in this research.

2.2 Genetic Programming

Genetic programming is one of the main algorithmic techniques in Evolutionary

Computation. It is mainly used to evolve and search for models for different ap-

plication contexts, such as machine learning tasks, electronic circuit development

or programming codes for a specific task [8, 22]. Genetic programming has proven

successful in evolving complex models for a variety of tasks such as image processing,
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where it is used for image enhancement, segmentation, understanding, classification,

and registration [23]. Furthermore, programming is a tool where there is the possi-

bility of representing strongly nonlinear models in the form of trees or graphs [24], in

addition to the fact that it can combine information at different levels of complexity

and scalability.

When generating a genetic programming algorithm, it is necessary to declare

several essential elements. The first element to be considered is the evolutionary

component that will be the input of the genetic program and will be defined by

the problem to be solved. For example, if one wants to solve an image processing

problem, the evolutionary components would be images or pixels. In genetic pro-

gramming, the individuals generated are possible solutions to the problem in question

and are represented in the form of trees or graphs. The possible solutions are ran-

domly generated to obtain the first population to evolve. To create individuals other

than the evolutionary components, a set of terminals and functions is needed, which

can be variables, constants, or functions. The evolution of the genetic program is

carried out on the basis of fitness functions that are responsible for evaluating the

quality of the individuals. Evolution is performed by crossing two individuals taken

as parents or with a mutation; whether either of the two evolution operations is per-

formed depends on the probability defined by the user. The selection, evaluation,

and evolution process is performed iteratively until a stopping criterion is met; the

criterion may be finding the optimal solution or a maximum number of iterations

[25, 26]. The general process of the genetic programming algorithm can be observed

in the following flow diagram (Figure 5).

All elements involved in genetic programming are described next [8, 26, 28].
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Figure 5: Genetic Programming general flow chart [27]

• Individuals: Representation of individuals is made through parse trees. Parse

trees are individuals or solutions. These are defined by internal and terminal

nodes. Internal nodes are functions, while terminal nodes are variables or

constants. In GP, solutions represented by parse trees are initialized randomly

after both sets of functions and terminals; These can be randomly generated,

or the user can predetermine them. An example is shown below: There is an

operation like the following MAX(X ∗X,X + 3 ∗ Y ), it would be represented

as a tree as in the following Figure 6.

• Functions set: Depends on the task to solve. These can be arithmetic opera-

tions (∗, −, /, %) or functions used in programming (For, Else, Switchcase,

If). The functions are internal nodes, in the trees that represent the individ-

uals.
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Figure 6: GP’s solution or individual example represented by a parse tree.

• Set of terminals: They are variables of a function that will be the input to the

genetic program. Entries can be constant or random. For example, the set of

terminals for image processing could be raw pixel values, full images, and even

pre-processed images in image processing. The set of terminals is represented

in the trees as leaves.

• Fitness function: Also called an objective function, it assigns a score to every

individual with in the population depending on the targeted problem. In single

objective optimization problems, the fitness function draws the search space of

the mathematical function to be solved. Genetic Programming approaches a

variety of computational tasks. For example, in ML learning tasks such as data

classification, performance metrics such as accuracy are normally used as the

fitness scores for every individual within a population. In this research, Genetic

Programming will be explored to evolve image segmentation models for mam-

mographic images, therefore performance metric associated to this task will be

used, such as jaccard index, F1 measure and relationship signal/noise. There-

fore, the fitness function of the genetic program is a fundamental operation

since it defines the search space for the optimal solution.

• Selection methods: During the searching process, individuals undergo selec-

tion, once as a parents for mating and as survivors for the next generation:
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– Parental selection: A selection criterion is defined in order to choose pairs

of solutions normally with high fitness scores for reproduction.Individuals

selected on the basis of fitness function are taken as new parents to be

crossover.

– Replacement criterion: Once offspring or new solutions are created, a

replacement criterion determine which individual from both solutions sets,

parents and children, remain in the population for the next generation.

There are two widely known replacement criteria: steady state in which

a reduced number of new solutions or children are selected to replace the

worst parents in the current population; and generational replacement,

where the children replace the parents completely.

• Genetic operations: Genetic operations are the core of the evolutionary pro-

cess. In GP, parents are recombined or mutated according to a predefined

probability. Recombination or crossover allows information exchange at the

genotypic level. In GP, for example, parse-trees can exchange a sub-tree or a

branch among parents. Mutation allows the introduction of diversity by ran-

domly modifying the genotype of a solution; in GP, a sub-tree or a branch of

an individual can be randomly modified.

Genetic Programming has demonstrated to be a powerful algorithmic technique

to target problems where inputs and expected outputs are known and the model is

unknown. GP allows the evolution of strongly non-linear models and the flexibility

to incorporate and to operate data information from different available resources.

For example, in image processing tasks, image data at local and global level can be

can be represented by GP solution.
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2.3 Fuzzy Logic

Lofti Zadeh introduced the concept of fuzzy logic in 1965 to represent qualitative

linguistic expressions mathematically [10, 29]. Fuzzy logic can be defined as an

extension of Boolean logic that indicates whether an object belongs to one set or

another. However, unlike Boolean logic, fuzzy logic can give the membership of an

object to more than one set to varying degrees ranging from [0,1] [30]. In Figure

7a. It is observed how the Boolean logic classifies the pixels of an image in black or

white; Opposite case of the Figure 7b. where fuzzy logic classifies the pixels in an

image so that they are not black or white, but rather have different degrees of gray.

Figure 7: Representation in tree form of an operation.

The elements that fuzzy logic needs to be able to give membership to an object

are described below [31]:

• Fuzzy Sets: Formalize linguistic expressions. These expressions define the

degree of ambiguity such as: "Very little," "Little," "Medium," "Much," etc.

This degree of ambiguity mathematically can be given from [0-1], with 1 being

the largest membership and 0 that the element does not belong to the set.

Fuzzy sets perform operations to calculate this ambiguity, the most used are:

union, intersection, and complement.

• Membership functions: They serve to express fuzzy sets and quantify imprecise

and subjective words. Membership functions are made up of:
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– Height of a fuzzy set (height): The largest value of its membership

function:supxεXH(X).

– Normalized Fuzzy Set (normal): If there is some element xεX, such

that it belongs to the fuzzy set totally, that is, with degree 1, Or also,

that:Height(H) = 1.

– Support of a fuzzy set (support): Elements of X that belong to H with a

degree greater than 0: supp(H) = {xεX|H(x) > 0)}.

– Nucleus of a Fuzzy Set (core): Elements of X that belong to the set with

degree 1:Core(H) : {xεX|H(x) = 1)}

Logically,Core(H) ⊆ supp(H)

– α-Cut(cut): Values of X with degree minimum α:Hα = {xεX|H(x) ≥ α}

Figure 8: Membership role structure.

• Fuzzy Rules: It is a set of propositions with the IF-THEN expression by de-

fault. These rules express the relationship between the different sets and are

represented in logical implications. Fuzzy rules have to be created as follows:
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If X is A then Y is B

Being A and B fuzzy sets are defined in X and Y ranges.

• Fuzzy Inference: It is the process of obtaining output for a fuzzy input value.

There are two models to carry out this process: Mamdani and Takagi, Sugeno.

Fuzzy logic is used to solve problems where Boolean logic is not a viable option;

a clear example of this is medical images as they may contain tissues that do not

always belong to a specific type of tissue as there may be a combination of different

tissues.

2.4 Breast Density

Breast density is defined as the ratio of fibroglandular tissue and fatty tissue found

within the breast of women. Fibroglandular tissue is made up of ducts and lobes

[6]. Breast density is studied using mammography, a technique that obtains a flat

image of the breast using X-rays. This technique seeks to visualize the lesions found

within the breast and to study breast density, and its relationship with developing

breast cancer [32]

In a mammogram, fibroglandular tissue is seen as white areas because its at-

tenuation coefficient is radiologically dense and blocks X-rays; on the other hand,

adipose tissue has a minimal attenuation coefficient, which is why it is observed in

mammography as dark areas [33], this representation can be seen in Figure 9 b.
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Figure 9: a) Breast compositions, b) Breast density in mammography.

The percentage of breast density is the ratio of fibriglandular tissue to the total

surface of the breast. This means that when a breast has more fibroglandular tissue

than adipose tissue, it is defined as high density. On the contrary, when the adipose

tissue covers more of the breast, it is defined as low density [34]. An example of

these two cases can be seen in Figure 10.

Figure 10: a) Breast density low in mammography, b) breast density high in mammogra-

phy.

Breast density is an essential factor in different diseases diagnosis, including

breast cancer, since there are studies that affirm that before breast cancer develops

(cancerous nodules), there is a change in breast density, first decreasing and then
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gradually increasing [33].

For that reason, there are standards that are used to classify and study the

relationship of breast density to breast cancer. These standards have been developed

by physicians in different parts of the world. These standards can be qualitative or

quantitative, where the qualitative ones classify breast density with regards to tissue

distribution and shape. Quantitative standards only focus on the amount of tissue

and fat found within the breast. Some of the best-known standards are:

• Wolfe: Classifies breast density depending on the morphology of the breast

tissue. In other words, it is classified qualitatively [35].

• Boyd: It focuses on classifying breast density depending on the percentage of

existing tissue and fat. Therefore its classification is quantitative [36].

• Tabar: Its classification is qualitative depending on the linear patterns of tissue,

homogeneous tissue that does not contain a specific structure [37].

• Breast Image Reporting And Data System (BI-RADS): The classification is

both quantitative and qualitative [38].

Although they all have different qualities, the so-called gold standard is the

Breast Image Reporting And Data System (BI-RADS). In addition to its quantita-

tive and qualitative classification, it also classifies anomalies found, such as nodules

or microcalcifications.
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2.5 ACR-Breast Image Reporting And Data System (BI-RADS)

The Breast Imaging Data and Reporting System (BI-RADS) standard is the most

widely used manual by clinicians for analyzing breast density. It is the only one ap-

proved by doctors worldwide since it allows quantitatively and qualitatively breast

density classification. In addition to categorizing breast density, the BI-RADS stan-

dard also classifies items that do not match breast tissue, such as nodules, calcifica-

tions, and breast asymmetry [38].

Figure 11: Representation of the classes ACR BI-RADS.

BI-RADS has excellent diagnostic quality, making it the gold standard. Us-

ing the same terminology and exact words in each class facilitates communication

between physicians, radiologists, and patients by standardizing the description of

breast lesions. It is worth mentioning that the BI-RADS classification is performed

on mammographic images.

BI-RADS is a manual that is divided into four different sections [39]: (i) Lex-

icon, is where the findings are described through images: these findings are the

abnormalities found in addition to the different types of breast density; (ii) this

section provides a detailed description of how to report findings found in mammog-

raphy; (iii) lays the foundation for imaging diagnosis and monitoring; (iv) the last
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section provides forms, as well as guidance or information that may be of use to the

specialist who will be available to make a diagnosis. The Bi-RADS classification is

mandatory for breast cancer diagnosis, treatment and monitoring.

Breast density classes are given in ACR BI-RADS as breast density without

including any abnormality description.The classes that ACR BI-RADS handles are

shown and described in the following Table 2.5.

Table 1: Classes and description of breast density according to ACR BI-RADS [40]

.

Class Description

A The breast consists almost entirely of fat.

B The breast tissue is dispersed in the breast.

C
The tissue is more heterogeneous and occupies more space within

the sinus.

D The tissue occupies almost the entire breast area
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3 State of the art

This section discusses work related to the main topics of this technical report, which

are genetic programming (GP) for image segmentation, fuzzy logic combined with

evolutionary algorithms, and breast density classification.

3.1 GP for image segmentation related work

In the work of J. Liang et al.[41], three different structures were used to segment

images based on GP, using primitive operators (filters). The proposed method was

divided in three main stages: 1) images pre-processing, 2) segmentation, 3) post-

processing. Weizman’s image data set was used for empirical validation. It contains

images of aircraft and horses. The functions set contained a) arithmetic operators

(filters and a threshold operator) and b) morphological operators (Laplace, image

histogram, Gaussian filter, histogram equalization, among others). The F1 metric

as the testing accuracy was set as the objective function. F1 is used to combine the

precision and recall measurements into a single value. The best result obtained in

the GP work reaches an F1 of 0.57+-0.035.

J. Liang et al. [42] created a method for feature construction and selection

with GP. This algorithm carries out the evolution of subtrees that create multiple

simultaneous characteristics for the segmentation of images at the pixel level (classi-

fication of pixels). The algorithm randomly captures a series of pixels in images for

training. Training guarantees the same number of pixels for objects and background.

It is worth mentioning that the characteristics selected by the GP are from low and

half level. The Fitness function used is the accuracy to observe that pixels are clas-

sified correctly with those characteristics selected by the GP. The result obtained is

a significant reduction in the number of features compared to the state of the art

while maintaining a similar performance, reaching an accuracy of 83.13% + -0.60.
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In Liang et al.[43], This is an extension of the work of Ling [44]. Therefore they

penalize the complexity of the solutions with the help of multi-objective techniques

and Pareto force evolutionary algorithms for image segmentation. The terminal set

of the program will be the characteristics of the image pixels instead of raw pixels.

Features are 320 from Gabor. For the set of functions, arithmetic and conditional

operators are used. For the evaluation, used the measure F1. Several experiments

were carried out with the different databases. The highest F1 reached by the genetic

program was with the Brodatz database, with an F1 of 0.94.

In Liang et al. [45] proposes an image segmentation method that separates

the object from the background using GP. GP works as a feature selector to classify

image pixels into two classes (background or objects). The set of functions is stan-

dard arithmetic operators and five conditional operators. The set of terminals is the

texture, brightness, shape, and color of the image. The fitness function is measured

by the precision obtained from the classification of the pixels in the image. The

result was a significant reduction in the number of characteristics and an accuracy

of 75.40%.

In Liang et al. [44], a new solution for complexity and size penalization of

solutions and new image segmentation methods for object and background separa-

tion within images are developed. Standard arithmetic operators and conditional

operators, all of which are low-level, are used for the function set. The terminal set

is the pixels of the images, so the segmentation, like the aforementioned works, is

based on pixel classification. The fitness function is based on the accuracy of pixel

classification. To determine the solution complexity, the weighted sum together with

the accuracy obtained in the fitness function penalizing the size of the solutions is

used to adjust the fitness evaluation of the solutions. The experiments were per-

formed on two databases. The first is for Weizmann images, obtaining an accuracy

of 98.0%; for Pascal images, obtaining an accuracy of 95.0%.
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In Meng et al. [46], previous work, texture is also used to perform a fully

automated algorithm that segments the corpora lutea of other objects in ultrasound

images using GP. The set of functions used are operations: −, max, >, <. The

texture classifier to evolve is a Local Binary Pattern (LBP). The fitness function used

to guide the search was the classification accuracy. It should be noted that this fitness

measure was used because segmentation was based on pixel-to-pixel classification.

The result of the developed algorithm was a accuracy of 86.93%.

Figure 12: Images of Bovine Luteal Ovaries in ultrasound images [46]

.

Singh et al. [13] developed a method for medical images segmentation based

on GP. This work uses two types of input images: original cells images (Figure 13)

and binarized images of the same size and format. The binarized images are used to

train the algorithm; medical experts proposed the threshold selected to binarize the

images. The operators used to evolve the GP are basic arithmetic operations, mor-

phological operations, and image segmentation filters. Image segmentation is based

on a pixel-by-pixel classification, so the objective function is the accuracy. Binarized

images by the expert were treated as the ground truth for pixels classification. As a

result, a 98.76% accuracy was obtained.
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Figure 13: Image representation of Singh’s work [13].

In [47] texture classifiers were evolved with GP for image segmentation. The

algorithm performs image segmentation by evolving texture classifiers without ex-

tracting additional characteristics but the texture. The testing data were satellite

images. This process was supervised, so the input images are already previously

tagged by experts. The set of functions for the GP was formed by basic arithmetic

operations (+,−−,∗,/). The set of terminals were image pixels. The fitness func-

tion was defined as the texture classification accuracy achieved by the GP. Texture

classifiers evolved in this work were two Bitmap textures and Brodatz textures. An

accuracy of 97.48% was achieved.

In [48] GP was used for the segmentation of histological skin images. The set of

functions used in this work consists of morphological operations, logical operations,

region intensity functions, edge filtering, thresholds for the set of terminals of the

input images, and numerical pixel values. The fitness function was defined by the

specificity and sensitivity measures while having a balance between true positives,

true negatives, false positives, and false negatives. The results achieved were 97%

for sensitivity and 81% for specificity.

In Poli et. al.[8], effective filters and optimal thresholds are selected to extract

features from magnetic resonance images, which will try to segment the brain. In

this work, arithmetic operations and macros that allow the construction of filters

are used as a set of functions. The set of terminals are the image pixels, so it is a

segmentation based on pixel classification. The fitness function that is used is based

on a symbolic regression that is the sum of the absolute errors made by the program
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for all the pixels of the images. Finally, the results obtained by genetic programming

are compared with a neural network, obtaining similar results, proving that genetic

programming is a potential tool to develop algorithms for image segmentation.

Although the works mentioned give good image segmentation results, they

have the disadvantage that the images evaluated in some of the works do not have

the complexity observed in mammographic images. Another disadvantage is that

the search for solutions is a slow process because the evaluation of individuals with

traditional aptitude functions is a long process. Although there are also works in

the state of the art that use mammography images only try to classify the images

into cancer and cancer-free. But so far, no genetic programming work has been

found that uses mammography images to try to segment the different tissues and

fat within mammograms. This is due to the nature of mammography, where it isn’t

easy to detect the transition from one tissue to another because there are patterns

of tissue combination. This segmentation problem makes the classification of breast

density not as good as doctors would like for the early diagnosis of breast diseases.

Therefore, this work seeks to solve the limitations of the aforementioned works.

3.2 Fuzzy logic with evolutionary computation

The work of Shashwati et al. [49] describes an approach to medical image segmenta-

tion where a genetic algorithm is combined with fuzzy logic; This technique is based

on finding the optimal values of various thresholds for magnetic resonance imaging.

In this work fuzzy logic is used as an objective function to find the most suitable

individuals to solve the problem. The objective function is called the fuzzy fitness

function; This function calculates the entropy using the probability obtained by ap-

plying certain fuzzy membership functions. Membership functions give values that

are used separately to find the entropy of the image and indicate the fitness value of

each individual. With the fuzzy fitness function used in this work, the search time
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Table 2: GP for image segmentation related work

Work Function sets Segmentation type Fitness function Results

J.Linag,

2020

Arithmetic operators

Morphological operators
Full image F1 0.57

J.Liang,

2020

High level features

Low level characteristics

Classification of

pixels
Accuracy 83.13%

Liang,

2019

Arithmetic operators

Conditional operators

pixel

characteristics
F1 0.94

L. YuYu,

2017

Arithmetic operators

Conditional operators

Classification of

pixels
Accuracy 75.40%

Liang,

2016

Arithmetic operators

Conditional operators

Classification of

pixels
Accuracy 98%

Meng,

2013

Algorithm’s of Texture

−,Max,>,<

Classification of

pixels
Accuracy 86.93%

Singh,

2009

Arithmetic operators

Morphological operations

Segmentation filters

Classification of

pixels
Accuracy 98.76%

Song,

2008
Arithmetic operators Full image Accuracy 97.48%

E. Mark,

2003

Logic operators

Morphological operators

Filters

Full image
Specificity

Sensitivity

97%

81%

Poli,

1996

Arithmetic operators

Macros

Classification of

pixels
Symbolic regression —%
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was reduced and the accuracy of the genetic algorithm was competitive with the

state of the art.

In Cruz et al. [50], is used as a fitness function in conjunction with a genetic

algorithm. However, unlike the other works, in this case, fuzzy logic is used to

generate fuzzy granules and thus reduce the fitness evaluations of individuals. Dif-

fuse granulometry avoids the use of multiple fitness assessments in individuals with

similar characteristics. The results of this work are the reduction of evaluations by

approximately 80%, significantly reducing the processing time to find the optimal

solution.

In Basabi et al.[51], a genetic algorithm is combined with a fuzzy fitness func-

tion to find optimal characteristics for image classification. The fuzzy fitness function

tries to find intraclass and interclass ambiguity. Ambiguity is calculated with fuzzy

entropy of the classes considered as fuzzy sets. If the intraclass ambiguity is minimal

and there is a maximum interclass ambiguity, it is considered that the individual has

the best trait for solving the problem. The fuzzy fitness function is calculated using

the following Equation 1, which represents the ratio of the ambiguity values of the

classes (fuzzy sets) represented by a set of characteristics 1, 2, . . . , q instead of just

the characteristic q. The classification results with the characteristics extracted from

the genetic algorithm were of accuracy of 97.5%.

The work of Bhandari et al. [52], As in previous works, combines a genetic

algorithm with fuzzy logic for image enhancement; it tries to automatically select an

optimal set of 12 parameter values from a generalized image enhancement function.

Fuzzy logic was used as an objective function based on the fuzzy entropy and the

area coverage index, these factors are taken as quantitative indices to evaluate the

image quality.
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FSEIj =
d(1, 2, ..., q),j +d(1, 2, ..., q),k

d(1, 2, ..., q),jk
(1)

In the works reviewed in the state of the art, we can observe that fuzzy logic

in conjunction with genetic algorithms is a tool that can obtain promising and com-

petent results with the state of the art. Fuzzy logic is used in different ways as

an objective function in the works and in most of these, it has the advantage of

being less heavy so that finding the optimal solution is faster than techniques with

a conventional objective function. Since the efficiency of fuzzy logic as an objective

function of genetic algorithms has been proven; In this work, we will try to integrate

them with genetic programming since so far no job has been found to do it.

3.3 Breast density classification related work

A number of previously proposed approaches for breast density classification have

been developed considering other algorithmic approaches. Although good results

have been achieved, the proposed algorithmic approach based on genetic program-

ming lead by a fuzzy fitness function aims at improving reported results. Next,

related works are analyzed.

In the work of Deng et al. [53], a database of digital mammograms obtained at

the "First Hospital of Shanxi Medical University" was used, containing 18,157 mam-

mography images, all classified into the different BI-RADS classes. The classification

for comparison of results was performed manually by several specialized radiologists.

The methodology is based on the following steps: first, the image was segmented by

removing the background and the pectoral area of the breast. This process was per-

formed manually. Then enhance the image with some image processing techniques

such as image whitening. Then extracted the feature vector. Finally, the breast

density was classified with a convolutional neural network (CNN) based on the four
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categories of the BI-RADS standard: A class which is mainly fat with less than 25 %

tissue within the breast, B sparse breast tissue with a percentage of 25- 50 % breast

tissue, C heterogeneously dense tissue and 50-75 % breast tissue. Finally, there is

class D, where the tissue covers almost the entire breast or has a percentage of tissue

more significant than 75 %. The overall percentage of classification obtained in this

work is 92.17% accuracy.

E. Matsuyama et al. [54], segmented the mammograms manually with the

help of an expert who separated the breast from the fundus and the pectoral area,

then used a convolutional neural network (CNN) model obtained from the AlexNet

article [55], Matsuyama uses the AlexNet model to generate a new CNN network, for

the extraction of features, the information of the spectral image of the mammogram

obtained with the Wavelet transform is used, the work obtains a percentage of 88.3

% accuracy. However, it does not make use of the BI-RADS classification but in-

stead creates and classifies into the following categories; a) sparse density (benign),

b) sparse density (malignant), c) heterogeneously dense (benign), and d) heteroge-

neously dense (malignant). The database used for this work is DICOM, obtained

from The Cancer Imaging Archive (TCIA) and composed of 1170 mammography

images that were manually labeled and segmented by an expert radiologist.

The work of A. Rampun et al. [56], is based on the segmentation of mam-

mographic images where the breast and the pectoral area are separated using the

method of Rampun’s [57] work in which, utilizing active contours, he estimates the

limit of the breast and with the growth of regions he estimates the pectoral area.

For the extraction of the patterns, a 3X3 window was used. The operators that

were selected and defined as the vector of characteristics were: local binary patterns

(LBP), local ternary patterns (LTP), local quinary patterns (LQP), and local septe-

nary patterns (LSP). The set of patterns that would have the greatest significance

when classifying was then selected; for breast density classification, it was classified

into the four BI-RADS classes using a support vector machine (SVM) classifier with
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an accuracy of 83.3% was obtained. The databases used in this work were: MIAS

and InBreast.

In I. Valencia [58], breast density is classified with a Takagi-Sugeno type clas-

sifier, obtaining an overall accuracy of 84.20%. The classification is based on the

BI-RADS standard. Therefore, the classes are A, B, C and D. The segmentation

of the breast is performed by thresholding with Otsu, which separates the objects

found on mammography (fundus, pectoral and breast). Subsequently, an area crite-

rion is taken into account to select the most significant and rounded regions of the

image, which is the breast area. In the article by D.

Stylianos[7], the image is segmented giving orientation to the breast, this means

that all mammograms are normalized so that they have the same orientation in this

case the pectoral area has to be in the upper left corner of the image, the change

of orientation is so that the image segmentation can be carried out automatically,

later the breast is extracted from the pectoral area and finally, filtering techniques

are applied to improve the image, once the image is segmented the characteristics

vector is extracted, some of the characteristics include: the mean and variation of the

intensity values of the back area, the intensity of the pixels in the tissue area. For the

classification of breast density, a vector support machine classifier (SVM) was used

where precision of 84.47% is obtained, the classes obtained are Fat (F), fat-glandular

(G) and dense glandular (D). The database used for this work is miniMIAS, which

contains 161 images from analog mammograms and subsequently digitized.

In the article by D. Stylianos et al. [7] the image is segmented giving orientation

to the breast, this means that all mammograms are normalized so that they have the

same orientation in this case the pectoral area has to be in the upper left corner of

the image, the change of orientation is so that the image segmentation can be carried

out automatically, later the breast is extracted from the pectoral area and finally,

filtering techniques are applied to improve the image, once the image is segmented
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the characteristics vector is extracted, some of the characteristics include: the mean

and variation of the intensity values of the back area, the intensity of the pixels in the

tissue area. For the classification of breast density, a vector support machine classifier

(SVM) was used where precision of 84.47% is obtained, the classes obtained are Fat

(F), fat-glandular (G) and dense glandular (D). The database used for this work is

miniMIAS, which contains 161 images from analog mammograms and subsequently

digitized.

In Table 3.3 comparison of breast density classification papers is observed.

Most of the papers have a good classification; however, some are not based on the

BI-RADS standard. This is a problem since there is not an easy and homogeneous

interpretation for physicians and patients. In addition, the works that classify the

different tissues observed in mammograms have low accuracy, which can improve this

accuracy percentage. Therefore, it is important to identify how the breast tissue is

distributed within the breast to detect changes in breast density, which is intended

to alert the radiologist to the change in density so that he can observe and define

whether the change could have serious consequences, such as the development of

breast cancer or another type of breast disease.

29



Table 3: Related works chart.

Work
Tecnique

semgentation

Clasificator/

Accuracy
Clasification Database

I.Valencia,

2021 [58]

-Otsu

-Area criterion

Takagi-sugeno

84.20%
-BI-RADS

Breast Cancer

Digital Repository

(BCDR)

J. Deng,

2020 [53]

-Segmentation

manual

-Grayscale

transformation.

-Random cropping

and angle rotating

-Image whitening

CNN

92.17%
-BI-RADS

First Hospital of

Shanxi Medical

University

E.

Matsuyama,

2020 [54]

-Segmentation

manual

CNN

88.30%

-Disperse density

(benign)

-Disperse density

(malignant)

-Heterogeneously

dense (bening)

-Heterogeneously

dense (malignant)

The Cancer

Imaging Archive

(TCIA)

A. Rampun,

2020 [56]

-Active Contours

-Pixel-wise

multiplication

SVM

80.02%
-BI-RADS

Mammographic

Image Society

(MIAS)

D. Stylianos,

2011 [7]

-Row and column

interface

-Thresholding

-Iterative cliff

detection

SVM

84.47%

-Fatty (F)

-Fatty Glandular (G)

-Dense Glandular (D)

Mammographic

Image Society

(MIAS)
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4 Research Proposal

This section will describe the problem statement, research questions, hypotheses,

general and specific objectives, limitations of the work, contributions, and describe

the steps we will follow during the proposed research methodology.

4.1 Problem Statement

Segmentation in image analysis is a major problem in computer vision. Image seg-

mentation is a task that attempts to group pixels that belong to one region or

another. Although there are many good techniques for image segmentation, the

problem remains open because not all methods are suitable for all types of images.

One of the problems that remain open is the segmentation of mammograms

for breast density classification, where segmenting fat tissue is a difficult task due to

the nature of mammograms where we can observe areas where there are combined

pixels (combination of adipose tissue and fibroglandular tissue).

Correctly segmenting a mammogram generates a good breast density classifica-

tion since the gold standard ACR Breast Image Reporting And Data System (ACR

BI-RADS) is based on the distribution of the breast tissue and the fat found in the

breast. Therefore, it is important to have a good segmentation of tissue and fat on

the mammogram to obtain a description of the distribution of the breast tissue for

a correct classification of breast density.

Traditional methods that segment mammography images for subsequent classi-

fication cannot differentiate pixels belonging to one or the other group in the case of

a combination of tissues (combined pixels). Furthermore, the segmentation methods

tested in the state of the art have no way to verify that they are optimal for breast

tissue segmentation. Therefore, this doctoral research proposes a method based on
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genetic programming with fuzzy fitness function for segmenting breast tissues, even

if they are combined.

4.2 Research Questions

• Can Genetic Programming integrated and adapted to be guided by fuzzy fitness

functions evolve competitive state of the art image segmentation models for

mammographic images?

• What is the best abstraction level for solutions representation in Genetic Pro-

gramming to tackle images segmentation of mammographic images?

• How can a fuzzy fitness function be generated to guide the genetic program-

ming search of a segmentation algorithm for breast density?

• What are the most appropriate evolutionary operations according to solutions

representation and population dynamics in Genetic Programming for mammo-

graphic images segmentation ?

• What is the most suitable set of functions and terminals to generate an optimal

segmentation model for breast density?

4.3 Hypothesis

Integrating genetic programming with a fuzzy logic-based fitness function could guide

the search for a segmentation method for the different breast tissues visualized in

mammography images to generate a quantitative and qualitative breast density de-

scription based on ACR Breast Image Reporting And Data System (ACR BI-RADS),

increasing the classification of breast density compared to state of the art.
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4.4 General objective

Design and develop a fuzzy logic based fitness function that can integrate into a

genetic programming algorithm to generate a breast density segmentation method

capable of efficiently differentiating the different breast tissues found in mammogra-

phy images and generating a quantitative and qualitative description of these based

on the ACR BI-RADS standard.

Specific objectives

• Select strategic and terminal set representation functions for Genetic Program-

ming considering the challenges involved in mammographic image segmenta-

tion.

• Select custom genetic operations for the representation of proposed solutions

to improve GP search capabilities.

• Design and develop a fuzzy fitness function that incorporates the strengths of

fuzzy logic elements to improve tissue discrimination in mammography.

• Design an optimal experimental setup for the proposed algorithm to reduce

the high computational cost involved in evolutionary algorithms.

• Validate the proposed algorithmic approach for mammography image segmen-

tation by considering standard benchmarks used in medical and computer sci-

ence communities.

4.5 Scope and Limitations

• This paper proposes a segmentation scheme for breast tissue segmentation

in mammographic images based on Genetic Programming using a fuzzy logic

fitness function.
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• Only Genetic Programming will be explored as the algorithmic technique to

build a mammography image segmentation model.

• Breast tissue (adipose tissue and fibroglandular tissue) will be segmented and

described from the breast density database to be used, so no cancerous nodules

or microcalcifications will be segmented.

• A classifier for breast density will be used only to check that the images seg-

mented with the selected method by genetic programming and fuzzy logic

match the description of the ACR BI-RADS standard without using other

characteristics than those described in that standard.

4.6 Expected Contributions

As a result of this thesis, the following items are expected to be completed:

• To develop a fuzzy logic-based fitness function that works with genetic pro-

gramming for mammogram segmentation.

• A mammogram segmentation model based on GP that integrates fuzzy logic to

improve the state-of-the-art performance of previously proposed segmentation

algorithmic techniques.

• An image analysis system for determining mammogram tissue density accord-

ing to the ACR BI-RADS standard.

• A detailed study on the interpretability of the ACR BI-RADS standard in

the medical community and how its criteria may influence the development of

algorithmic techniques to assist as diagnostic support tools.
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5 Methodology

This subsection presents the methodology for this research proposal.

1. A review of the state of the art of different works in image segmentation with

genetic programming will be carried out, also in works where fuzzy logic is

used as a fitness function in an evolutionary computation approach and works

in the field of classification and segmentation of mammography images.

2. Mammography images will be preprocessed to be tested in the genetic pro-

gramming algorithm. We plan to remove the background and the pectoral

area to obtain only the breast and avoid noise when generating the breast

tissue segmentation model.

3. Selecting the terminal sets and functions for the genetic programming algo-

rithm is essential to exploring the search space and finding the appropriate

segmentation method for the breast tissue.

4. A fitness function will be designed based on the properties of fuzzy logic that

is suitable to be integrated with genetic programming and generates a suitable

segmentation method for mammary tissues.

5. A study will be carried out to select the values to be used in the different

parameters that make up genetic programming.

6. The proposed genetic programming algorithm with fuzzy fitness function will

be validated using the images generated by the segmentation method selected

by the said algorithm. The ACR BI-RADS characteristics will be extracted

from the segmented images for subsequent classification and comparison with

state of the art.

7. The algorithm will first be tested on two datasets: the Breast Cancer Digital

Repository (BCDR), which has a collection of 1010 mammography images.
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The images were analyzed and labeled based on BI-RADS by a group of expert

radiologists. In addition, the Mammographic Image Analysis Society (MIAS)

dataset contains 322 mammography images labeled and evaluated by expert

physicians in the United Kingdom. An example of the images from the BCDR

dataset.

Figure 14: General methodology.
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6 Preliminary Results

In Subsection 5.1, the extraction of the breast area is describes, removing the pectoral

region and the labels placed by the radiologists found on the mammograms.

In Subsection 5.2, the initial experiments with GP for mammograms segmen-

tation are details. Our experimental designs consists of the following experiments:

• The first experiment modified the genetic programming toolbox for breast tis-

sue segmentation. The first test was performed with general image processing

operations for segmentation, such as histogram equalization and contrast en-

hancement, among others. These operations were used as input functions to

the genetic program to generate the segmentation method. In this experiment,

accuracy was used as a function of the fitness that qualified the individuals in

each population.

• For the second experiment, the set of input functions was modified using more

specific operations described in the state-of-the-art for breast tissue segmen-

tation, such as homogeneity, correlation, and local binary patterns, among

others. The fitness function was changed to be more consistent with image

segmentation. The fitness function used to evaluate individuals in this exper-

iment was the Jaccard index.

• The last experiment was based on generating a new fitness function using fuzzy

logic. The new fitness function is based on three evaluation metrics used in

image processing Jaccard Index, Signal to Noise Ratio (SNR), and F1 measure

that are combined with fuzzy logic. This last experiment aims to verify that

fuzzy logic can be used as a fitness function in a genetic program. It is worth

mentioning that in this experiment, we used the same set of functions as in

the previous experiment.
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Results from experiments 2 and 3 were compared in order to assess the effec-

tiveness of integrating fuzzy logic in the fitness function that leads the search for the

mammogram segmentation model.

6.1 Mammogram images preprocessing and labeling

Mammographic images were obtained from The Breast Cancer Digital Repository

database. Before entering the genetic programming algorithm, these images are

preprocessed to remove the pectoral area and the labels placed by the radiologist

that can generate noise during segmentation. The pectoral area is not used since

only tissue and fat found in the chest are of interest. In this process, the pectoral

area is not used since it is only interested in segmenting the tissue and fat of the

breast. An example of labels and the pectoral area can be seen in Figure 15, where

the areas marked in red belong to the pectoral area and the labels placed by the

radiologist.

Figure 15: Mammogram images containing labels and pectoral area.

For the experiments carried out, 376 mammograms were preprocessed, which

are divided into the different classes of ACR BI-RADS. The distribution can be seen

in the Table 6.1.
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Table 4: Mammograms used in experimentation.

Class ACR BI-RADS Description Num.Mammograms

Class A
The breast is composed almost

entirely of fat, with <25% fibroglandular tissue.
94

Class B
Breast tissue is scattered throughout the breast,

26-50% fibroglandular tissue.
94

Class C

The fabric is more heterogeneous and occupies

more space inside the breast, from 51 to 75% of

fibroglandular tissue.

94

Class D
The tissue occupies almost the entire breast area,

>75% fibroglandular tissue.
94

Thresholding was applied to the image and thus be able to better observe the

blobs within it. Objects smaller than 1000 pixels were selected and eliminated with

an area criterion. In the case of mammograms, the objects with such dimensions are

labels and noise in general in the image. An example of this process can be seen in

Figure 16.

Figure 16: Procedure to remove labels and noise in general from the image: a) Original

image, b) Thresholded image, c) Objects smaller than 1000 pixels are removed, d) Results.

In order to extract the pectoral area of the breasts, the images were placed in

the same horizontal direction since not all mammograms come in only one direction.

Some breast were attached to the right side and others to the left; this made it
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difficult to extract the pectoral area. Therefore the breast were glued to the left side

for better manipulation.

Once all images were in the same direction, they were rotated 30◦ to be able to

make a straight cut that will eliminate the pectoral area. After making the straight

cut, the image is returned as it was previously, leaving the image with only the

breast area. The turning and cutting process can be seen in the Figure 17.

Figure 17: Extraction process of the pectoral area: a) original image, b) rotated image, c)

rotated image 30◦, d) image result without pectoral.

They selected 75 previously preprocessed mammography images for training.

The image used was 19 of each ACR BI-RADS class.

Fibroglandular tissue patches and fat were extracted from the selected images

for training. The patch extraction process was performed with the MATLAB Image

Labeler application [59]. This application allows to label regions of interest to extract

important areas and train or validate algorithms.

The labeling process is carried out manually, so in this case, only the areas

known as fibroglandular tissue or fat were labeled; An example of the process can

be seen in Figure 18, where two marked areas are observed, an orange area is tissue

and blue area blue is fat. Both areas are labelled as 1 and 2, where 1 is fat and 2 is

tissue.
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Figure 18: Fat and tissue patch extraction process: a) original image, b) manually labeled

image, c) segmented image.

6.2 GP experimental setup

In this first experiment, we explore and become familiar with the genetic program-

ming algorithm for mammography image segmentation. This experiment also aims

to verify that genetic programming can first segment mammograms into two classes,

breast tissue, and fat.

We started working with genetic programming and mammography images. We

used the GPLAB toolbox for Matlab, which was modified to be able to use the im-

ages as our set of terminals. Once GPLAB was modified, the set of terminals was

determined, which consisted of 16 mammography images for segmentation and 16

previously manually segmented mammography images, which would serve as back-

ground.

Subsequently, the operations that would constitute the set of functions for

the genetic program were selected. Most of these operations are generally used for

image segmentation, and we also use arithmetic operations Table 5. The fitness

function used for this experiment was accuracy. The images used as ground truth

are compared with the images segmented with the segmentation method generated

by the genetic program, and the accuracy of this comparison is obtained. Other
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elements of genetic programming such as population size, number of generations,

tree size constraints, crossover, and mutation were used as they were by default in

GPLAB.

Table 5: Set of functions used for the first experiment.

Functions Operations

Arithmetic operators ∗,/,+,−

Image processing operations

Threshold, Edge Detector, Gaussian Filter,

Laplacian Filter, Image Complement, Contrast,

Histogram Equalization.

In the experiment with 16 mammography images, it was observed that the

genetic program performed the tissue and fat segmentation acceptably, obtaining an

accuracy of 67.52%. However, the accuracy of the fitness function can be improved by

using another metric to qualify the image segmentation. Therefore, once the results

of the first experiment were observed, we carried out other experiments with other

types of operations for the set of functions, and the fitness function was changed, in

addition to using a set of larger images to test the algorithm of genetic programming

better.

6.2.1 Experiment 2: Jaccard index as a fitness function

For the second experiment, we proposed to use a fitness function more specific to

image processing to evaluate the individuals in the genetic program. The measure

used for this experiment was the Jaccard index. It measures the similarities between

sets to evaluate the correct classification between two binary images, A and B.

Therefore, the Jaccard Index is defined in Eq. 2

JI =
TP

TP + FP + FN
(2)

42



Where the TP are the true positives, or those pixels marked as 1 in A and B.

FP false positives or those values marked as 1 in A and 0 in B. And FN the false

negatives between A and B, being 0 in A and 1 in B.

In the case of this experiment, mammogram images already processed with

the method selected by the genetic program were used as the A element. For the B

element, we used manually segmented images of each input image.

The used set of functions more specific operations that gave good results in

state-of-the-art breast density segmentation. Among the selected operations are

filters, morphological operations, and arithmetic operations. The complete set of

functions used is shown in the Table 6.

Table 6: Functions set for GP
Set of functions

Morphological operations Image enhancement features

Erosion Subtraction

Dilatation Histogram equalization

Opening Image intensity

Lock Entropy

Top Tophat General texture

Tophat bottom Edge detection

Connectivity Co-occurrence matrix with window of 3,5

Region fill Co-occurrence matrix with window of 7,9

Perimeter of images Co-occurrence matrix with window of 15

The terminal set consists of 75 mammography images and their respective

manual segmentation. Therefore, the terminal set consists of 150 images. Manual

segmentation separates breast tissue and fat. These segmented images are used

for the fitness function of the Jaccard index to evaluate the individuals. Genetic

programming is a stochastic algorithm. Therefore, several experimental samples
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are required to demonstrate their robustness. For the initial empirical evaluation,

5 runs of the proposed algorithm were performed. The GP configuration is shown

in the Table 7. Genetic programming is a computationally expensive algorithmic

technique, so in this initial phase of the research, small population size and number

of generations were set as stopping conditions. The rest of the parameters were set

according to a standard GP.

Table 7: Running parameters of GPLAB to perform the experiments.

Population size 50 individuals

Generations 50 generations

Initialization 6-depth full initialization

Operator probabilities crossover = 0.5, mutation = 0.5

Bloat control 17-depth limit

Selection Lexicographic tournament of size 5

Elitism in parents selection Keep best individual

As a result of this experiment, in addition to the segmented mammogram im-

ages, a segmentation method represented as a tree given by the genetic program

was obtained. The segmentation method generated by each run of the genetic pro-

gramming algorithm was tested with 300 more mammography images. One of the

results of this segmentation can be seen in the Figure 19, where four mammograms

can be observed, each corresponding to each ACR BI-RADS class. The yellow areas

correspond to tissue, and the green areas to fat.

Based on the results obtained from the breast tissue segmentation from the

300 images, breast density classification was performed by extracting the tissue and

fat characteristics described in the ACR BI-RADS. This proved that the different

breast tissues could be selected and classified using the methods generated by genetic

programming. A Support Vector Machine (SVM) classifier was used for classifica-

tion. It is worth mentioning that the mammography images are already labeled with
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Figure 19: Segmented mammography with the method generated by genetic programming

with fitness function Jaccard Index.: a) original image and segmented image of class A, b)

original image and segmented image of class B, c) original image and segmented image

of class C, d) original image and segmented image of class D.

their respective ACR BI-RADS class given by experts. Therefore, the labels were

the validation of the classifier. The classification results can be seen in the Table 8.

Table 8: Results of breast density classification with fitness function Jaccard Index.

Number of runs Population size Number of generations Accuracy

1 50 50 75.00%

2 50 50 74.05%

3 50 50 76.70%

4 50 50 75.21%

5 50 50 75.50%

Mean 75.29%

6.2.2 Experiment 3: Fuzzy fitness function

In the last experiment, we changed the fitness function to explore our possibilities

with fuzzy logic as a fitness function. Therefore we generated a fitness function based

on fuzzy logic to observe how it behaves in combination with genetic programming.

The fitness function is based on the combination of three metrics used in image

processing that rate how well the segmentation of an image is performed. The

45



metrics that combined were the Jaccard index already explained above, and the

other metrics are described below:

• Signal to Noise Ratio (SNR) is used in image processing to characterize the

quality of an image mathematically expressed in the Equation 3 where µsing is

the mean value of the signal and σsing is the standard deviation of the signal

SNR =
µsing

σsing
(3)

• F1 measure is a combination of precision measurement and recall in a single

value is mathematically expressed in the Equation 4

F1 = 2 ∗ precision ∗ recall
precision+ recall

(4)

The three metrics were integrated into a fuzzy model to generate a single

fitness function that drives the search process of the tissue and fat segmentation

method. To generate this single function, we started by defining a set of fuzzy rules

to relate the results of the numerical segmentation metrics to the quality of the

evolved segmentation model.

To generate the fuzzy rules, we have to give fuzzy sets defined by the mem-

bership functions that will be the inputs of our fuzzy fitness function. An example

can be seen in Figure 21, where three membership functions are defined according to

the segmentation value extracted by the Jaccard Index. The membership functions

indicate whether the segmentation is of a low, medium, or high quality. Therefore,

the fuzzy outputs were defined as High segmentation quality (high fitness), Medium

segmentation quality (medium fitness), Low segmentation quality (low fitness), and

Very low fitness (very low fitness). Depending on the aptitude obtained by each in-

dividual in the population, the solutions will remain or not for the next generation.
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Figure 20: Jaccard Index Membership Features.

Some examples of the fuzzy rules proposed for creating our fuzzy fitness are

describe next:

• IF Jaccard Index is high and SNR is high and F1 is high THEN fitness is high.

• IF Jaccard Index is medium and SNR high and F1 high THEN aptitude high.

• IF Jaccard Index is medium and SNR medium and F1 high THEN medium

fitness.

• IF Jaccard Index is medium and SNR medium and F1 medium THEN medium

fitness.

• IF Jaccard Index is medium and SNR low and F1 high THEN aptitude low.

• IF Jaccard Index is low and SNR is low and F1 is low THEN very low fitness.

Therefore, the proposed fuzzy fitness function showed how well the search for

the tissue and fat segmentation method is being performed. In the fig- you can see

how the structure of the fuzzy fitness function is in a general way.

Once the new fitness function was generated, we performed experiments using

the terminal set with 75 mammography images and manually segmented images.

The function set was the same as the one used in the previous experiment and
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Figure 21: General fuzzy fitness function process.

can be seen in the Table 7. Five experimental runs were performed to check that

they did not randomly generate the result. Subsequently, we tested each of the

segmentation methods provided by the genetic program in each run. This was done

with 300 more mammography images, and from the images generated with each

segmentation method, the extracted features defined in ACR BI-RADS for further

classification. The results can be seen in Table 9.

Table 9: Fuzzy fitness function result.

Number of runs Population size Number of generations Accuracy

1 50 50 78.74%

2 50 50 79.51%

3 50 50 79.45%

4 50 50 80.11%

5 50 50 80.75%

Mean 79.71%

In the Figure 22a, you can see an original mammogram that went through the

segmentation method given by the genetic program. In the Figure 22b, we can see

the result of the segmentation. In the areas that are yellow are those that contain

tissue, and these are extracted the number of components to see the dispersion

that has these areas of tissue. Likewise, the image was applied homogeneity, and

the yellow pixels and green color were counted to extract the percentage of tissue.
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These were the characteristics that entered the SVM classifier, obtaining the results

that can be seen in the table above.

Figure 22: Segmented mammography with the method generated by genetic program-

ming: a) original image and segmented image of class A, b) original image and segmented

image of class B, c) original image and segmented image of class C, d) original image and

segmented image of class D.

6.2.3 Results discussion

In Figure 23, results are compared the results obtained from the two fitness functions

proposed to guide the search for the breast density segmentation method. As we can

see, the upper images are the results of the Jaccard Index, and the lower images are

obtained with the fuzzy fitness function. When comparing the two results visually,

it can be seen that the diffuse fitness function gives a better result to segment the

tissue as it detects better where it is located. However, in the results with the

fitness function with the Jaccard index, it can be seen that there are areas within

the mammogram that cannot detect tissue even if it is present.

Results obtained from genetic programming with Jaccard Index as a fitness

function obtained an average of 75.29% and the genetic program guided by fuzzy

fitness functions obtained an average of 79.71%. These results showed that a tailored

design fitness function based on fuzzy logic to guide the search for a segmentation

model of breast tissue supports an improvement in the classification of mammograms

density. This research proposal relies on the computational strengths of genetic
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Figure 23: Segmented mammography with the method generated by genetic program-

ming: a) original image and segmented image of class A, b) original image and segmented

image of class B, c) original image and segmented image of class C, d) original image and

segmented image of class D.

programming and fuzzy logic in problems such as image segmentation. On the one

hand, genetic programming allows to evolve strong non-linear models while being

able to represent not only local but global image data. On the other hand, fuzzy logic

can optimally detect those non-crisp boundaries at image regions as those commonly

present in mammograms.

Table 10: Results comparison

Fitness function Accuracy

Jaccard Index 75.29%

Fuzzy fitness 79.71%
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7 Conclusions

This proposal will develop a segmentation model based on genetic programming in

combination with fitness functions based on fuzzy logic to evaluate individuals. The

purpose of generating a segmentation model for mammography images is to aid in

the automatic classification of breast density and provide a detailed description of

how the breast tissue is distributed to help the physician provide a better diagnosis.

Genetic programming has the qualities of being flexible and robust. It can generate

linear and non-linear solutions. The operations they use can be low, medium, and

high level, giving us better possibilities to generate an optimal mammographic image

segmentation method. Fuzzy logic identifies objects that can belong to more than

one class. As a fitness function, it will help us with the segmentation of images into

pixels that belong to a single class but also with the combined pixels that belong to

more than one class. Due to the nature of mammograms, in which we can observe

a mixture of tissues, not belonging to one type of tissue or another. Fuzzy fitness

functions will help guide the search of the genetic programming algorithm to find

an optimal and descriptive segmentation method for mammography images.

Although there are mammography segmentation techniques, many of them are

not performed automatically and require an expert to select the program’s values to

segment the images. In addition, they do not treat the areas where the tissues are

combined (fibroglandular tissue and fat), so information can be lost in these areas,

and a correct segmentation cannot be carried out.

7.1 Publications Plan

We aim to publish three articles, two from journals and one from an international

congress during the doctorate. The dates, together with the name of the journals

and the congress, can be seen in the Table 7.1.
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Table 11: Publication plan table.

Date Topic Congress/Journal

05/06/2022
Genetic programming using

fuzzy fitness functions.
-Journal Applied Soft Computing

01/10/2022
Breast tissue segmentation with

genetic progrmaming

-Computer Methods and Programs

in Biomedicine.

-Journal of bimedical Informatics

01/03/2023

Breast density classification with a new

approach to breast tissue segmentation using

genetic programming and fuzzy fitness functions.

-International Instrumentation &

Measuement Technology (IEEE)

7.2 Schedule of activities

The schedule of activities and progress to date can be seen in the figure 24.
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Figure 24: schedule of activities.
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