
Automatic design of convolutional neural
network architectures using Multiobjective

Evolutionary Algorithms

Technical Report No. CCC-22-006

by

Cosijopii Garćıa Garćıa

Doctoral Advisors:

Dr. Alicia Morales Reyes, INAOE

Dr. Hugo Jair Escalante Balderas, INAOE

Instituto Nacional de Astrof́ısica, Óptica y Electrónica

©Coordinación de Ciencias Computacionales

July, 2022

Santa Maŕıa Tonantzintla, Puebla, CP 72840

Contents

1 Introduction 2

1.1 Motivation . 2

1.2 Justification . 3

2 Background 4

2.1 Evolutionary Algorithms . 4

2.2 Cartesian genetic programming . 4

2.3 Multiobjective Optimization . 6

2.3.1 Basic concepts . 7

2.3.2 Multiobjective optimization problem 7

2.3.3 Dominance and Pareto optimality 8

2.4 Multiobjective evolutionary algorithms 9

2.4.1 Pareto-based MOEAs . 9

2.4.2 MOEAs based on Decomposition 10

2.5 Classification and pattern recognition 10

2.6 Neural networks . 11

2.6.1 Feedforward networks . 12

2.7 Convolutional Neural Networks . 13

2.7.1 Convolution layers . 14

2.7.2 Pooling layers . 14

2.7.3 Fully connected layers . 15

2.8 Neural architecture Search . 15

3 Related work 17

3.1 Multiobjective NAS . 20

4 Research Development 26

4.1 Problem Statement . 26

4.2 Research Questions . 26

4.3 Hypothesis . 27

4.4 General objective . 27

4.5 Specific objectives . 27

4.6 Scope and Limitations . 28

4.7 Expected Contributions . 28

4.8 Methodology . 28

4.9 Work Plan . 29

4.10 Publications Plan . 29

5 Preliminary Results 31

5.1 Solutions representation for CNN architectures 31

5.1.1 Solutions encoding - decoding 33

5.2 Evolutionary searching engine . 34

5.3 Experimental settings . 34

5.3.1 Benchmark datasets . 35

5.3.2 Experimental settings . 35

5.4 Preliminary Results analysis . 36

6 Final Remarks 40

References 43

Abstract

Convolutional Neural Networks (CNNs) have made significant contribu-

tions to Artificial Intelligence (AI) and have demonstrated exceptional perfor-

mance in difficult computer vision tasks. In recent years, expert users have

developed a number of specialized CNN architectures to deal with complex

datasets. However, the automatic design of CNN through Neural Architecture

Search (NAS) has gained importance to reduce human intervention.

One of the main NAS challenges is to design less complex and yet highly

precise CNNs, where both objectives are in conflict. As an initial approach,

CGP-NAS (Cartesian Genetic Programming-Neural Arquitecture Search), a

multiobjective evolutionary optimization approach to target NAS for the im-

age classification task, is presented.

The main concept is to use this graphical representation as a layout for

CNN architectures. CGP is encoded using real-based solutions representation

for ease of adaptation of well-established MOEAs, such as the NSGA-II ex-

plored in this study. A preliminary empirical assessment shows CGP-NAS

achieves a very competitive performance when compared to other state-of-

the-art proposals while significantly reducing the evolved CNN architecture’s

complexity.

Keywords: Neural architecture search, CNN, image classification, CGP, multi-objective

evolutionary optimization.

1

1 Introduction

Convolutional Neural Networks (CNNs) have been widely explored in a variety of

tasks related to image processing and computer vision, together with today’s com-

putational capabilities that have allowed their implementation [1]. However, CNNs’

design and configuration has become increasingly complex, as it requires human ex-

pertise [1, 2, 3, 4]. Thus, a new challenging area known as Neural Architecture Search

(NAS) emerged as a way to design searching algorithms to discover near optimal and

accurate deep architectures that would allow them to widen their application arena.

Image processing and computer vision tasks successfully targeted by CNNs have

led the way to tailored designed CNN architectures such as GoogLeNet, ResNet,

DenseNet, etc [5]. Considering their high complexity, researchers started to focus on

their automatic design through NAS, aiming at finding optimal and accurate CNNs

for specific datasets.

In addition to finding highly accurate architectures, real-world scenarios require

computationally efficient CNNs. Considering both targets poses a problem with two

conflicting objectives: maximizing the model’s accuracy and reducing its complexity.

Thus, a multiobjective problem needs to be solved in which a solution represents a

compromise between both objectives. NAS has approached the problem primarily

through a single objective optimization problem. [6, 7, 3, 4]. There have also been

a few Multiobjective Evolutionary Algorithms (MOEAs) based proposals such as

[8, 5, 2, 9] that have reported promising results using, for example, classical MOEA:

NSGA-II (Nondominated Sorting Genetic Algorithm II).

1.1 Motivation

Recent and rapid advances in Deep Learning, particularly in Convolutional Neural

Networks (CNNs), present a challenge and a requirement to automate their design

and configuration. According to the No Free Lunch (NFL) theorem [10, 11], it is

impossible to generalize an optimization algorithm to be robust and efficient for

all posing problems, and that the only way to develop an algorithm that performs

better than others is through specialization. In NAS and specifically, NAS applied

to CNNs, specialization is sought for specific datasets, either for determined ap-

plications or for understanding how architectures can influence their performance.

NAS has adopted in its framework different searching methods based on three main

paradigms [12]: Reinforcement Learning (RL), Evolutionary Algorithms (EAs), and

Bayesian Optimization (BO). In this proposal, EAs are studied for their high perfor-

2

mance when dealing with multiobjective problems, as well as their flexibility in their

solution representation and operations design, as they can be adapted and modified

according to a problem context. Therefore, this research aims at developing EAs as

the main mechanism for searching for accurate and less complex neural architectures.

To the best of our knowledge, current research shows that multiobjective algorithms

have not been deeply studied when targeting this arena, and an open niche exists

for MOEAs development to design competitive CNNs.

1.2 Justification

Neural architecture search is a relatively new area [12]. A number of efforts from

the scientific community to take advantage of diverse searching mechanisms and to

apply them to this new challenge have been carried out. This automatic design of

complex CNNs considering today’s computational capabilities is becoming more and

more feasible.

Using Evolutionary Computation as a NAS strategy has been carried out through

different research proposals. Most of them approach the problem as a single objec-

tive, attempting to maximize accuracy for a specific dataset. Few works on multiob-

jective approaches have been presented, and the majority of them are based on basic

algorithmic versions such as NSGA-II and binary representations [2, 8, 5]. Other bio-

inspired algorithms such as PSO (Particle swarm optimization) in its multiobjective

version have been explored, mostly focusing on maximizing accuracy and minimizing

MAdds (Multiply-Adds operations) for a given dataset [2, 8, 5]. Thus, multiobjec-

tive evolutionary algorithmic techniques have been scarcely explored through NAS.

Solutions representation capabilities, inherent searching mechanisms, and popula-

tion dynamics are some aspects yet to be studied that can provide highly efficient

CNN solutions.

3

2 Background

This section provides the knowledge basis for the main topics involved in this re-

search. An introduction to evolutionary algorithms and the solution representation

explored in this study: Cartesian Genetic Programming (CGP).

After that, a general introduction to the multiobjective optimization arena will

conclude with topics related to classification and deep neural networks.

2.1 Evolutionary Algorithms

Evolutionary algorithms (EAs) are a subset of algorithmic techniques within the

Evolutionary Computation (EC) area, which has been roughly considered as a scope

within Artificial Intelligence (AI), and more accurately as a Soft Computing field of

study. EAs are inspired by the process of natural evolution as they try to simulate

the main behavior of Darwin’s theory of evolution and are commonly applied in

search and optimization processes [13]. There are different application contexts for

evolutionary algorithms, but the main ones are focused on optimization. In this area,

three different kinds of problems are targeted: single, multi, and many-objective

optimization problems.

Most evolutionary algorithms share the same general stages. They fall into the

category of generate and test algorithms, where the search is guided by stochastic

variations through different operators [13]. Evolutionary algorithms are based on

a set of solutions or a population. These solutions interact through recombination

and mutation (main genetic operations) by mixing information from two or more

candidates to create a new one by inducing small changes within solutions and thus

introducing diversity. Figure 1 depicts a general scheme of an evolutionary algorithm.

2.2 Cartesian genetic programming

Cartesian genetic programming (CGP) was initially conceived to evolve digital cir-

cuits. It was proposed by Miller in 1997[14] as a general form of genetic programming

(GP) in 2000 and is called Cartesian because it represents a program using a two-

dimensional grid [15]. CGP, unlike Genetic Programming (GP), is based on acyclic

graphs for solution representation that allows forwarding connections. CGP shares

important features with GP, such as the definition of a set of functions and their

arity. Figure 2 shows a CGP solution representation example in which the mapping

4

Initialization

Population

Parents

OffspringTermination

Parent selection

Survivor selection

Recombination

Mutation

Figure 1: General scheme of Evolutionary algorithms.

of the solution to its phenotype, in this case, a CNN architecture, is shown. How-

ever, CGP can also be applied to different areas, such as automatic design of digital

circuits, mathematical equations, and even artistic applications [15].

In the genotype space, a solution is mapped as an integer-based vector divided by

segments that represent the function identifier (this refers to a function predefined

on a set of functions that are taken as nodes) and its connections. The size of each

segment varies depending on the maximum arity of the represented function; in the

example, the maximum arity is two. Another CGP characteristic is the inactive

nodes that are not expressed in the phenotype (in Figure 2, these are represented

by the grey sections), but it is information that is maintained in the genotype and

is exploited during the evolutionary process, for example, by changing an impor-

tant connection between two functions that maps as a big change in the phenotype.

Considering this CGP scenario, the crossover operator is not used (but can be im-

plemented). Instead, only mutations occur as random changes in connections and

nodes.

The CGP is set up on a fixed-size grid Nr ×Nc, with the number of connections

between nodes determined by an l variable known as level-back. Normally, the

number of inputs and outputs depends on the problem. CGP in its base version is

combined with the (1 + λ) evolutionary strategy algorithm. However, CGP can be

adapted to other evolutionary searching algorithms.

5

4832 2 2 30101 0 6 1 2 4 3 5 63 0

877665544332211

11

22 33

44 55

66 77

88

00

Input

CB
(32 x 5)

CB
(64 x 3)

RB
(64 x 3)

RB
(128x 5)

CB
(128x 5)

MP

Output

Sum

 Function ID
1st Input
node no.

2ed Input
node no. Inactive node, not expresed

in the phenotype

270 270

Input

Max
Pooling

Figure 2: Cartesian Genetic Programming representation. Top-left: individuals repre-
sented as acyclic graphs. Bottom-left: integer-based individual representation Right: in-
dividual corresponding phenotype (CNN).

2.3 Multiobjective Optimization

In multiobjective problems (MOPs), solution quality is determined by the relation-

ship between several objectives that are in conflict [13, 16]. Solving MOPs implies

finding trade-offs among all the objective functions. In these kinds of problems,

a set of optimal solutions is obtained instead of a single one, as in the case of

single-objective problems. This is because, in multiobjective optimization, it is not

possible to find a single optimal solution that optimizes all the objective functions

simultaneously. There are alternatives to avoid this problem, for example, combin-

ing the fitness of each function and thus obtaining a single measure. Normally, each

function will be weighted with some fixed value. This approach is called weight

sum method [13, 17, 16]. There are also other classic methods such as ϵ-Constraint

method which only takes one function of a multiobjective problem and the others

in conflict are taken as constraints [16, 17]. A classic method is goal programming,

where the main idea is to find solutions close to predefined objectives for each target.

If these solutions are not reached, the task is to derive such objectives and attempt

minimization [16]. Multiobjective evolutionary algorithms have the advantage of

obtaining a set of Pareto-optimal solutions, and that no previous knowledge of the

problem, like weight vectors, is required. Finally, classic methods can not find some

Pareto optimal solutions when MOPs are not convex. This relates to the Pareto

front’s complexity and the difficulty of finding such solutions [16].

6

2.3.1 Basic concepts

This section explains basic concepts of multiobjective optimization.

• Decision variables are represented by a vector x with n decision variables

represented by Equation 1 [17].

x = [x1, x2, . . . ,n] (1)

• Constraints are imposed by environment characteristics or resources and occur

in most optimization problems. They are expressed in the form of mathemat-

ical equalities or inequalities, represented in Equations 2 and 3. If the number

of equality constraints is greater than the number of decision variables, the

problem is over constrained so there are not enough degrees of freedom for

optimization [17].

hj = 0 , j = 1, 2, . . . , p (2)

gi ≤ 0 , i = 1, 2, . . . ,m (3)

• Objective function, in multiobjective optimization, a set of objective functions

are used to evaluate the decision variables vector: f1(x), f2(x), . . . , fk(x) where

k is the number of objective functions in a multiobjective problem. The vector

of objective functions f(x) is defined as [17] :

f(x) = [f1(x), f2(x), . . . , fk(x)] (4)

• Decision variable and objective function space are defined by a n-dimensional

space in which each coordinate axis corresponds to a component of a deci-

sion variables vector x; and the objective function space is defined by a k-

dimensional space in which each coordinate axis corresponds to a vector com-

ponent fk(x). Each point in the decision variable space represents a solution,

when this vector is evaluated in the objective function, the obtained value

represents a point in the objective function space which determines solution’s

quality. Therefore, a F : Rn → Rk function maps the space of decision vari-

ables to the objective function space [17]. Figure 3 shows this process.

2.3.2 Multiobjective optimization problem

A multiobjective optimization problem involves multiple conflicting objective func-

tions, which must be minimized or maximized simultaneously. Those functions could

7

be subject to a number of constraints and variable bounds. Mathematically, a Mul-

tiobjective Optimization Problem (MOP) is defined as:

General MOP [18]:

Minimize/Maximize fm(x),m = 1, 2, . . . , k;

subject to gj(x) ≥ 0, j = 1, 2, . . . ,m;

hk(x) = 0, k = 1, 2, . . . , p;

x
(L)
i ≤ xi ≤ x

(U)
i , i = 1, 2, . . . , t;

 (5)

with k objectives, m and p are the number of inequality and equality constraints. A

solution x ∈ Rn is a vector of n decision variables: x = [x1, x2, . . . , xn], which satisfy

all constraints and variable bounds [18, 17, 16]. The last set of constraints is called

variable bounds, which restrict each upper and lower decision variable xi. These

limits are the decision variable space size. If a solution x satisfies all restrictions and

variable bounds, it is known as a feasible solution. The set of all feasible solutions

is called the feasible region [16]. It can be seen in Figure 3 that solutions within the

blue area are feasible solutions, and their set determines a feasible area.

2.3.3 Dominance and Pareto optimality

In multiobjective optimization problems, several objectives conflict, this means that

more than one optimal solution exists. These solutions are known as Pareto-optimal

solutions. Definition of a Pareto-optimal solution is related to the domination con-

cept as follows: Pareto dominance [17]: A vector u = (u1, u2, . . . , uk) is said to

dominate another vector v = (v1, v2, . . . , vk) (denoted by u ⪯ v) if and only if u is

partially less than v, this is specified as follows: ∀i ∈ {1, . . . k}, ui ≤ vi and ∃i ∈
{1, . . . k} : f(ui) < f(vi).

Pareto Optimal Set [17], for a given MOP and F (x), the POS P∗ is determined

by:

P∗ = {x ∈ Ω | ¬∃x′ ∈ Ω F (x′) ⪯ F (x)} (6)

These solutions are represented in the decision variable space. Non-dominated

solutions represented in the Pareto optimal set are the best solutions with a trade-

off among objectives. When mapping these solutions to the objective function space,

a set called Pareto front (PF∗) is defined next [17]:

For a given MOP, F (X) and POS, P∗, the Pareto Front PF∗ can be expressed

as:

PF∗ = {u = F (x) | x ∈ P∗} (7)

8

2x

1x

2f

1f

Decision Variable
Space

Objective Function
Space

kn R:RF →


{ }nRxX ∈=


{ }kRyY ∈=


Pareto
Front

Feasible
Region

Infeasible
Region

Figure 3: Decision variables space to objective function space mapping. Feasible solutions
region is in blue. In the decision variable space, the Pareto optimal set is shown as red
dots and its mapping to the objective function space creates the Pareto front.

In Figure 3, a mapping example of solutions from the Pareto optimal set to the

objective function space is shown, therefore the Pareto front is created with solutions

with a trade-off among objectives.

2.4 Multiobjective evolutionary algorithms

The multiobjective evolutionary algorithms (MOEAs) in comparison with the classic

mathematical programming methods mentioned briefly in the last section, have cer-

tain characteristics and advantages that make them applicable to solve MOPs [16].

Therefore, in this section different evolutionary algorithms approaches to target mul-

tiobjective problems are reviewed. These algorithms can be divided into three main

paradigms [19], Pareto based MOEAs, decomposition based MOEAs and indicator

based MOEAs. In this proposal, Pareto based MOEAs and decomposition based

MOEAs are explained.

2.4.1 Pareto-based MOEAs

Pareto-based MOEAs use a dominance based ranking scheme and combine elitist

strategies such those that converge to a global optimal in some problems [13]. Pareto

and elitist strategies lead the way or set the basis for one of the most important

algorithmic approaches in the area: NSGA-II algorithm proposed by Deb et. al.

[20]. Pareto based MOEAs have in common the use of Pareto dominance with

9

some diversity criteria based on secondary ranking, some algorithms of this class are

Multiobjective Genetic Algorithm (MOGA) [21], which was the first MOEA, Pareto

Archived Evolutionary Strategy (PAES) [22] uses a mesh in the objective function

space to ensure that all regions are visited, Strength Pareto Evolutionary Algorithm

(SPEA) [23] which uses a different criterion based on dominance, and it also ranks

individuals depending on how many individuals dominate and are dominated, as

well as making use of clustering. In a second version (SPEA-2) [24] both previously

described criteria are improved.

2.4.2 MOEAs based on Decomposition

An inevitable problem when dealing with MOPs with more than 3 objectives is that

dominance begins to be ineffective. Therefore, the idea of ranking the Pareto front is

not useful. Therefore, decomposition-based methods have been adapted to MOEAs.

These methods can deal with two, three, or many-objective problems. They provide

a reliable and powerful alternative for these kinds of problems. One of the most

important algorithms in this approach is MOEA/D (Multiobjective Evolutionary

Algorithm based on Decomposition), developed by Zhang and Li [25, 13, 26].

2.5 Classification and pattern recognition

Object recognition is based on the assignment of classes to objects, and the process

that makes this assignment possible is called classification. The classifier (similar to

a human being) does not decide on the class of the object itself; rather, object prop-

erties are used to serve this purpose. For example, to distinguish steel from sand, it

is not necessary to determine their molecular structures but to describe the materials

themselves, properties such as texture, weight, hardness, etc. These detected fea-

tures are called patterns, and classifiers currently do not recognize objects but their

patterns. [27]. A set of properties of the elements is chosen because they describe

some characteristics of the objects; these properties are measures that appropriately

describe those objects’ patterns. Object properties can be either quantitative or

qualitative, and their form and characteristics can be various (numerical vectors,

strings, etc.). To describe a static object, a numerical elementary description called

”features” is used in image analysis; the feature vector x = x1, x2, xn describes the

object; the set of all possible patterns form the pattern space X (also called feature

space) if the features are correctly chosen, the similarity of the objects in each class

will be reflected in their patterns in the pattern space. Classes form clusters in the

10

Discrimination
function

Patterns of class 1

Patterns of class 2

Patterns of class 3

Figure 4: Example of a discrimination function, using three different classes.

feature space, which can be separated by a discrimination curve [27] (or hypersurface

in multidimensional feature space) see Figure 4.

2.6 Neural networks

An artificial neuron is an imitation of the process of a biological neuron. A simplified

model was created because this is a very complex system to imitate. This simplified

model includes the signals coming from other neurons, the threshold function, and

output. The simple perceptron was proposed by Rosenblatt and Minsky [28, 29]. It

can be seen in Figure 5. The perceptron can be represented with a linear discrimina-

tion function (see Equation 8). A single perceptron is equivalent to a linear classifier

that classifies patterns into two classes. A perceptron receives a feature vector x as

input and produces a scalar as output [28].

y = φ(
n∑

i=1

(wixi + w0)) (8)

Where w is composed by weights defining the hyperplane and varphi is a nonlinear

function with a threshold, in most cases with the function sigmoid[27].

Neural networks are composed of nodes or units connected directly with links.

Each link is associated with a weight w, which determines the strength and shape of

the connection. The architecture of the network, the nearby nodes, the intermediate

11

y

Figure 5: Simple perceptron representation.

nodes and their weights w, the threshold w0, and the nonlinear function varphi

define the network’s properties [30, 28].

2.6.1 Feedforward networks

Feedforward networks or multilayer perceptrons (MLP) have connections only in one

direction. This forms a directed acyclic graph, where each node receives its inputs

from the upper nodes and sends the information to the lower nodes without cycles[30,

28]. The weights of each input are randomly initialized, to be subsequently changed

during an iterative learning process. It is known that three layers are sufficient to

determine any arbitrary discrimination function, assuming that the network consists

of a sufficient number of nodes. These three layers are commonly referred to as the

input layer, hidden layer, and output layer. A three-layer neural network is shown

in Figure 6.

The learning of feedforward networks is based on the backpropagation algorithm.

The set of patterns is chosen to be fed into the network, the information is carried

to the next layers, and the generated output y is the result of the last layer.

The Backpropagation algorithm compares the acquired output y with the required

classification ω. The weights wij are recalculated for adaptation in order to minimize

the classification errors [27, 30].

12

Figure 6: Multilayer perceptron arquitecture, input layer (red), hidden layer (green), and
output layer (blue).

Input layer Convolutional
layer 1

Pooling
layer 1

Convolutional
layer 2

Pooling
layer 2

Fully connected
layer

Output
layer

Figure 7: Basic architecture of convolutional neural network.

2.7 Convolutional Neural Networks

Convolutional Neural Networks (CNN) is one of the best known and most widely used

deep architectures inspired by the animal visual system, which has had important

applications in computer vision [31]. This type of network is known to have a

mesh topology. CNNs are feedforward neural networks where inputs are transformed

through several sequential layers [28].

The main differences between CNNs and feed-forward neural networks (FFNNs)

are that they consist of multiple layers as opposed to a single layer in FFNNs. A

CNN consists of three different types of layers: convolutional layers, pooling layers,

and fully connected layers [31, 28]. Figure 7 shows a general CNN flow for an image

classification task. Usually, the input is a three-dimensional tensor such as an image

with height, width, and color channels.

13

The image enters at the input layer and goes through many convolution processes

and pooling layers to generate the representations which feed the last part of the

network, the fully connected layer [31].

2.7.1 Convolution layers

Convolution layers are the CNN’s core. These layers work as feature extractors.

Each neuron in the convolution layers is connected to small regions of the previous

layers called receptive fields which are known as kernels or filters [31]. This operation

is normally defined as seen in Equation 9 in its continuous form or in its discrete

form as seen in Equation 10 [28].

s(t) =

∫
x(a)w(t− a)da (9)

s(t) = (x ∗ w)(t) =
∞∑

a=−∞

x(a)w(t− a) (10)

Designing convolutional layers requires a number of parameters, depending on the

number of filters learned from the previous layer. The layer output is linked to the

following parameters: filter size, stride size, and padding. The spatial dimension of

the filter is called the kernel size. The stride defines the step with which the filter will

slide through the input to create the feature map, and the padding adds zeros at the

edges of the input. After obtaining the feature map, the rectified linear unit (ReLU)

activation function is normally used, which can contribute to an improvement in the

performance of the CNN [31].

2.7.2 Pooling layers

Pooling layers are used to perform spatial invariance translations. Usually, pooling

layers are embedded between successive convolution layers to reduce the spatial size

of feature maps. Pooling layers reduce the number of parameters and the number of

calculations progressively and also help to control overfitting. The pooling function

works along the spatial dimension of the input volume and reduces it but keeps the

depth constant [31, 28].

The most commonly used methods in CNN are max-pooling and average-pooling.

Similar to convolution, pooling operators are performed with a defined filter size

and stride. For example, the Max-pooling operator is set to a region and selects the

14

largest value. On the other hand, the Average-pooling operator gets the average of

that region [31].

2.7.3 Fully connected layers

After many learning cycles over progressive layers of convolution and pooling, CNNs

extract high-level features from the input data and perform high-level reasoning

based on the extracted representation. Finally, fully connected layers are used at

the end. Like FFNNs, fully connected layers are one-dimensional and all neurons in

the fully connected layer are connected to all neurons in the preceding layer.

Fully connected layers contain most of the CNN parameters and force a compu-

tational load for training. In addition to these three layers (convolution, pooling,

and fully connected), many types of standardization layers have been used in CNN,

among which batch normalization is the most common. Some studies have shown

that batch normalization can help accelerate training and reduce the sensitivity of

training to weight initialization [31].

2.8 Neural architecture Search

Neural architecture search (NAS) is one of the current topics of Auto Machine Learn-

ing (AutoML), starting its boom in 2017 to this day, because of the success that deep

learning has had in different fields of application and the complexity of manually re-

fining these models.

NAS is mainly focused on finding the best architecture and hyperparameters of

a deep learning model [32]. Empirical studies carried out in recent years show that

NAS is able to find better models than those manually tuned [33]. One widely used

search strategy is reinforcement learning, but it is focused only on optimizing one

objective. On the other hand, evolutionary algorithms can deal in a more effective

way by approaching NAS as a multiobjective problem using MOEAS, obtaining in

every generation a subset of suboptimal solutions from the Pareto front [33].

The general NAS scheme is shown in Figure 8 , in which three important elements

are included: the search space, the search strategy, and the performance estimation

strategy. The search space is determined by the problem, and the NAS method would

rely on the solutions’ representation flexibility and the capability of the searching

algorithmic technique.

15

Figure 8: General scheme of the Neural architecture search[12]

The search strategy refers to the type of algorithm to be used, for example, genetic

algorithms or reinforcement learning. The performance estimation strategy refers to

how the performance of the obtained architecture is measured[12].

16

3 Related work

Deep architectures, specifically convolutional neural networks (CNN), have been

designed by specialists through hands-on work.Recent exponential development of

computational capabilities, areas like Neural Architecture Search (NAS), can use

those available resources to create different methods that enhance new CNNs’ de-

signs. In NAS, methods can be divided into two categories: evolutionary algorithms

(EA) and reinforcement learning (RL) approaches [2].

Using EAs to find good performance architectures is not a recent problem; the

first approach started in the 90s, and the most important work was in 2002 when

Neuroevolution of Augmenting Topologies (NEAT) was proposed [34]. In the orig-

inal paper, NEAT works with small artificial neural networks (ANNs), finding con-

nections between nodes and at the same time updating the architecture’s weights.

Multiple approaches originated from NEAT like HyperNeat [35] or ES-HyperNeat

[36].

Recently, scientific focus has been driven towards Deep Learning, modifying how

these even more complex architectures have to evolve [1, 8].

CNNs’ basic perspective is to generate a feature extractor that, through a set of

operations, will generate a feature map through each layer of the network to gener-

alize patterns from the input image to finalize in a classifier. Therefore, connections

and operations cause a significant effect within base blocks and the complete archi-

tecture.

Regarding the search for these architectures, as explained above, NAS is trying to

cope with this problem. Therefore, NAS currently has two main search approaches:

single-objective and multi-objective.

In [1] CooDeepNEAT is proposed as an extension of NEAT applied to CNNs. The

principal contribution was the use of coevolution. silicet, two subpopulations evolve

independently, and during fitness evaluation, both are combined. This work uses a

genetic algorithm scheme, and the objective was to minimize testing error (100%−
Accuracy). In this case, the CIFAR-10 dataset was targeted, and the final result

was a model with a 7.3% error.

L. Xie and A. Yuille [4] introduced a method called Genetic CNN. This algorithm

proposed a new encoding scheme based on binary representation from Genetic Al-

gorithms (GAs). In their solution representation, every bit in the binary vector rep-

resents a connection between nodes. Such nodes are convolutional operations, thus

17

ConvBlock

Convolution

Batch Normalization

Summation

ReLU

(a) ResBlock

Convolution

Batch normalization

ReLU

(b) ConvBlock

the proposed encoding scheme allows to find existing VGG, ResNet, and DenseNet

network patterns. These modules where nodes exist are isolated sets of other op-

erations that are performed in a CNN, such as pooling and fully connected layers,

which are already fixed in the model and are not evolved. Concerning evolutionary

operators, the mutation is performed with a low probability using a bitflip, and the

crossover is carried out by switching only different bits in the bit string with a defi-

nite probability. The final model was called GeNet and has different structures than

those designed manually. Patterns were found that exist in networks such as VG-

GNet, AlexNet, and GoogLeNet as well as in residual networks, taking as a principal

objective the accuracy of the CIFAR-10 dataset.

For comparison purposes, a set of individuals were initialized with a 40-layer

ResNet architecture. After evolving the architecture, the final results for the CIFAR-

10, CIFAR-100, and SVHN datasets were 5.39%, 25.12%, and 1.71% errors, respec-

tively.

M. Suganuma et al [7] proposed a new method using genetic programming to

design CNNs, the approach used Cartesian genetic programming (CGP) as an en-

coding technique. The main idea is to first define some function blocks, which are

defined as operations in CNNs, like max pooling, average pooling, and more complex

operations like ResBloks (see Figure 9a) which are a series of convolution layers and

contain ”shortcut” connections, or more simple ConvBloks (see Figure 9b) which

contain a standard convolution process. Finally, the summation and concatenation

functions are defined.

18

The functions explained above are used by CGP’s graph encoding proposed by

Miller[14]. A solution is represented on a Nr × Nc grid where R is the number of

rows and C the number of columns. This encoding allows the definition of structures

like ANNs and, in this case, CNNs, by the nature of the forward connections. The

evolutionary algorithm used in this work is a (1+λ) evolutionary strategy, and only

mutation operations are applied. Two models were created from each dataset, each

one differentiated by the type of block. The first model, called CGP-CNN(ResSet)

does not contain the convolution blocks in isolation; the ResBlock block has them

by definition. The other CGP-CNN (ConvSet) model does not contain ResBlock

blocks, only predefined ConvBlocks. Results for CIFAR-10 were as follows: CGP-

CNN (ResSet) obtained a 5.01% error and CGP-CNN (ConvSet) a 5.92% error.

Both results were the best reported. For the CIFAR-100 dataset, CNN (ConvSet)

obtained 26.7% and CNN (ResSet) obtained 25.1%. From the results, it is noted

that the CNN (ResSet) model performed better, and the resulting architectures have

similarities with ResNet networks.

In [37], a new method to design CNN architectures using blocks based on ResNets

and DenseNets for a given dataset is presented. These blocks were called ResBlocks

and DenseBlocks, respectively. Also, a pooling layer block is considered. The main

idea is to propose a new genotype representation with the advantage of having vari-

able length representation. In the evolutionary process, the genetic algorithm with-

out changes is used with binary tournament selection in addition to the crossover

and mutation phases. Individuals with inconsistencies in their encoding are fixed.

Testing included CIFAR-10 and CIFAR-100 datasets, with results showing a classi-

fication error of 4.3% and 20.85% on CIFAR-10 and CIFAR-100, respectively, and

GPU processing days of 27 and 36, respectively. The obtained model was called AE-

CNN. Among its most important features is the reduction of the number of model

parameters, as in the case of the model for the CIFAR-100 dataset, the architecture

found is much smaller than the one found for CIFAR-10.

In [38] a new graph encoding is introduced and applied to NN architecture design.

Architectural search algorithms have achieved good performance, but there is a limit

to CNN representation. Therefore, a new encoding using a direct acyclic graph was

proposed. Five principal blocks were used: Convolution, Summation, Concatena-

tion, Max and average pooling. A solution based on these blocks is created, and

summation and concatenation blocks allow residual connections because they allow

multiple inputs. In the experimental design, the CIFAR-10 dataset was targeted. In

this work, a random search was used to validate the approach. Final results show

that the encoding can find an architecture with an accuracy of 92.57% but it is worse

when compared with other state-of-the-art approaches.

19

A benefit noticed by the authors is that the algorithm can find architectures with

fewer parameters in comparison to other approaches using only random search.

Bakhshi, Chalup, and Noman [39] proposed an algorithm based on evolutionary

algorithms to evolve CNN architectures. In their approach, hyperparameters are

included in the evolutionary architecture’s process. The problem is represented by

predefined blocks that are inspired by VGG architectures, which are a sequence of

convolution layers followed by pooling layers and finally a fully connected layer at

the end. Therefore, the size of the vector that will represent will be of a fixed size,

to later add the hyperparameters, having this way a final vector that will represent

the CNN architecture and its hyperparameters, which are are the learning rate,

weight decay, momentum, and dropout. To evolve the architectures, a standard

genetic algorithm is used, and for evaluation, each architecture was trained for only

ten epochs, which the authors determined as enough for the architecture’s quality

evaluation. Three datasets, CIFAR-10, CIFAR-100, and SVHN, were used to test

the designed algorithm. The final results for CIFAR-10, CIFAR-100, and SVHN

were 94.75%, 75.90%, and 95.11% respectively.

In conclusion, the proposed algorithm was competitive with the compared models,

as well as a reduction in GPU days was reported. It is concluded that the use of

partial training for structure evaluation can help in not-so-complex datasets since

the results on CIFAR-100 and SVHN were not competitive.

3.1 Multiobjective NAS

In [40] Neuro-Evolution with Multiobjective Optimization (NEMO) is proposed,

which is one of the first multiobjective approaches using evolutionary algorithms. A

CNN is optimized considering two objectives: the error and a unit of inference time

(in milliseconds), aiming to minimize both objectives. The representation is based

on an integer vector which is fixed with reference to the LeNet CNN architecture

and different numbers of channels are searched for each layer of the network. NSGA-

II was used to carry out the evolutionary process, targeted datasets were MNIST

and CIFAR-10 and a real-world problem called drowsy behavior recognition task for

driver monitoring system.

The authors concluded that their proposal found faster networks that maintained

competent accuracy, even though it required a lot of GPU power. This work only

focuses on modifying the parameters of predefined networks, but its multiobjective

approach focuses more on finding the trade-off between CNN requirements (accuracy

20

and inference speed). In [2] propose an algorithm called NSGANet for NAS based

on the famous multiobjective optimization algorithm NSGA-II, where the main at-

traction is the use of two objectives: accuracy and FLOPs. In NSGA-Net, solutions

are encoded as binary strings [4].

Therefore, crossover and mutation operations are defined accordingly. In the

crossover, for both parents that do not share the same bits at the same positions,

the offspring are generated by random bits at those positions.

After recombination, mutation is applied with a bit flip at a random position.

The evolutionary process is carried out by NSGA-II with an added mechanism to

promote exploitation of the searching space based on the Bayesian Optimization

Algorithm (BOA)[41], BOA finds relationships among blocks and routes. At this

stage, a specific number of individuals is created resulting from the Bayesian net-

work’s estimation of the individuals in the current population.

NSGA-Net on the CIFAR-10 dataset obtained a 3.85% error, 3.34 million pa-

rameters, and 1290 MFLOPs. These results are competitive in terms of accuracy

with other state-of-the-art NAS proposals, while reducing the computational load

required to 8 GPU-Days.

Wan, Xue, and Zhang [9] proposed a particle swarm optimization (PSO) neural

architecture search algorithm for evolving deep convolutional neural networks for

image classification. One of the most important contributions was the development

of a new representation based on computer network encoding. The representation

used is based on computer networks and IP coding. The subnetworks concept is

applied where every series of layers in the CNN is divided into subnetworks with a

predefined value. This encoding allows linear networks where layers are connected

one after another and cannot be explored, for example, ResNet networks. A benefit

of this encoding is that the hyperparameters are included in the encoding, which

makes it easier to adapt these parameters to a dataset.

Two versions were proposed, one single-objective (IPPSO) and the other mul-

tiobjective (MOCNN), both using the proposed encoding approach. In the single-

objective approach, PSO was used to locate the best architecture, using the accuracy

of the trained model as the fitness value. To measure the performance of the method,

three datasets were chosen: MNIST basic, MNIST with Rotated Digits plus Back-

ground Images, and Convex Sets, all used in image classification tasks.Results were

competitive to other CNN models, even though the found models were smaller in

most cases. Regarding the multiobjective approach, accuracy and FLOPs were the

two considered objectives. FLOPs are a way to measure the complexity of the model.

21

For the comparison of the MOCNN model, the authors used the DenseNet-121 model

and the CIFAR-10 dataset. Both were trained in the same way. The classification

error of the DenseNet-121 model was 94.77% while the MOCNN model was 95.51%.

Although the exact number of FLOPs is not mentioned in the paper, the authors

mentioned that the MOCNNN model obtained promising results.

In [42] an evolutionary multiobjective NAS algorithm was presented. Impor-

tant points were the use of an NSGA-Net[2] inspired encoding, as well as a linear

block-based design, where each block contains internal nodes. Unlike NSGA-Net,

the objectives were to minimize the classification error and the parameters of the

network. An important feature was the use of weight inheritance to reduce the num-

ber of epochs to train the network, since this method allows the inheritance of the

weights of both parents to generate the offspring, and with this, the new architec-

ture required less training. The multiobjective algorithm implemented apparently

is a variant of NSGA-II, but it was not stated in the paper. To evaluate the algo-

rithm named MOGIG-Net, CIFAR-10 and CIFAR-100 datasets were used, obtaining

a 2.01% classification error and 3.7 million parameters in CIFAR-10, and a 14.38%

classification error and 3.7 million parameters in CIFAR-100. The total time re-

ported was 14 days. The technical specifications for experiment execution were not

reported, making it more difficult to calculate the GPU-days. It was concluded that

the addition of the weight inheritance method to this proposal helped to find better

architectures, although complexity was not specified since the second objective was

to minimize the number of parameters.

In [8] a new version of NSGANet was proposed, called NSGANetV1. In this ap-

proach, two objectives were tackled using the classification accuracy and architecture

complexity (FLOPs) concerning the general approach. The NSGA-II algorithm was

used by dividing the evolutionary process into exploration and exploitation. Explo-

ration was based on selection, crossover, and mutation operations. Exploitation was

based on the construction of a certain number of offspring using a Bayesian network.

NSGANet can search the space of CNN architectures in addition to searching at the

network level (e.g. # number of channels, # number of layers). The representation

used is that of a direct acyclic graph divided into 5 main blocks. These blocks are

spatially decreasing (and therefore increasing the number of channels) until the fully

connected layer, each block having 5 internal nodes. Each internal node is based on

operations like Max Pooling, Average Pooling, as well as convolution operations like

local binary convolution or dilated convolution. Regarding mutation and crossover

operators, they act at the block level as well as at the internal node level. To mea-

sure the performance of this proposal, CIFAR-10 and CIFAR-100 datasets were used

as well as 5 models (NSGANetv1-A0-NSGANetv1-A4), each starting from A0 with

22

the lowest number of parameters to A4 with the highest number of parameters. In

the CIFAR-10 dataset, the best performance was obtained with the A4 model with

97.98% Acc and 4.0M parameters, and in the CIFAR-100 with the A4 model also

with 85.62% ACC and 4.1M parameters. The A1, A2, and A3 models were trans-

ferred to the ImageNet dataset and the A3 model obtained 76.2% of Top-1 Acc and

93.0% of Top-5 Acc. Overall, NSGANetV1 proved to be an algorithm with per-

formance both in GPU-days as well as in models with fewer parameters and good

accuracy.

After [8], the same authors proposed [5] called NSGANetV2, whose initial premise

was to assist with surrogate models for both more efficient search and evaluation of

individuals (CNNs training). Therefore, two surrogate approaches were established,

the high-level approach assisting the search, which was based on an online learning

algorithm that learns the architecture during a generation and can estimate the

fitness values. Regarding the second level, a surrogate model called the Supernet

model was used to inherit the weights from the new individuals to have pre-trained

structures and thus reduce training time. The same representation is used in [5],

which employs a directed acyclic graph to divide an individual into blocks, which

are further subdivided into nodes. The search is assigned to these nodes, both the

operation to be performed as well as the size of the channel. All of this is encoded

in a vector of integers. The general process was to generate individuals and assign

them the supernet weights. After that, these individuals were trained and added

to a model that will learn from these structures. At the same time, the NSGA-II

algorithm tries to evolve these structures, and fitness will be obtained. To verify

the proposal, they used CIFAR-10 and ImageNet datasets. The following results

were obtained for CIFAR-10: 98.4% of Top-1 acc exceeded the other state-of-the-

art algorithms.In addition to obtaining a model with less complexity, In the same

way, for Imagenet, 75.9% of Top-1 acc was obtained. In general, the algorithm

outperformed the other compared state-of-the-art algorithms in speedup due to the

surrogate models, which drastically reduced the epochs for CNN training. Table 1

shows a summary of the state-of-the art related algorithmic proposals.

23

Table 1: Reviewed works of the state of the art

Year Name Application Benchmark EC Encoding Model Objetive Proposal

2017

A genetic programming

approach to design

convolutional neural network

architectures [6]

Image

Classification
CIFAR-10 CGP, ES Graph, Integer CNN Accuracy CGP-CNN

2019

Evolution of Deep

Convolutional Neural Networks

Using Cartesian

Genetic Programming [7]

Image

Classification
CIFAR-10, CIFAR-100 CGP, ES Graph, Integer CNN Accuracy CGP-CNN

2017

NEMO : Neuro-Evolution

with Multiobjective

Optimization of

Deep Neural Network

for Speed and Accuracy [40]

Drowsiness

Recognition for

Driver Monitoring

System

CIFAR-10, MNIST NSGA-II Integer CNN
Accuracy

Inference Speed
NEMO

2020

NSGANetV2: Evolutionary

Multi-objective

Surrogate-Assisted

Neural Architecture Search [8]

Image

Classification

Aircraft, CIFAR-10,

CIFAR-100, CINIC-10

DTD, Flowers102,

ImageNet, Pets, STL-10

NSGA-II Integer CNN
Accuracy

MAdds

MSuNAS

NSGA-NetV2

2020

Multi-Objective Evolutionary

Design of Deep

Convolutional Neural Networks

for Image Classification [5]

Image

Classification

CIFAR-10, CIFAR-100

ImageNet
NSGA-II Block CNN

Accuracy

FLOPs
NSGA-NetV1

2019

NSGA-Net: Neural Architecture

Search using Multi-Objective

Genetic Algorithm [2]

Image

Classification
CIFAR-10 NSGA-II Binary CNN

Accuracy

FLOPs
NSGA-Net

2019
Evolving Deep

Neural Networks [1]

Image

Captioning
CIFAR-10 GA NEAT-DNN CNN, LSTM Accuracy

CooDeepNeat

DeepNeat

2020

Designing Convolutional Neural

Network Architectures

Using Cartesian

Genetic Programming [43]

Image

Classification

Inpainting

Denoising

CIFAR-10, CIFAR-100 CGP, ES Graph, Integer CNN Accuracy CGP-CNN

2017 Genetic CNN [4]
Image

Classification

CIFAR-10

ILSVRC2012
GA Binary CNN Accuracy GeNet

2020

Particle Swarm Optimization

for Evolving Deep Convolutional

Neural Networks

for Image Classification:

Single and Multi-Objective

Approaches [9]

Image

Classification

CIFAR-10, Convex Sets

MNIST Basic, MRDBI

OMOPOSO

PSO
IP-based CNN

Accuracy

FLOPs

IPPSO

MOCNN

2020

Fast Evolution of

CNN Architecture

for Image Classification[39]

Image

Classification

CIFAR-10, CIFAR-100

SVHN
GA Integer CNN Accuracy GAnet

24

Table 1: Reviewed works of the state of the art

Year Name Application Benchmark EC Encoding Model Objetive Proposal

2019

A Graph-Based Encoding for

Evolutionary Convolutional

Neural Network

Architecture Design [38]

Image

Classification
CIFAR-10 Random search Graph CNN None

Random

search

2020

Completely Automated CNN

Architecture Design

Based on Blocks [37]

Image

Classification
CIFAR-10, CIFAR-100 GA Block CNN Accuracy AE-CNN

2021

A Multi-Objective Evolutionary

Approach Based on

Graph-in-Graph for

Neural Architecture Search

of Convolutional

Neural Networks [44]

Image

Classification
CIFAR-10, CIFAR-100 NSGA-II Block CNN

Accuracy

Parameters
MOGIG-Net

25

4 Research Development

This section states the formal components for this research proposal, including prob-

lem statement, research questions, hypothesis, objectives, scope and limitations, ex-

pected contributions, methodology, and work plan.

4.1 Problem Statement

State-of-the-art CNNs are becoming more complex and their performance depends

more and more on their architecture and hyperparameters configuration, in addi-

tion to their high processing needs. Moreover, plenty of research has been done by

developing specialized architectures for specific tasks [45]. However, due to the lack

of DNNs understanding, it is still difficult to determine CNN’s performance without

empirical benchmark testing.

Accurate and less complex architectures are desirable in scenarios where appli-

cations and user requirements need models in which time is an important variable.

However, searching for those optimal CNNs architectures becomes a time-consuming

black-box optimization task. Many research works have been developed to automate

CNN architectural search, this area is known as Neural Architecture Search (NAS).

Several of those works have posed this problem as a single objective optimization

problem while targeting the model’s accuracy for a specific dataset [7, 39, 4]. Recent

works have reevaluated NAS and approached it as a multiobjective optimization one

since more than one objective is involved in CNN’s development [8, 5, 9]. Important

variables such as the number of parameters as well as the architectural complex-

ity, usually measured in MAdds, take an important impact on the final model’s

performance strongly related to the application context. NAS’s transition to the

multiobjective arena has been slow. Recent research has focused on more classical

Pareto-based algorithms. However, algorithms such as indicator-based MOEAs or

Decomposition remain unexplored and a promising niche for research.

Therefore, it is observed that solutions representation for NAS is critical for the

algorithm itself and its searching operations. It is necessary to create new forms

for solutions representation that are flexible and can also allow the evolution of

hyperparameters in the evolutionary search.

4.2 Research Questions

• Do different abstraction levels for solutions representation and population dy-

namics in multiobjective evolutionary algorithms positively affect Neural Ar-

26

chitecture Search for significantly less complex and highly accurate Convolu-

tional Neural Networks?

• Does Multiobjective Evolutionary Algorithms improve Neural Architecture

Search for significantly less complex and highly accurate Convolutional Neural

Networks?

• What kind of multiobjective evolutionary paradigms can lead to less complex

and highly efficient CNN architectures?

4.3 Hypothesis

Solutions representation in evolutionary algorithms expresses the elements involved

in convolutional neural networks, such as layer operations and hyperparameters; that

in combination with the searching operations and population dynamics in multiob-

jective evolutionary algorithms would improve neural architecture search in terms of

at least two objectives: accuracy and multiply-add operations.

4.4 General objective

To design, develop, and evaluate a solution representation for convolutional neural

networks in conjunction with a multiobjective evolutionary algorithm that success-

fully targets image classification tasks in order to achieve competitive performance

in terms of accuracy and Multiply-Adds operations in comparison to state-of-the-art

solutions

4.5 Specific objectives

• To develop a strategic solution representation of all the elements involved in

CNN’s architecture, including Operations and Hyperparameters.

• To design evolutionary operators according to the proposed solutions repre-

sentation and to determine the application strength of each one.

• To develop a new neural architecture search algorithm based on a multiobjec-

tive evolutionary algorithm for the automatic design of convolutional neural

networks.

• To evaluate and to validate the performance of the proposed NAS algorithm

concerning other popular state-of-the-art evolutionary NAS.

27

4.6 Scope and Limitations

The main focus of this proposal is to develop a multiobjective evolutionary algorithm

for the automatic design of CNN architectures to target image analysis tasks such

as image classification. It is also considered to extend the application arena for the

proposed NAS algorithm to image inpainting and denoising problems.

4.7 Expected Contributions

• A new representation for evolutionary algorithms in order to automatically

design compact and efficient CNNs.

• A multiobjective evolutionary algorithm for the automatic design of convolu-

tional neural network architectures that achieve competitive performance in

terms of accuracy and multiply-adds operations.

• An in-depth study of MOEA characteristics such as representation, population

dynamics, and operators’ influence on CNN architecture design.

4.8 Methodology

The proposed research methodology is as follows.

• To analyze different proposed solutions representations at different abstraction

levels for CNNs encoding.

• To develop a new representation for CNNs architectures. It is considered

to explore mixed solutions representation and therefore ad-hoc evolutionary

operations while exploring population dynamics in multiobjective evolutionary

algorithms.

• To discriminate among CNNs architectures how their internal structures work

on extracting data features. Thus, essential blocks at different abstraction lev-

els can be determined. Their granularity from fine blocks implementing single

operations like convolution or pooling to coarse blocks with multiple encap-

sulated operations such as Resblock [7] performing several chained operations

are considered.

• To analyze the state of the art NAS proposals based on multiobjective evolu-

tionary algorithms.

28

• To assess NAS paradigms based on multiobjective evolutionary algorithms in

their different forms such as Pareto-based, indicator-based, or decomposition-

based algorithms to build on the proposed NAS algorithmic approach.

• To develop a NAS algorithm that integrates the proposed solutions repre-

sentation and ad-hoc evolutionary operations and population dynamics in a

multiobjective evolutionary algorithm.

• To thoroughly evaluate the proposed NAS algorithm. A number of specific

datasets for image tasks will be targeted. A number of design and development

cycles are considered in order to achieve competitive performance.

4.9 Work Plan

Table 2 shows a preliminary work plan. Every year is divided in semesters. We

are considered 3 designs and development phases for the proposed NAS based on

MOEAs approach.

4.10 Publications Plan

• Can real-based encoding improve Multiobjective Evolutionary Neural Archi-

tecture Search?, The European Conference on Genetic Programming (Eu-

roGP)

• Conference/journal oriented paper with partial results, Genetic and Evolution-

ary Computation Conference (GECCO), MIT Evolutionary Computation.

• Journal paper, IEEE transactions on evolutionary computation

29

Table 2: Proposed Schedule (Green done)

Activities 2021 2022 2023 2024
S1 S2 S1 S2 S1 S2 S1 S2

Background
Analysis of the state of the art
Doctoral proposal
Preparation
Defense
First Iteration
Analysis and selection of NAS algorithms
CNNs analysis
Representation analysis
NAS algorithm design
NAS algorithm implementation
NAS algorithm evaluation
Conference paper Writing
Second Iteration
NAS algorithm design
NAS algorithm implementation
NAS algorithm evaluation
Journal Paper Writing
Third iteration
NAS algorithm final design
NAS algorithm implementation
NAS algorithm evaluation
Journal Paper Writing
Thesis
Writing
Dissertation defense

30

5 Preliminary Results

The following are the preliminary results achieved during the first year of research.

The main idea was to design two levels of encoding representation for CNN’s. This

is an initial version of the proposed algorithm called CGP-NAS (Cartesian Genetic

Programming-Neural Arquitecture Search).

At a first level, the Cartesian Genetic Programming (CGP) representation through

acyclic graphs allowing feed-forward connections is used and represented using integer-

based vectors. At a second level, CGP’s based represented solutions are converted

to real-based vector encoding. Multiobjective evolutionary search is performed in

the continuous domain, so evolutionary operations are accordingly defined.

5.1 Solutions representation for CNN architectures

This study is based on CGP’s solution representation for CNNs at the genotypic level

for later transformation to a real domain vector following Clegg et al. research [46].

The search space is determined by blocks that define functions and their parameters.

In Table 3, the function set used in these preliminary results is presented. Convolu-

tion and pooling standard functions in CNNs are the main ones in the function set

[7, 47, 48, 6].

Table 3: Functions set with corresponding variations and arity. *For C = 32 there is not
1× 1 variation

Block type Symbol Variation Arity

ConvBlock CB(C, k)
C ∈ {32∗, 64, 128}

k ∈{1× 1, 3× 3, 5× 5} 1

ResBlock RB(C, k)
C ∈ {32, 64, 128}
k ∈{3× 3, 5× 5} 1

Max Pooling MP - 1
Average Pooling AP - 1

Summation Sum - 2
Concatenation Concat - 4

Figure 10a shows the ConvBlock based on three operations: convolution, batch

normalization, and ReLU. Input data for ConvBlock and the other blocks is feature

maps defined by rows, columns, and channels. Figure 10b draws the ResBlock, which

implies a more complex set of operations as it involves a shortcut connection based

on the ResNet network [49]. This shortcut connection divides an input by two and

31

applies a tensor summation. The ConvBlock and ResBlock have different settings

that depend on the channel’s output and used kernel.

The pooling operation is configured with a 2 × 2 receptive field and a stride of

two. This function is for input down-sampling and works the same for Max and

Average pooling. The difference lies in considering the average or maximum values

of the receptive field.

Convolution

Batch normalization

ReLU

(a) ConvBlock has three opera-
tions.

ConvBlock

Convolution

Batch Normalization

Summation

ReLU

(b) ResBlock has a ConvBlock plus five op-
erations. It reduces the vanishing gradient
problem.

Figure 10: ConvBlock and ResBlock general structure .

Summation and concatenation inputs are tensors that can be of different sizes. A

summation operation is element-wise and channel by channel. Thus, it receives two

tensors size M1 ×N1 × C1 and M2 ×N2 × C2.

Max pooling is applied to the larger sized tensor to try matching dimensions,

if they are still different, the smaller tensor is expanded with zeros in the channel

dimension, therefore the output is min(M1,M2)×min(N1, N2)×max(C1, C2).

For concatenation, four feature maps are joined by the channel dimension. Max

pooling is applied to the largest input to match its size. Thus, the output size is

min(M1,M2) × min(N1, N2) × (C1 + C2). In this study, concatenation’s arity was

set to 4. It receives 4 feature maps, unlike concatenation in [7], that only receives 2

feature maps. First, it concatenates two inputs: min(M1,M2)×min(N1, N2)×(C1+

C2) and min(M3,M4)×min(N3, N4)× (C3 +C4). After, Max pooling is applied to

the largest feature map to match the entries, thus obtained outputs are concatenated

32

following the same rules. The final output is: min(min(M1,M2),min(M3,M4)) ×
min(min(N1, N2),min(N3, N4))× ((C1 + C2) + (C3 + C4)).

5.1.1 Solutions encoding - decoding

The encoding - decoding process from integer-based to real-based vectors is detailed

next. Equation 11 defines a range in which funck is the current function identifier

and functotal is the total number of functions in the function set. For this range, a

uniform random number is generated to represent a function in the real domain.

rfunck ∈
[

funck
functotal

,
funck + 1

functotal

]
(11)

Equation 12 defines a range for function inputs in the real domain with the objec-

tive of mapping connections for that node, this operation is applied to all connections.

An input value (nodeinput) and its node number (nodeTerm) are used to calculate

this range. In Figure 2, every node is identified by a node number (red circle on top

each block).

rinputj ∈
[
nodeinputj
nodeTerm

,
nodeinputj + 1

nodeTerm

]
(12)

Equation 13 decodes the function identifier by multiplying the gene value by the

total number of functions. On the other hand in Equation 14 the value of each

connection is obtained by multiplying the gene value by the node number. It should

be noted that the real-based or integer-based vector must be separated by segments.

The most left position per segment represents the function and the other values

represent the connections.

funck = ⌊genei × functotal⌋ (13)

inputj = ⌊genei ×NodeTerm⌋ (14)

Figure 11 shows a an example where the Equations 11 and 12 mentioned above

were applied, two genotypes are observed, the top one integer-based and the bottom

one converted to real-based, in this example nine total functions were considered.

After encoding, a real-based vector is obtained and its size is calculated as follows:

dV = (nT +O) ∗ (mA+ 1) (15)

33

4832 2 2 30101 0 6 1 2 4 3 5 63 0

877665544332211

0.2 0.5 0.50.2 0.5 0.5 0.4 0.4 0.60.4 0.4 0.6 0.7 0.4 0.70.7 0.4 0.7 0.3 0.8 0.10.3 0.8 0.1 0.9 0.9 0.50.9 0.9 0.5 0.5 0.6 0.40.5 0.6 0.4 0.6 0.9 0.50.6 0.9 0.5

270 270

0.1 0.9 0.30.1 0.9 0.3

Figure 11: Conversion example between an integer-based solution representation in CGP
and its real-based representation by applying the functions defined above.

where nT is the total number of nodes, O is the number of outputs and mA is the

maximum arity in the function set. Considering this calculated vector size a new

encoded population is determined. Equation 15 calculates dV as the number of

decision variables to optimize by CGP-NAS.

5.2 Evolutionary searching engine

For the multiobjective evolutionary neural architecture search through the solutions

encoding using real-based vectors, the well established NSGA-II is deployed [20].

Using continuous domain solutions representation opens the possibility to other

evolutionary and bio-inspired multiobjective optimization algorithms. In this study,

as an initial approach and due to its high algorithmic performance in the multiob-

jective arena, NSGA-II was considered as the evolutionary searching engine. The

NSGA-II algorithm was only modified by adding the encoding and decoding opera-

tions. Figure 12 shows the general scheme of NSGA-II, and the steps for encoding

and decoding the solutions were added, the following steps are those of the original

algorithm. Therefore, NSGA-II is applied in its full capacity with all its advan-

tages. Moreover, even though the original CGP only considers applying mutation

and does not recommend crossover. Once, solutions are encoded in the continuous

domain, SBX(simulated binary crossover) crossover operation and polynomial mu-

tation, that can be considered as default operations in NSGA-II, can be applied.

The objective functions seek to minimize the classification error rate as well as the

model’s complexity measured in MAdds (Multiply-adds).

5.3 Experimental settings

This section describes the benchmark datasets used for empirical evaluation and re-

sults validation together with the experimental algorithmic settings that are defined

for a fair comparison to other previously proposed approaches.

34

Pt Pt

Qt

F2

F3

F1

Fn

F3

Mating
pool

Pt+1

Rejected

Non-dominated
sorting

Crowding distance sorting

Initial PopulationEncode initial
population

Decode
(Pt)

Decode
(Qt)

Figure 12: NSGA-II general scheme with encoding and decoding steps. NSGA-II gener-
ates an initial population Pt and after mating a population of descendants Qt is obtained.
Qt is decoded for evaluation, and therefore for optimization considering non-dominance.
Finally, to complete the population crowding distance criterion is applied to reorder solu-
tions going into the next generation.

5.3.1 Benchmark datasets

CIFAR-10 and CIFAR-100 datasets were used for empirical evaluation of the pro-

posed CGP-NAS approach. Both benchmarks have been widely used within the

neural architecture search arena. Each dataset has 60,000 images that were divided

in two subsets. One with 50,000 as the training set and one with 10,000 as the testing

set. This configuration is only used for final best evolved models in order to obtain

their final accuracy. For solutions evaluation during the evolutionary searching, the

training subset was randomly divided in 45,000 images for training and 5,000 images

for validation of every individual solution during evolution.

5.3.2 Experimental settings

Table 4 shows NSGA-II configuration as well as the parameters values used for

CGP configuration. For training and validation of every solution within the pop-

35

Table 4: CGP-NAS parameters

Parameters Value
CGP grid size Nr ×Nc 10× 20

Chromosome length 1005

Mutation probability
Pm = 1

n , where n

is the decision vector dimension.

Crossover probability
Pc = 0.9, distribution index for

simulated binary crossover Dsc = 20.
Population size 20

Number of Generations
10 for CIFAR 10 Dataset
20 for CIFAR 100 Dataset

ulation during the evolutionary searching process the following configuration was

set: Stochastic Gradient Descent (SDG) was used as optimizer and cosine annealing

learning rate schedule. The initial learning rate was set to 0.025, while the momen-

tum was set to 0.9 and the weight decay to 0.0005. A batch size of 128 was defined.

In addition, 25 training epochs were established.

On the other hand, training and testing data were preprocessed by a 4 pixel-

mean subtraction padding on each size and randomly cropped by a 32 × 32 patch

or its horizontally flipped image. CGP-NAS was implemented in python using the

pymoo [50] and pytorch libraries and was run on Ubuntu 18.04 machine with an Intel

i7-7700 4.2Ghz CPU, 16GB RAM and an NVIDIA GeForce GTX TITAN X GPU

card. After an error during an individual training or evaluation, it was assigned as

incorrect so that the evolutionary algorithm discards it from the search.

Once the algorithm executes the predefined number of generations, a solution from

the achieved Pareto front with the smaller classification error is chosen. This solution

is retrained for 500 epochs under the same scheme using the complete dataset in

addition the cutout preprocessing technique is added.

5.4 Preliminary Results analysis

CGP-NAS was executed 10 independent times on each dataset. Tables 5 and 6

show the achieved experimental results in terms of classification error, the number

of learnable weight parameters, MAdds, GPU-days, and the used GPU module. The

best solution classification error found from the 10 independent runs is reported, as

well as the average and standard deviation. We classify the results in human-design

CNNs and automatically designed CNNs based on single-objective or multi-objective

approaches. The “-” symbol means that the corresponding results were not reported

36

in these proposals. On the CIFAR-10 dataset, CGP-NAS performs better than

the human-design reported models in terms of classification error, while the num-

ber of parameters is competitive with the other proposals. For the single-objective

approaches, CGP-NAS outperforms CGP-CNN[7], Large-Scale Evolution[51], and

Genetic-CNN[4]. However, AE-CNN[37] overcomes the proposed approach in this

metric, yet CGP-NAS outperforms AE-CNN in terms of GPU-days: 1.4 days ver-

sus 27 reported for AE-CNN. Finally, compared to other multi-objective proposals,

NSGANet obtains a CNN architecture with lower classification error, yet CGP-NAS

obtains an improved architecture complexity (MAdds). CGP-NAS outperforms all

other approaches in GPU-days metric. For CIFAR-100 dataset, 10 independent

runs were also executed. CGP-NAS achieved results are shown in Table 6. CGP-

NAS was able to evolve CNN architectures with competitive performance in terms

of classification error. An important reduction in terms of GPU-days is appreci-

ated, 2.1 GPU-days for CGP-NAS while 10.9 and 27 GPU-days were reported for

CGP-CNN(ResSet) and NSGANetV1 respectively.

Table 5: Comparison on CIFAR-10 dataset: Classification error rate, the number of pa-
rameters and Multiply-adds (MAdds) are expressed in millions (1× 106), GPU-days and
GPU Hardware.

Model
Error
rate %

Params MAdds GPU-Days Hardware

Human Design
DenseNet (k = 12) (Huang et al., 2017) 5.24 1.0 - -
ResNet (depth = 101) (He et al., 2016) 6.43 1.7 - -

ResNet (depth = 1202) (He et al., 2016) 7.93 10.2 - -
VGG (Simonyan et al., 2014) 6.66 20.04 - -

Single Objective Approaches
CGP-CNN (ConvSet) (Suganuma et al., 2020) 5.92 1.50 - 8 Nvidia 1080 Ti
CGP-CNN (ResSet) (Suganuma et al., 2020) 5.01 3.52 - 14.7 Nvidia 1080 Ti

Large-Scale Evolution (Real et al., 2017) 5.4 5.4 - 2750 -
AE-CNN (Sun et al., 2020) 4.3 2.0 - 27 Nvidia 1080 Ti

Genetic-CNN (Xie et al., 2017) 7.1 - - 17 -
Multi-Objective Approaches

NSGANet (Lu et al., 2019) 3.85 3.3 1290 8 Nvidia 1080 Ti
MOCNN (Wang et al., 2020) 4.49 - - 24 Nvidia 1080 Ti

MOGIG-Net (Xue et al., 2021) 4.67 0.2 - 14 -

CGP-NAS 4.86
(5.42 ± 0.46)

1.40 388.71 1.4 Nvidia Titan X

For the CIFAR-100 dataset, CGP-NAS outperforms human-design architectures;

while in comparison to the single-objective approaches, CGP-NAS outperforms both

CGP-CNN and Genetic-CNN approaches. Considering Large-scale Evolution and

AE-CNN, the results are competitive, yet in terms of GPU-days, CGP-NAS over-

comes both approaches while requiring only 2.1 GPU-days against 2750 and 36

GPU-days respectively. Comparison against multi-objective approaches, our pro-

posal outperforms MOGIG-Net[44] and NSGANetV1[5] in the classification error,

while achieving a very similar performance in MAdds. Finally, CGP-NAS shows

37

superior performance on this dataset in terms of GPU-days.

Table 6: Comparison on CIFAR-100 dataset: Classification error rate, the number of
parameters and Multiply-adds (MAdds) are expressed in millions (1 × 106), GPU-days
and GPU Hardware.

Model
Error
rate %

Params MAdds GPU-Days GPU hardware

Human Design
DenseNet (k = 12) (Huang et al., 2017) 24.42 1.0 - -
ResNet (depth = 101) (He et al., 2016) 25.16 1.7 - -

ResNet (depth = 1202) (He et al., 2016) 27.82 10.2 - -
VGG (Simonyan et al., 2014) 28.05 20.04 - -

Single Objective Approaches
CGP-CNN(ConvSet) (Suganuma et al., 2020) 26.7 2.04 - 13 Nvidia 1080Ti
CGP-CNN(ResSet) (Suganuma et al., 2020) 25.1 3.43 - 10.9 Nvidia 1080Ti

Large-Scale Evolution (Real et al., 2017) 23.0 40.4 - 2750 -
AE-CNN (Sun et al., 2020) 20.85 5.4 - 36 Nvidia 1080 Ti

Genetic-CNN (Xie et al., 2017) 29.03 - - 17 -
Multi-Objective Approaches

NSGANetV1 (Lu et al., 2020) 25.17 0.2 1290 27 Nvidia 2080 Ti
MOGIG-Net (Xue et al., 2021) 24.71 0.7 - 14 -

CGP-NAS 24.23
(26.41 ± 1.41)

5.43 1581 2.1 Nvidia Titan X

The overall performance of CGP-NAS according to the achieved results shows that

it can find CNN’s architectures with a competitive trade-off between the classification

error and the complexity (Madds). In addition, the time required to perform the

search is significantly reduced in comparison to other state-of-the-art approaches.

The reason for the GPU-days reduction is related to the evolutionary search since

CGP-NAS pursues the architecture complexity in terms of MAdds as an objective

to minimize. Thus, the complexity of the evolved CNN architectures is reduced.

It is also expected that the evaluation time will be reduced, and as a consequence,

the overall search time decreases. This happens more efficiently due to the real-

based representation used in CGP-NAS because it accelerates the convergence in the

early stages of the evolutionary search [46] in combination with NSGA-II, a well-

established and high performing MOEA. Moreover, CGP-NAS good performance

can also be attributed to the base of CGP representation. The mesh used in this

experiment was set to 10x20. This does not mean that all solutions will have a fixed

size because the phenotypes obtained by CGP are of variable size. Therefore, the

freedom to search for less complex solutions is more feasible likely since it does not

have a fixed size. Figures 13a and 13b show the Pareto front and the convergence

curve for the Hypervolume metric (average for all executions) on the CIFAR-10

dataset. It is observed that the evolutionary process pursues the best possible trade-

off between both objectives, classification error and architecture complexity. On

average, the hypervolume metric has an ascending value and this is indicative of

overall good distribution, and a well-distributed solution in the objective function

space is a good indicator.

38

(a) CGP-NAS achieved Pareto front for CIFAR-
10 dataset.

(b) Hypervolume convergence curve achieved
for CGP-NAS on CIFAR-10.

Figure 13: CGP-NAS achieved (a) Pareto front (red dots) and (b) convergence curve for
the Hypervolume metric. A set of moderately distributed solutions is obtained while they
are dispersed to get as close as possible to the Pareto front.

On the other hand, for the CIFAR-100 dataset, Figures 14a and 14b show the

evolved solutions through the generations and the final Pareto fronts and the con-

vergence curve for the hypervolume metric. It is observed that the Pareto front

has in general a good solutions dispersion throughout the objective function space.

In terms of hypervolume, the obtained curve shows a good performance through

the generations. This behavior confirms that using real-based vectors for solution

representation can indeed attain similar or even better performance results in the

NAS. A general remark for CGP-NAS when targeting CIFAR-100 data set is its sig-

nificant improvement in terms of GPU-days that are required to evolve competitive

solutions. CGP-NAS configuration due to the computational constraints was set

for a small population size with a reduced number of generations. Yet, CGP-NAS

achieved competitive results and significantly overcame those in terms of the GPU-

days. It is possible to confirm that NSGA-II as a NAS searching engine, with its

real-based solution encoding as well as specialized operators, helps to improve the

convergence process, while coherence in those evolved solutions is maintained due to

CGP flexibility.

Figures 15a and 15b shows the best CNN architecture found for both datasets.

The best-evolved solution shares many elemental blocks with those found in ResNet

networks. For example, using ResBlocks that allow shortcut connections, increases

the number of channels according to the architecture deep, or using pooling blocks

for downsampling, these features are widely present in CNN’s developed by experts.

39

(a) CGP-NAS achieved Pareto front for CIFAR-
100 dataset.

(b) Hypervolume convergence curve achieved
by CGP-NAS on CIFAR-100.

Figure 14: CGP-NAS achieved (a) Pareto front (red dots) and (b) convergence curve for
the Hypervolume metric. A set of moderately distributed solutions is obtained while they
are dispersed to get as close as possible to the Pareto front.

6 Final Remarks

This study proposes the development of a new NAS solutions representation and a

algorithm using a multi-objective approach, which has been little investigated from

the evolutionary point of view. Given this problem, the first ideas chosen were the

CGP representation and the NSGA-II algorithm.

According to the achieved preliminary results, combining solutions representation

such as CGP with the searching strength of NSGA-II provides competitive NAS re-

sults. Moreover, the flexibility for solution representation in evolutionary algorithms

and the searching ability of their multiobjective techniques can be explored further

for performance improvement.

Results obtained so far show that compact CNN architectures can be automat-

ically designed while competitive accuracy is maintained. The results also showed

that CCNs’ architecture design is indeed a multiobjective optimization problem

where trying to increase CNN’s accuracy while reducing the number of MAdds is

clearly in conflict.

Using real-based solutions encoding allows us to make a transition between the

integer-based solutions representation used in CGP and a more flexible domain.

Thus, it is possible to exploit the benefits of an accurate representation and the

searching ability of evolutionary multiobjective algorithms without any external

modification by decoding solutions for their evaluation.

40

Input

CB(32,3)

RB(64,3)

RB(128,5)

Full

CB(128,1)

MP

RB(64,3)

CB(128,3)

(a) Best architecture found on CIFAR-10
Dataset

Input

RB(64,5)

RB(64,5)

RB(128,5)

Full

CB(128,5)

AP

RB(128,5)

(b) Best architecture found on CIFAR-100
Dataset

Figure 15: The best evolved CNNs architectures for (a) CIFAR-10 and (b) CIFAR-100
datasets. Both deploy ResBlocks with internal shortcuts connections, ConBlocks and
Pooling blocks. See Table 3 for notation details.

The CGP-NAS achieved results are competitive with those from previously pro-

posed approaches. Moreover, CGP-NAS overcame CGP-CNN, MOCNN, NSGANet,

and NSGANetV1 in terms of the GPU-days metric. Moreover, CGP-NAS was em-

pirically validated using a small population size, but due to the real-based solutions

representation and the NSGA-II as the searching engine, a balanced search for fast

convergence was performed, thus having a reduced population and number of gen-

erations did not negatively affect finding competitive solutions.

A significant advantage for CGP-NAS is its high-level customization, as it can

be adapted to different evolutionary multiobjective algorithms that work in the

continuous domain. Some disadvantages of the proposed CGP-NAS are the decision

vector size. In this preliminary setting, a 10 × 20 CGP mesh with maximum arity

equals 4, represents a 1005 decision vector size, see Equation 15. This size would

increase with respect to the total number of nodes within the CGP mesh. This can

41

be a drawback for evolutionary algorithms. A possible way to overcome this is to

research co-evolution as a way to deal with large decision vectors.

In future work, new blocks will be added to the function set. A starting point

could be those used by [5], where more elaborate functions such as dilated convolu-

tions, local binary convolutions, and depth-wise-separable convolutions are proposed.

These have shown good NAS performance.

On the other hand, benchmarking will be extended to the ImageNet dataset,

which is being used more and more in this area. Also, other image tasks such as image

inpainting and denoising will be considered. A starting point for reference would be

based on [43], in which CGP was used to search for convolutional autoencoders and

competitive results are reported.

42

References

[1] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon,

B. Raju, H. Shahrzad, A. Navruzyan, N. Duffy, and B. Hodjat, “Evolving Deep

Neural Networks,” in Artificial Intelligence in the Age of Neural Networks and

Brain Computing, pp. 293–312, Elsevier, 2019.

[2] Z. Lu, I. Whalen, V. Boddeti, Y. Dhebar, K. Deb, E. Goodman, and

W. Banzhaf, “NSGA-Net,” in Proceedings of the Genetic and Evolutionary

Computation Conference, (New York, NY, USA), pp. 419–427, ACM, jul 2019.

[3] Y. Sun, B. Xue, M. Zhang, and G. G. Yen, “Evolving Deep Convolutional

Neural Networks for Image Classification,” IEEE Transactions on Evolutionary

Computation, vol. 24, pp. 394–407, apr 2020.

[4] L. Xie and A. Yuille, “Genetic CNN,” in 2017 IEEE International Conference

on Computer Vision (ICCV), pp. 1388–1397, IEEE, oct 2017.

[5] Z. Lu, I. Whalen, Y. Dhebar, K. Deb, E. Goodman, W. Banzhaf, and V. N.

Boddeti, “Multi-Objective Evolutionary Design of Deep Convolutional Neural

Networks for Image Classification,” IEEE Transactions on Evolutionary Com-

putation, pp. 1–1, sep 2020.

[6] M. Suganuma, S. Shirakawa, and T. Nagao, “A genetic programming approach

to designing convolutional neural network architectures,” in Proceedings of the

Genetic and Evolutionary Computation Conference, (New York, NY, USA),

pp. 497–504, ACM, jul 2017.

[7] M. Suganuma, M. Kobayashi, S. Shirakawa, and T. Nagao, “Evolution of deep

convolutional neural networks using cartesian genetic programming,” mar 2020.

[8] Z. Lu, K. Deb, E. Goodman, W. Banzhaf, and V. N. Boddeti, “NSGANetV2:

Evolutionary Multi-objective Surrogate-Assisted Neural Architecture Search,”

in Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 12346 LNCS,

pp. 35–51, Springer Science and Business Media Deutschland GmbH, aug 2020.

[9] B. Wang, B. Xue, and M. Zhang, “Particle Swarm Optimization for Evolv-

ing Deep Convolutional Neural Networks for Image Classification: Single-

and Multi-Objective Approaches,” in Natural Computing Series, pp. 155–184,

Springer, 2020.

[10] D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,”

IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67–82, 1997.

43

[11] Y. Ho and D. L. Pepyne, “Simple explanation of the no free lunch theorem of

optimization,” Kibernetika i Sistemnyj Analiz, vol. 38, no. 2, pp. 164–173, 2002.

[12] T. Elsken, J. H. Metzen, and F. Hutter, “Neural Architecture Search: A Sur-

vey,” tech. rep., 2019.

[13] A. Eiben and J. Smith, Introduction to Evolutionary Computing. Natural Com-

puting Series, Berlin, Heidelberg: Springer Berlin Heidelberg, 2015.

[14] J. Miller, P. Thomson, T. Fogarty, and I. Ntroduction, “Designing electronic cir-

cuits using evolutionary algorithms. arithmetic circuits: A case study,” Genetic

Algorithms and Evolution Strategies in Engineering and Computer Science, 10

1999.

[15] J. F. Miller, “Cartesian Genetic Programming,” in Natural Computing Series,

vol. 43, pp. 17–34, 2011.

[16] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms. Wiley,

2001.

[17] C. A. C. Coello, G. B. Lamont, D. A. V. Veldhuizen, C. A. Coello Coello, G. B.

Lamont, and D. A. Van Veldhuizen, Evolutionary Algorithms for Solving Multi-

Objective Problems. Genetic and Evolutionary Computation Series, Boston,

MA: Springer US, 2007.

[18] K. Deb, Evolutionary and Swarm Intelligence Algorithms, vol. 779 of Studies in

Computational Intelligence. Cham: Springer International Publishing, 2019.

[19] M. T. M. Emmerich and A. H. Deutz, “A tutorial on multiobjective optimiza-

tion: fundamentals and evolutionary methods,” Natural Computing, vol. 17,

pp. 585–609, sep 2018.

[20] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist Multi-

objective Genetic Algorithm: NSGA-II,” Tech. Rep. 2, 2002.

[21] C. M. Fonseca and P. J. Fleming, “Genetic algorithms for multiobjective opti-

mization: Formulation, discussion and generalization,” 1993.

[22] J. Knowles and D. Corne, “The pareto archived evolution strategy: a new

baseline algorithm for pareto multiobjective optimisation,” in Proceedings of

the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406),

vol. 1, pp. 98–105 Vol. 1, 1999.

[23] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: a compar-

ative case study and the strength pareto approach,” IEEE TRANSACTIONS

ON EVOLUTIONARY COMPUTATION, vol. 3, no. 4, pp. 257–271, 1999.

44

[24] E. Zitzler, M. Laumanns, and L. Thiele, “Spea2: Improving the strength pareto

evolutionary algorithm,” tech. rep., 2001.

[25] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm based

on decomposition,” IEEE Transactions on Evolutionary Computation, vol. 11,

pp. 712–731, dec 2007.

[26] Hui Li and Qingfu Zhang, “Multiobjective Optimization Problems With Com-

plicated Pareto Sets, MOEA/D and NSGA-II,” IEEE Transactions on Evolu-

tionary Computation, vol. 13, pp. 284–302, apr 2009.

[27] M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis and Machine

Vision. Boston, MA: Springer US, 1993.

[28] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.

[29] F. Rosenblatt, “The perceptron: a probabilistic model for information storage

and organization in the brain.,” Psychological review, vol. 65, no. 6, p. 386,

1958.

[30] S. Russell and P. Norvig, Artifical Intelligence: A Modern Approach (Third

Edition). 3er ed., 2009.

[31] N. Noman, A Shallow Introduction to Deep Neural Networks, pp. 35–63. Sin-

gapore: Springer Singapore, 2020.

[32] H. J. Escalante, Automated Machine Learning—A Brief Review at the End of

the Early Years, pp. 11–28. Cham: Springer International Publishing, 2021.

[33] H. Zhu and Y. Jin, Toward Real-Time Federated Evolutionary Neural Architec-

ture Search, pp. 133–147. Cham: Springer International Publishing, 2021.

[34] K. O. Stanley and R. Miikkulainen, “Evolving Neural Networks through Aug-

menting Topologies,” Evolutionary Computation, vol. 10, pp. 99–127, jun 2002.

[35] D. B. D’ambrosio and K. O. Stanley, A Novel Generative Encoding for Exploit-

ing Neural Network Sensor and Output Geometry. 2007.

[36] S. Risi, J. Lehman, and K. O. Stanley, Evolving the Placement and Density of

Neurons in the HyperNEAT Substrate. 2010.

[37] Y. Sun, B. Xue, M. Zhang, and G. G. Yen, “Completely Automated CNN

Architecture Design Based on Blocks,” IEEE Transactions on Neural Networks

and Learning Systems, vol. 31, pp. 1242–1254, apr 2020.

45

http://www.deeplearningbook.org

[38] W. Irwin-Harris, Y. Sun, B. Xue, and M. Zhang, “A Graph-Based Encoding

for Evolutionary Convolutional Neural Network Architecture Design,” in 2019

IEEE Congress on Evolutionary Computation (CEC), pp. 546–553, IEEE, jun

2019.

[39] A. Bakhshi, S. Chalup, and N. Noman, Fast Evolution of CNN Architecture for

Image Classification, pp. 209–229. Singapore: Springer Singapore, 2020.

[40] Y.-H. Kim, B. Reddy, and S. Yun, “NEMO: Neuro-Evolution with Multiobjec-

tive Optimization of Deep Neural Network for Speed and Accuracy Chanwon

Seo,” tech. rep., 2017.

[41] M. Pelikan, D. E. Goldberg, and E. Cantu-Paz, “Boa: The bayesian optimiza-

tion algorithm,” pp. 525–532, Morgan Kaufmann, 1999.

[42] S. Li, Y. Sun, G. G. Yen, and M. Zhang, “Automatic Design of Convolutional

Neural Network Architectures Under Resource Constraints,” IEEE Transac-

tions on Neural Networks and Learning Systems, pp. 1–15, 2021.

[43] M. Suganuma, S. Shirakawa, and T. Nagao, Designing Convolutional Neural

Network Architectures Using Cartesian Genetic Programming, pp. 185–208. Sin-

gapore: Springer Singapore, 2020.

[44] Y. Xue, P. Jiang, F. Neri, and J. Liang, “A Multi-objective evolutionary ap-

proach based on graph-in-graph for neural architecture search of convolutional

neural networks,” International Journal of Neural Systems, vol. 31, sep 2021.

[45] J. Liang, E. Meyerson, B. Hodjat, D. Fink, K. Mutch, and R. Miikkulainen,

“Evolutionary neural AutoML for deep learning,” in Proceedings of the Genetic

and Evolutionary Computation Conference, (New York, NY, USA), pp. 401–

409, ACM, jul 2019.

[46] J. Clegg, J. A. Walker, and J. F. Miller, “A new crossover technique for Carte-

sian genetic programming,” in Proceedings of the 9th annual conference on Ge-

netic and evolutionary computation - GECCO ’07, (New York, New York, USA),

p. 1580, ACM Press, 2007.

[47] M. Pinos, V. Mrazek, and L. Sekanina, “Evolutionary Neural Architecture

Search Supporting Approximate Multipliers,” pp. 82–97, Springer, Cham, apr

2021.

[48] Y. Sun, H. Wang, B. Xue, Y. Jin, G. G. Yen, and M. Zhang, “Surrogate-Assisted

Evolutionary Deep Learning Using an End-to-End Random Forest-Based Per-

formance Predictor,” IEEE Transactions on Evolutionary Computation, vol. 24,

pp. 350–364, apr 2020.

46

[49] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recog-

nition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 770–778, IEEE, jun 2016.

[50] J. Blank and K. Deb, “pymoo: Multi-objective optimization in python,” IEEE

Access, vol. 8, pp. 89497–89509, 2020.

[51] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. Le, and

A. Kurakin, “Large-Scale Evolution of Image Classifiers,” mar 2017.

47

	Introduction
	Motivation
	Justification

	Background
	Evolutionary Algorithms
	Cartesian genetic programming
	Multiobjective Optimization
	Basic concepts
	Multiobjective optimization problem
	Dominance and Pareto optimality

	Multiobjective evolutionary algorithms
	Pareto-based MOEAs
	MOEAs based on Decomposition

	Classification and pattern recognition
	Neural networks
	Feedforward networks

	Convolutional Neural Networks
	Convolution layers
	Pooling layers
	Fully connected layers

	Neural architecture Search

	Related work
	Multiobjective NAS

	Research Development
	Problem Statement
	Research Questions
	Hypothesis
	General objective
	Specific objectives
	Scope and Limitations
	Expected Contributions
	Methodology
	Work Plan
	Publications Plan

	Preliminary Results
	Solutions representation for CNN architectures
	Solutions encoding - decoding

	Evolutionary searching engine
	Experimental settings
	Benchmark datasets
	Experimental settings

	Preliminary Results analysis

	Final Remarks
	References

