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Abstract

With the rapid technological progress, the need for high processing and

storage capacities has increased dramatically. Therefore, it is a necessity to

discover new ways to manipulate and transform information. One poten-

tial solution is quantum information processing, which significantly reduce

the amount of stored data, the number of operations, and the complexity of

classical tools such as the wavelet transform (WT). WT is a primary tool

in many areas, such as encryption, signal coding, watermarking, compres-

sion, de-noising, and information retrieval. Its classical relevance drives its

progress at the quantum level, leading to improvements in computation effi-

ciency for the one-, two-, and three-dimensional quantum wavelets transform.

However, conventional, real-valued WT is not suitable for lossless applications

and is computationally complex. The Integer-to-Integer WT (IWT) is an-

other kind of transform that maps integer to integer, which uses the lifting

scheme to perform the signal decomposition analysis. This scheme reduces

the computational cost, allows practical lossless applications over real-valued

WT, and generates new wavelet families. So far, there is no definition of the

QWT for the integer version (Q-IWT), which could be valuable in quantum

information processing. Therefore, we propose a quantum approach for the

one-dimensional integer wavelet transform for Haar, Daubechies, and CDF

kernels, including quantum algorithms for signal decomposition and lossless

compression. We will evaluate the proposed transform and the compression

application using complexity and mathematical analysis, performance, flexi-

bility, signal recovery, entropy, and noise addition metrics. Additionally, we

will use IBM’s simulation environment as a means of analysis and verification.

Keywords: Quantum Computing, Quantum Information Processing, Wa-

velet Transform, Integer-to-Integer, Lossless Compression.
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1 Introduction

Quantum computing enables the development and experimental realization of quan-

tum algorithms in many areas to solve complex computational problems [1–4]. For

example, the algorithms of Shor and Grover run on a quantum computer with an

exponential and quadratic speedup, respectively [2,4,5]. The ideas behind these al-

gorithms allow the construction of new techniques and solutions to classical problems

in areas such as cryptography, watermarking, information processing, optimization,

and machine learning [2,6–9]. However, there is a limited number of these quantum

solutions. In principle, this is due to the difficulty in the transition between the

classical and quantum world. In addition to the relatively new emergence of the

field [2,4,10–12]. Therefore, the development of solutions that take advantage of the

properties of quantum mechanics is a new challenge to be explored and solved [2,4,5].

With the rapid technological progress, the need for high processing and storage

capacities has increased dramatically. Therefore, it is a necessity to discover new

ways to manipulate and transform information [5, 6, 11]. One potential solution is

quantum information processing, which significantly reduce the amount of stored

data, the number of operations, and the complexity of classical operations [5, 6].

Until now, quantum algorithms such as feature extraction, quantum representation,

quantum transformations, and quantum operations have demonstrated quantum-

theoretical power in contrast to classical counterparts [5, 6, 10, 11]. However, the

quantum paradigm also introduces new constraints and challenges that need to be

studied such as the unitarity of quantum operators, the limitation of nonlinearity, the

quantum cost of implementation, information representation and manipulation [2,4].

Wavelet Transform (WT) is a primary tool in the information processing fields

such as encryption, signal coding, feature extraction, compression, information re-

trieval, de-noising, and watermarking [5, 6, 10, 12]. Its classical relevance drives

its progress at the quantum level, leading to improvements in computational ef-

ficiency. Preliminary work presented a quantum version of one-dimensional WT

for two main kernels, the Haar (H) and Daubechies (D4) bases [13–15]. There

is a multi-level approach for 1D-HQWT and 1D-D4QWT using a generalized ten-

sor product [11], multi-level two-dimension QWT based on the packet for Haar

and Daubechies bases [10, 11], quantum circuits of the multi-level and single-level

QWT [11, 12], and a new multi-level version of 2D-QWT involving entanglement
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and superposition [11]. However, research on Quantum Wavelet Transform (QWT)

is still under progress and improvement.

Among the conventional wavelet transform, also called real-valued wavelet

transform, there is another attractive version of this transform called the integer

wavelet transform (IWT), which maps integer signals to integer decomposition val-

ues [4]. This transform is especially useful in applications where minimal pertur-

bations of the primary data are not acceptable, as it allows for true lossless pro-

cessing [16–18]. In addition, the IWT requires less storage capacity and reduces

the computational cost concerning the conventional WT [16–19]. So far, to our

knowledge, there is neither a quantum construction for the integer version of the

wavelet transform nor a definition of the QWT for kernels other than the Haar and

Daubechies bases.

Therefore, due to the necessity of high processing and storage capacities of

current information, the requirements for efficient compression schemes, the demand

for efficient solutions in different areas, and the progress in quantum computing, this

research focuses on the quantum computing field. We propose to design the one-

dimensional Quantum Integer Wavelet Transform (Q-IWT) approach, which could

serve as a basis for new proposals in the quantum area. This quantum transform

should provide an improvement on computational complexity over its integer classical

counterpart. We will present a quantum definition for some primary wavelet kernels

through permutation matrices, mainly the Haar, the Daubechie-4 and the CDF

family. Also, we will develop quantum algorithms for signal decomposition and

lossless compression using the quantum integer wavelet transform. Finally, we will

simulate the quantum approaches on the software development kit Qiskit by IBM.
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2 Background

In this section, we present the general ideas about quantum computing, wavelet anal-

ysis, and compression. First, we define general concepts about quantum computing,

including quantum representation and manipulation, quantum operator’s factoriza-

tion, quantum algorithms, and applications. These elements will allow us to know

the formalism used in this research.

Also, we describe the classical wavelet analysis, which includes the wavelet

transform, the decomposition process, wavelet classification, and wavelet implemen-

tation. We focus on a classical description of the wavelet transform as it will allow

us to understand some of the necessary elements for its quantum construction.

Finally, we introduce the data compression process and the application of loss-

less compression. These concepts will give us the general ideas of the compression

process and the importance of identifying and modeling the structure present in the

data.

2.1 Information Representation

Quantum computers use quantum phenomena such as photon polarization, levels of

atomic energy, or nuclear spin to represent information and employ quantum systems

to do computation. A primary feature of quantum computation is that this follows

a probabilistic nature. If we try to see the results, we can only obtain a particular

outcome with a certain probability [2].

The basic unit of information in a quantum computer are qubits like the classi-

cal bits. We can describe a qubit by a vector in a superposition of states, where they

overlap, unlike bits that can only have one value at a time. Due to this superposition

nature, a qubit can represent more information than classical bits. It is known as

quantum parallelism [2, 20]. The general computational states are represented in a

vectorial form as follows:

|0⟩ =

[
1

0

]
(1)
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|1⟩ =

[
0

1

]
(2)

Thus, a unit vector of states superposition describes a qubit as a linear combina-

tion.

|ψ⟩ = α |0⟩ + β |1⟩ =
1∑

k=0

δk |k⟩ (3)

The parameters α and β are complex numbers called amplitudes and hold the

constraint |α|2 + |β|2 = 1. The |0⟩, and the |1⟩ states form an orthonormal basis

for the vector space [3, 20]. However, the power of quantum computing becomes

apparent if we consider a superposition of multiples qubits (quantum registers). We

obtain quantum registers through the tensor product [20]. For example, two classical

bits give four possible states (00, 01, 10, 11). Similarly, the tensor product between

two qubits generates the four possible superposed states (|00⟩ , |01⟩ , |10⟩ , |11⟩) [3,20].

The four possible qubit states are expressed as the tensor product as follows:

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ = (α1 |0⟩ + β1 |1⟩) ⊗ (α2 |0⟩ + β2 |1⟩) (4)

|ψ⟩ = α1α2 |00⟩ + α1β2 |01⟩ + β1α2 |10⟩ + β1β2 |11⟩ (5)

Therefore, n qubits can simultaneously express 2n states. It implies that if

we have many quantum bits, the computation speed can increase exponentially [3].

Nevertheless, we cannot examine a qubit to determine its quantum state. Instead,

when we read (measure) a qubit, we only get one of the basis states with a certain

probability, 0 with probability |α|2 or 1 with probability |β|2. A qubit can exist in

an overlapping state until observation. Therefore, to compute and take advantage

of the superposition state, qubits states must be manipulated and transformed in

ways that lead to a desirable measurement outcome [3,20].
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2.1.1 Quantum Formats

Quantum formats allow to encode and efficiently manipulate information as an ex-

tension of the primary state representation. These formats enable the storage of

different kinds of information (image, audio, and video) using amplitudes, phases,

and basis quantum states to perform various processing tasks and operations such

as compression, filtering, denoising, retrieval, and general transformations [6,21–23].

The basic idea to store information consist of two parts that capture infor-

mation about amplitude and time or spatial position about every component that

makes up the signal. A general representation for a quantum signal in basis states

is described by

|S⟩ =
1√
2n

2n−1∑
k=0

|Ck⟩ ⊗ |Pk⟩ (6)

where |Ck⟩ represent the amplitude information of the quantum signal and |Pk⟩
indicates the corresponding position information [6]. This representation is similar

to the Novel Enhaced Quantum Representation (NEQR) format [24].

Another representation stores the signal information in the amplitude coeffi-

cients and position in a quantum state given by

|S⟩ =
1

2n

2n−1∑
k=0

(αk|0⟩ + βk|1⟩) ⊗ |Pk⟩ (7)

where αk and βk are the amplitude coefficients and |Pk⟩ the corresponding signal

component position [25]. The most widely used image representation is the Flexible

Representation of Quantum Images (FRQI), which captures the color and position

information into amplitudes of a quantum state. As well as image representation,

there are quantum movie and digital audio formats inspired by image representation.

However, research in quantum movies and audio representation is still relatively

rare [6, 26–28].

The importance of quantum formats lies in decreasing the cost of information

storage and the advantages that these formats provide for different applications. For

example, we require 2n× 2n× 8 bits to store an 2n× 2n gray image represented by 8

bits. FQRI requires only 2n+1 qubits are needed, and quantum audio representation

only needs n qubits to represent a signal of size 2n [5, 29].
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2.2 Quantum Information Manipulation

Quantum operators serve as mechanisms to transform the quantum states of the

system. The most common way to implement this is through quantum gates to

manipulate the quantum information by unitary transformations in matrix form

[2,3, 20]. Therefore, a quantum gate, U , applied to arbitrary states is defined by

|b⟩ = U |a⟩ (8)

where U is the quantum operator in matrix form, and |b⟩ and |a⟩ are vectors.

Since unitary transformations are reversible, quantum computation is reversible

by nature. Reversible quantum computation does not affect the universality of quan-

tum circuits, and there are a set of quantum universal gates [3,20]. Three important

single-qubit gates are quantum NOT gate (X), Identity (I) and Hadamard transform

(H) given by

X :

[
0 1

1 0

]
;X |0⟩ → |1⟩ , X |1⟩ → |0⟩ (9)

I :

[
1 0

0 1

]
; I |0⟩ → |0⟩ , I |1⟩ → |1⟩ (10)

H :
1√
2

[
1 1

1 −1

]
;H |0⟩ → 1√

2
(|0⟩ + |1⟩), H |1⟩ → 1√

2
(|0⟩ − |1⟩) (11)

The Hadamard gate is one of the primary quantum gates since it allows an

equiprobable superposition of states [3, 20]. Another useful gate is the two-qubit

controlled-not (CNOT), which enables the creation of an entangled state [20]. The

CNOT applies X gate on a target qubit if the control qubit is |1⟩. It is described as:

CNOT (|00⟩ + |01⟩ + |10⟩ + |11⟩) → (|00⟩ + |01⟩ + |11⟩ + |10⟩) (12)

where the first qubit is the control and the second the target qubit.

The three-qubit Toffoli gat is a generalization of the CNOT-gate, where the
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target qubit changes its state if the two control qubits are |1⟩. In addition to the

gates described above, there are many other useful gates such as the Pauli gates (Y,

Z, X, I), Phase Shift gates (Rθ), π/8 − gate (T) and Swap gate. These gates can

perform various computations except cloning an unknown qubit state (no-cloning

theorem) [2, 3].

2.3 Quantum Operators Design

One of the main constraints in quantum computing is that operations must be

unitary. However, classical computations generally do not use unitary operators, and

operators that are easy and inexpensive classically are not always easy to implement

in the quantum world. Therefore, general techniques for defining and computing

unitary operators or transformations are needed [10,11,13].

A solution to develop an efficient algorithm to define unitary operators is to

factor a general operator into a small number of unitary operators [13, 14]. For

example, we can describe every 2 × 2 operator M as a linear combination of four

basic operators.

M = αI + βX + γY + δZ

where α, β, γ and δ are complex constants. I,X, Y, and Z are Identity, Negation, Y

and Z operators, respectively. In addition, polar and singular value decomposition

are ways of factorizing general linear operators up into products of unitary operators

[30,31]. Nevertheless, finding an efficient factorization can be challenging because it

could produce exponential terms in the factorization [4, 13,14].

2.4 Quantum Algorithms and Applications

Quantum computers outperform classical ones because of their intrinsic characteris-

tics, such as reversibility, superposition, and entanglement. For example, quantum

circuits can simulate classical logical circuits. Also, they can perform any classi-

cal deterministic computation and non-deterministic computation [3, 30]. Further-

more, quantum parallelism allows an exponential increase in storage capacity and a

decrease in time complexity [3, 20]. However, to take advantage of quantum char-

acteristics, we need to perform sequences of transformations and measurements to

12



extract information through quantum algorithms [2, 3]. There are best-known ways

to develop quantum algorithms [3, 32–34], they are:

• Approaches based on Quantum Fourier Transform (QFT),

• Approaches based on the Grove’s search algorithm (GO), and

• Algorithms for simulate or solve problems in quantum physics.

The number of known quantum algorithmic paradigms is smaller than that of

classical paradigms. It is due to the constraint of unitarity of the operators and the

limitations of measurement. Nevertheless, the search for new design paradigms is is

constant [32–34].

Some of the most important known quantum algorithms are The Shor algo-

rithms for factoring and discrete logarithm based upon the QFT [35], The Hidden

subgroup algorithm [36], Grover’s search algorithm [37], Bernsteins-Vazirani algo-

rithm [38], linear systems solver [39], quantum algorithms for random walk [40], and

adiabatic quantum algorithm [41]. Thus, quantum mechanics provides some solu-

tions to complex classical problems opening a new world of unimaginable algorithms

in classical computations [2, 3, 20, 34].

2.4.1 Quantum Complexity

The choice of a specific algorithm to solve a problem depends on the available time

and memory resources. The complexity is related to the rate at which a resource

grows as a function of the problem size. Therefore, we have two primary measure-

ments in quantum computing [10,30]:

• Quantum cost is the total number of basic operations which simulate the

circuit.

• Time complexity is the total number of time steps executed serially.
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2.4.2 Applications of Quantum Computing

There are several representative applications of quantum computing, such as quan-

tum codes [2], quantum key distribution [2], quantum teleportation [2, 3], quantum

watermarking [5], quantum information processing [5, 6], and quantum communica-

tion [2, 5].

The challenge of constructing universal quantum computing mainly comes

from technical issues, such as quantum state initialization, manipulation of mul-

tiple qubits, external insulation, and holding low temperatures [6]. These problems

impose new technological-scientific constraints and challenges in developing quan-

tum tools. A trend in recent years has been the study of quantum error correc-

tion algorithms and the construction of noisy quantum computers known as noisy

intermediate-scale quantum (NISQ) computers composed of noisy qubits to perform

imperfect operations. The goal is to leverage the limited resources to perform clas-

sically complex tasks in some practical application areas [1, 6].

2.5 Wavelet Analysis

Wavelet analysis is a set of tools and techniques for signal analysis and decomposition

like Fourier analysis. One of the main advantages of using wavelets is that the time

information is not lost and allows to perform local analysis, unlike Fourier analysis.

Also, wavelet analysis identify trends, breakdown points, discontinuities, and self-

similarity [42,43].

Wavelet analysis is a windowing analysis technique with variable-sized regions

using different basis waveforms to decompose a signal into shifted and scaled versions

of the original wavelet. It is described by the continuous wavelet transform:

C(scale, position) =

∫ ∞

−∞
f(t)Ψ(scale, position, time)dt (13)

The result of the wavelet transform are wavelet coefficients C, which can rep-

resent the original signal through scaled and shifted basis wavelets [42]. These co-

efficients represent the degree of correlation of the wavelet, Ψ, with a section of the

signal, f , in the following way [42]. Figure 1 shows the decomposition process.
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a. Take a wavelet and compare it to a section of the original signal.

b. Calculate the coefficient C.

c. Shift the wavelet and calculate the coefficient again until the whole signal is

covered.

d. Scale the wavelet and repeat the steps above for all scales.

Figure 1: Wavelet decomposition process [42].

A high scale parameter corresponds to the stretched wavelets and a low scale

to the compressed wavelet. The stretched wavelet enables to compare a long sec-

tion of the signal, associated with slowly changing or low frequency. A compressed

wavelet is related to details or high-frequency characteristics. Low frequencies are

the approximation coefficients, and high frequencies the details coefficients [42,43].

2.5.1 Wavelet Families

The main wavelet shapes (kernels) include Haar, Daubechies family, Biorthogonal,

Morlet, and Mexican Hat. We select these kernels according to the original signal

shape or the application area. For example, short wavelets are usually more effec-

tive for detecting signal discontinuities. Smooth wavelets are suitable for detecting

singularities and revealing information hidden in the noise, and the packet analysis

does a better job of removing noise [42, 43]. Figure 2 shows some wavelet kernels.
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Figure 2: Wavelet families. a) Haar waveform, b) Morlet waveform, and c) Daubechies
families waveform [42].

2.5.2 Multi-level Decomposition

The signal decomposition is an iterative process where we broke the original signal

into many lower-resolution components. It is called the wavelet decomposition tree

[42]. Figure 3 present the decomposition signal tree.

Figure 3: Decompostion signal tree [42].

where the signal, S, is decomposed into principal approximation and detail

coefficients, A1 and D1, respectively. Then, it brokes the new approximation coeffi-

cient into two new elements of approximation and detail, and so on. This process is

16



like a signal filtering process. The number of decomposition levels is selected based

on the nature of the signal or a suitable criterion [42].

2.6 Wavelet Transform Classification

We can represent wavelet transform in a continuous or discrete domain, where the

main differences are the scales and shifts at which they operate. Continuous wavelet

transform operates at all scales and offsets of the wavelet kernel, where we perform a

smooth wavelet analysis over the whole domain. But calculating wavelet coefficients

at each scale and shift requires an enormous amount of work. However, when we per-

form any information processing on a computer, we use discrete signals. Therefore,

it is necessary to choose only a subset of elements of analysis in the decomposition.

We can perform this analysis by using the discrete wavelet transform (DWT) [42,43].

Conventional wavelet transforms produce real-valued coefficients in the transform

domain, which is limited by the finite precision of the computer. Also, applications

using the real-valued transforms require auxiliary data to store fractional parts for

retrieval processes. In contrast, it is possible to construct integer-to-integer wavelet

transforms, which convert the real-domain of the coefficients to the integer domain.

Unlike conventional wavelet transformations, the integer version is invertible in infi-

nite precision [44]. Figure 4 shows the general classification of the wavelet transform.

Figure 4: Wavelet transform classification
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2.7 Wavelet Transform Implementation

An effective way to implement the wavelet transform is to use a filtering scheme

known as a two-channel subband coder or pyramid algorithm. This scheme yields a

practical filtering algorithm to obtain a fast wavelet transform to signal decomposi-

tion by convolving the signal with a filter. The filter is related to the wavelet shape

and is designed based on quadrature mirror decomposition filters. Figure 5 shows

the filtering process, which is described by lowpass and highpass filters [42,45].

Figure 5: Wavelet filter bank decomposition

Another way to implement the wavelet transform is based on the lifting scheme,

which uses a filter bank structure to compute the decomposition values (approxima-

tion and details coefficients) through finite sequences of simple filtering steps in the

spatial domain. This decomposition corresponds to a factorization of the subband

filters into elementary matrices. The basic idea is to split a signal into two disjoint

sets, even, and odd samples. Then, we generate the decomposition components by

a prediction and update operations. The goal of these operations is to exploit some

characteristics and preserve the internal structure of the signal [4, 46–48]. Figure 6

shows a general prediction and update scheme, where A and D are the approximation

and detail coefficients of the signal, respectively [4, 46,48].
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Figure 6: Lifting scheme of prediction and update steps.

2.8 Compression

Data compression consists of representing information in a compact form. We create

this compact representation by characterizing and taking advantage of the struc-

ture that exists in the data. We need to compress data due to the increase in the

transmission of information and the number of elements needed to represent this

information [49,50].

Generally, we use the statistical structure to provide compression, but it is not

the only type of structure in data. There are many other kinds of structures in the

data of different forms that can be exploited for compression. Furthermore, we can

also take the perceptual limitations of the receiver to discard irrelevant information

[49,50].

Depending on the reconstruction requirements, we can divide data compres-

sion schemes into two classes: lossless compression, in which the original and recon-

structed data are identical, and lossy compression, which generally provides much

higher compression but with some loss of information [49].

2.8.1 Lossless Compression

Lossless compression implies no loss of information and that we can recover the

original data exactly from the compressed data. We use this scheme for applications

that do not allow any difference between the original and reconstructed data, such

as medical, space, and banking applications. For example, a lossy medical image can
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Figure 7: Sequence of numbers to store, xn.

lead to artifacts that could seriously confuse the specialist, so be careful when using

a compression scheme that generates a reconstruction different from the original

data [49].

We can evaluate a compression algorithm in several ways by measuring the

complexity, the memory needed to implement it, how fast the algorithm is, the

amount of compression, and how closely the reconstruction resembles the original

data [49].

Although reconstruction requirements may dictate whether a compression scheme

should be lossy or lossless, the compression scheme we use will depend on different

factors. Some of the most important factors are the characteristics of the data to

be compressed. A compression technique that works well for compressing text may

not work as well for compressing images. Each application presents a different set

of challenges [49].

We can divide data compression into two phases. The first is called modeling,

in which we try to extract information about any redundancy or pattern in the

data. Then, we describe the structure of the data in the form of a model. The

second phase is called encoding, in which we transform the original data into a

new representation. The difference between the data and the model is called the

residual [49]. For example, if we were to transmit or store the binary representation

of the data in Figure 7, we would need to use 5 bits per sample. However, by

exploiting the structure of the data, we can represent the sequence using fever bits.

We see that the data appears to fall in a straight line [49]. A model for the data

could be given by

x∗n = n+ 8, n = 1, 2, ..., 10 (14)

To take advantage of this structure, examine the difference between the data

and the model. The difference or residual is given by the sequence

en = x∗n − xn = (0, 1, 0,−1, 1,−1, 0, 1,−1,−1) (15)

where xn is the original data [49]. This sequence consists of only three numbers

20



{−1, 0, 1}. If we assign a code of 00 to −1, 01 to 0, and 10 to 1, we need to use

2 bits to represent each element of the residual sequence. Therefore, we obtain a

compression when transmitting or storing the model parameters and the residual

components. The encoding can be exact if the required compression must be lossless

or approximate if it can be lossy [49,50].

The type of structure or redundancy that existed in the previous data follows

a simple law. Once we recognize this law, we can use the structure to predict the

value of each element in the sequence and then encode the residue. The structure of

this type is only one of many types [49, 50].

Finally, there will be situations where it is easier to take advantage of the

structure if we decompose the data into a series of components. We can then study

each component separately and use an appropriate model for that component. One

way to perform this decomposition is to use different transforms, such as the Fourier

and Wavelet transforms, which allow us to split the signal into some components.

The more ways we have to view the information, the more successful we will be

in developing compression schemes that take full advantage of the data structure

[49,50].
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3 Related work

This section presents the main related work to this dissertation proposal. We present

the research and applications of quantum wavelet transforms.

3.1 Quantum Wavelet Transforms

Research on Quantum Wavelet Transform (QWT) is still under progress and im-

provement. Preliminary work presentes a quantum version of wavelet transform for

the Haar (H) and Daubechies four-order (D4) kernels. Hoyer [13] develops quantum

networks for computing these two wavelets based on a generalized Kronecker prod-

uct with a complexity of O(n). Fijany [14] considers permutation matrices to derive

efficient quantum circuits for the quantum Haar and Daubechies transform using

packet algorithm (PAA) and pyramid algorithm (PYA). The proposed representa-

tion leads to an O(n2) complexity by using O(n2) gates. Besides, this paper shows

that Hoyer’s solution is incomplete and does not allow to obtain a correct complexity

analysis. Klappenecker [15] implements periodized quantum wavelet packet trans-

form (QWPT) and found that WPT is less expensive on a quantum computer. It

requires O(log2(n)) operations in contrast to classical WPT that needs O(nlog(n))

operations. Gosal and Lawton [51] construct quantum algorithms for Haar wavelet

transforms and show its application to multi-scale decomposition of a dynamical

system. Regarding multidimensional versions, Li et al. [10] propose multi-level and

multi-dimensional (1D, 2D, 3D) quantum wavelet packet transforms (QWPT) based

on the periodization extension, generalized tensor product, and permutation matri-

ces, and their inverse transforms for the first time. The time complexities of the

multi-level QWPT is O(n), and the classical fast WPTs need 2n basic operations

on n elements. Li et al. [12] present the iteration equations of the general and in-

verse QWT using a generalized tensor product. The implementation shows an O(n3)

complexity. Li et al. [11] construct the multi-level 2D-QWT’s using the generalized

tensor product and permutation matrices, offering exponential speedup over their

classical counterparts. Also, they performed a quantum image compression appli-

cation. So far, as far as we know, we have not found a definition of the QWT for

different kernels nor a construction for the integer version of the wavelet transform.

Table 1 shows the main features of previous research and our proposal such as
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dimensionality, kernel implementation (Haar or Daubechies), primary construction

tools or operations (tensor product, permutation matrices), time complexity, and

whether they present the inverse version of the transform or not, simulations and

direct applications.

3.2 Quantum Wavelet Transforms Applications

In addition, the development of the quantum wavelet transform has allowed some

applications in different areas. Some researchers designed quantum watermarking

schemes based on quantum wavelet transform and image formats (FQRI and NEQR),

where the decomposition coefficients are extracted by executing QWT on a quan-

tum image. These schemes outperform some classical watermarking proposals and

performed simulations on Matlab [52–54]. Also, Li et al. [55] developed a lossy com-

pression based on quantum wavelet transform and quantum Fourier transform with

different formats. Wang et al. [56] proposed a quantum encryption scheme for quan-

tum images based on QWT with FRQI and chaotic maps. Chakraborty et al. [21]

designed image denoising based on QWT and FRQI with better visual quality over

some classical methods.
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Table 1: Related work on the Quantum Wavelet Transform.
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4 Research Proposal

4.1 Motivation and Justification

The Wavelet transform is an essential classical tool in signal processing, numeri-

cal analysis, and information hiding. This transform enables analyzing stationary

and non-stationary signals. It provides a way for multiresolution analysis and local

signal features extraction. The Wavelet transform, unlike other transforms such as

the Fourier transform, preserves the signal frequency and time information. These

characteristics make the Wavelet transform useful for many applications such as

compression, segmentation, enhancement, pattern recognition, denoising, feature

extraction, watermarking, and cryptography [4, 16, 44, 57]. However, conventional

(real-value) wavelet transforms are usually lossy and computationally complex. For

example, in compression applications, 60% of the time is consumed by the Wavelet

transform [19]. Also, the limited computer precision prevents its use in practical

lossless applications, where the recovery and preservation of the original data are

crucial [16,17,44].

Wavelet transforms are widely used in different fields due to their unique char-

acteristics and advantages over traditional (Fourier basis) transforms. Their char-

acteristics suggest that the development of the quantum formalism for the wavelet

transform algorithm could play a significant role in the areas of quantum comput-

ing and quantum information processing. So far, research on the quantum wavelet

transform (QWT) is still preliminary, but there are significant advances [10–14,31].

QWT has helped to develop more sophisticated and efficient quantum algo-

rithms for different applications and has allowed the construction of complex oper-

ations. Also, it has shown an exponential speedup compared to classical transforms

and deals with some issues in quantum information processing as signal decomposi-

tion, compression, watermarking, and cryptography [4,10–14].

Research on quantum wavelet transforms focuses on the definition of the real-

value transforms for two representative wavelet kernels, the Haar and Daubechies

bases. Different researchers propose and implement one-, two- and three-dimensional

quantum wavelets at the gate-level circuit. These approaches generate the decom-

position coefficients according to a packet or pyramid algorithm, and they are based
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on the factorization of unitary operators by permutation matrices [10–14].

Despite the advantages of the QWT over its classical counterpart, this trans-

form is difficult to exploit because its use is limited to a subset of quantum represen-

tation formats. The internal fractional representation of the data is not considered

in the quantum decomposition process, while these issues are rarely discussed. The

number of applications and analysis capabilities are small, since there are only two

implementations of the wavelet kernels. Also, like the classical wavelet transform,

the real-valued QWT is not suitable for lossless applications such as compression

and data hiding [4, 12].

The main challenge in developing a quantum formalism of the wavelet trans-

form is to define a set of unitary operators to implement it. This is a consequence of

many classical operators not being originally described in terms of unitary operators.

Thus, the transition between the classical and the quantum world is not straightfor-

ward [6, 13, 14, 27–29]. Also, to apply QWTs to quantum information to obtain the

decomposition result, the information signal must be encoded in a quantum repre-

sentation format that allows the transform to be used efficiently and correctly. This

issue is rarely addressed [6, 27].

In practice, finite precision is employed to represent the decomposition coef-

ficients. However, this representation requires rounding operations to truncate the

floating-point results, which is inherently inaccurate, and the invertibility of the

transform depends on using exact arithmetic. If the transform is not invertible, then

information will be lost [16, 18, 58, 59]. Therefore, to allow lossless reconstruction

of the original data, it is necessary to construct an invertible transform in finite-

precision, that is, an integer-to-integer transform (ITI), which is based on the lifting

scheme [4,17,19,44,47,57].

ITI transforms are especially useful in medical, military, banking, and space

sciences applications, where minimal perturbations of the primary data are not ac-

ceptable [16, 18, 44]. Also, ITI transforms require less storage capacity to store

the coefficients and reduce the computational cost by half over conventional trans-

forms [16–19]. Nevertheless, ITI transforms have some limitations related to low

compression rates and degradation in lossy applications [18]. They only allow effi-

cient lossless construction for a few kernel wavelets. Finally, the factorization of the

operators of the lifting scheme has an impact on the performance of the transform

and makes the transition from the standard real-valued wavelet to ITI transforms
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not straightforward [4, 16–19,44,57,58].

To the best of our knowledge, there is no definition of the QWT for different

kernels, nor a quantum construction for the ITI version of the wavelet transform.

Quantum ITI wavelet transforms (Q-IWTs) could help to build efficient lossless ap-

plications, such as data compression and data hiding. It could decrease the compu-

tational cost over the classical counterpart and enhance the performance in various

applications.

Therefore, given the implications and limitations of classical and quantum

wavelet transforms, this research focuses on developing a quantum approach to the

one-dimensional integer wavelet transform. This development will be based on the

factorization of unitary operators for a subset of wavelet kernels, mainly the Haar,

Daubechies-4, and CDF bases. The transform will be performed according to the

lifting scheme. We will analyze and select a suitable quantum signal representation

to improve the signal decomposition and manipulate the internal fractional data

in the process. Finally, we aim to design two algorithms, one for quantum signal

decomposition and the other for quantum lossless compression, both based on the

proposed transform.

4.2 Problem Statement

Quantum computing research focuses on the development of quantum tools and

algorithms to solve problems in different areas. However, it lacks knowledge on how

to develop quantum versions of integer-to-integer transforms. Thus, to extend the

knowledge and provide a broader set of quantum tools, it is necessary to investigate

the definition of quantum integer transforms, such as the quantum integer wavelet

transform. Therefore, this research addresses the problem of developing a quantum

version of the one-dimensional integer wavelet transform for different kernels and

design quantum algorithms for one-dimensional signal decomposition and lossless

compression. We consider the following specific issues:

• Find and select a quantum one-dimensional signal representation to apply the

quantum integer wavelet transform.

• Manipulate the quantum states to achieve successful decomposition results for

the proposed approach.
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• Construct and factorize the unitary operators used in the proposed transform.

• Design quantum algorithm to signal decomposition and lossless compression.

• Improve the performance of the integer wavelet transforms based on the de-

velopment of a quantum lifting scheme.

4.2.1 Problem Definition

Given a classical description of the one-dimensional wavelet transform, how to de-

velop a one-dimensional quantum integer wavelet transform based on the lifting

scheme? (To quantum signal decomposition and quantum lossless compression).

Classical WT

We can define the classical WT as

W (l)
m XT → (A0

1, D
0
1, D

1
1, D

1
2, . . . , D

i
k−1, D

i
k ) = (A, D) (16)

where X = (x1, x2, . . . , xm), W
(l)
m is the matrix form of the WT for a signal of

length m = 2n with decomposition level (l), A = A0
1 is the approximation coefficient

at the zero level, and Di
k is the k-th detail coefficient at the level (i), that is,

D =
l−1∑
i=0

2i∑
k=1

Di
k (17)

where l is the maximum decomposition level.

Quantum WT

Based on (16) and (17), we define a quantum representation for the integer wavelet

transform by

U l
Wm

|X⟩ →
∣∣A0

〉
⊗

l−1∑
i=0

∣∣Di
〉

= |A,D⟩ (18)

where |X⟩ is the signal vector encoded in a quantum format, U l
Wm

is the unitary

operator for the quantum WT for a signal of length m = 2n with decomposition level

(l), |A0⟩ = |A⟩ is the approximation coefficient at the zero level, and |D⟩ = |Di⟩ is

the detail coefficient at the level (i) given by,

∣∣Di
〉

=
2i∑

k=1

∣∣dik〉 (19)
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where |dik⟩ is the k-th detail coefficient at the level (i).

Factorization

We require to find and implement the QWT operator, which we will reduce to the

problem of factoring the UWm operator. Our approach is to factor the classical

operator for this transform into products, and sums of smaller unitary operators.

We will consider the permutation matrices and some other unitary matrices as the

basis of the development. The key is to exploit the specific structure of each unitary

operator to find an efficient representation to implement it.

Given the UWm operator for the QWT, we will select subsets of unitary op-

erators such that efficiently perform the QWT for Haar, Daubechies-4 and CDF

kernels.

UWm = (U0 ◦ U1 ◦ . . . ◦ Un−1) (20)

Where Ui are unitary operators, and (◦) can be any of the following operators the

tensor product, (⊗), the direct sum operation, (⊕), and the dot product, (Ui · Uj).

4.3 Research Questions

The main questions that guide this research are:

1. Which unitary operators allow to extend the one-dimensional integer wavelet

transform to the quantum domain?

2. How can one-dimensional signals be represented, using the existing quantum

format techniques, to improve the signal decomposition results of the proposed

quantum integer wavelet transform?

3. How can a lossless compression algorithm be designed using the proposed quan-

tum transform?

4.4 Hypothesis

Based on unitary operator factorization through permutation matrices it is possible

to develop a quantum approach to the one-dimensional integer wavelet transform for

Haar, Daubechies-4, and CDF kernels.
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A quantum representation based on the existing quantum formats, using ba-

sis states to store information, improves the signal decomposition of the proposed

quantum transform compared to the classical counterpart.

A neighborhood and redundancy relationship among signal elements allows to

design a lossless compression algorithm based on the proposed quantum transform.

4.5 General Objective

Propose a quantum approach for the one-dimensional integer wavelet transform for

Haar, Daubechies-4, and CDF kernels and design algorithms for quantum signal

decomposition and quantum lossless compression.

4.5.1 Specific Objectives

In order to accomplish the general objective, the following specific objectives must

be completed:

1. To identify the factorization matrices that characterize the unitary operators

for the one-dimensional quantum integer wavelet transform.

2. To analyze and select a quantum format to represent one-dimensional signals

that allows and improve signal decomposition.

3. To develop a quantum algorithm to one-dimensional signal decomposition us-

ing the proposed quantum transform.

4. To develop a quantum lossless compression algorithm based on the proposed

quantum integer wavelet transform.

4.6 Methodology

We propose the following methodology to achieve the objectives and answer the

research questions.

30



1. Select quantum elements and operators. It is the first stage to define a

quantum approach of the integer wavelet transform. We need to consider and

describe the following components.

• Define a quantum version of the classical lifting scheme, it is, to rep-

resent the involved operations, operators, and processes using quantum

formalism.

• Find an efficient and suitable factorization for the operators involved in

the quantum integer wavelet transform.

• Identify the factorization matrices that characterize some quantum wavelet

kernels, mainly the Haar, Daubechies-4, and CDF bases.

2. Select a quantum representation format. This stage allows us to find

an appropriate quantum signal representation to apply the quantum integer

wavelet transform. In this stage, we analyze the following elements.

• Compare a set of the existing quantum representation formats for a one-

dimensional signal.

• Select a suitable quantum format to represent a one-dimensional signal

to improve the signal decomposition results and compression.

3. Design a quantum algorithm for signal decomposition. To develop

this algorithm, we adress the following issues.

• Encode the signal information into a selected quantum format to allows

perform the specific operations.

• Apply the quantum integer wavelet transform to decompose the signal

and extract the approximation and detail coefficients.

• Store the decomposition components using the selected quantum format

to signal analysis.

4. Design a quantum lossless compression algorithm. To design this

quantum algorithm, we need to address the following issues.

• Determine an acceptable decomposition level of the signal using the quan-

tum integer wavelet transform.
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• Modify some decomposition coefficients to generate similarities between

components.

• Select the representative coefficients of decomposition to eliminate redun-

dancy.

• Choose an efficient quantum coding method to store the resulting data.

5. Evaluate and analyze. To evaluate the results and performance of this

proposal, we use the next set of experiments and metrics.

• Mathematical development to guarantee the quantum definition of the

integer wavelet transform.

• Time complexity and quantum complexity analysis of the proposed trans-

form.

• Use a quantum simulation environment to analyze the performance of the

quantum integer wavelet transform for different kernels.

• To select a quantum format, we will compare different quantum represen-

tations across some metrics such as the decrease in the number of qubits

to store a signal, the method of information storage, the flexibility and

ease of applying the quantum integer wavelet transform, the performance

of signal recovery and noise addition, and the difficulty of implementation.

• To evaluate the lossless compression algorithm, we will use different pa-

rameters such as compression rate, maximum average compression, signal

distortion, time complexity, signal recovery, first order entropy, and noise

addition.

4.7 Scope and Limitations

This work is limited by the following conditions:

• This research is concerned to the one-dimensional quantum integer wavelet

transform.

• Quantum lossless compression is considered as the main application.

• A Simulation environment are used as a means of verification.

• Noise environments are out of the scope of this research.
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4.8 Expected Contributions

The main expected contributions in the area of computer sciences from this doctoral

research are the following:

1. A quantum approach for a subset of wavelet kernels (Haar, Daubechies-4, and

CDF).

2. A quantum integer wavelet transform with an improvement in computational

cost over the classical counterpart.

3. A quantum algorithm to one-dimensional signal decomposition using quantum

integer wavelet transform.

4. A quantum lossless compression algorithm for one-dimensional signals based

on the proposed transform.

4.9 Work Plan

Figure 8 shows the Gantt chart for the activities schedule to carry out during this

research project.

4.9.1 Publication Plan

1. Quantum S transform (First integer wavelet transform).

2. Survey of quantum computing (implementation, algorithms, applications).

3. Quantum algorithm for the integer wavelet decomposition.

4. Application of the quantum integer wavelet transform (quantum lossless com-

pression).

4.9.2 Target Journals and Conferences

Journals: Nature, Information Sciences, IEEE Transactions on Cybernetics, Quan-

tum Information Processing, SPIE.

Conferences: Quantum Information Processing (QIP), International Confer-

ence on Quantum Communication, Measurement and Computing.
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Figure 8: Activities schedule, in which the blue and orange segments represent finished
and unfinished activities, respectively.
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5 Preliminary Results

Preliminary results focused on gaining knowledge about wavelet transforms and

quantum simulation environments. We developed and implemented the first quan-

tum model of a classical integer-to-integer wavelet transform called S transform.

Also, we proposed a quantum representation format, and developed a quantum

rouding operator. In each experiment, we use the Quantum Experience simulation

environment by IBM [60].

• Quantum S transform. The development of this wavelet transform-based inte-

ger transform approach allowed us to analyze the quantum design procedure,

study the circuit-gate implementation and propose our first quantum algo-

rithm. In the following sections, we provide a classical description of the S

transform and our quantum construction.

5.1 Classical S-Transform

The S transform was the first approach to an integer-to-integer wavelet transform.

It allows signal decomposition through the Haar kernel. The idea is to divide the

signal into two no overlapping subsets, odd and even samples. Then, we generate

the decomposition values by performing some operations over the signal components

called prediction and update steps. The goal of these steps is to exploit some char-

acteristics and preserve the internal structure of the signal. This transform supposes

a correlation between close samples to predict the next value and the Haar kernel

allows us to keep the mean value of the signal information [61, 62]. Figure 9 shows

the prediction and update scheme.

The equations describing the steps in Figure 9 are given by

D = Sodd − P (Seven)

A = Seven + U(D)
(21)

where P (.) and U(.) are the Prediction and Update operators, respectively [61, 62].

Then, we achieve the expected properties using the following Prediction and Update
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Figure 9: Prediction and update scheme, where A and D are the approximation and detail
coefficients respectively.

operators [61, 62].

P (Seven) = S(2n)

U(D) =
D

2

(22)

Then,

D = S(2n+ 1) − S(2n)

A =

⌊
S(2n) +

D

2

⌋
=

⌊
S(2n) + S(2n+ 1)

2

⌋ (23)

The floor function is to guarantee the integer-to-integer version of the transformation

[61,62].

5.2 Quantum S-Transform

Based on the above ideas, we define a suitable way to develop a quantum S-transform

approach. Therefore, we identify the following components to represent this trans-

formation.

• Encode the information. We analyze quantum formats for representing signal

information. In this case, we focus on the basis state representation given by

NEQR.

• Perform the operations. We describe the quantum version of the operators in-
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volved in the classical S-transform and exploit the quantum features to perform

the decomposition.

• Store the decomposition values. The values are stored using the initial repre-

sentation to generate the new components.

5.2.1 Encode the Information

We use a representation model based on basis states given by NEQR image format

in contrast to quantum real-valued wavelet transforms that use a storage format

over the amplitude coefficients of the quantum states as FRQI [25, 27]. The NEQR

enables us to store the signal information in the following quantum superposition

representation [24,27].

|S⟩ =
1

2n

2n−1∑
j=0

|f (xj)⟩|xj⟩ (24)

where |f (xj)⟩ is the binary representation of the signal components and |xj⟩ the

corresponding position.

However, to apply the S-transform using this representation, we need to extract

and store on new states the necessary components. For example, if we want to apply

the transform, we need to take the values |f (xo)⟩ and |f(x1)⟩, store them in new

states, and then perform operations on the new basis-states. Then, we move on to

the next pair of elements, |f(x2)⟩ and |f(x3)⟩, and so on. This set of additional

steps increase the number of operators and manipulations required to achieve the

expected results, which increases the complexity of the quantum circuit [27, 63–66].

Therefore, to overcome these issues, we propose a quantum representation based on

NEQR.

5.2.2 New Quantum Representation

The proposed format encodes the information of the signal on a superposition of basis

state in the following way. Given a signal of 2n elements, we store the information
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of two adjacent elements in the same position as,

|S⟩ = |f (x0)x0f (x1)⟩ + |f (x2)x1f (x3)⟩ + . . .+ |f (xm−1)xnf (xm)⟩, m = 2n − 1

|S⟩ =
1√

2n−1

2n−1−1∑
i=0

|f (x2i)xif(x2i+1)⟩

(25)

where |f(x2i)⟩ and |f(x2i+1)⟩ are the binary representation of the elements at the

even and odd position repectively, and xi is the new storage position of the signal

components.

This new representation allows us to operate in a simple way on two adjacent

components, given by the odd and even elements of the signal. Thus, we reduce the

number of additional operators and manipulations required to extract the compo-

nents by the conventional NEQR format [27,63–66].

5.2.3 Quantum Operations

Given the format to encode the information, we describe a subset of quantum op-

erations to achieve the decomposition results in the transform. This subset consists

of quantum addition, subtraction, halving operation, and rounding function.

• Addition. We perform the addition of two quantum registers |a⟩, and |b⟩,
without loss of information and in a reversible way as:

Uadd|a, b, 0⟩ → |a, b, a+ b⟩ (26)

where |a⟩ and |b⟩ are encoded on n qubits and the register |a+b⟩ on n+1 qubits

to store the carry [67]. Uadd is the addition operator. Figure 10 illustrates the

general representation, and the circuit-gate scheme for two qubits. Figure 11

shows a circuit-gate implementation on Qiskit for n = 1, |a⟩ = |a0⟩, |b⟩ = |b0⟩,
and |a+b⟩ = |carry, add⟩. Also, it presents the probability distribution results

when |a⟩ = |1⟩ and |b⟩ = |1⟩.

• Subtraction. The quantum reversible subtractor of two registers, |a⟩ and |b⟩,
is given by:
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Figure 10: Simplified general representation and circuit-gate implementation of the addi-
tion operation. CCNOT is the controled-controled-NOT gate, and CNOT the controled-
NOT gate.

Figure 11: Circuit-gate implementation on Qiskit and probability distribution of perform-
ing operation |a+ b⟩.

Usub |a, b⟩ →| a− b, b⟩ (27)

where |a⟩ and |b⟩ are encoded on n qubits and the register |a − b⟩ on n + 1

qubits to store the borrow bit [67, 68]. Usub is the subtraction operator. If

we want to implement the quantum circuit-gate to this operation, we need

to use the Uc, Us, and U †
c operators [67, 68]. Figure 12 depicts the general

representation, and a circuit-gate scheme for four qubits. Figure 13 presents

a circuit-gate implementation on Qiskit for n = 2, |a⟩ = |a1a0⟩, |b⟩ = |b1b0⟩,
and |a − b⟩ = |borrow, a1, a0⟩. Also, it presents the probability distribution

results when |a⟩ = |11⟩ and |b⟩ = |01⟩.

• Halving operation. The halving operation halves the register value by one
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Figure 12: Simplified representation and circuit-gate scheme of the subtraction operation.
CNOT is the controlled-NOT gate.

cycle shift downwards given by:

UH |an . . . a1a0⟩ → |a0, an . . . a1⟩ (28)

This operation does not require the use of additional qubits [69]. UH is the

halving operator. Figure 6 shows the blocks scheme and the circuit-gate rep-

resentation for a four-element register. Figure 7 depicts the Qiskit implemen-

tation for n = 4, and |a⟩ = |a3a2a1a0⟩, the probability distribution results for

|a⟩ = |1010⟩ is also shown.

Figure 14: Blocks scheme and circuit-gate representation of halving operation. SWAP is
the swap quantum gate.

• Rounding operation. The S-transform uses a rounding operation to give an

integer-to-integer map between the signal elements and the decomposition re-

sults. This operation could be problematic in the quantum domain due to its
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Figure 13: Circuit-gate implementation on Qiskit and probability distribution of the result,
|a− b⟩.

Figure 15: Qiskit implementation and probability results for the halving operation.

nonlinearity. However, we can split the rouding operation in the S-transform

as follows. Given a integer value a,

– If a is even → aeven = 2m1.

Then, ⌊aeven
2

⌋
=

⌊
2m1

2

⌋
= ⌊m1⌋ = m1 (29)

– If a is odd → aodd = 2m2 + 1.
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Then, ⌊aodd
2

⌋
=

⌊
2m2 + 1

2

⌋
=

⌊
2m2

2
+

1

2

⌋
=

⌊
m2 +

1

2

⌋
= ⌊m2⌋ = m2

(30)

where m1 and m2 are integer values. From (29) and (30) we observe that the

total contribution of the rounding operation in the S-transform is given by the

integer even component. Thus, we can subtract 1 from the odd case, aodd,

without disturbing the result of the rounding operation.⌊
aodd − 1

2

⌋
=

⌊
m2 +

1

2
− 1

2

⌋
= ⌊m2⌋ = m2 (31)

The operations in (29) and (31) guarantee that we always perform the rounding

operation on integer values. Therefore, since the rounding operation is linear

over the integers, we can define the following quantum operator,

UR |a⟩ → |⌊a⌋⟩ ↔ a ∈ Z (32)

where UR is the rounding operator. Figure 16 shows the circuit-gate represen-

tation of this process. The COM block allows us to select between the odd and

even results, HAL and SUB are the previous halving and subtraction opera-

tors, respectively. The Qiskit implementation is given later in the full design.

Figure 16: Circuit-gate representation of the quantum rounding operation.
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5.3 Proposed Design

Firstly, we prepare and transform a signal of 2n elements based on the proposed

representation model 5.2.2, as equation (25). It provides an easy way to split the

signal into blocks of two adjacent elements, odd and even components, which reduces

the number of additional operations and extra qubits. Figure 17 shows an example

of a quantum signal with n = 2 and its representation in the proposed model.

Figure 17: The top figure shows the signal components, and the bottom figure shows the
quantum representation in the proposed model, where the signal elements are grouped in
pairs.

Next, we perform different operations on each block according to the above set

of operators to obtain the decomposition results given by the quantum S-transform.

First, we use the adder operator to get the Sum of the components in each block,

algorithm 1 on line 6. Second, we identify the odd and even results of the above

operation. If the Sum is odd, we subtract the value of 1 from this result, USub(1).

Otherwise, we do not change the value, algorithm 1, line 12. Then, we perform the

halving operation through the UH operator, algorithm 1 on line 20. Finally, we use

the rounding operator, UR, to obtain the first decomposition elements |A⟩, algorithm

1 on line 24. The previous process is described in Algorithm 1, where the notation

is simplified to illustrate the general procedure.

The Algorithm 1 allows us to compute the approximation components, |A⟩,
in the quantum S-transform. Now, we find the detail components, |D⟩, using the

subtractor operator, USub, on the signal |S⟩, see Algorithm 2.
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Algorithm 1 : Quantum S Transform - Approximation Coefficients

1: ▷ |S⟩: Signal
2: ▷ |xi⟩: Element position
3: ▷ |f(xi)⟩: Signal value
4: ▷m: integer value
5:
6: ▷ Addition operation (|S⟩)
7: for i = 0 and n/2 do
8: Uadd |S⟩ = Uadd| f (x2i)xif (x2i+1)⟩ → |f (x2i) + f (x2i+1)⟩ = |Sum⟩
9: end for

10: ▷ end Addition
11:
12: ▷ Odd and Even Elements(|Sum⟩)
13: if Sum = 2m+ 1 then
14: Usub(1)|Sum⟩ → |Sum− 1⟩ = |Sum⟩
15: else
16: |Sum⟩ = |Sum⟩
17: end if
18: ▷ end Odd and Even
19:
20: ▷ Halving Operation(|Sum⟩)
21: UH |Sum⟩ →

∣∣Sum
2

〉
22: ▷ end Halving
23:
24: ▷ Rounding Operation(|Sum

2
⟩)

25: UR|Sum2 ⟩ → |⌊Sum
2

⌋⟩ = |A⟩
26: ▷ end Rouding

Algorithm 2 : Quantum S Transform - Detail Coefficients

1: ▷ |S⟩: Signal
2: ▷ |xi⟩: Element position
3: ▷ |f(xi)⟩: Signal value
4:
5: ▷ Subtraction Operation (|S⟩)
6: for i = 0 and n/2 do
7: Usub |S⟩ = Usub| f (x2i)xif (x2i+1)⟩ → |f (x2i+1) − f (x2i)⟩ = |D⟩
8: end for
9: ▷ end Subtraction

44



5.4 Circuit-Gate Realization

We present the integrated quantum circuit realization of the S-transform based on

the circuit-gate modules of each quantum operation, including addition, subtrac-

tion, halving, and rounding. Figure 18 illustrates the complete circuit design of the

quantum S-transform.

Figure 18: Complete circuit-gate design of the quantum S-transform.

The complete circuit represents only one level of decomposition, where the de-

composition components are the detail and approximation coefficients, |D⟩ and |A⟩,
respectively. If we want to reach more decomposition levels, we take the approxima-

tion coefficients and apply the transform on them.

5.5 Simulation Experiments

We performed simulation experiments of the proposed transformation using IBM’s

Qiskit simulation environment on a classical computer. We perform the one-level

quantum S-transform on a signal of 22 elements as a case study to show the imple-

mentation and feasibility of the gate-circuit development.

1. Quantum representation. First, we encode the signal information in the pro-

posed quantum representation format from defition 5.2.2. The signal compo-

nents are |f(x0)⟩ = |101⟩, |f(x1)⟩ = |111⟩, |f(x2)⟩ = |111⟩, and |f(x3)⟩ =

|111⟩. Figure 19 gives the signal values in the quantum representation. Figure

20 shows the quantum circuit representation and the probability results.
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Figure 19: Quantum representation of the signal.

Figure 20: Circuit-gate implementation of the proposed quantum representation, and
probability distribution results.

The quantum register |qi2qi1qi0⟩ |x0⟩ |ni2ni1ni0⟩ describes the signal compo-

nents, |101, 0, 111⟩ and |111, 1, 111⟩, where the middle value is the respective

position. Figure 20 gives the Qiskit implementation, and the probability distri-

bution shows the superposed values in the quantum register and the probability

of obtaining each of these values after a measurement.

2. Quantum decomposition: Approximation coefficients.We obtain the approxi-

mation coefficients, |A⟩, of the signal using the addition, halving, and rounding

operators. Therefore, we get a state in a superposition of approximation values

as follows:

|A⟩ = α |0110⟩ + β|0111⟩

where α and β are the probability amplitudes. Figure 21 gives the circuit-gate

implementation on Qiskit and the probability distribution of values.

Figure 21 shows a block implementation of the quantum decomposition, where

each block contains the circuit-gate representation of the operators. We per-
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Figure 21: Qiskit implementation of the quantum decomposition to get the approximation
coefficients, and below the possible values for these coefficients.

form the addition operation using the Uadd block circuit and the even/odd

selection, halving, subtraction, and rounding operations using the Odd/UR

and Even/UR blocks. The probability figure gives the possible values of the

approximation’s coefficients, |A⟩.

3. Quantum decomposition: Details coefficients. We obtain the details coeffi-

cients, |D⟩, using the subtractor operator between the adjacent components

of the signal. Therefore, we get a state in a superposition of details values as

follows:

|D⟩ = α |0010⟩ + β|0000⟩

where α and β are the probability amplitudes. Figure 22 gives the circuit-gate

implementation on Qiskit and the probability distribution of values.
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Figure 22: Qiskit implementation of the quantum decomposition to get the detail coeffi-
cients, and below the possible values for these coefficients.

Figure 22 shows the block implementation of the operators using the subtrac-

tion operation between the signal components. The probability figure gives

the possible values of the detail’s coefficients, |D⟩ = |borrow0, qi2, qi1, qi0⟩.

5.6 Results Discussion

Preliminary results allowed us to get experience in quantum algorithm development,

including their mathematical definition, the design of the operations involved, and

their implementation. In addition, we observed the limitations and constraints given

by the quantum simulator, such as available resources, topology graphs constraints,

and access to a real-quantum computer. These considerations allowed us to know

the maximum quantum simulation capacity of a classical computer, 30 − qubits.

We also identified the structural interconnection and interaction constraints between

qubits in the IBM quantum computer. Finally, we accessed to the real IBM quantum

computer of 5−qubit and 15−qubit, where we implemented and observed the results

of different quantum algorithms. However, we could not implement the S-transform
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quantum approach on the real-quantum computer because we required more than

15 − qubits, and the access to the 15 − qubit computer is currently restricted.

We analyzed quantum representation formats, mainly quantum representation

over basis states and amplitude coefficients such as NEQR and FRQI, respectively.

We studied the properties and limitations of these formats as enabled operations,

information extraction, and quantum complexity. Finally, we selected a basis state

representation as NEQR, but with a proposed modification. This modification al-

lowed us to directly perform the operations involved in the quantum S-transform,

reduce the number of additional quantum operations and extra qubits required by

traditional NEQR, and kept the quantum complexity in O(n).

Also, we proposed the first integer-to-integer quantum transformation ap-

proach, called the quantum S-transform, which uses the proposed basis states rep-

resentation, the Haar wavelet, and the quantum addition, subtraction, halving, and

rounding operators. We gave the quantum description, quantum algorithm, and

circuit-gate implementation on Qiskit of the proposed S-transform. This develop-

ment allowed us to study the first version of the lifting scheme used in the integer

wavelet transform, know some of the representation models useful for the final pro-

posal, and construct different quantum elements.

Finally, the quantum S-transform approach represents our first journal paper

in the field of quantum computing. So far, we have written 60% of the content of

the article and plan to submit it during the remainder of this year. We will consider

the journals in the section 4.9.2 as publication targets.
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6 Final Remarks

In this preliminary research, we presented the description of the PhD proposal,

which is in the field of quantum computing. We proposed a quantum approach to

the one-dimensional integer wavelet transform based on lifting scheme and quantum

algorithms for signal decomposition and lossless compression as the main application.

The key ideas are to define a quantum format for signal representation, ana-

lyzing and selecting a suitable representation using existing formats. Then, develop

a quantum lifting scheme by defining the quantum version of the classical opera-

tors involved. Also, construct the unitary operators for the Haar, Daubechies-4 and

CDF kernels. This development is based on the factorization of the unitary opera-

tors into smaller unitary matrices of efficient implementation. Finally, we will design

the circuits for the multi-level quantum wavelet kernels and use Qiskit simulation

enviroment by IBM as means of performance verification.

Preliminary results enabled significant advances in this research. First, we de-

fined a general quantum formalization for the integer wavelet transform (sec. 4.2.1).

In addition, we proposed a quantum representation format based on the NEQR

(sec. 5.2.2). This new representation allowed us to efficiently manipulate the sig-

nal elements involved in the quantum S-transform, reducing the extra qubits and

additional operations used in conventional NEQR. Also, we kept the computational

complexity to O(n). Furthermore, we defined a quantum version of the rounding

operation involved in the classical S-transform, that is, we defined a unitary form of

the rounding operation avoiding nonlinearities (sec. 5.2.3).

Finally, we developed the first approach to the quantum integer wavelet trans-

form, called the S-transform (sec. 5.3). We gave the quantum description, quantum

algorithms, and circuit-gate implementation on Qiskit. This approach represents

our first journal paper in the field of quantum computing. So far, we have written

60% of the content of the article and plan to submit it during the remainder of this

year.
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Rodŕıguez, RohithKarur, B. Rosand, M. Rossmannek, M. Ryu, T. SAPV,

A. Saha, A. Ash-Saki, M. Sandberg, H. Sandesara, R. Sapra, H. Sargsyan,

A. Sarkar, N. Sathaye, B. Schmitt, C. Schnabel, Z. Schoenfeld, T. L. Scholten,

E. Schoute, M. Schulterbrandt, J. Schwarm, J. Seaward, Sergi, I. F. Sertage,

K. Setia, F. Shah, N. Shammah, R. Sharma, Y. Shi, J. Shoemaker, A. Silva,

A. Simonetto, D. Singh, P. Singh, P. Singkanipa, Y. Siraichi, Siri, J. Sis-

tos, I. Sitdikov, S. Sivarajah, M. B. Sletfjerding, J. A. Smolin, M. Soeken,

I. O. Sokolov, I. Sokolov, SooluThomas, Starfish, D. Steenken, M. Stypulkoski,

A. Suau, S. Sun, K. J. Sung, M. Suwama, O. S lowik, H. Takahashi, T. Takawale,

I. Tavernelli, C. Taylor, P. Taylour, S. Thomas, M. Tillet, M. Tod, M. Tomasik,

E. de la Torre, J. L. S. Toural, K. Trabing, M. Treinish, D. Trenev, TrishaPe,

F. Truger, G. Tsilimigkounakis, D. Tulsi, W. Turner, Y. Vaknin, C. R. Val-

carce, F. Varchon, A. Vartak, A. C. Vazquez, P. Vijaywargiya, V. Villar,

B. Vishnu, D. Vogt-Lee, C. Vuillot, J. Weaver, J. Weidenfeller, R. Wieczorek,

J. A. Wildstrom, J. Wilson, E. Winston, WinterSoldier, J. J. Woehr, S. Wo-

57



erner, R. Woo, C. J. Wood, R. Wood, S. Wood, J. Wootton, M. Wright, B. Yang,

D. Yeralin, R. Yonekura, D. Yonge-Mallo, R. Young, J. Yu, L. Yu, C. Za-

chow, L. Zdanski, H. Zhang, C. Zoufal, aeddins ibm, alexzhang13, b63, bartek

bartlomiej, bcamorrison, brandhsn, catornow, charmerDark, deeplokhande,

dekel.meirom, dime10, ehchen, fanizzamarco, fs1132429, gadial, galeinston,

georgezhou20, georgios ts, gruu, hhorii, hykavitha, itoko, jliu45, jscott2, klinvill,

krutik2966, ma5x, michelle4654, msuwama, ntgiwsvp, ordmoj, sagar pahwa, pri-

tamsinha2304, ryancocuzzo, saswati qiskit, septembrr, sethmerkel, shaashwat,

sternparky, strickroman, tigerjack, tsura crisaldo, welien, willhbang, yang.luh,
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